What is commutative Algebra and What we this seminar be about? 9/10/2020

Commitative Algebra has connections to:

- · Hemological Algebra
- · Algebraic Geometry
- · Number theory Anithmetic Geometry -> p-derivations, perfected spaces
 Combinatorics -> combinatorial commutative algebra
- rings of invariants · Invariant theory -
- Reposentation theory surge of Reposential algebra (differential operators, D-modules)
 - · Topology, especially rational homotopy theory
 - · die Algemas · Cluster algebras

So what do commutative algebraists study?

· Rings, where of course all sungs are commutative, with 1 =0 and · Modules over ruch rungs, especially finitely generated R-modules (modules are to rungs what vector spaces are to fields A module is an obelian group @ a compatible action of R on H/

some subfields/topics: (disclaimer: these are just some of my forwates) · Homological Algebra Roughly: things involving complexes (of R-modules) this includes: · Catagorical ideas : mod R := catagory of for R-modules D(R) := derived catagory of complexes of R-modules • Behavior q Ext and Tor $Ext_{R}^{i}(M,N)$, $Tor_{R}^{i}(M,N)$ · docal cohomology · Injective novelutions · How concrete things: free/projective revolutions, bette numbers · Homological Conjectures (some still open) ·Hondogical techniques appear all over Commutative Algebra often. there is a dictionary · Combinatorial Commutative algebra combinatorial properties <---- sung-theoretic properties myle graphes ("edge ideals"

· Other classical topics : various notions of powers, Roes algebras, integral donne, dumention the ay

Typical sungs we study:

$$\frac{K[x_1,...,x_d]}{I}, \quad k \text{ field}, I \text{ ideal} \quad (power series zings)$$

$$\frac{K[x_1,...,x_d]}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad k \text{ field} \quad I \text{ ideal} \quad (power series zings)$$

$$\frac{dotal Rings}{I}, \quad ($$

Examples
• Fields
• Telynomial Rings over fields (in firiting many varies)
• Quotients and ladizations of northerian rungs
Hilled's Basis theorem R northerian
$$\Rightarrow$$
 REX] northerian
(every restan of phynomial equations in finitely many varieties
(every restain of phynomial equations in finitely many varieties
(every restain of phynomial equations)
• Conduction: rungs essentially of finite type over a field
 $\left(\frac{k[x_1, ..., x_d]}{I}\right)_{\overline{x}}$
• Gen rungs are domains (no zero diverses)
• Sometimes rungs are graded
boby example: $k[x_1, ..., x_d]$, deg $x_i = 1$
more advanced example: $\frac{k[x_2, ..., x_d]}{Romogeneous I}$
f homogeneous Q degree $d \Leftrightarrow f(n \underline{x}) = n^d f(\underline{x})$
• In some sense, all rungs are quotients of a regulax rung
Roughy speaking, $k[x_1, ..., x_d]$ or $k[[x_1, ..., x_d]$

$$\begin{aligned} & \int u dds & \longleftarrow boung & k \\ & regular rungs & \longleftarrow nice and beautiful & k[x, y, z] \\ & 10 \\ &$$