Rees algebras and multiplicity

02/12/21

Curve singularities and multiplicity

$$\begin{array}{c|c} & & & \text{nodal} \\ & & & \text{cubic} \\ & & & \text{cubic} \\ & & & & \text{cubic} \\ & & & & & \text{cubic} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & &$$

Cohen-Macaulay rings

Natural questions

How do CM singularities behave under blow-up constructions?
What role does the Hilbert-Samuel multiplicity have in understanding CM singularities ? Abhyankar's Inequality (1967)

R CM local ring with maximal ideal m and dimension d.

$$e(m) \ge \mu(m) - d + 1$$

$$Motice:$$

$$non-singular curve$$

$$min. humber = olim. of$$

$$of gen. = tangent$$

$$R olimR=1$$

$$gace ot (0,0)$$

$$\mu(m) = 1$$

$$e(m) = 1$$

$$multiplicity.$$

Sally, 1977-1983]: R CM local ring with maximal ideal
$$m$$
, dim R = d
• If m has minimal multiplicity $e(m) = \mu(m) - d + 1$, then $gr_m(R)$ is CM
• If m has almost minimal multiplicity $e(m) = \mu(m) - d + 2$, then
 $gr_m(R)$ is almost CM \longrightarrow length of max req. seq. $= d - 1$
Conjecture: How far $gr_m(R)$ is from being CM is encoded in its
Hilbert polynomial
 $\longrightarrow e(gr_m(R)) = e(m)$ leading coefficient
of Hilbert polynomial

almost almost minimal
$$\longrightarrow \mu(m) - d + 3 = e(m)$$

Sally's conj. is not solved
in this case.

minimal multiplicity $z \Rightarrow \exists a_1, \dots, a_d \in m$ so that $m(a_1, \dots, a_d) = m^2$ and the images of $a_1 \dots a_d$ in $gr_m(R)$ form a regular seq. The case of m-primary ideals

R CM local ring with maximal ideal m, dim R = d
I m-primary ideal
$$\longrightarrow$$
 examples: powers m^{S} , λ function is
 $vell$ -defined
 $vell$ -defined
If I has minimal multiplicity then $gr_{I}(R)$ is CM
 $(Rossi-Valla, 1996; Rossi, 2000]$
If I has almost minimal multiplicity then $gr_{I}(R)$ is almost CM
 $(t \le \dim -1)$ and Sally's conjecture holds
Notice: $\lambda(m_{m^{2}}) = \mu(Cm)$
When you blow up a CM singularity, the exceptional set
 $(point / point with minimal multiplicity)$
 $---$ as long as you started with minimal multiplicity!
Theorem : [Hunake 1982, Trung-Ikeda 1989]
R CM local ring, I an ideal containing a non-zeroalivisor. Then:
 $R(I) CM \implies gr_{I}(R) CM$

• gr_I(R) CM + a (gr_I(R)) < 0 => R(I) CM > a-invariant (numerical invariant defined using local cohomology) Application: defining ideal of Rees algebras

[Morey-Ulrich, 1996]:
$$R = k[x_{1,-}, x_d]$$
, & an infinite field
 $I = (f, ..., f_n)$ R -ideal of codimension 2 with a linear presentation
 $O \rightarrow R^{n-1} \xrightarrow{A} R^n \rightarrow I \rightarrow O$.
Suppose that for all $i \leq d-1$ ht $I_{n-i}(A) \geqslant i+1$.
Then, $J = L + I_d(B)$, where B is the Jacobian duel of A.
 I

$$R(I)$$
 is (M and $I_{n-d}(A) = I_{n}(A)$