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Elóısa Grifo
University of California, Riverside

February 28, 2023



Warning!
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mutative Algebra [Mat80]
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Chapter 0

Setting the stage

In this chapter we set the stage for what’s to come in the rest of the class. The definitions
and facts we collect here should be somewhat familiar to you already, and so we present
them in rapid fire succession. You can learn more about the basic theory of (commutative)
rings and R-modules in any introductory algebra book, such as [DF04].

0.1 Basic definitions: rings and ideals

Roughly speaking, Commutative Algebra is the branch of algebra that studies commutative
rings and modules over such rings. For a commutative algebraist, every ring is commutative
and has a 1 ̸= 0.

Definition 0.1 (Ring). A ring is a set R equipped with two binary operations + and ·
satisfying the following properties:

1) R is an abelian group under the addition operation +, with additive identity 0.1 Explicitly,
this means that

• a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R,
• a+ b = b+ a for all a, b ∈ R,
• there is an element 0 ∈ R such that 0 + a = a for all a ∈ R, and
• for each a ∈ R there exists an element −a ∈ R such that a+ (−a) = 0.

2) R is a commutative monoid under the multiplication operation ·, with multiplicative
identity 1.2 Explicitly, this means that

• (a · b) · c = a · (b · c) for all a, b, c ∈ R,
• a · b = b · a for all a, b ∈ R, and
• there exists an element 1 ∈ R such that 1 · a = a · 1 for all a ∈ R.

1Or 0R if we need to specify which ring we are talking about.
2If we need to specify the corresponding ring, we may write 1R.

1
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3) multiplication is distributive with respect to addition, meaning that

a · (b+ c) = a · b+ a · c

for all a, b, c ∈ R.

4) 1 ̸= 0.

We typically write ab for a · b.

While in some branches of algebra rings might fail to be commutative, we will explicitly
say we have a noncommutative ring if that is the case, and otherwise all rings are assumed
to be commutative. There also branches of algebra where rings might be assumed to not
necessarily have a multiplicative identity; we recommend [Poo19] for an excellent read on
the topic of Why rings should have a 1.

Example 0.2. Here are some examples of the kinds of rings we will be talking about.

a) The integers Z.

b) Any quotient of Z, which we write compactly as Z/n.

c) A polynomial ring. When we say polynomial ring, we typically mean R = k[x1, . . . , xn],
a polynomial ring in finitely many variables over a field k.

d) A quotient of a polynomial ring by an ideal I, say R = k[x1, . . . , xn]/I.

e) Rings of polynomials in infinitely many variables, R = k[x1, x2, . . .].

f) Power series ringsR = kJx1, . . . , xnK. The elements are (formal) power series
∑
ai⩾0

ca1,...,anx
a1
1 · · ·xann .

g) While any field k is a ring, we will see that fields on their own are not very exciting from
the perspective of the kinds of things we will be discussing in this class.

Definition 0.3 (ring homomorphism). A map R
f
// S between rings is a ring homo-

morphism if f preserves the operations and the multiplicative identity, meaning

• f(a+ b) = f(a) + f(b) for all a, b ∈ R,

• f(ab) = f(a)f(b) for all a, b ∈ R, and

• f(1) = 1.

A bijective ring homomorphism is an isomorphism. We should think about a ring isomor-
phism as a relabelling of the elements in our ring.

Definition 0.4. A subset R ⊆ S of a ring S is a subring if R is also a ring with the structure
induced by S, meaning that the each operation on R is the restrictions of the corresponding
operation on S to R, and the 0 and 1 in R are the 0 and 1 in S, respectively.
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Often, we care about the ideals in a ring more than we care about individual elements.

Definition 0.5 (ideal). A nonempty subset I of a ring R is an ideal if it is closed for the
addition and for multiplication by any element in R: for any a, b ∈ I and r ∈ R, we must
have a+ b ∈ I and ra ∈ I.

The ideal generated by f1, . . . , fn, denoted (f1, . . . , fn), is the smallest ideal containing
f1, . . . , fn, or equivalently,

(f1, . . . , fn) = {r1f1 + · · · rnfn | ri ∈ R} .

Example 0.6. Every ring has always at least 2 ideals, the zero ideal (0) = {0} and the unit
ideal (1) = R.

We will follow the convention that when we say ideal we actually mean every ideal I ̸= R.

Exercise 1. The ideals in Z are the sets of multiples of a fixed integer, meaning every ideal
has the form (n). In particular, every ideal in Z can be generated by one element.

This makes Z the canonical example of a principal ideal domain.

A domain is a ring with no zerodivisors, meaning that rs = 0 implies that r = 0 or
s = 0. A principal ideal is an ideal generated by one element. A principal ideal domain
or PID is a domain where every ideal is principal.

Exercise 2. Given a field k, R = k[x] is a principal ideal domain, so every ideal in R is of
the form (f) = {fg | g ∈ R}.

Exercise 3. While R = k[x, y] is a domain, it is not a PID. We will see later that every
ideal in R is finitely generated, and yet we can construct ideals in R with arbitrarily many
generators!

Example 0.7. While Z[x] is a domain, it is also not a PID. For example, (2, x) is not a
principal ideal.

Finally, here is an elementary fact we will need, known as the Chinese Remainder Theo-
rem:

Theorem 0.8. Let R be a ring and I1, . . . , In be pairwise coprime ideals in R, meaning
Ii + Ij = R for all i ̸= j. Then I := I1 ∩ · · · ∩ In = I1 · · · In, and there is an isomorphism of
rings

R/I
∼= // R/I1 × · · · ×R/In

r + I � // (r + I1, . . . , r + In)

.
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0.2 Basic definitions: modules

Similarly to how linear algebra is the study of vector spaces over fields, commutative algebra
often focuses on the structure of modules over a given commutative ring R. While in other
branches of algebra modules might be left- or right-modules, all our modules are two sided,
and we refer to them simply as modules.

Definition 0.9 (Module). Given a ring R, an R-module (M,+) is an abelian group
equipped with an R-action that is compatible with the group structure. More precisely,
there is an operation · : R×M −→M such that

• r · (a+ b) = r · a+ r · b for all r ∈ R and a, b ∈M ,

• (r + s) · a = r · a+ s · a for all r, s ∈ R and a ∈M ,

• (rs) · a = r · (s · a) for all r, s ∈ R and a ∈M , and

• 1 · a = a for all a ∈M .

We typically write ra for r · a. We denote the additive identity in M by 0, or 0M if we need
to distinguish it from 0R.

The definitions of submodule, quotient of modules, and homomorphism of modules are
very natural and easy to guess, but here they are.

Definition 0.10. If N ⊆M are R-modules with compatible structures, we say that N is a
submodule of M .

A map M
f
// N between R-modules is a homomorphism of R-modules if it is a

homomorphism of abelian groups that preserves the R-action, meaning f(ra) = rf(a) for
all r ∈ R and all a ∈ M . We sometimes refer to R-module homomorphisms as R-module
maps, ormaps of R-modules. An isomorphism ofR-modules is a bijective homomorphism,
which we really should think about as a relabeling of the elements in our module. If two
modules M and N are isomorphic, we write M ∼= N .

Given an R-module M and a submodule N ⊆ M , the quotient M/N is an R-module
whose elements are the equivalence classes determined by the relation on M given by a ∼
b ⇔ a − b ∈ N . One can check that this set naturally inherits an R-module structure
from the R-module structure on M , and it comes equipped with a natural canonical map
M −→M/N induced by sending 1 to its equivalence class.

Example 0.11. The modules over a field k are precisely all the k-vector spaces. Linear
transformations are precisely all the k-module maps.

While vector spaces make for a great first example, be warned that many of the basic
facts we are used to from linear algebra are often a little more subtle in commutative algebra.
These differences are features, not bugs.

Example 0.12. The Z-modules are precisely all the abelian groups.

Example 0.13. When we think of the ring R as a module over itself, the submodules of R
are precisely the ideals of R.
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Exercise 4. The kernel ker f and image im f of an R-module homomorphism M
f
// N

are submodules of M and N , respectively.

Theorem 0.14 (First Isomorphism Theorem). For any homomorphism of R-modules M
f
// N,

M/ ker f ∼= im f .

The first big noticeable difference between vector spaces and more general R-modules is
that while every vector space has a basis, most R-modules do not.

Definition 0.15. A subset Γ ⊆ M of an R-module M is a generating set, or a set of
generators, if every element in M can be written as a finite linear combination of elements
in M with coefficients in R. A basis for an R-module M is a generating set Γ for M such
that

∑
i aiγi = 0 implies ai = 0 for all i. An R-module is free if it has a basis.

Remark 0.16. Every vector space is a free module.

Remark 0.17. Every free R-module is isomorphic to a direct sum of copies of R. Indeed,
let’s construct such an isomorphism for a given free R-module M . Given a basis Γ = {γi}i∈I
for M , let ⊕

i∈I R
π //M

(ri)i∈I //
∑
i

riγi

.

The condition that Γ is a basis for M can be restated into the statement that π is an
isomorphism of R-modules.

One of the key things that makes commutative algebra so rich and beautiful is that
most modules are in fact not free. In general, every R-module has a generating set — for
example, M itself. Given some generating set Γ for M , we can always repeat the idea above

and write a presentation ⊕i∈IR π //M for M , but in general the resulting map π will
have a nontrivial kernel. A nonzero kernel element (ri)i∈I ∈ kerπ corresponds to a relation
between the generators of M .

Remark 0.18. Given a set of generators for an R-module M , any homomorphism of R-
modules M −→ N is determined by the images of the generators.

We say that a module is finitely generated if we can find a finite generating set for M .
The simplest finitely generated modules are the cyclic modules.

Example 0.19. An R-module is cyclic if it can be generated by one element. Equivalently,
we can write M as a quotient of R by some ideal I. Indeed, given a generator m for M , the

kernel of the map R
π //M induced by 1 7→ m is some ideal I. Since we assumed that m

generates M , π is automatically surjective, and thus induces an isomorphism R/I ∼= M .

Similarly, if an R-module has n generators, we can naturally think about it as a quotient
of Rn by the submodule of relations among those n generators.



6

0.3 Why study commutative algebra?

There are many reasons why one would want to study commutative algebra. For starters, it’s
fun! Also, modern commutative algebra has connections with many fields of mathematics,
including:

• Algebra Geometry

• Algebraic Topology

• Homological Algebra

• Category Theory

• Number Theory

• Arithmetic Geometry

• Combinatorics

• Invariant Theory

• Representation Theory

• Differential Algebra

• Lie Algebras

• Cluster Algebras



Part I

Commutative Algebra
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Chapter 1

Finiteness conditions

1.1 Noetherian rings and modules

The most common assumption in commutative algebra is to require that our rings be Noethe-
rian. Noetherian rings are named after Emmy Noether, who is in many ways the mother
of modern commutative algebra. Many rings that one would naturally want to study are
Noetherian.

Definition 1.1 (Noetherian ring). A ring R is Noetherian if every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

eventually stabilizes: there is some N for which In = In+1 for all n ⩾ N .

This condition can be restated in various equivalent forms.

Proposition 1.2. Let R be a ring. The following are equivalent:

1) R is a Noetherian ring.

2) Every nonempty family of ideals has a maximal element (under ⊆).

3) Every ascending chain of finitely generated ideals of R stabilizes.

4) Given any generating set S for an ideal I, I is generated by a finite subset of S.

5) Every ideal of R is finitely generated.

Proof.
(1)⇒(2): We prove the contrapositive. Suppose there is a nonempty family of ideals with

no maximal element. This means that we can keep inductively choosing larger ideals from
this family to obtain an infinite properly ascending chain.

(2)⇒(1): An ascending chain of ideals is a family of ideals, and the maximal ideal in the
family indicates where our chain stabilizes.

(1)⇒(3): Clear.
(3)⇒(4): Let’s prove the contrapositive. Suppose that there is an ideal I and a generating

set S for I such that no finite subset of S generates I. So for any finite S ′ ⊆ S we have

8
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(S ′) ⊊ (S) = I, so there is some s ∈ S ∖ (S ′). Thus, (S ′) ⊊ (S ′ ∪ {s}). Inductively,
we can continue this process to obtain an infinite proper chain of finitely generated ideals,
contradicting (3).

(4)⇒(5): Clear.
(5)⇒(1): Given an ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

let I =
⋃
n∈N In. In general, the union of two ideals might fail to be an ideal, but the union

of a chain of ideals is an ideal (exercise). By assumption, the ideal I is finitely generated,
say I = (a1, . . . , at), and since each ai is in some Ini

, there is an N such that every ai is in
IN . But then IN = I, and thus In = In+1 for all n ⩾ N .

Remark 1.3. When we say that every non-empty family of ideals has a maximal element,
that maximal element does not have to be unique in any way. An ideal I is maximal in
the family F if I ⊆ J for some J ∈ F implies I = J ; we might have many incomparable
maximal elements in F . For example, every element in the family of ideals in Z given by

F = {(p) | p is a prime integer}

is maximal.

Remark 1.4. If R is a Noetherian ring and S is a non-empty set of ideals in R, not only
does S have a maximal element, but every element in S must be contained in a maximal
element of S. Given an element I ∈ S, the subset T of S of ideals in S that contain I is
nonempty, and must then contain a maximal element J by Proposition 1.2. If J ⊆ L for
some L ∈ S, then I ⊆ L, so L ∈ T , and thus by maximality of J in T , we must J = L. This
proves that J is in fact a maximal element in S, and by construction it contains I.

Example 1.5.

1) If R = k is a field, the only ideals in k are (0) and (1) = k, so k is a Noetherian ring.

2) Z is a Noetherian ring. More generally, if R is a PID, then R is Noetherian. Indeed,
every ideal is finitely generated!

3) As a special case of the previous example, consider the ring of germs of complex analytic
functions near 0,

C{z} := {f(z) ∈ CJzK | f is analytic on a neighborhood of z = 0}.

This ring is a PID: every ideal is of the form (zn), since any f ∈ C{z} can be written as
zng(z) for some g(z) ̸= 0, and any such g(z) is a unit in C{z}.

4) A ring that is not Noetherian is a polynomial ring in infinitely many variables over a field
k, R = k[x1, x2, . . .]: the ascending chain of ideals

(x1) ⊆ (x1, x2) ⊆ (x1, x2, x3) ⊆ · · ·

does not stabilize.
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5) The ring R = K[x, x1/2, x1/3, x1/4, x1/5, . . . ] is also not Noetherian . A nice ascending
chain of ideals is

(x) ⊊ (x1/2) ⊊ (x1/3) ⊊ (x1/4) ⊊ · · · .

6) The ring of continuous real-valued functions C(R,R) is not Noetherian: the chain of ideals

In = {f(x) | f |[−1/n,1/n] ≡ 0}

is increasing and proper. The same construction shows that the ring of infinitely dif-
ferentiable real functions C∞(R,R) is not Noetherian: properness of the chain follows
from, e.g., Urysohn’s lemma (though it’s not too hard to find functions distinguishing
the ideals in the chain). Note that if we asked for analytic functions instead of infinitely-
differentiable functions, every element of the chain would be the zero ideal!

Remark 1.6. If R is Noetherian, and I is an ideal of R, then R/I is Noetherian as well,
since there is an order-preserving bijection

{ideals of R that contain I} ←→ {ideals of R/I}.

This gives us many more examples, by simply taking quotients of the examples above.
We will also see huge classes of easy examples once we learn about localization.

Similarly, we can define Noetherian modules.

Definition 1.7 (Noetherian module). An R-module M is Noetherian if every ascending
chain of submodules of M eventually stabilizes.

There are analogous equivalent definitions for modules as we had above for rings, so we
leave the proof as an exercise.

Proposition 1.8 (Equivalence definitions for Noetherian module). Let M be an R-module.
The following are equivalent:

1) M is a Noetherian module.

2) Every nonempty family of submodules has a maximal element.

3) Every ascending chain of finitely generated submodules of M eventually stabilizes.

4) Given any generating set S for a submodule N , the submodule N is generated by a finite
subset of S.

5) Every submodule of M is finitely generated.

In particular, a Noetherian module must be finitely generated.

Remark 1.9. A ring R is a Noetherian ring if and only if R is Noetherian as a module
over itself. However, a Noetherian ring need not be a Noetherian module over a subring.
For example, consider Z ⊆ Q. These are both Noetherian rings, but Q is not a Noetherian
Z-module; for example, the following is an ascending chain of submodules which does not
stabilize:

0 ⊊
1

2
Z ⊊

1

2
Z+

1

3
Z ⊊

1

2
Z+

1

3
Z+

1

5
Z ⊊ · · · .
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Definition 1.10. An exact sequence of R-modules is a sequence

· · · fn−1
//Mn

fn
//Mn+1

fn+1
// · · ·

of R-modules and R-module homomorphisms such that im fn = ker fn+1 for all n. An exact
sequence of the form

0 // A // B // C // 0

is a short exact sequence.

Remark 1.11. The sequence
0 //M

f
// N

is exact if and only if f is injective. Similarly,

M
f
// N // 0

is exact if and only if f is surjective. So

0 // A
f
// B

g
// C // 0

is a short exact sequence if and only if

• f is injective • g is surjective • im f = ker g.

So when this is indeed a short exact sequence, we can identify A with its image f(A), and
A = ker g. Moreover, since g is surjective, by the First Isomorphism Theorem we conclude
that C ∼= B/A, so we might abuse notation and identify C with B/A.

Lemma 1.12 (Noetherianity in exact sequences). In an exact sequence of modules

0 // A
f
// B

g
// C // 0

B is Noetherian if and only if A and C are Noetherian.

Proof. Assume B is Noetherian. Since A is a submodule of B, and its submodules are also
submodules of B, A is Noetherian. Moreover, any submodule of B/A is of the form D/A
for some submodule D ⊇ A of B. Since every submodule of B is finitely generated, every
submodule of C is also finitely generated. Therefore, C is Noetherian.

Conversely, assume that A and C are Noetherian, and let

M1 ⊆M2 ⊆M3 ⊆ · · ·

be a chain of submodules of B. First, note that

M1 ∩ A ⊆M2 ∩ A ⊆ · · ·

is an ascending chain of submodules of A, and thus it stabilizes. Moreover,

g(M1) ⊆ g(M2) ⊆ g(M3) ⊆ · · ·
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is a chain of submodules of C, and thus it also stabilizes. Pick a large enough index n such
that both of these chains stabilize. We claim that Mn = Mn+1, so that the original chain
stabilizes as well. To show that, take x ∈Mn+1. Then

g(x) ∈ g(Mn+1) = g(Mn)

so we can choose some y ∈Mn such that g(x) = g(y). Then x− y ∈ ker g = im f = A. Now
note that x− y ∈Mn+1, so

x− y ∈Mn+1 ∩ A =Mn ∩ A.

Then x− y ∈Mn, and since y ∈Mn, we must have x ∈Mn as well.

Corollary 1.13. If A and B are Notherian R-modules, then A⊕B is a Noetherian R-module.

Proof. Apply the previous lemma to the short exact sequence

0 // A // A⊕B // B // 0 .

Corollary 1.14. A module M is Noetherian if and only if Mn is Noetherian for some n.
In particular, if R is a Noetherian ring then Rn is a Noetherian module.

Proof. We will do induction on n. The case n = 1 is a tautology. For n > 1, consider the
short exact sequence

0 //Mn−1 //Mn //M // 0

Lemma 1.12 and the inductive hypothesis give the desired conclusion.

Proposition 1.15. Let R be a Noetherian ring. Given an R-module M , M is a Noetherian
R-module if and only if M is finitely generated. Consequently, any submodule of a finitely
generated R-module is also finitely generated.

Proof. If M is Noetherian, M is finitely generated by the equivalent definitions above, and
so are all of its submodules.

Now let R be Noetherian andM be a finitely generated R-module. ThenM is isomorphic
to a quotient of Rn for some n, which is Noetherian.

Remark 1.16. The Notherianity hypothesis is important: if M is a finitely generated R-
module over a non-Noetherian ring, M might not be Noetherian. For a dramatic example,
note that R itself is a finitely generated R-module, but not Noetherian.

David Hilbert had a big influence in the early years of commutative algebra, in many
different ways. Emmy Noether’s early work in algebra was in part inspired by some of his
work, and he later invited Emmy Noether to join the Göttingen Math Department —many of
her amazing contributions to algebra happened during her time in Göttingen. Unfortunately,
some of the faculty was opposed to having a woman joining the department, and for her first
two years in Göttingen Noether did not have an official position nor was she paid. Hilbert’s
contributions also include three of the most fundamental results in commutative algebra —
Hilbert’s Basis Theorem, the Hilbert Syzygy Theorem, and Hilbert’s Nullstellensatz. We
can now prove the first.
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Theorem 1.17 (Hilbert’s Basis Theorem). Let R be a Noetherian ring. Then the rings
R[x1, . . . , xd] and RJx1, . . . , xdK are Noetherian.

Remark 1.18. We can rephrase this theorem in a way that can be understood by anyone
with a basic high school algebra (as opposed to abstract algebra) knowledge:

Any system of polynomial equations in finitely many variables can be written in terms of
finitely many equations.

Proof. We give the proof for polynomial rings, and indicate the difference in the power series
argument. By induction on d, we can reduce to the case d = 1. Given I ⊆ R[x], let

J = {a ∈ R | there is some axn + lower order terms (wrt x) ∈ I}.

So J ⊆ R consists of all the leading coefficients of polynomials in I. We can check (exercise)
that this is an ideal of R. By our hypothesis, J is finitely generated, so let J = (a1, . . . , at).
Pick f1, . . . , ft ∈ R[x] such that the leading coefficient of fi is ai, and set N = max

i
{deg fi}.

Given any f ∈ I of degree greater than N , we can cancel off the leading term of f by
subtracting a suitable combination of the fi, so any f ∈ I can be written as f = g+h where
h ∈ (f1, . . . , ft) and g ∈ I has degree at most N , so g ∈ I ∩ (R + Rx + · · · + RxN). Note
that since I ∩ (R+Rx+ · · ·+RxN) is a submodule of the finitely generated free R-module
R + Rx + · · · + RxN , it is also finitely generated as an R-module. Given such a generating
set, say I ∩ (R+Rx+ · · ·+RxN) = (ft+1, . . . , fs), we can write any such f ∈ I as an R[x]-
linear combination of these generators and the fi’s. Therefore, I = (f1, . . . , ft, ft+1, . . . , fs)
is finitely generated, and R[x] is a Noetherian ring.

In the power series case, take J to be the coefficients of lowest degree terms.

1.2 Algebra finite-extensions

If R is a subring of S, then S is an algebra over R, meaning that S is a ring with a (natural)
structure of an R-module that also satisfies

r(s1s2) = (rs1)s2 for all r ∈ R and s1, s2 ∈ S.

More generally, given any ring homomorphism φ : R→ S, we can view S as an algebra over
R via φ by setting r · s = φ(r)s. We may abuse notation and write r ∈ S for its image
φ(r) ∈ S. We will see that in a lot of situations we want to study, it is enough to consider the
case when φ is injective, so this abuse of notation makes sense. Giving a ring homomorphism
R → S is the same as giving an R-algebra structure to S. In particular, a ring S can have
different R-algebra structures given by different homomorphisms R→ S.

A set of elements Λ ⊆ S generates S as an R-algebra if the following equivalent condi-
tions hold:

• The only subring of S containing φ(R) and Λ is S itself.

• Every element of S admits a polynomial expression in Λ with coefficients in φ(R).
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• Given a polynomial ring R[X] on |Λ| indeterminates, the ring homomorphism

R[X]
ψ
// S

xi
� // λi

is surjective.

Let S be an R-algebra and Λ ⊆ S be a set of algebra generators for S over R. The ideal
of relations on the elements Λ over R is the kernel of the map ψ : R[X] // S above.
This ideal consists of the polynomial functions with R-coefficients that the elements of Λ
satisfy. Given an R-algebra S with generators Λ and ideal of relations I, we have a ring
isomorphism S ∼= R[X]/I by the First Isomorphism Theorem. If we understand the ring R
and generators and relations for S over R, we can get a pretty concrete understanding of S.
If a sequence of elements has no nonzero relations, we say they are algebraically independent
over R.

Remark 1.19. If s1, . . . , sn ∈ S are algebraically independent over R, then R[s1, . . . , sn] is
isomorphic to the polynomial ring in n variables over R.

We say that φ : R→ S is algebra-finite, or S is a finitely generated R-algebra, or S
is of finite type over R, if there exists a finite set of elements f1, . . . , ft ∈ S that generates
S as an R-algebra. A better name might be finitely generatable, since to say that an algebra
is finitely generated does not require knowing any actual finite set of generators. From the
discussion above, we conclude that S is a finitely generated R-algebra if and only if S is
a quotient of some polynomial ring R[x1, . . . , xd] over R in finitely many variables. If S is
generated over R by f1, . . . , fd, we will use the notation R[f1, . . . , fd] to denote S. Of course,
for this notation to properly specify a ring, we need to understand how these generators
behave under the operations. This is no problem if A and f are understood to be contained
in some larger ring.

Remark 1.20. Any surjective ring homomorphism φ : R → S is algebra-finite, since S
must then be generated over R by 1. Moreover, we can always factor φ as the surjection
R // // R/ ker(φ) followed by the inclusion R/ ker(φ) ↪→ S, so to understand algebra-
finiteness it suffices to restrict our attention to injective homomorphisms.

Example 1.21. Every ring is a Z-algebra, but generally not a finitely generated one.

Remark 1.22. Let A ⊆ B ⊆ C be rings. It follows from the definitions that

•
A ⊆ B algebra-finite

and
B ⊆ C algebra-finite

=⇒ A ⊆ C algebra-finite

• A ⊆ C algebra-finite =⇒ B ⊆ C algebra-finite.

However, A ⊆ C algebra-finite ≠⇒ A ⊆ B algebra-finite.
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Example 1.23. Let k be a field and

B = k[x, xy, xy2, xy3, · · · ] ⊆ C = k[x, y],

where x and y are indeterminates. While B and C are both k-algebras, C is a finitely
generated k-algebra, while B is not. Indeed, any finitely generated subalgebra of B is
contained in k[x, xy, . . . , xym] for some m, since we can write the elements in any finite
generating set as polynomial expressions in finitely many of the specified generators of B.
However, note that every element of k[x, xy, . . . , xym] is a k-linear combination of monomials
with the property that the y exponent is no more than m times the x exponent, so this ring
does not contain xym+1. Thus, B is not a finitely generated A-algebra.

There are many basic questions about algebra generators that are surprisingly difficult.
Let R = C[x1, . . . , xn] and f1, . . . , fn ∈ R. When do f1, . . . , fn generate R over C? It is not
too hard to show that the Jacobian determinant

det


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn


must be a nonzero constant. It is a big open question whether this is in fact a sufficient
condition!

Finally, note that an easy corollary of the Hilbert Basis Theorem is that finitely generated
algebras over Noetherian rings are also Noetherian.

Corollary 1.24. If R is a Noetherian ring, then any finitely generated R-algebra is Noethe-
rian. In particular, any finitely generated algebra over a field is Noetherian.

Proof. By our discussion above, a finitely generated R-algebra is isomorphic to a quotient
of a polynomial ring over R in finitely many variables; polynomial rings over Noetherian
rings are Noetherian, by Hilbert’s Basis Theorem, and quotients of Noetherian rings are
Noetherian.

The converse to this statement is false: there are lots of Noetherian rings that are not
finitely generated algebras over a field. For example, C{z} is not algebra-finite over C. We
will see more examples of these when we talk about local rings.

1.3 Module-finite extensions

Given a ring homomorphism φ : R → S, saying that S acquires an R-module structure via
φ by a · r = φ(a)r is a particular case of restriction of scalars . By restriction of scalars, we
mean that any S-module M also gains a new R-module structure given by r ·m = φ(r)m.1

We may write φM for this R-module if we need to emphasize which map we are talking
about.

1This gives a functor from the category of S-modules to the category of R-modules.
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Given an R-algebra S, we can consider the algebra structure of S over R, or its module
structure over R. So instead of asking about how S is generated as an algebra over R, we
can ask how it is generated as a module over R. Recall that an A-module M is generated
by a set of elements Γ ⊆M if the following equivalent conditions hold:

• The smallest submodule of M that contains Γ is M itself.

• Every element of M can be written as an A-linear combination of elements in Γ.

• Given a free R-module on |Γ| basis elements R⊕Y , the homomorphism

R⊕Y θ //M

yi // γi

is surjective.

We use the notation M =
∑

γ∈ΓAγ to indicate that M is generated by Γ as a module.
We say that φ : A → R is module-finite if R is a finitely-generated A-module. This is also
called simply finite in the literature, but we’ll stick with the unambiguous “module-finite.”

As with algebra-finiteness, surjective maps are always module-finite in a trivial way, and
it suffices to understand this notion for ring inclusions.

The notion of module-finite is much stronger than algebra-finite, since a linear combina-
tion is a very special type of polynomial expression.

Example 1.25.

a) If K ⊆ L are fields, saying L is module-finite over K just means that L is a finite field
extension of K.

b) The Gaussian integers Z[i] satisfy the well-known property (or definition, depending on
your source) that any element z ∈ Z[i] admits a unique expression z = a+bi with a, b ∈ Z.
That is, Z[i] is generated as a Z-module by {1, i}; moreover, they form a free module
basis!

c) If R is a ring and x an indeterminate, R ⊆ R[x] is not module-finite. Indeed, R[x] is a
free R-module on the basis {1, x, x2, x3, . . . }.

d) Another map that is not module-finite is the inclusion k[x] ⊆ k[x, 1/x]. First, note that
any element of k[x, 1/x] can be written in the form f(x)/xn for some f ∈ k[x] and some
n ⩾ 0. Since k[x] is a Noetherian ring, k[x, 1/x] is a finitely-generated k[x]-module if
and only if it is a Noetherian k[x]-module. But here is an infinite chain of submodules of
k[x, 1

x
]:

k[x] · 1
x
⊆ k[x] · 1

x2
⊆ k[x] · 1

x3
⊆ · · ·

Remark 1.26. If R is an A-algebra,

• A ⊆ R is algebra-finite if R = A[f1, . . . , fn] for some f1, . . . , fn ∈ R.
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• A ⊆ R is module-finite if R = Af1 + · · ·+ fn for some f1, . . . , fn ∈ R.

Lemma 1.27. If R ⊆ S is module-finite and N is a finitely generated S-module, then N is
a finitely generated R-module by restriction of scalars. In particular, the composition of two
module-finite ring maps is module-finite.

Proof. Let S = Ra1 + · · ·+Rar and N = Sb1 + · · ·+ Sbs. Then we claim that

N =
r∑
i=1

s∑
j=1

Raibj.

Indeed, given n =
∑s

j=1 sjbj, rewrite each sj =
∑r

i=1 rijai and substitute to get

n =
r∑
i=1

s∑
j=1

rijaibj

as an R-linear combination of the aibj.

Remark 1.28. Let A ⊆ B ⊆ C be rings. It follows from the definitions that

•
A ⊆ B module-finite

and
B ⊆ C module-finite

=⇒ A ⊆ C module-finite

• A ⊆ C module-finite =⇒ B ⊆ C module-finite.

However, A ⊆ C module-finite ≠⇒ A ⊆ B module-finite. Note that if A is Noetherian,
then A ⊆ C module-finite does in fact imply A ⊆ B module-finite, so to find an example of
this bad behavior we need A to be non-Noetherian. You will construct an example in the
next problem set.

1.4 Integral extensions

In field theory, there is a close relationship between (vector space-)finite field extensions and
algebraic equations. The situation for rings is similar.

Definition 1.29 (Integral element/extension). Let R be an A-algebra. The element r ∈ R
is integral over A if there are elements a0, . . . , an−1 ∈ A such that

rn + an−1r
n−1 + · · ·+ a1r + a0 = 0;

i.e., r satisfies an equation of integral dependence over A. We say that R is integral
over A if every r ∈ R is integral over A.

Integral automatically implies algebraic, but the condition that there exists an equation
of algebraic dependence that is monic is stronger in the setting of rings.

Again, we can restrict our focus to inclusion maps A ⊆ R.
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Remark 1.30. An element r ∈ R is integral over A if and only if r is integral over the
subring φ(A) ⊆ R, so we might as well assume that φ is injective.

Definition 1.31. Given an inclusion of rings A ⊆ R, the integral closure of A in R is the
set of elements in R that are integral over A. The integral closure of a domain R in its field
of fractions is usually denoted by R. We say A is integrally closed in R if A is its own
integral closure in R; a normal domain is a domain R that is integrally closed in its field
of fractions, meaning R = R.

Example 1.32. The ring of integers Z is a normal domain, meaning its integral closure in
its fraction field Q is Z itself.

Example 1.33. The ring Z[
√
d], where d ∈ Z is not a perfect square, is integral over Z.

Indeed,
√
d satisfies the monic polynomial r2−d, and since the integral closure of Z is a ring

containing Z and
√
d, every element in Z[

√
d] is integral over Z.

Proposition 1.34. Let A ⊆ R be rings.

1) If r ∈ R is integral over A then A[r] is module-finite over A.

2) If r1, . . . , rt ∈ R are integral over A then A[r1, . . . , rt] is module-finite over A.

Proof.

1) Suppose r is integral over A, and rn+ an−1r
n−1 + · · ·+ a1r+ a0 = 0. Then we claim that

A[r] = A+Ar+ · · ·+Arn−1. First, note that to show that any polynomial p(r) ∈ A[r] is
in A+Ar + · · ·+Arn−1, it is enough to show that rm ∈ A+Ar + · · ·+Arn−1 for all m.
Using induction on m, the base cases 1, r, . . . , rn−1 ∈ A + Ar + · · · + Arn−1 are obvious.
On the other hand, we can use induction to conclude that rm ∈ A+Ar+ · · ·+Arn−1 for
all m ⩾ n− 1, since we can use the equation above to rewrite rm as

rm = rm−n(an−1r
n−1 + · · ·+ a1r + a0),

which has degree m− 1 in r.

2) Write
A0 := A ⊆ A1 := A[r1] ⊆ A2 := A[r1, r2] ⊆ · · · ⊆ At := A[r1, . . . , rt].

Note that ri is integral over Ai−1, via the same monic equation of ri over A. Then, the
inclusion A ⊆ A[r1, . . . , rt] is a composition of module-finite maps, and thus it is also
module-finite.

The name “ring” is roughly based on this idea: in an extension as above, the powers
wrap around (like a ring).

We will need a linear algebra fact. The classical adjoint of an n×n matrix B = [bij] is

the matrix adj(B) with entries adj(B)ij = (−1)i+j det(B̂ji), where B̂ji is the matrix obtained
from B by deleting its jth row and ith column. You may remember this matrix from linear
algebra.
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Lemma 1.35 (Determinantal trick). Let R be a ring, B ∈Mn×n(R), v ∈ R⊕n, and r ∈ R.

1) adj(B)B = det(B)In×n.

2) If Bv = rv, then det(rIn×n −B)v = 0.

Proof.

1) When R is a field, this is a basic linear algebra fact. We deduce the case of a general ring
from the field case.

The ring R is a Z-algebra, so we can write R as a quotient of some polynomial ring
Z[X]. Let ψ : Z[X] // // R be a surjection, aij ∈ Z[X] be such that ψ(aij) = bij, and let

A = [aij]. Note that

ψ(adj(A)ij) = adj(B)ij and ψ((adj(A)A)ij) = (adj(B)B)ij,

since ψ is a homomorphism, and the entries are the same polynomial functions of the
entries of the matrices A and B, respectively. Thus, it suffices to establish

adj(B)B = det(B)In×n

in the case when R = Z[X], and we can do this entry by entry. Now, R = Z[X] is an
integral domain, hence a subring of a field (its fraction field). Since both sides of the
equation

(adj(B)B)ij = (det(B)In×n)ij

live in R and are equal in the fraction field (by linear algebra) they are equal in R. This
holds for all i, j, and thus 1) holds.

2) We have (rIn×n −B)v = 0, so by part 1)

det(rIn×n −B)v = adj(rIn×n −B)(rIn×n −B)v = 0.

Theorem 1.36 (Module finite implies integral). Let A ⊆ R be module-finite. Then R is
integral over A.

Proof. Given r ∈ R, we want to show that r is integral over A. The idea is to show that
multiplication by r, realized as a linear transformation over A, satisfies the characteristic
polynomial of that linear transformation.

Write R = Ar1 + · · ·Art. We may assume that r1 = 1, perhaps by adding module
generators. By assumption, we can find aij ∈ A such that

rri =
t∑

j=1

aijrj

for each i. Let C = [aij], and v be the column vector (r1, . . . , rt). We have rv = Cv, so by
the determinant trick, det(rIn×n − C)v = 0. Since we chose one of the entries of v to be 1,
we have in particular that det(rIn×n−C) = 0. Expanding this determinant as a polynomial
in r, this is a monic equation with coefficients in A.
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Collecting the previous results, we now have a useful characterization of module-finite
extensions:

Corollary 1.37 (Characterization of module-finite extensions). Let A ⊆ R be rings. R is
module-finite over A if and only if R is integral and algebra-finite over A.

Proof. (⇒): A generating set for R as an A-module serves as a generating set as an A-algebra.
The remainder of this direction comes from the previous theorem. (⇐): If R = A[r1, . . . , rt]
is integral over A, so that each ri is integral over A, then R is module-finite over A by
Proposition 1.34.

Corollary 1.38. If R is generated over A by integral elements, then R is integral. Thus, if
A ⊆ S, the set of elements of S that are integral over A form a subring of S.

Proof. Let R = A[Λ], with λ integral over A for all λ ∈ Λ. Given r ∈ R, there is a finite
subset L ⊆ Λ such that r ∈ A[L]. By the theorem, A[L] is module-finite over A, and r ∈ A[L]
is integral over A.

For the latter statement, the first statement implies that

{integral elements} ⊆ A[{integral elements}] ⊆ {integral elements},

so equality holds throughout, and {integral elements} is a ring.

Definition 1.39. If A ⊆ R, the integral closure of A in R is the set of elements of R
that are integral over A.

So the previous result says that the integral closure of A in R is a subring of R (containing
A).

Example 1.40.

1) Let R = C[x, y] ⊆ S = C[x, y, z]/(x2 + y2 + z2). Then S is module-finite over R: indeed,
S is generated over R as an algebra by one element, z, and z satisfies the monic equation
r2 + x2 + y2 = 0, so it is integral over R.

2) Not all integral extensions are module-finite. Consider

A = k[x] ⊆ R = k[x, x1/2, x1/3, x1/4, x1/5, . . . ].

R is generated by integral elements over k[x], but it is not algebra-finite over k[x].

Finally, we can prove a technical sounding result that puts together all our finiteness
conditions in a useful way. We will then be able to answer a classical question using this
result.

Theorem 1.41 (Artin-Tate Lemma). Let A ⊆ B ⊆ C be rings. Assume that

• A is Noetherian,

• C is module-finite over B, and
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• C is algebra-finite over A.

Then, B is algebra-finite over A.

Proof. Let C = A[f1, . . . , fr] and C = Bg1 + · · ·+Bgs. Then,

fi =
∑
j

bijgj and gigj =
∑
k

bijkgk

for some bij, bijk ∈ B. Let B0 = A[{bij, bijk}] ⊆ B. Since A is Noetherian, so is B0.
We claim that C = B0 g1 + · · ·+B0gs. Given an element c ∈ C, write c as a polynomial

expression in f1, . . . , fr, and since the fi are linearly combinations of the gi, we can rewrite
c ∈ A[{bij}][g1, . . . , gs]. Then using the equations for gigj we can write c in the form required.

Now, since B0 is Noetherian, C is a finitely generated B0-module, and B ⊆ C, then B
is a finitely generated B0-module, too. In particular, B0 ⊆ B is algebra-finite. We conclude
that A ⊆ B is algebra-finite, as required.

1.5 An application to invariant rings

Historically, commutative algebra has roots in classical questions of algebraic and geometric
flavors, including the following natural question:

Question 1.42. Given a (finite) set of symmetries, consider the collection of polynomial
functions that are fixed by all of those symmetries. Can we describe all the fixed polynomials
in terms of finitely many of them?

To make this precise, let G be a group acting on a ring R, or just as well, a group of
automorphisms of R. The main case we have in mind is when R = k[x1, . . . , xd] and k is a
field. We are interested in the set of elements that are invariant under the action,

RG := {r ∈ R | g(r) = r for all g ∈ G}.

Note that RG is a subring of R. Indeed, given r, s ∈ RG, then

r + s = g(r) + g(s) = g(r + s) and rs = g(r)g(s) = g(rs) for all g ∈ G,

since each g is a homomorphism. Note also that if G = ⟨g1, . . . , gt⟩, then r ∈ RG if and only
if gi(r) = r for i = 1, . . . , t. The question above can now be rephrased as follows:

Question 1.43. Given a finite groupG acting on R = k[x1, . . . , xd], is R
G a finitely generated

k-algebra?

Proposition 1.44. Let k be a field, R be a finitely-generated k-algebra, and G a finite group
of automorphisms of R that fix k. Then RG ⊆ R is module-finite.

Proof. Since integral implies module-finite, we will show that R is algebra-finite and integral
over RG.
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First, since R is generated by a finite set as a k-algebra, and k ⊆ RG, it is generated by
the same finite set as an RG-algebra as well. Extend the action of G on R to R[t] with G
fixing t. Now, for r ∈ R, consider the polynomial Fr(t) =

∏
g∈G(t − g(r)) ∈ R[t]. Then G

fixes Fr(t), since for each h ∈ G,

h(Fr(t)) = h
∏
g∈G

(t− g(r)) =
∏
g∈G

(h · t− hg(r)) = Fr(t)

Thus, Fr(t) ∈ (R[t])G. Notice that (R[t])G = RG[t], since
g(ant

n + · · · + a0) = ant
n + · · · + a0 =⇒ (g · an)tn + · · · + (g · a0) = ant

n + · · · + a0.
Therefore, Fr(t) ∈ RG[t]. The leading term (with respect to t) of Fr(t) is t|G|, so Fr(t) is
monic, and r is integral over RG. Therefore, R is integral over RG.

Theorem 1.45 (Noether’s finiteness theorem for invariants of finite groups). Let k be a
field, R be a polynomial ring over k, and G be a finite group acting k-linearly on R. Then
RG is a finitely generated k-algebra.

Proof. Observe that k ⊆ RG ⊆ R, that k is Noetherian, k ⊆ R is algebra-finite, and RG ⊆ R
is module-finite. Thus, by the Artin-Tate Lemma, we are done!

Chapter summary

• R is a Noetherian ring ks +3 every ideal I in R is Noetherian

• M is a Noetherian R-module
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Noeth
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Chapter 2

Graded rings

2.1 Graded rings

When we think of a polynomial ring R, we often think of R with its graded structure, even
if we have never formalized what that means. Other rings we have seen also have a graded
structure, and this structure is actually very powerful.

Definition 2.1. A ring R is N-graded if we can write a direct sum decomposition of R as
an abelian group indexed by N1

R =
⊕
a⩾0

Ra,

where RaRb ⊆ Ra+b for every a, b ∈ N, meaning that for any r ∈ Ra and s ∈ Rb, we have
rs ∈ Ra+b. More generally, given a monoid T . The ring R is T -graded if there exists a
direct sum decomposition of R as an abelian group indexed by T :

R =
⊕
a∈T

Ra

satisfying RaRb ⊆ Ra+b.
An element that lies in one of the summands Ra is said to be homogeneous of degree

a; we write |r| or deg(r) to denote the degree of a homogeneous element r.

By definition, an element in a graded ring is a unique sum of homogeneous elements, which
we call its homogeneous components or graded components. One nice thing about
graded rings is that many properties can usually be sufficiently checked on homogeneous
elements, and these are often easier to deal with.

Remark 2.2. Note that whenever R is a graded ring, the multiplicative identity 1 must be a
homogeneous element whose degree is the identity in T . In particular, if R is N or Z-graded,
then 1 ∈ R0 and R0 is a subring of R.

Example 2.3.

a) Any ring R is trivially an N-graded ring, by setting R0 = R and Rn = 0 for n ̸= 0.

1We follow the convention that 0 is a natural number.
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b) If k is a field and R = k[x1, . . . , xn] is a polynomial ring, there is an N-grading on R called
the standard grading where Rd is the k-vector space with basis given by the monomials
of total degree d, meaning those of the form xα1

1 · · ·xαn
n with

∑
i αi = d. Of course, this

is the notion of degree familiar from middle school. So x21 + x2x3 is homogeneous in the
standard grading, while x21 + x2 is not.

c) If k is a field, and R = k[x1, . . . , xn] is a polynomial ring, we can give different N-gradings
on R by fixing some tuple (β1, . . . , βn) ∈ Nn and letting xi be a homogeneous element of
degree βi; we call this a grading with weights (β1, . . . , βn).

For example, in k[x1, x2], x
2
1 + x32 is not homogeneous in the standard grading, but it is

homogeneous of degree 6 under the N-grading with weights (3, 2).

d) A polynomial ring R = k[x1, . . . , xn] also admits a natural Nn-grading, with R(d1,...,dn) =

k · xd11 · · ·xdnn . This is called the fine grading .

e) Let Γ ⊆ Nn be a subsemigroup of Nn. Then⊕
γ∈Γ

k · xγ ⊆ k[x] = k[x1, . . . , xn]

is an Nn-graded subring of k[x1, . . . , xn]. Conversely, every Nn-graded subring of k[x1, . . . , xn]
is of this form.

f) Polynomial rings in Macaulay2 are graded with the standard grading by default. To define
a different grading, we give Macaulay2 a list with the grading of each of the variables:

i1 : R = ZZ/101[a,b,c,Degrees=>{{1,2},{2,1},{1,0}}];

We can check whether an element of R isHomogeneous, and the function degree applied
to an element of R returns the least upper bound of the degrees of its monomials:

i2 : degree (a+b)

o2 = {2, 2}

o2 : List

i3 : isHomogeneous(a+b)

o3 = false

Remark 2.4. You may have seen the term homogeneous polynomial used to refer to a
polynomial f(x1, . . . , xn) ∈ k[x1, . . . , xn] that satisfies

f(λx1, . . . , λxn) = λdf(x1, . . . , xn)

for some d. This is equivalent to saying that all the terms in f have the same total degree,
or that f is homogeneous with respect to the standard grading.
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Similarly, a polynomial is quasi-homogeneous, or weighted homogeneous, if there exist
integers w1, . . . , wn such that he sum w = a1w1 + · · · + anwn is the same for all monomials
xa11 · · ·xann appearing in f . So f satisfies

f(λw1x1, . . . , λ
wnxn) = λwf(x1, . . . , xn),

and f(xw1
1 , . . . , xwn

n ) is homogeneous (in the previous sense, so with respect to the standard
grading). This condition is equivalent to asking that f be homogeneous with respect to some
weighted grading on k[x1, . . . , xn].

Definition 2.5. An ideal I in a graded ring R is called homogeneous if it can be generated
by homogeneous elements.

Remark 2.6. Observe that an ideal is homogeneous if and only if I has the following
property: for any element f ∈ R we have f ∈ I if and only if every homogeneous component
of f lies in I. We can repackage this by saying that I is homogeneous if

I =
⊕
a∈T

Ia,

where Ia = I ∩Ra.
Indeed, if I has this property, take a generating set {fλ}Λ for I; by assumption, all of the

homogeneous components of each fλ lie in I, and since each fλ lies in the ideal generated
by these components, the set of all the components generates I, and I is homogeneous.
On the other hand, if all the components of f lie in I then so does f , whether or not I is
homogeneous. If I is homogeneous and f ∈ I, write f as a combination of the (homogeneous)
generators of I, say f1, . . . , fn:

f = r1f1 + · · ·+ rnfn.

Now by writing each ri as a sum of its components, say ri = ri,1 + · · ·+ ri,ni
, each ri,jfi ∈ I,

and these contain all the components of f (and potentially some redundant terms).

Example 2.7. Given an N-graded ring R, then R+ =
⊕

d>0Rd is a homogeneous ideal.

We now observe the following:

Lemma 2.8. Let R be an T -graded ring, and I be a homogeneous ideal. Then R/I has a
natural T -graded structure induced by the T -graded structure on R.

Proof. The ideal I decomposes as the direct sum of its graded components, so we can write

R/I =
⊕Ra

⊕Ia
∼= ⊕

Ra

Ia
.

Example 2.9.

a) The ideal I = (w2x + wyz + z3, x2 + 3xy + 5xz + 7yz + 11z2) in R = k[w, x, y, z] is
homogeneous with respect to the standard grading on R, and thus the ring R/I admits
an N-grading with |w| = |x| = |y| = |z| = 1.
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b) In contrast, the ring R = k[x, y, z]/(x2 + y3 + z5) does not admit a grading with |x| =
|y| = |z| = 1, but does admit a grading with |x| = 15, |y| = 10, |z| = 6.

Definition 2.10. Let R be a T -graded ring, and M an R-module. The module R is T -
graded if there exists a direct sum decomposition of M as an abelian group indexed by
T :

M =
⊕
a∈T

Ma such that RaMb ⊆Ma+b

for all a, b ∈ T .
The notions of homogeneous element of a module and degree of a homogeneous element

of a module take the obvious meanings. A notable abuse of notation: we will often talk
about Z-graded modules over N-graded rings, and likewise.

We can also talk about graded homomorphisms.

Definition 2.11. Let R and S be T -graded rings with the same grading monoid T . A ring
homomorphism φ : R→ S is graded or degree-preserving if φ(Ra) ⊆ Sa for all a ∈ T .

Note that our definition of ring homomorphism requires 1R 7→ 1S, and thus it does not
make sense to talk about graded ring homomorphisms of degree d ̸= 0. But we can have
graded module homomorphisms of any degree.

Definition 2.12. Let M and N be Z-graded modules over the N-graded ring R. A homo-
morphism of R-modules φ : R → S is graded if φ(Ma) ⊆ Na+d for all a ∈ Z and some
fixed d ∈ Z, called the degree of φ. A graded homomorphism of degree 0 is also called
degree-preserving.

Example 2.13.

a) Consider the ring map k[x, y, z] → k[s, t] given by x 7→ s2, y 7→ st, z 7→ t2. If k[s, t]
has the fine grading, meaning |s| = (1, 0) and |t| = (0, 1), then the given map is degree
preserving if and only if k[x, y, z] is graded by

|x| = (2, 0), |y| = (1, 1), |z| = (0, 2).

b) Let k be a field, and let R = k[x1, . . . , xn] be a polynomial ring with the standard grading.
Given c ∈ k = R0, the homomorphism of R-modules R → R given by f 7→ cf is degree
preserving. However, if instead we take g ∈ k = Rd for some d > 0, then the map

R // R

f � // gf

is not degree preserving, although it is a graded map of degree d. We can make this a
degree-preserving map if we shift the grading on R by defining R(−d) to be the R-module
R but with the Z-grading given by R(−d)t = Rt−d. With this grading, the component of
degree d of R(−d) is R(−d)d = R0 = k. Now the map

R(−d) // R

f � // gf

is degree preserving.
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We observed earlier an important relationship between algebra-finiteness and Noetherian-
ity that followed from the Hilbert basis theorem: if R is Noetherian, then any algebra-finite
extension of R is also Noetherian. There isn’t a converse to this in general: there are lots
of algebras over fields K that are Noetherian but not algebra-finite over K. However, for
graded rings, this converse relation holds.

Proposition 2.14. Let R be an N-graded ring, and consider homogeneous elements f1, . . . , fn ∈
R of positive degree. Then f1, . . . , fn generate the ideal R+ :=

⊕
d>0Rd if and only if

f1, . . . , fn generate R as an R0-algebra.
Therefore, an N-graded ring R is Noetherian if and only if R0 is Noetherian and R is

algebra-finite over R0.

Proof. If R = R0[f1, . . . , fn], then any element r ∈ R+ can be written as a polynomial
expression r = P (f1, . . . , fn) for some P ∈ R0[x] with no constant term. Each monomial of
P is a multiple of some xi, and thus r ∈ (f1, . . . , fn).

To show that R+ = (f1, . . . , fn) implies R = R0[f1, . . . , fn], it suffices to show that any
homogeneous element r ∈ R can be written as a polynomial expression in the f ’s with
coefficients in R0. We induce on the degree of r, with degree 0 as a trivial base case. For
r homogeneous of positive degree, we must have r ∈ R+, so by assumption we can write
r = a1f1 + · · · + anfn; moreover, since r and f1, . . . , fn are all homogeneous, we can choose
each coefficient ai to be homogeneous of degree |r| − |fi|. By the induction hypothesis, each
ai is a polynomial expression in the f ’s, so we are done.

For the final statement, if R0 is Noetherian and R algebra-finite over R0, then R is
Noetherian by the Hilbert Basis Theorem. If R is Noetherian, then R0

∼= R/R+ is Noethe-
rian. Moreover, R is algebra-finite over R0 since R+ is generated as an ideal by finitely many
homogeneous elements by Noetherianity, so by the first statement, we get a finite algebra
generating set for R over R0.

There are many interesting examples of N-graded algebras with R0 = k; in that case,
R+ is the largest homogeneous ideal in R. In fact, R0 is the only maximal ideal of R that
is also homogeneous, so we can call it the homogeneous maximal ideal; it is sometimes
also called the irrelevant maximal ideal of R. This ideal plays a very important role —
in many ways, R and R+ behave similarly to a local ring R and its unique maximal ideal.
We will discuss this further when we learn about local rings.

2.2 Another application to invariant rings

If R is a graded ring, and G is a group acting on R by degree-preserving automorphisms,
then RG is a graded subring of R, meaning RG is graded with respect to the same grading
monoid. In particular, if G acts k-linearly on a polynomial ring over k, the invariant ring is
N-graded.

Using this perspective, we can now give a different proof of the finite generation of invari-
ant rings that works under different hypotheses. The proof we will discuss now is essentially
Hilbert’s proof. To do that, we need another notion that is very useful in commutative
algebra.
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Definition 2.15. Let S be an R-algebra corresponding to the ring homomorphism φ : R→
S. We say that R is a direct summand of S if the map φ splits as a map of R-modules,
meaning there is an R-module homomorphism

R φ
// S

π

��

such that πφ is the identity on R.

First, observe that the condition on π implies that φ must be injective, so we can assume
that R ⊆ S, perhaps after renaming elements. Then the condition on π is that π(rs) = rπ(s)
for all r ∈ R and s ∈ S and that π|R is the identity. We call the map π the splitting of the
inclusion. Note that given any R-linear map π : S → R, if π(1) = 1 then π is a splitting:
indeed, π(R) = π(r · 1) = rπ(1) = r for all r ∈ R.

Being a direct summand is really nice, since many good properties of S pass onto its
direct summands.

Notation 2.16. Let R ⊆ S be an extension of rings. Given an ideal I in S, we write I ∩R for
the contraction of R back into R, meaning the preimage of I via the inclusion map R ⊆ S.
More generally, we may use the notation I ∩R to denote the preimage of I via a given ring
map R→ S, even if the map is not injective.

Given a ring map R → S, and an ideal I in R, the expansion of I in S is the ideal of
S generated by the image of I via the given ring map; we naturally denote this by IS.

Lemma 2.17. Let R be a direct summand of S. Then, for any ideal I ⊆ R, we have
IS ∩R = I.

Proof. Let π be the corresponding splitting. Clearly, I ⊆ IS ∩R. Conversely, if r ∈ IS ∩R,
we can write r = s1f1 + · · ·+ stft for some fi ∈ I, si ∈ S. Applying π, we have

r = π(r) = π

(
t∑
i=1

sifi

)
=

t∑
i=1

π (sifi) =
t∑
i=1

π (si) fi ∈ I.

Proposition 2.18. Let R be a direct summand of S. If S is Noetherian, then so is R.

Proof. Let
I1 ⊆ I2 ⊆ I3 ⊆ · · ·

be a chain of ideals in R. The chain of ideals in S

I1S ⊆ I2S ⊆ I3S ⊆ · · ·

stabilizes, so there exist J , N such that InR = J for n ⩾ N . Contracting to R, we get that
In = InS ∩R = J ∩R for n ⩾ N , so the original chain also stabilizes.

Proposition 2.19. Let k be a field, and R be a polynomial ring over k. Let G be a finite
group acting k-linearly on R. Assume that the characteristic of k does not divide |G. Then
RG is a direct summand of R.
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Remark 2.20. The condition that the characteristic of k does not divide the order of G is
trivially satisfied if k has characteristic zero.

Proof. We consider the map ρ : R→ RG given by

ρ(r) =
1

|G|
∑
g∈G

g · r.

First, note that the image of this map lies in RG, since acting by g just permutes the elements
in the sum, so the sum itself remains the same. We claim that this map ρ is a splitting for
the inclusion RG ⊆ R. To see that, let s ∈ RG and r ∈ R. We have

ρ(sr) =
1

|G|
∑
g∈G

g · (sr) = 1

|G|
∑
g∈G

(g · s)(g · r) = 1

|G|
∑
g∈G

s(g · r) = s
1

|G|
∑
g∈G

(g · r) = sρ(r),

so ρ is RG-linear, and for s ∈ RG,

ρ(s) =
1

|G|
∑
g∈G

g · s = s.

Theorem 2.21 (Hilbert’s finiteness theorem for invariants). Let k be a field, and R be a
polynomial ring over k. Let G be a group acting k-linearly on R. Assume that G is finite and
|G| does not divide the characteristic of k, or more generally, that RG is a direct summand
of R. Then RG is a finitely generated k-algebra.

Proof. Since G acts linearly, RG is an N-graded subring of R with R0 = k. Since RG is
a direct summand of R, RG is Noetherian by Proposition 2.18. By our characterization of
Noetherian graded rings, RG is finitely generated over R0 = k.

One important thing about this proof is that it applies to many infinite groups. In
particular, for any linearly reductive group, including GLn(C), SLn(C), and (C×)n, we can
construct a splitting map ρ.



Chapter 3

Algebraic Geometry

Colloquially, we often identify systems of equations with their solution sets. We will make this
correspondence more precise for systems of polynomial equations, and develop the beginning
of a rich dictionary between algebraic and geometric objects.

Question 3.1. Let k be a field. To what extent is a system of polynomial equations
f1 = 0

...
ft = 0

where polynomials f1, . . . , ft ∈ k[x1, . . . , xd], determined by its solution set?

Let’s consider one polynomial equation in one variable. Over R,Q, or other fields that
are not algebraically closed, there are many polynomials with an empty solution set; for
example, z2 + 1 has an empty solution set over R. On the other hand, over C, or any
algebraically closed field, if a1, . . . , ad are the solutions to f(z) = 0, we know that we can
write f in the form f(z) = α(z − a1)n1 · · · (z − ad)nd , so f is completely determined up to
scalar multiple and repeated factors. If we insist that f have no repeated factors, then (f)
is uniquely determined.

More generally, given any system of polynomial equations
f1 = 0

...
ft = 0

where fi ∈ k[z] for some field k, notice that that z = a is a solution to the system if and
only if it is a solution for any polynomial g ∈ (f1, . . . , ft). But since k[z] is a PID, we have
(f1, . . . , ft) = (f), where f is a greatest common divisor of f1, . . . , ft. Therefore, z = a is a
solution to the system if and only if f(a) = 0.

3.1 Varieties

Definition 3.2. Given a field k, the affine d-space over k, denoted Ad
k, is the set

Ad
k = {(a1, . . . , ad) | ai ∈ k}.

30
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Definition 3.3. For a subset T of k[x1, . . . , xd], we define Z(T ) ⊆ Ad
k to be the set of

common zeros or the zero set of the polynomials (equations) in T :

Z(T ) = {(a1, . . . , ad) ∈ Ad
k | f(a1, . . . , ad) = 0 for all f ∈ T}.

Sometimes, in order to emphasize the role of k, we will write this as Zk(T ).
A subset of Ad

k of the form Z(T ) for some subset T is called an algebraic subset of Ad
k,

or an affine algebraic variety. So a variety in Ad
k is the set of common solutions of some

(possibly infinite) collection of polynomial equations. A variety is irreducible if it cannot
be written as the union of two proper subvarieties.

Note that some authors use the word variety to refer only to irreducible algebraic sets.
Note also that the definitions given here are only completely standard when k is algebraically
closed.

Example 3.4. Here are some simple examples of algebraic varieties:

a) For k = R and n = 2, Z(y2 + x2(x − 1)) is a “nodal curve” in A2
R, the real plane. Note

that we’ve written x for x1 and y for x2 here.

b) For k = R and n = 3, Z(z − x2 − y2) is a paraboloid in A3
R, real three space.

c) For k = R and n = 3, Z(z − x2 − y2, 3x− 2y + 7z − 7) is circle in A3
R.
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d) For k = R, ZR(x
2 + y2 + 1) = ∅. Note that ZC(x

2 + y2 + 1) ̸= ∅.

e) The subset A2
k \ {(0, 0)} is not an algebraic subset of A2

k if k is infinite. Why?

f) The graph of the sine function is not an algebraic subset of A2
R. Why not?

g) For k = R, Z(y − x2, xz − y2, z − xy) is the so-called twisted cubic (affine) curve. It
is the curve parametrized by (t, t2, t3), meaning it is the image of the map

R // R3

t � // (t, t2, t3)

.

We can check this with Macaulay2:

i1 : k = RR;

i2 : R = k[x,y,z];

i3 : f = map(k[t],R,{t,t^2,t^3});

i4 : ker f

2 2

o4 = ideal (y - x*z, x*y - z, x - y)

o4 : Ideal of R

So in our computation above, f sets x = t, y = t2, and z = t3, and its kernel consists pre-
cisely of the polynomials that vanish at every point of this form. Note that computations
over the reals in Macaulay2 are experimental, and yet we obtain the correct answer; we
can also run the same computation over k = Q.

h) For any field k and elements a1, . . . , ad ∈ k, we have

Z(x1 − a1, . . . , xd − ad) = {(a1, . . . , ad)}.

So, all one element subsets of Ad
k are algebraic subsets.
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We can consider the equations that a subset of affine space satisfies.

Definition 3.5. Given any subset X of Ad
k for a field k, define

I(X) = {g(x1, . . . , xd) ∈ k[x1, . . . , xd] | g(a1, . . . , ad) = 0 for all (a1, . . . , ad) ∈ X}.

Exercise 5. I(X) is an ideal in k[x1, . . . , xd] for any X ⊆ Ad
k.

Example 3.6.

a) I({(a1, . . . , ad)}) = (x1 − a1, . . . , xd − ad), for any field k.

b) I(graph of the sine function in A2
R) = (0).

Exercise 6. Here are some properties of the functions Z and I:

a) For any field, we have Z(0) = An
k and Z(1) = ∅.

b) I(∅) = (1) = k[x1, . . . , xd] (the improper ideal).

c) I(Ad
k) = (0) if and only if k is infinite.

d) If I ⊆ J ⊆ k[x1, . . . , xd] then Z(I) ⊇ Z(J).

e) If S ⊆ T are subsets of An
k then I(S) ⊇ I(T ).

f) If I = (T ) is the ideal generated by the elements of T ⊆ k[x1, . . . , xd], then Z(T ) = Z(I).

So we will talk about the solution set of an ideal, rather than of an arbitrary set. Hilbert’s
Basis Theorem implies that every ideal in k[x1, . . . , xd] is finitely generated, so any system
of equations in k[x1, . . . , xd] can be replaced with a system of finitely many equations.

Example 3.7. Let

X =

[
x1 x2 x3
y1 y2 y3

]
be a 2× 3 matrix of variables — we usually call these generic matrices — and let

R = k[X] = k

[
x1 x2 x3
y1 y2 y3

]
.

Let ∆1,∆2,∆3 the 2×2-minors of X. Consider the ideal I = (∆1,∆2,∆3). Thinking of these
generators as equations, a solution to the system corresponds to a choice of 2 × 3 matrix
whose 2 × 2 minors all vanish — that is, a matrix of rank at most one. So Z(I) is the set
of rank at most one matrices. Note that I ⊆ (x1, x2, x3) =: J , and Z(J) is the set of 2 × 3
matrices with top row zero. The containment Z(J) ⊆ Z(I) we obtain from I ⊆ J translates
to the fact that a 2× 3 matrix with a zero row has rank at most 1.

Finally, the union and intersection of varieties is also a variety.

Exercise 7. Suppose that I and J are ideals in k[x1, . . . , xd].

a) Z(I) ∩ Z(J) = Z(I + J).

b) Z(I) ∪ Z(J) = Z(I ∩ J) = Z(IJ).

However, note that in general IJ ̸= I ∩ J .
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3.2 Prime and maximal ideals

Before we talk more about geometry, let’s recall some basic facts about prime and maximal
ideals. As we will discover through the rest of the course, prime ideals play a very prominent
role in commutative algebra.

Definition 3.8. An ideal P ̸= R is prime if ab ∈ P implies a ∈ P or b ∈ P .

Exercise 8. An ideal P in a ring R is prime if and only if R/P is a domain.

Example 3.9. The prime ideals in Z are those of the form (p) for p a prime integer, and
(0).

Example 3.10. When k is a field, prime ideals in k[x] are easy to describe: k[x] is a principal
ideal domain, and (f) ̸= 0 is prime if and only if f is an irreducible polynomial. Moreover,
(0) is also a prime ideal, since k[x] is a domain.

The prime ideals in k[x1, . . . , xd] are, however, not so easy to describe. We will see many
examples throughout the course; here are some.

Example 3.11. The ideal P = (x3 − y2) in R = k[x, y] is prime; one can show that
R/P ∼= k[t2, t3] ⊆ k[t], which is a domain.

Example 3.12. The k-algebra R = k[s3, s2t, st2, t2] ⊆ k[s, t] is a domain, so its defining ideal
I in k[x1, x2, x3, x4] is prime. This is the kernel of the presentation of R sending x1, x2, x3, x4
to each of our 4 algebra generators, which we can compute with Macaulay2:

1 : k = QQ;

i2 : f = map(k[s,t],k[x_1 .. x_4],{s^3,s^2*t,s*t^2,t^3})

3 2 2 3

o2 = map(QQ[s..t],QQ[x ..x ],{s , s t, s*t , t })

1 4

o2 : RingMap QQ[s..t] <--- QQ[x ..x ]

1 4

i3 : I = ker f

2 2

o3 = ideal (x - x x , x x - x x , x - x x )

3 2 4 2 3 1 4 2 1 3

o3 : Ideal of QQ[x ..x]

1 4

Later we will show that prime ideals correspond to irreducible varieties; more precisely,
that X is irreducible if and only if I(X) is prime.

Definition 3.13 (maximal ideal). An ideal m in R is maximal if for any ideal I

I ⊇ m =⇒ I = m or I = R.
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Exercise 9. An ideal m in R is maximal if and only if R/m is a field.

Given a maximal ideal m in R, the residue field of m is the field R/m. A field k is a
residue field of R if k ∼= R/m for some maximal ideal m.

Remark 3.14. A ring may have many different residue fields. For example, the residue
fields of Z are all the finite fields with prime many elements, Fp ∼= Z/p.

Exercise 10. Every maximal ideal is prime.

However, not every prime ideal is maximal. For example, in Z, (0) is a prime ideal that
is not maximal.

Theorem 3.15. Given a ring R, every proper ideal I ̸= R is contained in some maximal
ideal.

Fun fact: this is actually equivalent to the Axiom of Choice. We will prove it (but not
its equivalence to the Axiom of Choice!) using Zorn’s Lemma, another equivalent version of
the Axiom of Choice. Zorn’s Lemma says that

Every non-empty partially ordered set in which every chain (i.e., totally or-
dered subset) has an upper bound contains at least one maximal element.

So let’s prove that every ideal is contained in some maximal ideal.

Proof. First, we will show that Zorn’s Lemma applies to proper ideals in any ring R. The
statement will then follow by applying Zorn’s Lemma to the non-empty set of ideals J ⊇ I,
which is partially ordered by inclusion.

So consider a chain of proper ideals in R, say {Ii}i. Now I =
⋃
i Ii is an ideal as well,

and I ̸= R since 1 /∈ Ii for all i. Note that unions of ideals are not ideals in general, but a
union of totally ordered ideals is an ideal. Then I is an upper bound for our chain {Ii}i,
and Zorn’s Lemma applies to the set of proper ideals in R with inclusion ⊆.

3.3 Nullstellensatz

Lemma 3.16. Let k be a field, and R = k[x1, . . . , xd] be a polynomial ring. There is a
bijection

Ad
k

(a1, . . . , ad)

//

� //

{
maximal ideals m of R

with R/m ∼= k

}
(x1 − a1, . . . , xd − ad)

Proof. Each m = (x1 − a1, . . . , xd − ad) is a maximal ideal satisfying R/m ∼= k. Moreover,
these ideals are distinct: if xi − ai, xi − a′i are in the same ideal for ai ̸= a′i, then the unit
ai − a′i is in the ideal, so it is not proper. Therefore, our map is injective. To see that it
is surjective, let m be a maximal ideal with R/m ∼= k. Each class in R/m corresponds to a
unique a ∈ k, so in particular each xi is in the class of a unique ai ∈ k. This means that
xi − ai ∈ m, and thus (x1 − a1, . . . , xd − ad) ⊆ m. Since (x1 − ai, . . . , xd − ai) is a maximal
ideal, we must have (x1 − a1, . . . , xd − ad) = m.
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Example 3.17. Not all maximal ideals in k[x1, . . . , xd] are necessarily of this form. For
example, if k = R and d = 1, the ideal (x2 + 1) is maximal, but

k[x]/(x2 + 1) ∼= C ̸∼= k.

But this won’t happen if k is algebraically closed.

Theorem 3.18 (Zariski’s Lemma). Consider an extension of fields k ⊆ L. If L is a finitely
generated k-algebra, then L is a finite dimensional k-vector space. In particular, if k is
algebraically closed then L = k.

This is a nice application of the Artin-Tate Lemma, together with some facts about
transcendent elements. We will skip the proof, but you can find it in Jeffries’ notes.

Corollary 3.19 (Nullstellensatz). Let S = k[x1, . . . , xd] be a polynomial ring over an alge-
braically closed field k. There is a bijection

Ad
k

(a1, . . . , ad)

//

� //

{maximal ideals m of S}

(x1 − a1, . . . , xd − ad)

If R is a finitely generated k-algebra, we can write R = S/I for a polynomial ring S, and
there is an induced bijection

Zk(I) ⊆ Ad
k ←→ {maximal ideals m of R}.

Proof. The first part follows immediately from Lemma 3.16 and Lemma 3.18.
To show the second statement, fix an ideal I in S, and R = S/I. The maximal ideal

ideals in R are in bijection with the maximal ideals m in S that contain I; those are the
ideals of the form (x1−a1, . . . , xd−ad) with I ⊆ (x1−a1, . . . , xd−ad). These are in bijection
with the points (a1, . . . , ad) ∈ Ad

k satisfying (a1, . . . , ad) ∈ Zk(I).

Theorem 3.20 (Weak Nullstellensatz). Let k be an algebraically closed field. If I is a proper
ideal in R = k[x1, . . . , xd], then Zk(I) ̸= ∅.

Proof. If I ⊆ R is a proper ideal, there is a maximal ideal m ⊇ I, so Z(m) ⊆ Z(I). Since
m = (x1 − a1, . . . , xd − ad) for some ai ∈ k, Z(m) is a point, and thus nonempty.

Over an algebraically closed field, maximal ideals in k[x1, . . . , xd] correspond to points in
Ad. So we can start from the solution set — a point — and recover an ideal that corresponds
to it. What if we start with some non-maximal ideal I, and consider its solution set Zk(I)
— can we recover I in some way?

Example 3.21. Many ideals define the same solution set. For example, in R = k[x], the
ideals In = (xn), for any n ⩾ 1, all define the same solution set Zk(In) = {0}.

To attack this question, we will need an observation on inequations.

https://jack-jeffries.github.io/CAnotes.pdf
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Remark 3.22 (Rabinowitz’s trick). Observe that, if f(x) is a polynomial and a ∈ Ad,
f(a) ̸= 0 if and only if f(a) ∈ k is invertible; equivalently, if there is a solution y = b ∈ k to
yf(a)− 1 = 0. In particular, a system of polynomial equations and inequations

f1(x) = 0
...

fm(x) = 0

and


g1(x) ̸= 0

...
gn(x) ̸= 0

has a solution x = a if and only if the system
f1(x) = 0

...
fm(x) = 0

and


y1g1(x)− 1 = 0

...
yngn(x)− 1 = 0

has a solution (x, y) = (a, b). In fact, this is equivalent to a system in one extra variable:
f1(x) = 0

...
fm(x) = 0

yg1(x) · · · gn(x)− 1 = 0

Theorem 3.23 (Strong Nullstellensatz). Let k be an algebraically closed field, and R =
k[x1, . . . , xd] be a polynomial ring. Let I ⊆ R be an ideal. The polynomial f vanishes on
Zk(I) if and only if fn ∈ I for some n ∈ N.

Proof. Suppose that fn ∈ I. For each a ∈ Zk(I), f(a) ∈ k satisfies f(a)n = 0 ∈ k. Since k
is a field, f(a) = 0. Thus, f ∈ Zk(I) as well.

Suppose that f vanishes along Zk(I). This means that given any solution a ∈ Ad to the
system determined by I, f(a) = 0. In other words, the system{

g(x) = 0 for all g ∈ I
f ̸= 0

has no solutions. By the discussion above, Zk(I + (yf − 1)) = ∅ in a polynomial ring in
one more variable. By the Weak Nullstellensatz, we have IR[y] + (yf − 1) = R[y], and
equivalently 1 ∈ IR[y] + (yf − 1). Write I = (g1(x), . . . , gm(x)), and

1 = r0(x, y)(1− yf(x)) + r1(x, y)g1(x) + · · ·+ rm(x, y)gm(x).

We can map y to 1/f to get

1 = r1(x, 1/f)g1(x) + · · ·+ rm(x, 1/f)gm(x)

in the fraction field of R[y]. Since each ri is polynomial, there is a largest negative power of
f occurring; say that fn serves as a common denominator. We can multiply by fn to obtain
fn as a polynomial combination of the g’s.
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Definition 3.24. The radical of an ideal I in a ring R is the ideal
√
I := {f ∈ R | fn ∈ I for some n}.

An ideal is a radical ideal if I =
√
I.

To see that
√
I is an ideal, note that if fm, gn ∈ I, then

(f + g)m+n−1 =
m+n−1∑
i=0

(
m+ n− 1

i

)
f igm+n−1−i

= fm
(
fn−1 +

(
m+ n− 1

1

)
fn−2g + · · ·+

(
m+ n− 1

n− 1

)
gn−1

)
+ gn

((
m+ n− 1

n

)
fm−1 +

(
m+ n− 1

n+ 1

)
fm−2g + · · ·+ gm−1

)
∈ I,

and (rf)m = rmfm ∈ I.

Example 3.25. Prime ideals are radical.

Exercise 11. A nonzero element f ∈ R is nilpotent if fn = 0 for some n > 1; a ring R is
reduced if it has no nilpotent elements. If R is a ring and I an ideal, then R/I is reduced
if and only if I is a radical ideal.

Using this terminology, we can rephrase the Strong Nullstellensatz: if k = k, then f ∈
I(Zk(I)) if and only if f ∈

√
I. Given any ideal I in k[x1, . . . , xd], I(Z(I)) =

√
I.

We can now associate a ring to each subvariety of Ad.

Definition 3.26. Let k be an algebraically closed field, and X = Zk(I) ⊆ Ad be a subvariety
of Ad. The coordinate ring of X is the ring k[X] := k[x1, . . . , xd]/I(X).

Since k[X] is obtained from the polynomial ring on the ambient Ad by quotienting out
by exactly those polynomials that are zero on X, we interpret k[X] as the ring of polynomial
functions on X. Note that every reduced finitely generated k-algebra is a coordinate ring of
some zero set X.

Remark 3.27. We showed before that Z(IJ) = Z(I ∩ J), despite the fact that we often
have IJ ̸= I ∩ J . The Strong Nullstellensatz implies that

√
IJ =

√
I ∩ J .

Remark 3.28. Observe that Zk(
√
J) = Zk(J) whether or not k is algebraically closed, by

the same proof we used above. The containment ⊆ is immediate since J ⊆
√
J from the

definition. Moreover, if fn(a) = 0 then f(a) = 0, so if a ∈ Zk(J) and f ∈
√
J then f(a) = 0,

and the equality of sets follows.
What might fail when the field is not algebraically closed is that I(Z(I)) is not necessarily√
I. For example, ZR(x

2 + 1) = ∅, so

I(ZR(x
2 + 1)) = I(∅) = R[x] ̸=

√
(x2 + 1) = (x2 + 1).

In fact, the ingredient that is missing is precisely the fact that the Weak Nullstellensatz is
not satisfied over non-algebraically closed fields. If k is not algebraically closed, there exists
some irreducible polynomial f ∈ k[x] with no roots, so Z(f) = ∅.
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Remark 3.29. Note that if I is a radical ideal and I ⊊ J , then Z(J) ⊊ Z(I). Indeed,
there is some f ∈ J such that f /∈

√
I = I, and thus Z(I) ̸⊆ Z(f). Since Z(J) ⊆ Z(f), we

conclude that Z(I) ̸⊆ Z(J).

Each variety corresponds to a unique radical ideal.

Corollary 3.30. Let k be an algebraically closed field and R = k[x1, . . . , xd] a polynomial
ring. There is an order-reversing bijection between the collection of subvarieties of Ad

k and
the collection of radical ideals of R:

{subvarieties of Ad
k}

X

Zk(I)

←→
I7−→
Z←− [

{radical ideals I ⊆ R}

{f ∈ R | X ⊆ Zk(f)}

I

In particular, given ideals I and J , we have Zk(I) = Zk(J) if and only if
√
I =
√
J .

Proof. The Strong Nullstellensatz says that I(Z(J)) =
√
J for any ideal J , hence I(Z(J)) =

J for a radical ideal J . Conversely, given X we can write X = Zk(J) for some ideal J , and
we without loss of generality we can assume J is radical, since Zk(J) = Zk(

√
J). Then

Z(I(X)) = Z(I(Z(J))) = Z(J) = X.
This shows that I and Z are inverse operations, and we are done.

Under this bijection, irreducible varieties correspond to prime ideals.

Lemma 3.31. A variety X ⊆ Ad
k is irreducible if and only if I(X) is prime.

Proof. Suppose that X is reducible, say X = V1 ∪ V2 for two varieties V1 and V2 such
that V1, V2 ⊊ X. Note that this implies that I(X) ⊊ I(V1), I(X) ⊊ I(V2), and I(X) =
I(V1) ∩ I(V2). Then we can find f ∈ I(V1) such that f /∈ I(V2), and g ∈ I(V2) such that
g /∈ I(V1). Notice that by construction fg ∈ I(V1) ∩ I(V2)I(X), while f /∈ I(X) and
g /∈ I(X). Therefore, I(X) is not prime.

Now assume that I(X) is not prime, and fix f, g /∈ I(X) with fg ∈ I(X). Then

X ⊆ Z(fg) = Z(f) ∪ Z(g).

The intersections
Vf = Z(f) ∩X = Z(I(X) + (f))

and
Vg = Z(g) ∩X = Z(I(X) + (g))

are varieties, and X = Vf ∪ Vg. Finally, since f /∈ I(X), then X ̸⊆ Vf . Similarly, X ̸⊆ Vg.
Thus X is reducible.

Given a variety X, we can decompose it in irreducible components by writing it as a
union X = V1 ∪ · · · ∪ Vn. We can do this decomposition algebraically, by considering the
radical ideal I = I(X) and writing it as an intersection of its minimal primes.
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Definition 3.32. Let I be an ideal. A minimal prime of I is a prime ideal P containing
I and such that the only prime Q with I ⊆ Q ⊆ P is Q = P . Equivalently, a minimal prime
of I is a minimal element (with respect to containment) in the set of prime ideals containing
I. The set of minimal primes over I is denoted Min(I).

Soon we will show that √
I =

⋂
P prime
P⊇I

P =
⋂

P∈Min(I)

P.

Later, we will prove that the set of minimal primes of an ideal in a Noetherian ring is finite,
so in particular we can write I(X) as a finite intersection of prime ideals, say

I(X) = P1 ∩ · · · ∩ Pk.

Then
X = Z(P1) ∪ · · · ∪ Z(Pk)

is a decomposition of X into irreducible components.

Example 3.33. In k[x, y, z], the radical ideal I = (xy, xz, yz) corresponds to the variety X
given by the union of the three coordinate axes.

Each of these axes is a variety in its own right, corresponding to the ideals (x, y), (x, z) and
(y, z). The three axes are the irreducible components of X. And indeed, (x, y), (x, z) and
(y, z) are the three minimal primes over I, and

(xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z).

We will come back to this decomposition when we discuss primary decomposition.

In summary, Nullstellensatz gives us a dictionary between varieties and ideals:

Algebra oo // Geometry

algebra of ideals oo // geometry of varieties

algebra of R = k[x1, . . . , xd]
oo // geometry of Ad

radical ideals oo // varieties

prime ideals oo // irreducible varieties

maximal ideals oo // points
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(0) oo // variety Ad

k[x1, . . . , xd]
oo // variety ∅

(x1 − a1, . . . , xd − ad) oo // point {(a1, . . . , ad)}

smaller ideals oo // larger varieties

larger ideals oo // smaller varieties

We now know that the subvarieties Z(I) of Ad satisfy the following properties:

• The sets ∅ and Ad are varieties.

• The finite union of varieties is a variety.

• The arbitrary intersection of varieties is a variety.

These are the axioms of closed sets in a topology. So there is a topology on Ad whose
closed sets are precisely all the subvarieties Z(I) of Ad. This topology is called the Zariski
topology.

As a consequence, every variety inherits the Zariski topology, and this is the topology
that algebraic geometers usually consider.

Exercise 12. A topological space X is Noetherian if it satisfies the descending chain
condition for closed subsets: any descending chain of closed subsets

X1 ⊇ X2 ⊇ · · ·

stabilizes. Show that a variety with the Zariski topology is Noetherian.

Exercise 13. Show that if X is a Noetherian topological space, every open subset of X is
quasicompact.

This topology is a little weird. In particular, it is never Hausdorff, unless the space we are
considering is finite. The word compact is usually taken to include Hausdorff, so algebraic
geometers say quasicompact to mean compact but maybe not Hausdorff.

Exercise 14. Show that Ad
C with the Zariski topology is T1 but not Hausdorff.

3.4 The prime spectrum of a ring

In modern algebraic geometry, one often studies schemes instead of varieties. We will now
introduce the simplest scheme: the spectrum Spec(R) of a ring R. The spectra of rings are
to schemes as Rn is to manifolds: while a manifold is a topological space that locally looks
like Rn, a scheme is, roughly speaking, a topological space that locally looks like Spec(R)
for some ring R.
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The maximal spectrum of a ring R, denoted mSpec(R), is the set of maximal ideals of R
endowed with the topology with closed sets given by

VMax(I) := {m ∈ mSpec(R) | m ⊇ I}

as I varies over all the ideals in R. By the Nullstellensatz, for polynomial rings S over an
algebraically closed field k, this space mSpec(S) has a natural homeomorphism to An with
its Zariski topology, and for an ideal I in S = k[x1, . . . , xd], mSpec(S/I) has a natural home-
omorphism to Zk(I) ⊆ An with the subspace topology coming from the Zariski topology.
Moreover, this is functorial: for any map of finitely generated k-algebras, there is an induced
map on maximal ideals.

This is not quite the right notion to deal with general rings, for at least two reasons. First,
there are many many interesting rings with only one maximal ideal! The topological space
with one element, in contrast, is not that exciting. Second, we would like to have a geometric
space that is assigned functorially to a ring, meaning that ring homomorphisms induce
continuous maps of spaces (in the other direction). For the inclusion A = k[x, y] = k[x−1, y]
into B = k(x)[y] = k(x− 1)[y], what maximal ideal in A would we assign to (y) ⊆ B? How
could one of (x, y) or (x− 1, y) have a better claim than the other?

Definition 3.34. Let R be a ring. The prime spectrum, or spectrum of R is the set of
prime ideals of R, denoted Spec(R). This is naturally a poset, partially ordered by inclusion.
We also endow it with the topology with closed sets

V (I) := {p ∈ Spec(R) | p ⊇ I}

for (not necessarily proper) ideals I ⊆ R. In particular, ∅ = V (R) is closed.

Soon we will justify that this indeed forms a topology.

We will illustrate posets with Hasse diagrams: if an element is below something with a
line connecting them, the higher element is ⩾ the lower one.

Example 3.35. The spectrum of Z is the following poset:

(2) (3) (5) (7) (11) · · ·

(0)

The closed sets are of the form V ((n)), which are the whole space when n = 0, the empty
set with n = 1, and any finite union of things in the top row.

Example 3.36. Here are a few elements in C[x, y]:

· · · (x, y) (x− 1, y) (x− 1, y − 1) (x− 7π, y) (x− i
√
2, y − 1) · · ·

· · · (x) (x− 1) (x2 − y3) (x2 + y2 + 1) (y) · · ·

(0)
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Note that mSpec(R) is a subspace of Spec(R) (that may be neither closed nor open).

Proposition 3.37. Let R be a ring, and let I, J , and Iλ be ideals (possibly improper).

a) If I ⊆ J , then V (J) ⊆ V (I).

b) V (I) ∪ V (J) = V (I ∩ J) = V (IJ).

c)
⋂
λ V (Iλ) = V (

∑
λ Iλ).

d) Spec(R) has a basis given by open sets of the form

D(f) := Spec(R)∖ V (f) = {p ∈ Spec(R) | f /∈ p}.

e) Spec(R) is quasicompact.

Proof.

a) Clear from the definition.

b) To see V (I)∪V (J) ⊆ V (I ∩J), just observe that if p ⊇ I or p ⊇ J , then p ⊇ I ∩J . Since
IJ ⊆ I ∩ J , we have V (I ∩ J) ⊆ V (IJ). To show V (IJ) ⊆ V (I) ∪ V (J), if p ̸⊇ I, J , let
f ∈ I ∖ p, and g ∈ J ∖ p. Then fg ∈ IJ ∖ p since p is prime.

c) Ideals are closed for sums, so if p ⊇ Iλ for all λ, then p ⊇
∑

λ Iλ. Moreover, if p ⊇
∑

λ Iλ,
then in particular p ⊇ Iλ.

d) We can write any open set as the complement of V ({fλ}λ) =
⋂
λ V (fλ), which is the

union of D(fλ).

e) Given a sequence of ideals Iλ, if
∑

λ Iλ = R, then 1 is in the sum on the left, and thus 1
can be realized in such a sum over finitely many indices, so

R =
∑
λ

Iλ = Iλ1 + · · ·+ Iλt .

Thus, if we have a family of closed sets with empty intersection,

∅ =
⋂
λ

V (Iλ) = V

(∑
λ

Iλ

)
= V (Iλ1 + · · ·+ Iλt) = V (Iλ1) ∩ · · · ∩ V (Iλt),

so some finite subcollection has an empty intersection.

Definition 3.38 (Induced map on Spec). Given a homomorphism of rings R
φ
// S , we

obtain a map on spectra
Spec(S)

φ∗
// Spec(R)

p // φ−1(p)

.
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The key point here is that the preimage of a prime ideal is also prime. We will often
write p ∩R for φ−1(p), even if the map is not necessarily an inclusion.

This is not only an order-preserving map, but also continuous: if U ⊆ Spec(R) is open,
say U is the complement of V (I) for some ideal I, then for a prime q of S,

q ∈ (φ∗)−1(U) ⇐⇒ q ∩R ̸⊇ I ⇐⇒ q ̸⊇ IS ⇐⇒ q /∈ V (IS).

So (φ∗)−1(U) is the complement of V (IS), and thus open.

Example 3.39. Let R π // R/I be the canonical projection. Then

Spec(R/I) π∗
// Spec(R)

corresponds to the inclusion of V (I) into Spec(R), since primes of R/I correspond to primes
of R containing I.

We can use the spectrum of a ring to give an analogue of the strong Nullstellensatz that
is valid for any ring. To prepare for this, we need a notion that we will use later.

Definition 3.40. A subset W ⊆ R of a ring R is multiplicatively closed if 1 ∈ W and
a, b ∈ W ⇒ ab ∈ W .

Lemma 3.41. Let R be a ring, I an ideal, and W a multiplicatively closed subset. If
W ∩ I = ∅, then there is a prime ideal p with p ⊇ I and p ∩W = ∅.

Proof. Consider the family of ideals F := {J | J ⊇ I, J ∩W = ∅} ordered with inclusion.
This is nonempty, since it contains I, and any chain J1 ⊆ J2 ⊆ · · · has an upper bound
∪iJi. Therefore, F has some maximal element A by a basic application of Zorn’s Lemma.
We claim A is prime. Suppose f, g /∈ A. By maximality, A + (f) and A + (g) both have
nonempty intersection with W , so there exist r1f + a1, r2g + a2 ∈ W , with a1, a2 ∈ A. If
fg ∈ A, then

(r1f + a1)
∈W

(r2g + a2)
∈W

= r1r2fg + r1fa2
∈A

+ r2ga1
∈A

+ a1a2
∈A
∈ W ∩ A,

a contradiction.

Proposition 3.42 (Spectrum analogue of strong Nullstellensatz). Let R be a ring, and I be
an ideal. For f ∈ R,

V (I) ⊆ V (f)⇐⇒ f ∈
√
I.

Equivalently, ⋂
p∈V (I)

p =
√
I.

Proof. First to justify the equivalence of the two statements we observe:

V (I) ⊆ V (f)⇐⇒ f ∈ p for all p ∈ V (I)⇐⇒ f ∈
⋂

p∈V (I)

p.
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We prove that
⋂

p∈V (I)

p =
√
I.

(⊇): It suffices to show that p ⊇ I implies p ⊇
√
I, and indeed

fn ∈ I ⊆ p =⇒ f ∈ p.

(⊆): If f /∈
√
I, consider the multiplicatively closed set W = {1, f, f 2, f 3, . . . }. We have

W ∩ I = ∅ by hypothesis. By the previous lemma, there is a prime p in V (I) that does not
intersect W , and hence does not contain f .

The following corollary follows in exactly the same way as the analogous statement for
subvarieties of An, Corollary 3.30.

Corollary 3.43. Let R a ring. There is an order-reversing bijection

{closed subsets of Spec(R)} oo // {radical ideals I ⊆ R}

In particular, for two ideals I, J , V (I) = V (J) if and only if
√
I =
√
J .



Chapter 4

Local Rings

The study of local rings is central to commutative algebra. As we will see, life is easier in a
local ring, so much so that we often want to localize so we can be in a local ring. A lot of the
things we will say in this chapter also apply to N-graded k-algebras and their homogenous
maximal ideal — with some appropriate changes, such as considering only homogeneous
ideals.

4.1 Local rings

Definition 4.1. A ring R is a local ring if it has exactly one maximal ideal. We often
use the notation (R,m) to denote R and its maximal ideal, or (R,m, k) to also specify the
residue field k = R/m. Some people reserve the term local ring for a Noetherian local ring,
and call what we have defined a quasilocal ring; we will not follow this convention here.

Lemma 4.2. A ring R is local if and only if the set of nonunits of R forms an ideal.

Proof. If the set of nonunits is an ideal, that must be the only maximal ideal.

Example 4.3.

a) The ring Z/(pn) is local with maximal ideal (p).

b) The ring Z(p) = {ab ∈ Q | p ∤ b when in lowest terms} is a local ring with maximal ideal
(p).

c) The ring of power series kJxK over a field k is local. Indeed, a power series has an inverse
if and only if its constant term is nonzero. The complement of this set of units is the
ideal (x).

d) More generally, kJx1, . . . , xdK is local with maximal ideal (x1, . . . , xd).

e) The ring of complex power series holomorphic at the origin, C{x}, is local. In the above
setting, one proves that the series inverse of a holomorphic function at the origin is
convergent on a neighborhood of 0.
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f) A polynomial ring over a field is certainly not local; we have seen it has so many maximal
ideals!

We start with a comment about the characteristic of local rings.

Definition 4.4. The characteristic of a ring R is, if it exists, the smallest positive integer
n such that

1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If no such n exists, we say that R has characteristic 0. Equivalently, the characteristic of R
is the integer n ⩾ 0 such that

(n) = ker

(
Z // R
a � // a · 1R

)
.

Proposition 4.5. Let (R,m, k) be a local ring. Then one of the following holds:

a) char(R) = char(k) = 0. We say that R has equal characteristic zero.

b) char(R) = 0, char(k) = p for a prime p, so R has mixed characteristic (0, p).

c) char(R) = char(k) = p for a prime p, so R has equal characteristic p.

d) char(R) = pn, char(k) = p for a prime p and an integer n > 1.

If R is reduced, then one of the first three cases holds.

Proof. Since k is a quotient of R, the characteristic of R must be a multiple of the charac-
teristic of k, since the map Z // // k factors through R. We must think of 0 as a multiple
of any integer for this to make sense. Now k is a field, so its characteristic is 0 or p for a
prime p. If char(k) = 0, then necessarily char(R) = 0. If char(k) = p, we claim that char(R)
must be either 0 or a power of p. Indeed, if we write char(R) = pn · a with a coprime to p,
note that p ∈ m, so if a ∈ m, we have 1 ∈ (p, a) ⊆ m, which is a contradiction. Since R is
local, this means that a is a unit. But then, pna = 0 implies pn = 0, so the characteristic
must be pn.

Remark 4.6. If R is an N-graded k-algebra with R0 = k, and m =
⊕

n>0R0 is the homoge-
neous maximal ideal, R and m behave a lot like a local ring and its maximal ideal, and we
sometimes use the suggestive notation (R,m) to refer to it. Many properties of local rings
also apply to the graded setting, so given a statement about local rings, you might take it as
a suggestion that there might be a corresponding statement about graded rings — a state-
ment that, nevertheless, still needs to be proved. There are usually some changes one needs
to make to the statement; for example, if a theorem makes assertions about the ideals in a
local ring, the corresponding graded statement will likely only apply to homogeneous ideals,
and a theorem about finitely generated modules over a local ring will probably translate into
a theorem about graded modules in the graded setting.
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4.2 Localization

Recall that a multiplicative subset of a ring R is a set W ∋ 1 that is closed for products.
The three most important classes of multiplicative sets are the following:

Example 4.7. Let R be a ring.

a) For any f ∈ R, the set W = {1, f, f 2, f 3, . . . } is a multiplicative set.

b) If p ⊆ R is a prime ideal, the set W = R ∖ p is multiplicative: this is an immediate
translation of the definition.

c) The set of nonzerodivisors in R — elements that are not zerodivisors — forms a multi-
plicatively closed subset.

Remark 4.8. An arbitrary intersection of multiplicatively closed subsets is multiplicatively
closed. In particular, for any family of primes {pλ}, the complement of

⋃
λ pλ is multiplica-

tively closed.

Definition 4.9 (Localization of a ring). Let R be a ring, andW be a multiplicative set with
0 /∈ W . The localization of R at W is the ring

W−1R :=
{ r
w

∣∣∣ r ∈ R,w ∈ W} / ∼
where ∼ is the equivalence relation

r

w
∼ r′

w′ if there exists u ∈ W : u(rw′ − r′w) = 0.

The operations are given by

r

v
+
s

w
=
rw + sv

vw
and

r

v

s

w
=

rs

vw
.

The zero in W−1R is 0
1
and the identity is 1

1
. There is a canonical ring homomorphism

R //W−1R

r � // r
1

.

Given an ideal I in W−1R, we write I ∩R for its preimage of I in R via the canonical map

R //W−1R .

Note that we write elements in W−1R in the form r
w
even though they are equivalence

classes of such expressions.

Remark 4.10. Observe that if R is a domain, the equivalence relation simplifies to rw′ =
r′w, so R ⊆ W−1R ⊆ Frac(R), and in particular W−1R is a domain too. In particular,
Frac(R) is a localization of R.
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In the localization of R atW , every element ofW becomes a unit. The following universal
property says roughly that W−1R is the smallest R-algebra in which every element of W is
a unit.

Proposition 4.11. Let R be a ring, and W a multiplicative set with 0 /∈ W . Let S be an
R-algebra in which every element of W is a unit. Then there is a unique homomorphism α
such that the following diagram commutes:

R //

��

W−1R

α
{{

S

where the vertical map is the structure homomorphism and the horizontal map is the canonical
homomorphism.

Example 4.12 (Most important localizations). Let R be a ring.

a) For f ∈ R and W = {1, f, f 2, f 3, . . . }, we usually write Rf for W−1R.

b) For a prime ideal p in R, we generally write Rp for (R∖p)−1R, and call it the localization
of R at p. Given an ideal I in R, we sometimes write Ip to refer to IRp, the image of I
via the canonical map R→ Rp.

c) WhenW is the set of nonzerodivisors on R, we callW−1R the total ring of fractions of
R. When R is a domain, this is just the fraction field of R, and in this case this coincides
with the localization at the prime (0).

Remark 4.13. Notice that when we localize at a prime p, the resulting ring is a local ring
(Rp, pp). We can think of the process of localization at p as zooming in at the prime p.
Many properties of an ideal I can be checked locally, by checking them for IRp for each
prime p ∈ V (I).

If R is not a domain, the canonical map R→ W−1R is not necessarily injective.

Example 4.14. ConsiderR = k[x, y]/(xy). The canonical maps R // R(x) and R // Ry

are not injective, since in both cases y is invertible in the localization, and thus

x 7→ x

1
=
xy

y
=

0

y
=

0

1
.

We can now add some more local rings to our list of examples.

Example 4.15.

a) A local ring one often encounters is k[x1, . . . , xd](x1,...,xd). We can consider this as the
ring of rational functions that in lowest terms have a denominator with nonzero constant
term. Note that we can talk about lowest terms since the polynomial ring is a UFD.
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b) Extending the following example, we have local rings like (k[x1, . . . , xd]/I)(x1,...,xd). If k is
algebraically closed and I is a radical ideal, then k[x1, . . . , xd]/I = k[X] is the coordinate
ring of some affine variety, and (x1, . . . , xd) = m0 is the ideal defining the origin (as a
point in X ⊆ Ad). Then we call

k[X]m0
:= (k[x1, . . . , xd]/I)(x1,...,xd)

the local ring of the point 0 ∈ X; some people write OX,0. The radical ideals of this
ring consist of radical ideals of k[X] that are contained in m0, which by the Nullstellensatz
correspond to subvarieties of X that contain 0. Similarly, we can define the local ring at
any point a ∈ X.

We state an analogous definition for modules, and for module homomorphisms.

Definition 4.16. Let R be a ring, W be a multiplicative set, and M an R-module. The
localization of M at W is the W−1R-module

W−1M :=
{m
w

∣∣∣ m ∈M,w ∈ W
}
/ ∼

where ∼ is the equivalence relation
m

w
∼ m′

w′ if u(mw′ − m′w) = 0 for some u ∈ W . The

operations are given by

m

v
+
n

w
=
mw + nv

vw
and

r

v

m

w
=
rm

vw
.

IfM
α−→ N is an R-module homomorphism, then there is aW−1R-module homomorphism

W−1M
W−1α−−−→ W−1N given by the rule W−1α(m

w
) = α(m)

w
.

We will use the notations Mf and Mp analogously to Rf and Rp.

To understand localizations of rings and modules, we will want to understand better how
they are built from R. First, we take a small detour to talk about colons and annihilators.

Definition 4.17. The annihilator of a module M is the ideal

ann(M) := {r ∈ R | rm = 0 for all m ∈M}.

Definition 4.18. Let I and J be ideals in a ring R. The colon of I and J is the ideal

(J : I) := {r ∈ R | rI ⊆ J}.

More generally, if M and N are submodules of some R-module A, the colon of N and M is

(N :R M) := {r ∈ R | rM ⊆ N}.

Exercise 15. The annihilator of M is an ideal in R, and

ann(M) = (0 :R M).

Moreover, any colon (N :R M) is an ideal in R.
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Remark 4.19. If M = Rm is a one-generated R-module, then M ∼= R/I for some ideal I.
Notice that I · (R/I) = 0, and that given an element g ∈ R, we have g(R/I) = 0 if and only
if g ∈ I. Therefore, M ∼= R/ ann(M).

Remark 4.20. Let M be an R-module. If I is an ideal in R such that I ⊆ ann(M), then
IM = 0, and thus M has is naturally an R/I-module with the same structure it has as an
R-module, meaning

(r + I) ·m = rm

for each r ∈ R.

Remark 4.21. If N ⊆M are R-modules, then ann(M/N) = (N :R M).

Lemma 4.22. Let M be an R-module, and W a multiplicative set. The class

m

w
∈ W−1M is zero ⇐⇒ vm = 0 for some v ∈ W ⇐⇒ annR(m) ∩W ̸= ∅.

Note in particular that this holds for w = 1.

Proof. For the first equivalence, we use the equivalence relation defining W−1R to note that
m
w

= 0
1
in W−1M if and only if there exists some v ∈ W such that 0 = v(1m − 0w) = vm.

The second equivalence just comes from the definition of the annihilator.

Remark 4.23. It follows from this lemma that if N α //M is injective, then W−1α is also
injective, since

0 = W−1α
(n
w

)
=
α(n)

w
⇒ 0 = uα(n) = α(un) for some u ∈ W ⇒ un = 0⇒ n

w
= 0.

We want to collect one more lemma for later.

Lemma 4.24. Let M be a module, and N1, . . . , Nt be a finite collection of submodules. Let
W be a multiplicative set. Then,

W−1(N1 ∩ · · · ∩Nt) = W−1N1 ∩ · · · ∩W−1Nt ⊆ W−1M.

Proof. The containment W−1(N1 ∩ · · · ∩Nt) ⊆ W−1N1 ∩ · · · ∩W−1Nt is clear. Elements of
W−1N1 ∩ · · · ∩W−1Nt are of the form n1

w1
= · · · = nt

wt
; we can find a common denominator

to realize this in W−1(N1 ∩ · · · ∩Nt).

Later we will show that localization has good homological properties: it’s an exact func-
tor.

Theorem 4.25. Given a short exact sequence of R-modules

0 // A // B // C // 0

and a multiplicative set W , the sequence

0 //W−1A //W−1B //W−1C // 0

is also exact.
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Remark 4.26. Given a submodule N of M , we can apply the statement above to the short
exact sequence

0 // N //M //M/N // 0

and conclude that that W−1(M/N) ∼= W−1M/W−1N .

Proposition 4.27. Let W be multiplicatively closed in R.

a) If I is an ideal in R, then W−1I ∩R = {r ∈ R | wr ∈ I for some w ∈ W}.

b) If J is an ideal in W−1R, then W−1(J ∩R) = J .

c) If p is prime and W ∩ p = ∅, then W−1p = p(W−1R) is prime.

d) The map Spec(W−1R)→ Spec(R) is injective, with image

{p ∈ Spec(R) | p ∩W = ∅}.

Proof.

a) Since W−1(R/I) ∼= W−1R/W−1I, we have ker(R → W−1(R/I)) = R ∩ W−1I. The
equality is then clear.

b) The containment W−1(J ∩ R) ⊆ J holds for general reasons: given any map f , and a
subset J of the target of f , f(f−1(J)) ⊆ J . On the other hand, if a

w
∈ J , then a

1
∈ J ,

since its a unit multiple of an element of J , and thus a ∈ J ∩R, so a
w
∈ W−1(J ∩R).

c) First, since W ∩ p = ∅, and p is prime, no element of W kills 1̄ = 1+ p in R/p, so 1̄/1 is
nonzero in W−1(R/p). Thus, W−1R/W−1p ∼= W−1(R/p) is nonzero, and a localization
of a domain, hence is a domain. Thus, W−1p is prime.

d) First, by part b), the map p 7→ W−1p, for S = {p ∈ Spec(R) | p ∩W = ∅} sends primes
to primes. We claim that

Spec(W−1R)
q

W−1p

� //

oo �

S
q ∩R
p

are inverse maps.

We have already seen that J = (J ∩R)W−1R for any ideal J in W−1R.

If W ∩ p = ∅, then using part a) and the definition of prime, we have that

W−1p ∩R = {r ∈ R | rw ∈ p for some w ∈ W} = {r ∈ R | r ∈ p} = p.

Corollary 4.28. Let R be a ring and p be a prime ideal in R. The map on Spectra induced
by the canonical map R→ Rp corresponds to the inclusion

{q ∈ Spec(R) | q ⊆ p} ⊆ Spec(R).
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4.3 NAK

We will now show a very simple but extremely useful result known as Nakayama’s Lemma.
As noted in [Mat89, page 8], Nakayama himself claimed that this should be attributed to
Krull and Azumaya, but it’s not clear which of the three actually had the commutative ring
statement first. So some authors (eg, Matsumura) prefer to refer to it as NAK. There are
actually a range of statements, rather than just one, that go under the banner of Nakayama’s
Lemma a.k.a. NAK.

Proposition 4.29. Let R be a ring, I an ideal, and M a finitely generated R-module. If
IM =M , then

a) there is an element r ∈ 1 + I such that rM = 0, and

b) there is an element a ∈ I such that am = m for all m ∈M .

Proof. Let M = Rm1 + · · ·+Rms. By assumption, we have equations

m1 = a11m1 + · · ·+ a1sms , . . . , ms = as1m1 + · · ·+ assms,

with aij ∈ I. Setting A = [aij] and v = [xi] we have a matrix equations Av = v. By the
determinantal trick, Lemma 1.35, the element det(Is×s − A) ∈ R kills each mi, and hence
M . Since det(Is×s−A) ≡ det(Is×s) ≡ 1mod I, this determinant is the element r we seek for
the first statement.

For the latter statement, set a = 1 − r; this is in I and satisfies am = m − rm = m for
all m ∈M .

Proposition 4.30. Let (R,m, k) be a local ring, and M be a finitely generated module. If
M = mM , then M = 0.

Proof. By the Proposition 4.29, there exists an element r ∈ 1+m that annihilatesM . Notice
that 1 /∈ m, so any such r must be outside of m, and thus a unit. Multiplying by its inverse,
we conclude that 1 annihilates M , or equivalently, that M = 0.

Proposition 4.31. Let (R,m, k) be a local ring, and M be a finitely generated module, and
N a submodule of M . If M = N +mM , then M = N .

Proof. By taking the quotient by N , we see that

M/N = (N +mM)/N = m (M/N) .

By Proposition 4.30, M = N .

Proposition 4.32. Let (R,m, k) be a local ring, and M be a finitely generated module. For
m1, . . . ,ms ∈M ,

m1, . . . ,ms generate M ⇐⇒ m1, . . . ,ms generate M/mM.

Thus, any generating set for M consists of at least dimk(M/mM) elements.
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Proof. The implication (⇒) is clear. If m1, . . . ,ms ∈ M are such that m1, . . . ,ms generate
M/mM , let N = Rm1 + · · · + Rms ⊆ M . By Proposition 4.30, M/N = 0 if and only if
M/N = m(M/N). The latter statement is equivalent to M = mM +N , which is equivalent
to saying that M/mM is generated by the image of N .

Remark 4.33. Since R/m is a field, M/mM is a vector space over the field R/m.

Definition 4.34. Let (R,m) be a local ring, and M a finitely generated module. A set of
elements {m1, . . . ,mt} is a minimal generating set of M if the images of m1, . . . ,mt form
a basis for the R/m vector space M/mM .

As a consequence of basic facts about basis for vector spaces, we conclude that any
generating set for M contains a minimal generating set, and that every minimal generating
set has the same cardinality.

Definition 4.35. Let (R,m) be a local ring, and N an R-module. The minimal number
of generators of M is

µ(M) := dimR/m (M/mM) .

Equivalently, this is the number of elements in a minimal generating set for M .

We commented before that graded rings behave a lot like local rings, so now we want to
give graded analogues for the results above.

Proposition 4.36. Let R be an N-graded ring, andM a Z-graded module such thatM<a = 0
for some a. If M = (R+)M , then M = 0.

Proof. On the one hand, the homogeneous elements in M live in degrees at least a, but
(R+)M lives in degrees strictly bigger than a. If M has a nonzero element, it has a nonzero
homogeneous element, and we obtain a contradiction.

This condition includes all finitely generated Z-graded R-modules.

Remark 4.37. If M is finitely generated, then it can be generated by finitely many homo-
geneous elements, the homogeneous components of some finite generating set. If a is the
smallest degree of a homogeneous element in a homogeneous generating set, since R lives
only in positive degrees we must have M ⊆ RM⩾a ⊆M⩾a, so M<a = 0.

Just as above, we obtain the following:

Proposition 4.38. Let R be an N-graded ring, with R0 a field, and M a Z-graded module
such thatM<a = 0 for some degree a. A set of elements ofM generatesM if and only if their
images in M/(R+)M spans as a vector space. Since M and (R+)M are graded, M/(R+)M
admits a basis of homogeneous elements.

In particular, if k is a field, R is a positively graded k-algebra, and I is a homogeneous
ideal, then I has a minimal generating set by homogeneous elements, and this set is unique
up to k-linear combinations.
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Definition 4.39. Let R be an N-graded ring with R0 a field, and M a finitely generated
Z-graded R-module. The minimal number of generators of M is

µ(M) := dimR/R+ (M/R+M) .

We can use Macaulay2 to compute (the) minimal (number of ) generators of graded
modules over graded k-algebras, using the commands mingens and numgens.

Note that we can use NAK to prove that certain modules are finitely generated in the
graded case; in the local case, we cannot.



Chapter 5

Decomposing ideals

We will consider a few ways of decomposing ideals into pieces, in three ways with increasing
detail. The first is the most directly geometric: for any ideal I in a Noetherian ring, we aim
to write V (I) as a finite union of V (pi) for prime ideals pi.

5.1 Minimal primes and support

Recall the definition of minimal primes that we mentioned before.

Definition 5.1. The primes that contain I and are minimal with the property of containing
I are called the minimal primes of I. That is, the minimal primes of I are the minimal
elements of V (I). We write Min(I) for this set.

Exercise 16. Let R be a ring, and I an ideal. Every prime p that contains I contains a
minimal prime of I. Consequently,

√
I =

⋂
p∈Min(I)

p.

Remark 5.2. If p is prime, then Min(p) = {p}. Also, since V (I) = V (
√
I), we have

Min(I) = Min(
√
I).

As a special case, the nilpotent elements of a ring R are exactly the elements in every
minimal prime of R, or equivalently, in every minimal prime of the ideal (0). The radical of
(0) is often called the nilradical of R, denoted N (R).

Lemma 5.3. Whenever I = p1 ∩ · · · ∩ pn for some pi ̸⊆ pj for each i, j, we have Min(I) =
{p1, . . . , pn}.

Proof. If q is a prime containing I, then q ⊇ (p1 ∩ · · · ∩ pn). But if q ̸⊇ pi for each i, then
there are elements fi ∈ pi such that fi /∈ q, and the product f1 · · · fn ∈ (p1 ∩ · · · ∩ pn) but
f1 · · · fn /∈ q. Therefore, any minimal prime of I must be one of the pi. Since we assumed
that the pi are incomparable, they are exactly all the minimal primes of I.

Remark 5.4. If I = p1 ∩ · · · ∩ pn for some primes pi, we can always delete unnecessary
components until no component can be deleted. Therefore, Min(I) ⊆ {p1, · · · , pn}.

56
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Theorem 5.5. Let R be a Noetherian ring. Then any ideal I has finitely many minimal
primes, and thus

√
I is a finite intersection of primes.

Proof. Let S = {ideals I ⊆ R | Min(I) is infinite}, and suppose, to obtain a contradiction,
that S ̸= ∅. Since R is Noetherian, S has a maximal element J , by Proposition 1.2. If J
was a prime ideal, then Min(J) = {J} would be finite, by Remark 5.2, so J is not prime.
However, Min(J) = Min(

√
J), and thus

√
J ⊇ J is also in S, so we conclude that J is radical.

Since J is not prime, we can find some a, b /∈ J with ab ∈ J . Then J ⊊ J + (a) ⊆
√
J + (a)

and J ⊊
√
J + (b). Since J is maximal in S, we conclude that

√
J + (a) and

√
J + (b) have

finitely many minimal primes, so we can write

J + (a) = p1 ∩ · · · ∩ pt and J + (b) = pt+1 ∩ · · · ∩ ps

for some prime ideals pi. Let f ∈
√
J + (a) ∩

√
J + (b). Some sufficiently high power of f

is in both J + (a) and J + (b), so there exist n,m ⩾ 1 such that

fn ∈ J + (a) and fm ∈ J + (b)

so
fn+m ∈ (J + (a))(J + (b)) ⊆ J2 + J(a) + J(b) + ( ab︸︷︷︸

∈J

) ⊆ J.

Therefore, f ∈
√
J = J . This shows that

J = (J + (a)) ∩ (J + (b)) = p1 ∩ · · · ∩ pt ∩ pt+1 ∩ · · · ∩ ps.

By Lemma 5.3, we see that Min(J) must be a subset of {p1, . . . , ps}, so it is finite.

Remark 5.6. Lemma 5.3, Theorem 5.5, and Exercise 16 imply that an ideal I is equal to a
finite intersection of primes if and only if I is radical.

We now can describe the relationship between the poset structure of Spec(R) and the
topology.

Proposition 5.7. Let R be a ring, and X = Spec(R).

a) The poset structure on X can be recovered from the topology: p ⊆ q ⇔ q ∈ {p}.

b) If R is Noetherian, the topology on X can by recovered from the poset structure by the
rule

Y ⊆ Xis closed⇐⇒ Y = {q ∈ X | pi ⊆ q for some i} for some p1, . . . , pn ∈ X.

Proof.

a) By definition of closure, we have

{p} =
⋂

p∈V (I)

V (I).

If p ∈ V (I) then I ⊆ p, which implies V (p) ⊆ V (I). It follows that {p} = V (p), and thus
the claim.
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b) If Y is closed, we have Y = V (I) = V (
√
I) = V (p1 ∩ · · · ∩ pn) = V (p1)∪ · · · ∪ V (pn). For

the converse, we can work backwards.

We now wish to understand modules in a similar way.

Definition 5.8. If M is an R-module, the support of M is

Supp(M) := {p ∈ Spec(R) | Mp ̸= 0}.

Proposition 5.9. Given M a finitely generated R-module over a ring R,

Supp(M) = V (annR(M)).

In particular, Supp(R/I) = V (I).

Proof. Let M = Rmi + · · ·+Rmn. We have

annR(M) =
n⋂
i=1

annR(mi),

so

V (annR(M)) =
n⋃
i=1

V (annR(mi)).

Notice that we need finiteness here. Also, we claim that

Supp(M) =
n⋃
i=1

Supp(Rmi).

To show (⊇), notice that (Rmi)p ⊆Mp, so

p ∈ Supp(Rmi) =⇒ 0 ̸= (Rmi)p ⊆Mp =⇒ p ∈ Supp(M).

On the other hand, the images of m1, . . . ,mn in Mp generate Mp for each p, so p ∈
Supp(M) if and only if p ∈ Supp(Rmi) for some mi. Thus, we can reduce to the case of a
cyclic module Rm. Now m

1
= 0 in Mp if and only if (R∖ p)∩ annR(m) ̸= ∅, which happens

if and only if annR(m) ̸⊆ p.

The finite generating hypothesis is necessary!

Example 5.10. Let k be a field, and R = k[x]. Take

M = Rx/R =
⊕
i>0

k · x−i.

With this k-vector space structure, the action is given by multiplication in the obvious way,
then killing any nonnegative degree terms.

On one hand, we claim that Supp(M) = {(x)}. Indeed, any element of M is killed by a
large power of x, so W−1M = 0 whenever x ∈ W , so Supp(M) ⊆ {(x)}. We will soon see
that the support of a nonzero module is nonempty, and thus Supp(M) = {(x)}.

On the other hand, the annihilator of the class of x−n is xn, so

annR(M) ⊆
⋂
n⩾1

(xn) = 0.

In particular, V (annR(M)) = Spec(R).
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Example 5.11. Let R = C[x], and M =
⊕
n∈Z

R/(x− n).

First, note that Mp =
⊕
n∈Z

(R/(x− n))p, so

Supp(M) =
⋃
n∈Z

Supp(R/(x− n)) =
⋃
n∈Z

V ((x− n)) = {(x− n) | n ∈ Z}.

On the other hand,

annR(M) =
⋂
n∈Z

annR(R/(x− n)) =
⋂
n∈Z

(x− n) = 0.

Note that in this example the support is not even closed.

Lemma 5.12. Let R be a ring, M an R-module, and m ∈M . The following are equivalent:

1) m = 0 in M .

2) m
1
= 0 in Mp for all p ∈ Spec(R).

3) m
1
= 0 in Mp for all p ∈ mSpec(R).

Proof. The implications 1) =⇒ 2) =⇒ 3) are clear. If m ̸= 0, its annihilator is a proper
ideal, which is contained in a maximal ideal, so V (annRm) = Supp(Rm) contains a maximal
ideal, so m

1
̸= 0 in Mp for some maximal ideal p.

Lemma 5.13. Let R be a ring, L,M,N be modules. If

0 // L //M // N // 0

is exact, then Supp(L) ∪ Supp(N) = Supp(M).

Proof. Localization is exact, by Theorem 4.25, so for any p,

0 // Lp
//Mp

// Np
// 0

is exact. If p ∈ Supp(L) ∪ Supp(N), then Lp or Np is nonzero, so Mp must be nonzero as
well. On the other hand, if p /∈ Supp(L) ∪ Supp(N), then Lp = Np = 0, so Mp = 0.

Remark 5.14. As a corollary, Supp(L) ⊆ Supp(M) for any submodule L of M .

Corollary 5.15. If M is a finitely generated R-module,

1) M = 0.

2) Mp = 0 in Mp for all p ∈ Spec(R).

3) Mp = 0 in Mp for all p ∈ mSpec(R).

Proof.

The implications⇒ are clear. To show the last implies the first, we show the contrapositive.
If m ̸= 0, consider Rm ⊆ M . By Lemma 5.12, there is a maximal ideal in Supp(Rm), and
by Lemma 5.13 applied to the inclusion Rm ⊆ M , this maximal ideal is in Supp(M) as
well.

So we conclude that Supp(M) ̸= ∅ for any R-module M ̸= 0.
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5.2 Associated primes

Remark 5.16. Let R be a ring, I be an ideal in R, and M be an R-module. To give
an R-module homomorphism R −→ M is the same as choosing an element m of M (the
image of 1 via our map) or equivalently, to choose a cyclic submodule of M (the submodule
generated by m).

To give an R-module homomorphism R/I −→M is the same as giving an R-module ho-
momorphism R −→M whose image is killed by I. Thus giving an R-module homomorphism
R/I −→M is to choose an element m ∈M that is killed by I, meaning I ⊆ ann(m).

Definition 5.17. Let R be a ring, and M a module. We say that p ∈ Spec(R) is an
associated prime of M if p = annR(m) for some m ∈ M . Equivalently, p is associated
to M if there is an injective homomorphism R/p −→ M . We write AssR(M) for the set of
associated primes of M .

If I is an ideal, by the associated primes of I we (almost always) mean the associated
primes of R/I. To avoid confusion, we will try to write AssR(R/I).

Lemma 5.18. Let R be a Noetherian ring and M be an R-module. A prime P is associated
to M if and if and only if PP ∈ Ass(MP ).

Proof. Localization is exact, so any inclusion R/P ⊆ M localizes to an inclusion RP/PP ⊆
MP . Conversely, suppose that PP = ann(m

w
) for some m

w
∈ MP . Let P = (f1, . . . , fn). Since

fi
1
m
r
= 0

1
, there exists ui /∈ P such that uifim = 0. Then u = u1 · · ·un is not in P , since P is

prime, and ufim = 0 for all i. Since the fi generate P , we have P (um) = 0. On the other
hand, if r ∈ ann(um), then ru

1
∈ ann(m

w
) = PP . We conclude that ru ∈ PP ∩ R = P . Since

u /∈ P , we conclude that r ∈ P .

Lemma 5.19. If p is prime, AssR(R/p) = {p}.

Proof. For any nonzero r̄ ∈ R/p, we have annR(r̄) = {s ∈ R | rs ∈ p} = p by definition of
prime ideal.

Let’s recall the definition of zerodivisors on M .

Definition 5.20. Let M be an R-module. An element r ∈ R is a zerodivisor on M if
rm = 0 for some m ∈M . We sometimes write the set of zerodivisors of M as Z(M).

Lemma 5.21. If R is Noetherian, and M is an arbitrary R-module, then

1) For any nonzero m ∈M , annR(m) is contained in an associated prime of M .

2) Ass(M) = ∅⇐⇒M = 0, and

3)
⋃

p∈Ass(M)

p = Z(M).

Additionally, if R and M are Z-graded and M ̸= 0, M has an associated prime that is
homogeneous.
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Proof. Even if R is not Noetherian, M = 0 implies Ass(M) = ∅ by definition. So we focus
on the case when M ̸= 0.

First, we are going to show that 1 implies 2 and 3. To do that, let’s suppose that we
have shown 1. If M ̸= 0, then M contains a nonzero element m, and ann(m) is contained in
an associated prime of M . In particular, Ass(M) ̸= 0, and 2 holds. Now if r ∈ Z(M), then
by definition we have r ∈ ann(m) for some nonzero m ∈ M . Since ann(m) is contained in
some associated prime of M , so is r. On the other hand, if p is an associated prime of M ,
then by definition all elements in p are zerodivisors on M . This shows that 3 holds. So all
that is left is to prove 1.

Now we show 1 for any M ̸= 0. The set of ideals S := {annR(m) | m ∈ M,m ̸= 0} is
nonempty, and any element in S is contained in a maximal element, by Noetherianity. Note
in fact that any element in S must be contained in a maximal element of S. Let I = ann(m)
be any maximal element, and let rs ∈ I, s /∈ I. We always have ann(sm) ⊇ ann(m),
and equality holds by the maximality of ann(m) in S. Then r(sm) = (rs)m = 0, so
r ∈ ann(sm) = ann(m) = I. We conclude that I is prime, and therefore it is an associated
prime of M .

For the graded case, replace the set of zerodivisors with the annihilators of homogeneous
elements. Such annihilator is homogeneous, since if m is homogeneous, and fm = 0, writing
f = fa1 + · · ·+ fab as a sum of homogeneous elements of different degrees ai, then 0 = fm =
fa1m+ · · ·+fabm is a sum of homogeneous elements of different degrees, so faim = 0 for each
i. The same argument above works if we take {annR(m) | m ∈ M,m ̸= 0 homogeneous },
using the following lemma.

Lemma 5.22. If R is Z-graded, an ideal with the property

for any homogeneous elements r, s ∈ R rs ∈ I ⇒ r ∈ I or s ∈ I

is prime.

Proof. We need to show that this property implies that for any a, b ∈ R not necessarily ho-
mogeneous, ab ∈ I implies a ∈ I or b ∈ I. We induce on the number of nonzero homogeneous
components of a plus the number of nonzero homogeneous components of b. The base case is
when this is two, which means that both a and b are homogeneous, and thus the hypotheses
already gives us this case. Otherwise, write a = a′ + am and b = b′ + bn, where am, bn are
the nonzero homogeneous components of a and b of largest degree, respectively. We have
ab = (a′b′+ amb

′+ bna
′)+ ambn, where ambn is either the largest homogeneous component of

ab or else it is zero. Either way, ambn ∈ I, so am ∈ I or bn ∈ I; without loss of generality, we
can assume am ∈ I. Then ab = a′b+ amb, and ab, amb ∈ I, so a′b ∈ I, and the total number
of homogeneous pieces of a′b is smaller, so by induction, either a′ ∈ I so that a ∈ I, or else
b ∈ I.

Lemma 5.23. If
0 // L //M // N // 0

is an exact sequence of R-modules, then Ass(L) ⊆ Ass(M) ⊆ Ass(L) ∪ Ass(N).

Proof. If R/p includes in L, then composition with the inclusion L ↪→M gives an inclusion
R/p ↪→M . Therefore, Ass(L) ⊆ Ass(M).
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Now let p ∈ Ass(M), and let m ∈ M be such that p = ann(m). First, note that
p ⊆ ann(rm) for all r ∈ R.

Thinking of L as a submodule of N , suppose that there exists r /∈ p such that rm ∈ L.
Then

s(rm) = 0⇐⇒ (sr)m = 0 =⇒ sr ∈ p =⇒ s ∈ p.

So p = ann(rm), and thus p ∈ Ass(L).
If rm /∈ L for all r /∈ p, let n be the image of m in N . Thinking of N as M/L,

if rn = 0, then we must have rm ∈ L, and by assumption this implies r ∈ p. Since
p = ann(m) ⊆ ann(n), we conclude that p = ann(n). Therefore, p ∈ Ass(N).

Note that the inclusions in Lemma 5.23 are not necessarily equalities.

Example 5.24. IfM is a module with at least two associated primes, and p is an associated
prime of M , then

0 // R/p //M

is exact, but {p} = Ass(R/p) ⊊ Ass(M).

Example 5.25. Let R = k[x], where k is a field, and consider the short exact sequence of
R-modules

0 // (x) // R // R/(x) // 0 .

Then one can check that:

• Ass(R/(x)) = Ass(k) = {(x)}.

• Ass(R) = Ass((x)) = {(0)}.

In particular, Ass(R) ⊊ Ass(R/(x)) ∪ Ass((x)).

Corollary 5.26. Let A and B be R-modules. Then Ass(A⊕B) = Ass(A) ∪ Ass(B).

Proof. Apply Lemma 5.23 to the short exact sequence

0 // A // A⊕B // B // 0 .

We obtain Ass(A) ⊆ Ass(A⊕B) ⊆ Ass(A) ∪ Ass(B). Repeat with

0 // B // A⊕B // A // 0 ,

to conclude that Ass(B) ⊆ Ass(A⊕ B). So we have shown both Ass(A) ⊆ Ass(A⊕ B) and
Ass(B) ⊆ Ass(A⊕B), so Ass(A)∪Ass(B) ⊆ Ass(A⊕B). Since we have also already shown
Ass(A⊕B) ⊆ Ass(A) ∪ Ass(B), we must have Ass(A⊕B) = Ass(A) ∪ Ass(B).

We will need a bit of notation for graded modules to help with the next statement; we
saw a simple use of this notation back in Example 2.13.

Definition 5.27. Let R and M be T -graded, and t ∈ T . The shift of M by t is the graded
R-moduleM(t) with graded piecesM(t)i :=Mt+i. This is isomorphic toM as an R-module,
when we forget about the graded structure.
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Theorem 5.28. Let R be a Noetherian ring, and M is a finitely generated module. There
exists a filtration of M

M =Mt ⊋Mt−1 ⊋Mt−2 ⊋ · · · ⊋M1 ⊋M0 = 0

such that Mi/Mi−1
∼= R/pi for primes pi ∈ Spec(R). Such a filtration is called a prime

filtration of M .
If R and M are Z-graded, there exists a prime filtration as above where the quotients

Mi/Mi−1
∼= (R/pi)(ti) are graded modules, the pi are homogeneous primes, and the ti are

integers.

Proof. If M ̸= 0, then M has at least one associated prime, so there is an inclusion R/p1 ↪→
M . Let M1 be the image of this inclusion. If M/M1 ̸= 0, it has an associated prime, so
there is an M2 ⊆ M such that R/p2 ∼= M2/M1 ⊆ R/M1. Continuing this process, we get a
strictly ascending chain of submodules of M where the successive quotients are of the form
R/pi. If we do not have Mt =M for some t, then we get an infinite strictly ascending chain
of submodules of M , which contradicts that M is a Noetherian module.

In the graded case, if pi is the annihilator of an element mi of degree ti, we have a
degree-preserving map (R/pi)(ti) ∼= Rmi sending the class of 1 to mi.

Example 5.29. Let’s build a prime filtration for the module M = R/I, where I = (x2, yz)
and R = Q[x, y, z]. With a little help from Macaulay2, we find that

i4 : associatedPrimes M

o4 = {ideal (y, x), ideal (z, x)}

o4 : List

So our first goal is to find m ∈M such that ann(m) = (x, z) or ann(m) = (x, y). Let’s start
from (x, z). To find such an element, we can start by searching for all the elements killed by
(x, z):

i5 : I : ideal"x,z"

2

o5 = ideal (y*z, x*y, x )

o5 : Ideal of R

Now yz and x2 are both 0 in M , so the submodule of M generated by xy is precisely the set
of elements killed by (x, z). Is ann(R · xy) = (x, z)?

i6 : ann ((I + ideal(x*y))/I)

o6 = ideal (z, x)

o6 : Ideal of R
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Yes, it is! So our prime filtration starts with

M0 = 0 ⊆M1 =
I + (xy)

I
,

where our computations so far show that ann(M1) = (x, z). For step 2, we start from scratch,
and compute the associated primes of M/M1

∼= R/(I + (y)):

i7 : associatedPrimes (R^1/(I + ideal"xy"))

o7 = {ideal (y, x), ideal (z, x)}

o7 : List

Unfortunately, we will again have to find another element killed by (x, z). So we repeat the
process:

i8 : (I + ideal"xy") : ideal"x,z"

2

o8 = ideal (y, x )

o8 : Ideal of R

i9 : ann((I + ideal"y")/(I + ideal"xy"))

o9 = ideal (z, x)

o9 : Ideal of R

So in M1, ann(y) = (x, z), so we can take the submodule generated by y for our next step,
so our prime filtration for now looks like

M0 = 0 ⊆
R/(x,z)

M1 =
I + (xy)

I
⊆

R/(x,z)
M2 =

I + (y)

I
.

So now we repeat the process with M/M2
∼= R/(I + (y)):

i10 : associatedPrimes (R^1/(I + ideal"y"))

o10 = {ideal (y, x)}

o10 : List

i11 : (I + ideal"y") : ideal"x,y"

o11 = ideal (y, x)
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o11 : Ideal of R

i12 : ann((I + ideal"x")/(I + ideal"y"))

o12 = ideal (y, x)

o12 : Ideal of R

This gives us

M0 = 0 ⊆
R/(x,z)

M1 =
I + (xy)

I
⊆

R/(x,z)
M2 =

I + (y)

I
⊆

R/(x,y)
M3 =

I + (x, y)

I
.

Next, we take M/M3
∼= R/(I + (x, y)) and find that

i13 : associatedPrimes (R^1/(I + ideal"x,y"))

o13 = {ideal (y, x)}

o13 : List

i14 : (I + ideal"x,y") : ideal"x,y"

o14 = ideal 1

o14 : Ideal of R

This last computation actually says we are done: since (x, y) kills everything inside M/M3,
we can now complete our prime filtration with

0 ⊆
R/(x,z)

M1 =
I + (xy)

I
⊆

R/(x,z)
M2 =

I + (y)

I
⊆

R/(x,y)
M3 =

I + (x, y)

I
⊆

R/(x,y)
M4 = R/I.

Prime filtrations often allow us to reduce statements about finitely generated modules to
statements about quotients of R that are also domains: modules of the form R/p for primes
p.

Corollary 5.30. If R is a Noetherian ring, and M is a finitely generated module, and

M =Mt ⊋Mt−1 ⊋Mt−2 ⊋ · · · ⊋M1 ⊋M0 = 0

is a prime filtration of M with Mi/Mi−1
∼= R/pi, then

AssR(M) ⊆ {p1, . . . , pt}.

Therefore, AssR(M) is finite. Moreover, if M is graded, then AssR(M) is a finite set of
homogeneous primes.
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Proof. For each i, we have a short exact sequence

0 //Mi−1
//Mi

//Mi/Mi−1
// 0 .

By Lemma 5.23, Ass(Mi) ⊆ Ass(Mi−1)∪Ass(Mi/Mi−1) = Ass(Mi−1)∪{pi}. Inductively, we
have Ass(Mi) ⊆ {p1, . . . , pi}, and AssR(M) = AssR(Mt) ⊆ {p1, . . . , pt}. This immediately
implies that Ass(M) is finite. In the graded case, Theorem 5.28 gives us a filtration where
all the pi are homogeneous primes, and those include all the associated primes.

Example 5.31. Any subset X ⊆ Spec(R) (for any R) can be realized as Ass(M) for some

M : take M =
⊕
p∈X

R/p. However, M is not finitely generated when X is infinite.

Example 5.32. If R is not Noetherian, then there may be modules (or ideals even) with
no associated primes. Let R =

⋃
n∈NCJx1/nK be the ring of nonnegatively-valued Puiseux

series. We claim that R/(x) is a cyclic module with no associated primes, i.e., the ideal
(x) has no associated primes. First, observe that any element of R can be written as a
unit times xm/n for some m,n, so any associated prime of R/(x) must be the annihilator
of xm/n + (x) for some m ⩽ n. Hpwever, we claim that these are never prime. Indeed,
we have ann(xm/n + (x)) = (x1−m/n), which is not prime since (x1/2−m/2n)2 ∈ (x1−m/n) but
x1/2−m/2n /∈ (x1−m/n).

In a Noetherian ring, associated primes localize.

Theorem 5.33 (Associated primes localize in Noetherian rings). Let R be a Noetherian
ring, W a multiplicative set, and M a module. Then

AssW−1R(W
−1M) = {W−1p | p ∈ AssR(M), p ∩W = ∅}.

Proof. Given p ∈ AssR(M) such that p ∩ W = ∅, Proposition 4.27 says that W−1p is a
prime in W−1R. Then W−1R/W−1p ∼= W−1(R/p) ↪→ W−1M by exactness, so W−1p is an
associated prime of W−1M .

Now suppose that Q ∈ Spec(W−1R) is associated to W−1M . By Proposition 4.27, we
know this is of the form W−1p for some prime p in R such that p ∩W = ∅. Since R is
Noetherian, p is finitely generated, say p = (f1, . . . , fn) in R, and so Q =

(
f1
1
, . . . , fn

1

)
.

By assumption, Q = ann(m
w
) for some m ∈ M , w ∈ W . Since w is a unit in W−1R, we

can also write Q = ann(m
1
). By definition, this means that for each i

fi
1

m

1
=

0

1
⇐⇒ uifim = 0 for some ui ∈ W.

Let u = u1 · · ·un ∈ W . Then ufim = 0 for all i, and thus pum = 0. We claim that in fact
p = ann(um) in R. Consider v ∈ ann(um). Then u(vm) = 0, and since u ∈ W , this implies
that vm

1
= 0. Therefore, v

1
∈ ann(m

1
) = W−1p, and vw ∈ p for some w ∈ W . But p∩W = ∅,

and thus v ∈ p. Thus p ∈ Ass(M).

Corollary 5.34. Let R be Noetherian, and M be an R-module.
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a) SuppR(M) =
⋃

p∈AssR(M)

V (p).

b) If M is a finitely generated R-module, then Min(annR(M)) ⊆ AssR(M). In particular,
Min(I) ⊆ AssR(R/I).

Proof.

a) Let p ∈ AssR(M) and let p = annR(m) for m ∈ M . Let q ∈ V (p), which in particular
implies that q ∈ Supp(R/p), by Proposition 5.9. Since 0 → R/p

m−→ M is exact, so is
0→ (R/p)q →Mq. Since (R/p)q ̸= 0, we must also haveMq ̸= 0, and thus q ∈ Supp(M).

Suppose that q /∈
⋃

p∈AssR(M) V (p), so that q does not contain any associated prime of M .
Then there is no associated prime ofM that does not intersect R∖q, so by Theorem 5.33,
AssRq(Mq) = ∅. By Lemma 5.21, Mq = 0.

b) We have that V (annR(M)) = SuppR(M) =
⋃

p∈AssR(M) V (p), so the minimal elements of

both sets agree. In particular, the right hand side has the minimal primes of annR(M) as
minimal elements, and they must be associated primes ofM , or else this would contradict
minimality.

So the minimal primes of a module M are all associated to M , and they are precisely
the minimal elements in the support of M .

Definition 5.35. If I is an ideal, then an associated prime of I that is not a minimal prime
of I is called an embedded prime of I.

5.3 Prime Avoidance

We take a quick detour to discuss an important lemma.

Lemma 5.36 (Prime avoidance). Let R be a ring, I1, . . . , In, J be ideals, and suppose that
Ii is prime for i > 2.1 If J ̸⊆ Ii for all i, then J ̸⊆

⋃
i Ii. Equivalently, if J ⊆

⋃
i Ii, then

J ⊆ Ii for some i.
Moreover, if R is N-graded, and all of the ideals are homogeneous, all Ii are prime, and

J ̸⊆ Ii for all i, then there is a homogeneous element in J that is not in
⋃
i Ii.

Proof. We proceed by induction on n. If n = 1, there is nothing to show.
By induction hypothesis, we can find elements ai such that

ai /∈
⋃
j ̸=i

Ij and ai ∈ J

for each i. If some ai /∈ Ii, we are done, so let’s assume that ai ∈ Ii for each i. Consider
a = an + a1 · · · an−1 ∈ J . Notice that a1 · · · an−1 = ai(a1 · · · âi · · · an−1) ∈ Ii. If a ∈ Ii for

1So all the ideals are prime, except we may allow two of them to not be prime.
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i < n, then we also have an ∈ Ii, a contradiction. If a ∈ In, then we also have a1 · · · an−1 =
a − an ∈ In, since an ∈ In. If n = 2, this says a1 ∈ I2, a contradiction. If n > 2, our
assumption is that In is prime, so one of a1, . . . , an−1 ∈ In, which is a contradiction. So a is
the element we were searching for, meaning a /∈ Ii for all i.

If all Ii are homogeneous and prime, then we proceed as above but replacing an and
a1, . . . , an−1 with suitable powers so that an + a1 · · · an−1 is homogeneous. For example, we
could take

a := adeg(a1)+··· deg(an−1)
n + (a1 · · · an−1)

deg(an) .

The primeness assumption guarantees that noncontainments in ideals is preserved.

Corollary 5.37. Let I be an ideal and M a finitely generated module over a Noetherian ring
R. If I consists of zerodivisors on M , then Im = 0 for some nonzero m ∈M .

Proof. The assumption says that

I ⊆
⋃

p∈Ass(M)

(p).

By the assumptions, Corollary 5.30 applies, and it guarantees that this is a finite set of
primes. By prime avoidance, I ⊆ p for some p ∈ Ass(M). Equivalently, I ⊆ annR(m) for
some nonzero m ∈M .

We will also need a slightly stronger version of Prime Avoidance.

Theorem 5.38. Let R be a ring, P1, . . . , Pn prime ideals, x ∈ R and I be an ideal in R. If
(x) + I ̸⊆ Pi for each i, then there exists y ∈ J such that

x+ y /∈
n⋃
i=1

Pi.

Proof. We proceed by induction on n. When n = 1, if every element of the form x+ y with
y ∈ R is in P = P1, then multiplying by r ∈ R we conclude that every rx+ y ∈ P , meaning
(x) + I ⊆ P .

Now suppose n > 1 and that we have shown the statement for n− 1 primes. If Pi ⊆ Pj
for some i ̸= j, then we might as well exclude Pi from our list of primes, and the statement
follows by induction. So assume that all our primes Pi are incomparable.

If x /∈ Pi for all i, we are done, since we can take x+ 0 for the element we are searching
for. So suppose x is in some Pi, which we assume without loss of generality to be Pn. Our
induction hypothesis says that we can find y ∈ I such that x + y /∈ P1 ∪ · · · ∪ Pn−1. If
x + y /∈ Pn, we are done, so suppose x + y ∈ Pn. Since we assumed x ∈ Pn, we must have
I ̸⊆ Pn, or else we would have had (x) + I ⊆ Pn. Now Pn is a prime ideal that does not
contain P1, . . . , Pn−1, nor I, so

P ̸⊇ IP1 · · ·Pn−1.

Choose z ∈ IP1 · · ·Pn−1 not in Pn. Then x + y + z /∈ Pn, since z /∈ Pn but x + y ∈ Pn.
Moreover, for all i < n we have x+ y + z /∈ Pi, since z ∈ Pi and x+ y /∈ Pi.



69

5.4 Primary decomposition

We refine our decomposition theory once again, and introduce primary decompositions of
ideals. One of the fundamental classical results in commutative algebra is the fact that
every ideal in any Noetherian ring has a primary decomposition. This can be thought of as
a generalization of the Fundamental Theorem of Arithmetic:

Theorem 5.39 (Fundamental Theorem of Arithmetic). Every nonzero integer n ∈ Z can
be written as a product of primes: there are distinct prime integers p1, . . . , pn and integers
a1, . . . , an ⩾ 1 such that

n = pa11 · · · pann .
Moreover, such a a product is unique up to sign and the order of the factors.

We will soon discover that such a product is a primary decomposition, perhaps after some
light rewriting. But before we get to the what and the how of primary decomposition, it is
worth discussing the why. If we wanted to extend the Fundamental Theorem of Arithmetic
to other rings, our first attempt might involve irreducible elements. Unfortunately, we don’t
have to go far to find rings where we cannot write elements as a unique product of irreducibles
up to multiplying by a unit.

Example 5.40. In Z[
√
−5],

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

are two different ways to write 6 as a product of irreducible elements. In fact, we cannot
obtain 2 or 3 by multiplying 1 +

√
−5 or 1−

√
−5 by a unit.

Instead of writing elements as products of irreducibles, we will write ideals in terms of
primary ideals.

Definition 5.41. We say that an ideal is primary if

xy ∈ I =⇒ x ∈ I or y ∈
√
I.

We say that an ideal is p-primary, where p is prime, if I is primary and
√
I = p.

Remark 5.42. Note that a primary ideal has indeed a prime radical: if Q is primary, and
xy ∈

√
Q, then xnyn ∈ Q for some n. If y /∈

√
Q, then we must have xn ∈ Q, so x ∈

√
Q.

Thus, every primary ideal Q is
√
Q-primary.

Example 5.43.

a) Any prime ideal is also primary.

b) If R is a UFD, we claim that a principal ideal is primary if and only if it is generated by
a power of a prime element. Indeed, if a = fn, with f irreducible, then

xy ∈ (fn)⇐⇒ fn|xy ⇐⇒ fn|x or f |y ⇐⇒ x ∈ (fn) or y ∈
√

(fn) = (f).

Conversely, if a is not a prime power, then a = gh, for some g, h nonunits with no
common factor, then take gh ∈ (a) but g /∈ a and h /∈

√
(a).
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c) As a particular case of the previous example, the nonzero primary ideals in Z are of the
form (pn) for some prime p and some n ⩾ 1. This example is a bit misleading, as it
suggests that primary ideals are the same as powers of primes. We will soon see that it
not the case.

d) In R = k[x, y, z], the ideal I = (y2, yz, z2) is primary. Give R the grading with weights
|y| = |z| = 1, and |x| = 0. If g /∈

√
I = (y, z), then g has a degree zero term. If f /∈ I,

then f has a term of degree zero or one. The product fg has a term of degree zero or
one, so is not in I.

If the radical of an ideal is prime, that does not imply that ideal is primary.

Example 5.44. In R = k[x, y, z], the ideal q = (x2, xy) is not primary, even though
√
q = (x)

is prime. The offending product is xy.

The definition of primary can be reinterpreted in many forms.

Proposition 5.45. If R is Noetherian, the following are equivalent :

(1) q is primary.

(2) Every zerodivisor in R/q is nilpotent on R/q.

(3) Ass(R/q) is a singleton.

(4) q has exactly one minimal prime, and no embedded primes.

(5)
√
q = p is prime and for all r, w ∈ R with w /∈ p, rw ∈ q implies r ∈ q.

(6)
√
q = p is prime, and qRp ∩R = q.

Proof. (1) ⇐⇒ (2): y is a zerodivisor mod q if there is some x /∈ q with xy ∈ q; the primary
assumption translates to a power of y is in q.

(2) ⇐⇒ (3): On the one hand, (2) says that the set of zerodivisors on R/q and coincide
with the elements in the nilradical of R/q. By Lemma 5.21 and Exercise 16, respectively,
these agree with the union of all the associated primes and the intersection of all the minimal
primes. ⋃

p∈Ass(R/q)

p = Z(R/q) = {r ∈ R | r + q ∈ N (R/q)} =
⋂

p∈Min(q)

p =
⋂

p∈Ass(R/q)

p.

This holds if and only if there is only one associated prime.
(3) ⇐⇒ (4) is clear, since each statement is just a restatement of the other one.
(1) ⇐⇒ (5): Given the observation that the radical of a primary ideal is prime, this is

just a rewording of the definition.
(5) ⇐⇒ (6): We secretly already know this from the discussion on behavior of ideals in

localizations, in Proposition 4.27, which says that

qRp ∩R = {r ∈ R | rs ∈ q for some s /∈ p}.
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If the radical of an ideal is maximal, that does imply the ideal is primary.

Remark 5.46. Let I be an ideal with
√
I = m a maximal ideal. If R is Noetherian, then

AssR(R/I) is nonempty and contained in Supp(R/I) = V (I) = {m}, so AssR(R/I) = m,
and hence I is primary.

Note that the assumption that m is maximal was necessary here. Indeed, having a prime
radical does not guarantee an ideal is primary, as we saw in Example 5.44. Moreover, even
the powers of a prime ideal may fail to be primary.

Example 5.47. Let R = k[x, y, z]/(xy − zn), where k is a field and n ⩾ 2 is an integer.
Consider the prime ideal P = (x, z) in R, and note that y /∈ P . On the one hand, xy = zn ∈
P n, while x /∈ P n and y /∈

√
P n = P . Therefore, P n is not a primary ideal, even though its

radical is the prime P .

The contraction of primary ideals is always primary.

Remark 5.48. Given any ring map R
f
// S , and a primary ideal Q in S, then the

contraction of Q in R (via f) Q∩R is always primary. Indeed, if xy ∈ Q∩R, and x /∈ Q∩R,
then f(x) /∈ Q, so f(yn) = f(y)n ∈ Q for some n. Therefore, yn ∈ Q ∩ R, and Q ∩ R is
indeed primary.

Lemma 5.49. If I1, . . . , It are ideals, then

Ass

(
R/

t⋂
j=1

Ij

)
⊆

t⋃
j=i

Ass(R/Ij).

In particular, a finite intersection of p-primary ideals is p-primary.

Proof. There is an inclusion R/(I1∩I2) ⊆ R/I1⊕R/I2. Hence, by Lemma 5.23, Ass(R/(I1∩
I2)) ⊆ Ass(R/I1) ∪ Ass(R/I2); the statement for larger t is an easy induction.

If the Ij are all p-primary, then

Ass(R/(
t⋂

j=1

Ij)) ⊆
t⋃
j=i

Ass(R/Ij) = {p}.

On the other hand,
⋂t
j=1 Ij ⊆ I1 ̸= R, so R/(

⋂t
j=1 Ij) ̸= 0. Thus Ass(R/(

⋂t
j=1 Ij)) is non-

empty, and therefore the singleton {p}. Then
⋂t
j=1 Ij is p-primary by the characterization

of primary in Proposition 5.45 (3) above.

Definition 5.50 (Primary decomposition). A primary decomposition of an ideal I is an
expression of the form

I = q1 ∩ · · · ∩ qt,

with each qi primary. A minimal primary decomposition of an ideal I is a primary

decomposition as above in which
√
qi ̸=

√
qj for i ̸= j, and qi ̸⊇

⋂
j ̸=i

qj for all i.
2

2Some authors use the term irredundant instead of minimal.
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Remark 5.51. By the previous lemma, we can turn any primary decomposition into a
minimal one by combining the terms with the same radical, then removing redundant terms.

Example 5.52 (Primary decomposition in Z). Given a decomposition of n ∈ Z as a product
of distinct primes, say n = pa11 · · · p

ak
k , then the primary decomposition of the ideal (n) is

(n) = (pa11 ) ∩ · · · ∩ (pakk ). However, this example can be deceiving, in that it suggests that
primary ideals are just powers of primes; as we saw in Example 5.47 they are not!

The existence of primary decompositions was first shown by Emanuel Lasker (yes, the
chess champion!) for polynomial rings and power series rings in 1905 [Las05], and then
extended to Noetherian rings (which weren’t called that yet at the time) by Emmy Noether
in 1921 [Noe21].

Theorem 5.53 (Existence of primary decompositions). If R is Noetherian, then every ideal
of R admits a primary decomposition.

Proof. We will say that an ideal is irreducible if it cannot be written as a proper intersection
of larger ideals. If R is Noetherian, we claim that any ideal of R can be expressed as a
finite intersection of irreducible ideals. If the set of ideals that are not a finite intersection of
irreducibles were non-empty, then by Noetherianity there would be an ideal maximal with
the property of not being an intersection of irreducible ideals. Such a maximal element must
be an intersection of two larger ideals, each of which are finite intersections of irreducibles,
giving a contradiction.

Next, we claim that every irreducible ideal is primary. To prove the contrapositive,
suppose that q is not primary, and take xy ∈ q with x /∈ q, y /∈ √q. The ascending chain of
ideals

(q : y) ⊆ (q : y2) ⊆ (q : y3) ⊆ · · ·

stabilizes for some n, since R is Noetherian. This means that yn+1f ∈ q =⇒ ynf ∈ q. We
will show that

(q+ (yn)) ∩ (q+ (x)) = q,

proving that q is not irreducible.
The containment q ⊆ (q+ (yn)) ∩ (q+ (x)) is clear. On the other hand, if

a ∈ (q+ (yn)) ∩ (q+ (x)),

we can write a = q + byn for some q ∈ q, and

a ∈ q+ (x) =⇒ ay ∈ q+ (xy) = q.

So
byn+1 = ay − aq ∈ q =⇒ b ∈ (q : yn+1) = (q : yn).

By definition, this means that byn ∈ q, and thus a = q + byn ∈ q. This shows that q is
not irreducible, concluding the proof.

Primary decompositions, even minimal ones, are not unique.
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Example 5.54. Let R = k[x, y], where k is a field, and I = (x2, xy). We can write

I = (x) ∩ (x2, xy, y2) = (x) ∩ (x2, y).

These are two different minimal primary decompositions of I. To check this, we just need to
see that each of the ideals (x2, xy, y2) and (x2, y) are primary. Observe that each has radical
m = (x, y), which is maximal, so by an earlier remark, these ideals are both primary. In fact,
our ideal I has infinitely many minimal primary decompositions: given any n ⩾ 1,

I = (x) ∩ (x2, xy, yn)

is a minimal primary decomposition. One thing all of these have in common is the radicals
of the primary components: they are always (x) and (x, y).

In the previous example, the fact that all our minimal primary decompositions had
primary components always with the same radical was not an accident. Indeed, there are
some aspects of primary decompositions that are unique, and this is one of them.

Theorem 5.55 (First uniqueness theorem for primary decompositions). Suppose I is an
ideal in a Noetherian ring R. Given any minimal primary decomposition of I, say

I = q1 ∩ · · · ∩ qt,

we have
{
√
q1, . . . ,

√
qt} = Ass(R/I).

In particular, this set is the same for all minimal primary decompositions of I.

Proof. For any primary decomposition, minimal or not, we have

Ass(R/I) ⊆
⋃
i

Ass(R/qi) = {
√
q1, . . . ,

√
qt}

from the lemma on intersections we proved, Lemma 5.49. We just need to show that in a
minimal decomposition as above, every pj :=

√
qj is an associated prime.

So fix j, and let

Ij =
⋂
i ̸=j

qi ⊇ I.

Since the decomposition is minimal, the module Ij/I is nonzero, hence by Lemma 5.21 it
has an associated prime a. Let a be such an associated prime, and fix xj ∈ R such that a is
the annihilator of xj in Ij/I. Since

qjxj ⊆ qj ·
⋂
i ̸=j

qi ⊆ q1 ∩ · · · ∩ qn = I,

we conclude that qj is contained in the annihilator of xj, meaning qj ⊆ a. Since pj is the
unique minimal prime of qj and a is a prime containing qj, we must have pj ⊆ a. On the
other hand, if r ∈ a, we have rxj ∈ I ⊆ qj, and since xj /∈ qj, we must have r ∈ pj =

√
qj by

the definition of primary ideal. Thus a ⊆ pj, so a = pj. This shows that pj is an associated
prime of R/I.
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We note that if we don’t assume that R is Noetherian, we may or may not have a primary
decomposition for a given ideal. It is true that if an ideal I in a general ring has a primary
decomposition, then the primes occurring are the same in any minimal decomposition. How-
ever, they are not the associated primes of I in general; rather, they are the primes that
occur as radicals of annihilators of elements.

There is also a partial uniqueness result for the actual primary ideals that occur in a
minimal decomposition.

Theorem 5.56 (Second uniqueness theorem for primary decompositions). If I is an ideal in
a Noetherian ring R, then for any minimal primary decomposition of I, say I = q1∩· · ·∩qt,
the set of minimal components {qi |

√
qi ∈ Min(R/I)} is the same. Namely, qi = IR√

qi∩R.

Proof. We observe that a localization qA of a p-primary ideal q at a prime A is either the
unit ideal (if p ̸⊆ A), or a pA-primary ideal; this follows from the fact that the associated
primes of R/q localize, Theorem 5.33.

Now, since finite intersections commute with localization, then for any prime A,

IA = (q1)A ∩ · · · ∩ (qt)A

is a primary decomposition, although not necessarily minimal. In a minimal decomposition,
choose a minimal prime A = pi. Then when we localize at A, all the other components
become the unit ideal since their radicals are not contained in pi, and thus Ipi = (qi)pit. We
can then contract to R to get Ipi ∩R = (qi)pi ∩R = qi, since qi is pi-primary.

It is relatively easy to give a primary decomposition for a radical ideal:

Example 5.57. If R is Noetherian, and I is a radical ideal, then we have seen that I
coincides with the intersection of its minimal primes pi, meaning I = p1 ∩ · · · ∩ pt. This is
the only primary decomposition of a radical ideal.

For a more concrete example, take the ideal I = (xy, xz, yz) in k[x, y, z]. This ideal
is radical, so we just need to find its minimal primes. And indeed, one can check that
(xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z). More generally, the radical monomial ideals are pre-
cisely those that are squarefree, and the primary components of a monomial ideal are also
monomial.

Example 5.58. Let’s get back to our motivating example in Z[
√
−5], where some elements

can be written as products of irreducible elements in more than one way. For example, we
saw that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

So (6) = (2) ∩ (3), but while (2) is primary, (3) is not. In fact, (3) has two distinct minimal
primes, and the following is a minimal primary decomposition for (6):

(6) = (2) ∩ (3, 1 +
√
−5) ∩ (3, 1−

√
−5).

In fact, all of these come components are minimal, and so this primary decomposition is
unique. Primary decomposition saves the day!
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Finally, we note that the primary decompositions of powers of ideals are especially inter-
esting.

Definition 5.59 (Symbolic power). If p is a prime ideal in a ring R, the nth symbolic
power of p is p(n) := pnRp ∩R.

This admits equivalent characterizations.

Proposition 5.60. Let R be Noetherian, and p a prime ideal of R.

a) p(n) = {r ∈ R | rs ∈ pn for some s /∈ p}.

b) p(n) is the unique smallest p-primary ideal containing pn.

c) p(n) is the p-primary component in any minimal primary decomposition of pn.

Proof. The first characterization follows from the definition, and the fact that expanding
and contraction to/from a localization is equivalent to saturating with respect to the multi-
plicative set, which we proved in Proposition 4.27.

We know that p(n) is p-primary from one of the characterizations of primary we gave in
Proposition 5.45. Any p-primary ideal satisfies qRp ∩ R = q, and if q ⊇ pn, then p(n) =
pnRp ∩R ⊆ qRp ∩R = q. Thus, p(n) is the unique smallest p-primary ideal containing pn.

The last characterization follows from the second uniqueness theorem, Theorem 5.56.

In particular, note that pn = p(n) if and only if pn is primary.

Example 5.61.

a) In R = k[x, y, z], the prime p = (y, z) satisfies p(n) = pn for all n. This follows along the
same lines as Example 5.43 d.

b) In R = k[x, y, z] = (xy− zn), where n ⩾ 2, we have seen in Example 5.47 that the square
of p = (y, z) is not primary, and therefore p(2) ̸= p2. Indeed, xy = zn ∈ p2, and x /∈ p, so
y ∈ p(2) but y /∈ p2.

c) Let X = X3×3 be a 3× 3 matrix of indeterminates, and k[X] be a polynomial ring over
a field k. Let p = I2(X) be the ideal generated by 2× 2 minors of X. Write ∆i|k

j|l
for the

determinant of the submatrix with rows i, j and columns k, l. We find

x11 det(X) =x11x31∆1|2
2|3
− x11x32∆1|1

2|3
+ x11x33∆1|1

2|2

=(x11x31∆1|2
2|3
− x11x32∆1|1

2|3
+ x11x33∆1|1

2|2
)

− (x11x31∆1|2
2|3
− x12x31∆1|1

2|3
+ x13x31∆1|1

2|2
)

= −∆1|1
3|2
∆1|1

2|3
+∆1|1

3|3
∆1|1

2|2
∈ I2(X)2.

Note that in the second row, we subtracted the Laplace expansion of the determinant of
the matrix with row 3 replaced by another copy of row 1. That is, we subtracted zero.
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While we will not discuss symbolic powers in detail, they are ubiquitous in commutative
algebra. They show up as tools to prove various important theorems of different flavors, and
they are also interesting objects in their own right. In particular, symbolic powers can be
interpreted from a geometric perspective, via the Zariski–Nagata Theorem [Zar49, NM91].
Roughly, this theorem says that when we consider symbolic powers of prime ideals over
C[x1, . . . , xd], the polynomials in p(n) are precisely the polynomials that vanish to order n
on the variety corresponding to p. This result can be made sense of more generally, for any
radical ideal in C[x1, . . . , xd] over any perfect field k [EH79, FMS14], and even when k = Z
[DSGJ20].

5.5 The Krull Intersection Theorem

Lemma 5.62. Let R be a ring. If I ⊆ J are ideals, J ⊆
√
I, and J is finitely generated,

then there is some n with Jn ⊆ I. Therefore, if R is Noetherian, for every ideal I, there is
some n with

√
I
n ⊆ I.

Proof. Write J = (f1, . . . , fm). By definition, each faii ∈ I for some a1, . . . , am. Let
n := a1 + · · ·+ am + 1. Now Jn is generated by products of the form f b11 · · · f bmm with b1 +
· · ·+ bm = n. By the Pigeonhole Principle, at least one bi satisfies bi ⩾ ai, so f

b1
1 · · · f bmm ∈ I.

The second statement is a consequence of the first, since
√
I is a finitely generated ideal

with
√
I ⊇ I.

Theorem 5.63 (Krull intersection theorem). Let (R,m, k) be a Noetherian local ring. Then⋂
n⩾1

mn = 0.

Proof. Let J =
⋂
n∈N

mn. First, we claim that J ⊆ mJ .

Let mJ = q1∩· · ·∩qt be a primary decomposition. To show that J ⊆ mJ , it is sufficient to
prove that J ⊆ qi for each i. If

√
qi ̸= m, pick x ∈ m such that x /∈ √qi. Then xJ ⊆ mJ ⊆ qi,

but x /∈ √qi, so J ⊆ qi by definition of primary. If instead
√
qi = m, there is some N with

mN ⊆ qi by Lemma 5.62. By definition of J , we have J ⊆ mN ⊆ qi, and we are done.
We showed that J ⊆ mJ , hence J = mJ , and thus J = 0 by NAK 4.30.

Remark 5.64. As an easy corollary, we obtain that⋂
n⩾1

In = 0

for any proper ideal I in a Noetherian local ring (R,m), since In ⊆ mn for all n.

In the non-local setting, it is not true in general that
⋂
n⩾1

In = 0.

Exercise 17. Let k be a field and let R = k × k be the product of k with itself. Show that

the ideal I = {(a, 0) | a ∈ k} is idempotent, meaning I2 = I, and thus
⋂
n⩾1

In = I ̸= 0.
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But it is true if R is a domain.

Theorem 5.65 (Krull Intersection Theorem for domains). If R is a domain, then⋂
n⩾1

In = 0.

for any proper ideal I in R.

Proof. Exercise.



Chapter 6

Dimension theory

6.1 Dimension and height

Definition 6.1. A chain of primes of length n in a ring R is a chain

p0 ⊊ p1 ⊊ · · · ⊊ pn with pi ∈ Spec(R).

We say a chain of primes is saturated if for each i, there is no q ∈ Spec(R) with pi ⊊ q ⊊ pi+1.
The dimension or Krull dimension of a ring R is the supremum of the lengths of chains
of primes in R. Equivalently, it is the supremum of the lengths of saturated chains of primes
in R. We denote the Krull dimension of R by dim(R).

The height of a prime p is the supremum of the lengths of chains of primes in R that end
in p, i.e., with p = pn above. Equivalently, it is the supremum of the lengths of saturated
chains of primes in R that end in p. We denote the height of p by ht(p). The height of an
ideal I is the infimum of the heights of the minimal primes of I:

ht(I) := inf {ht(p) | p ∈ Min(I)}

To get a feel for these definitions, here are some easy observations.

Remark 6.2.

a) If p is prime, then dim(R/p) is the supremum of the lengths of (saturated) chains of
primes in R

q0 ⊊ q1 ⊊ · · · ⊊ qn

with each qi ∈ V (p).

b) If I is an ideal, then dim(R/I) is the supremum of the lengths of (saturated) chains of
primes in R

q0 ⊊ q1 ⊊ · · · ⊊ qn

with each qi ∈ V (I).

c) If W is a multiplicative set, then dim(W−1R) ⩽ dim(R).

d) If p is prime, then dim(Rp) = ht(p).
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e) If q ⊇ p are primes, then dim(Rq/pRq) is the supremum of the lengths of (saturated)
chains of primes in R

p = a0 ⊊ a1 ⊊ · · · ⊊ an = q.

f) dim(R) = sup{height(m) | m ∈ mSpec(R)}.

g) dim(R) = sup{dim(R/p) | p ∈ Min(R)}.

h) If p is prime, dim(R/p) + height(p) ⩽ dim(R).

i) If I is an ideal, dim(R/I) + height(I) ⩽ dim(R).

j) The ideal (0) has height 0.

k) A prime has height zero if and only if it is a minimal prime.

We will need a few theorems before we compute the height and dimension of many
examples, but we can handle a few basic cases.

Example 6.3.

a) The dimension of a field is zero.

b) A ring is zero-dimensional if and only if every minimal prime is maximal.

c) The ring of integers Z has dimension 1: there is one minimal prime (0) and every other
prime is maximal. Likewise, a principal ideal domain has dimension 1.

d) In a UFD, I is a prime of height 1 if and only if I = (f) for a prime element f .

To see this, note that if I = (f) with f irreducible, and 0 ⊊ p ⊆ I, then p contains some
nonzero multiple of f , say afn with a and f coprime. Since a /∈ I, a /∈ p, so we must have
f ∈ p, so p = (f). Thus, I has height one. On the other hand, if I is a prime of height
one, we claim I contains an irreducible element. Indeed, I is nonzero, so it contains some
f ̸= 0, and primeness implies one of the prime factors of f is contained in I. Thus, any
nonzero prime contains a prime ideal of the form (f), so a height one prime must be of
this form.

e) If k is a field, then dim(k[x1, . . . , xd]) ⩾ d, since there is a saturated chain of primes
(0) ⊊ (x1) ⊊ (x1, x2) ⊊ · · · ⊊ (x1, . . . , xd).

We pose a related definition for modules.

Definition 6.4. The dimension of an R-module M is defined as dim(R/ annR(M)).

Note that if M is finitely generated, dim(M) is the same as the supremum of the lengths
of chains of primes in SuppR(M).

Definition 6.5. A ring is catenary if for every pair of primes q ⊇ p in R, every saturated
chain of primes

p = P0 ⊊ P1 ⊊ · · · ⊊ Pn = q

has the same length. A ring is equidimensional if every maximal ideal has the same finite
height, or equivalently dim(R/P ) is the same finite number for every minimal prime P .
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Here are some examples of what can go wrong.

Example 6.6. Consider the ring

R =
k[x, y, z]

(xy, xz)
.

We can find the minimal primes of R by computing Min((xy, xz)) in k[x, y, z]. The prime
ideals (x) and (y, z) are incomparable, and (x)∩ (y, z) = (xy, xz), so Min(R) = {(x), (y, z)}.
We claim that the height of (x−1, y, z) is one: it contains the minimal prime (y, z), and any
saturated chain from (y, z) to (x−1, y, z) corresponds to a saturated chain from (0) to (x−1)
in k[x], which must have length 1 since this is a PID. The height of (x, y − 1, z) is at least
2, as witnessed by the chain (x) ⊆ (x, y − 1) ⊆ (x, y − 1, z). So R is not equidimensional.

Even domains may fail to be equidimensional.

Example 6.7. The ring Z(2)[x] is a domain that is not equidimensional. On the one hand,
the maximal ideal (2, x) has height at least two, which we see from the chain

(0) ⊊ (x) ⊆ (x, 2).

On the other hand, the ideal (2x−1) has height 1, and it is maximal since the quotient is Q.

Remark 6.8.

a) If R is a finite dimensional domain, and f ̸= 0, then dim(R/(f)) < dim(R).

b) If R is equidimensional, then dim(R/(f)) < dim(R) if and only if f /∈
⋃

p∈Min(R)

p.

c) In general, dim(R/(f)) < dim(R) if and only if f /∈
⋃

p∈Min(R)
dim(R/p)=dim(R)

p.

d) f /∈
⋃

p∈Min(R)

p if and only if dim(R/(p+ (f))) < dim(R/p) for all p ∈ Min(R).

Before we get too optimistic, know that there are Noetherian rings of infinite dimension,
as the following example due to Nagata [Nag62, Appendix, Example 1] shows.

Example 6.9. The ring R = k[x1, x2, . . . ] is infinite-dimensional. Let

W = R∖ ((x1) ∪ (x2, x3) ∪ (x4, x5, x6) · · · )

and S = W−1R. This ring has primes of arbitrarily large height, given by the images of
those primes we cut out from W . Thus, it has infinite dimension. The work is to show that
this ring is Noetherian. We omit this argument here.

Note also that a ring might have finite dimension but not be Noetherian.

Example 6.10. Let R = k[x1, x2, . . .]/(x
2
1, x

2
2, . . .). On the one hand, R is not Noetherian,

since
(x1) ⊆ (x1, x2) ⊆ (x1, x2, x3) ⊆ · · ·

is an infinite ascending chain of ideals. On the other hand, R has only one prime ideal, and
thus dim(R) = 0.
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6.2 Artinian rings

To prepare for our next big theorems in dimension theory, we need to understand the struc-
ture of zero-dimensional Noetherian rings. In order to do that, we will take a theorem on
primary decomposition for certain ideals in not necessarily Noetherian rings.

Theorem 6.11. Let R be a ring, not necessarily Noetherian. Let I be an ideal such that
V (I) = {m1, . . . ,mt} is a finite set of maximal ideals. There is a primary decomposition
I = q1 ∩ · · · ∩ qt, and moreover I = q1 · · · qt and R/I ∼= R/q1 × · · · ×R/qt.

Proof. First, we claim that IRmi
is miRmi

-primary. The local ring (R/I)mi
= Rmi

/IRmi
has a

unique maximal ideal miRmi
/IRmi

, so if x, y ∈ Rmi
are such that xy ∈ IRmi

, and x /∈ miRmi
,

then x is a unit modulo Imi
, so y ∈ IRmi

. Now the contraction of a primary ideal is primary,
by Remark 5.48, so qi = IRmi

∩R is mi-primary, and I ⊆ q1 ∩ · · · ∩ qt.
On the other hand, equality of these modules is a local property, so let’s check it at each

prime. When p /∈ V (I), then both I and q1 ∩ · · · ∩ qt are the unit ideal in Rp. On the other
hand, for each mi ∈ V (I), Imi

= (qi)mi
in Rmi

. Therefore, I = q1 · · · qt, and this is a primary
decomposition, since each qi is mi-primary.

Now notice that qi+ qj = R for each pair qi ̸= qj, so Theorem 0.8 applies. Therefore, we
obtain the fact that our intersection is a product and the quotient ring is a direct product
as a consequence of Theorem 0.8.

Definition 6.12. A module M ̸= 0 is simple if its only submodules are (0) and M .

Remark 6.13. If m is a maximal ideal in R, then R/m is a simple R-module. On the other
hand, ifM is any cyclic R-module, then given any nonzero element m ∈M , Rm is a nonzero
submodule ofM , and thus it must be all ofM . Therefore, any simple module must be cyclic.
If I is a proper ideal contained in some maximal ideal m ⊋ I, then m/I is a proper nonzero
submodule of R/I. Therefore, the simple modules of any ring R are precisely those that are
isomorphic to R/m for some maximal ideal m.

In particular, if R is a local, then R has only one simple module up to isomorphism: the
residue field.

Definition 6.14. A module M has finite length if it has a filtration of the form

0 =M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn =M

with Mi+1/Mi simple for each i; such a filtration is called a composition series of length
n. We say a composition series is strict if Mi ̸= Mi+1 for all i. Two composition series are
equivalent if the collections of composition factors Mi+1/Mi are the same up to reordering.
The length of a finite length module M , denoted ℓ(M), is the minimum of the lengths of a
composition series of M . If M has does not have finite length, we say that M has infinite
length, or ℓ(M) =∞.

You may have seen the Jordan–Holder theorem in the context of groups:

Theorem 6.15 (Jordan–Holder theorem). Let M be a module of finite length.
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1) Any proper submodule N of M has ℓ(N) < ℓ(M).

2) Any filtration of M can be refined to a composition series.

3) All strict composition series for M are equivalent, and hence have the same length.

Proof. If n := ℓ(M), consider a strict composition series of M of length n, say

0 =M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn =M.

1) Given a submodule N of M , consider the filtration

0 =M0 ∩N ⊆M1 ∩N ⊆M2 ∩N ⊆ · · · ⊆Mn ∩N = N.

By the Second Isomorphism Theorem, its composition factors satisfy

(Mi+1 ∩N)/(Mi ∩N) ∼= (Mi+1 ∩N +Mi)/Mi.

This is a submodule of Mi+1/Mi, which by assumption is simple. Then either

(Mi+1 ∩N +Mi)/Mi = 0 or (Mi+1 ∩N +Mi)/Mi =Mi+1/Mi.

The quotients that are zero correspond to terms that we can delete; the remaining ones
are simple modules. The resulting filtration is a strict composition series for N , so this
shows that ℓ(N) ⩽ n. Moreover, if there are no zero coefficients to delete, then

(Mi+1 ∩N +Mi)/Mi =Mi+1/Mi

for all i, and in particular when we take i+ 1 = n we obtain

N +Mn−1 =Mn ∩N +Mn−1 =Mn =M,

Since M/Mn−1 is simple by assumption, we must have N =M . If N is a proper submod-
ule, this cannot happen, and thus at least one of the terms can be deleted, so ℓ(N) < n.

2) Let us use induction on n to show that any chain of submodules of M , say

N0 ⊊ N1 ⊆M2 ⊊ · · · ⊊ Nk,

has length at most n. If n = 0, then M = 0 and there is nothing to prove. Now assume
that n ⩾ 1 and that the statement holds for modules of length < n. Since Nk−1 must be
a proper submodule of N , 1) tells us that ℓ(Nk−1) < n, and thus k−1 ⩽ n−1. Therefore,
k ⩽ n. This shows our claim that all chains of submodules of M have length at most n.

Now notice that if we are given a chain of submodules of length < n, then it cannot be a
compositions series, since by definition the smallest composition series has length n. That
means that some of the quotients are not simple, so we can extend the chain by adding
a term, as follows: if Ni+1/Ni is not simple, and N ′/Ni is a.proper nonzero submodule,
then Ni ⊆ Ni+1 can be extended Ni ⊆ N ⊆ Ni+1. Therefore, every chain of submodules
can be extended to a composition series.
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3) Suppose that
0 = N0 ⊆ N1 ⊆ · · · ⊆ Nk =M

is a strict composition series of M ̸= 0. Since ℓ(M) is the smallest possible length of
a composition series, we have ℓ(M) ⩽ k. Moreover, notice that for each i ⩾ 1, Ni is a
proper submodule of Ni+1, and thus by 1) we have

ℓ(M) > ℓ(Nk−1) > ℓ(Nk−1) > · · · > ℓ(N1) > 0.

Therefore, ℓ(M) ⩾ k, so we must have ℓ(M) = ℓ(k).

Let’s collect some basic consequences of this theorem.

Lemma 6.16. Length is associative on short exact sequences, that is, if

0 // A
f
// B

g
// C // 0

is a short exact sequence of R-modules, then ℓ(B) = ℓ(A) + ℓ(B).

Proof. Given filtrations of lengths a and c for A and C, respectively, we can construct a
filtration for B of length a+ c, so ℓ(B) ⩾ ℓ(A) + ℓ(C). On the other hand, if

0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bn = B

is a filtration for B, then Bi∩A and g(Bi) are filtrations for A and C, respectively. Suppose
that both g(Bi) = g(Bi+1 and Bi ∩ A = Bi+1 ∩ A, and let b ∈ Bi+1. Then g(b) ∈ g(Bi), so
there is b′ ∈ Bi such that b− b′ ∈ ker g = im f . Since b and b′ are both in Bi+1, we conclude
that b − b′ ∈ Bi+1 ∩ A = Bi ∩ A. But b′ ∈ Bi, so we conclude that b ∈ Bi. Therefore,
Bi = Bi+1. This shows that sum of the lengths of the filtrations Bi ∩A and g(Bi) is at most
the length of the filtration Bi. We conclude that ℓ(B) ⩽ ℓ(A) + ℓ(C).

Using an homological trick we haven’t seen yet, one can actually show that if

0 // A1
// · · · // An // 0 ,

is an exact sequence, then
n∑
i=1

ℓ(Ai) = 0.

Remark 6.17.

a) Given a chain of submodules 0 =M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn =M ,

ℓ(M) =
n−1∑
i=0

ℓ(Mi+1/Mi).

b) If M ⊆ N , then ℓ(M) ⩽ ℓ(N), with equality only when M = N .

Remark 6.18. If M is annihilated by a maximal ideal m, so that M is an R/m-module,
then ℓ(M) = dimR/m(M/mM).
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Example 6.19. Let R = R[x, y](x,y). Then M = R/m2 has length 3, since we have a
composition series 0 ⊆ xM ⊆ (x, y)M ⊆M . However, M is not an R/m-vector space.

Back when we discussed Noetherian rings, we could have also considered the dual notion
of Artinian rings. The reason we have waited so long to do so is that as we will soon show,
Artinian rings are just Noetherian rings of dimension 0.

Definition 6.20. A ring isArtinian if every descending chain of ideals eventually stabilizes.
A module is Artinian if every descending chain of submodules eventually stabilizes.

Adapting the proofs of the analogous statements for Noetherian rings and modules, one
can easily show the following:

Exercise 18.

a) If R is an Artinian ring, then R/I is Artinian for any ideal I of R.

b) If R is an Artinian ring, then any nonempty family of ideals has a minimal element.

c) If M is an Artinian module, and N ⊆M , then N and M/N are Artinian.

Lemma 6.21. A moduleM has finite length if and only if it is both Noetherian and Artinian.

Proof. If M has finite length, then all chains of submodules of M must have length at
most ℓ(M), and thus in particular all ascending and descending chains of submodules must
stabilize.

On the other hand, suppose that M is both Noetherian and Artinian. If M = 0, there
is nothing to show, so we might as well assume M ̸= 0. The set of proper submodules of
M is then be nonempty, and thus it has a maximal element M1 by Noetherianity. This
forcesM/M1 to be simple, so we can start constructing a composition series forM by taking
M ⊇M1. At each step, if we have constructed modules

M0 =M ⊇M1 ⊇M2 ⊇ · · · ⊇Mk

such that Mi/Mi+1 is simple, either Mk = 0 and we can stop, or Mk ̸= 0 and it has a proper
submodule. Repeating the initial construction for Mk, which is again Noetherian, we can
continue to build a descending chain of submodules of M . But M is Artinian, and thus this
process must eventually stop, since M is Artinian.

Over a field, things are a bit easier.

Remark 6.22. If M is a k-vector space, M is Artinian if and only it is Noetherian if and
only if it has finite length.

Lemma 6.23. Let R be a Noetherian ring. An R-module M has finite length if and only if
M is finitely generated and dim(M) = dim(R/ ann(M)) = 0.
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Proof. Suppose M has finite length. Then M is Noetherian, by Lemma 6.21, and in partic-
ular finitely generated. Moreover, consider a composition series

0 ⊊M1 ⊊M2 ⊊ · · · ⊊Mn =M

for M . For each i ⩾ 1, Mi/Mi−1
∼= R/mi for some maximal ideal mi. Also, our composition

series breaks into short exact sequences

0 //Mi
//Mi+1

//Mi+1/Mi
// 0 .

When i = 1, M1
∼= M1/M0

∼= R/m1. Using Lemma 5.23 repeatedly, we conclude that
Ass(Mi) ⊆ {m1, . . . ,mi} for each i, and in particular Ass(M) ⊆ {m1, . . . ,mi}. So all the
minimal primes over ann(M) are maximal, and dim(R/ ann(M)) = 0.

Now suppose that M is finitely generated and dim(R/ ann(M)) = 0. Since M is finitely
generated over a Noetherian ring, by Theorem 5.28 there exists a filtration of M

M =Mt ⊋Mt−1 ⊋Mt−2 ⊋ · · · ⊋M1 ⊋M0 = 0

such that Mi/Mi−1
∼= R/pi for primes pi ∈ Spec(R). For each i,

ann(M)Mi = 0 ⊆Mi−1 =⇒ ann(M) ⊆ (Mi−1 :R Mi) = pi.

Since dim(R/ ann(M)) = 0, all the primes containing ann(M) must be maximal, and thus
the pi are all maximal ideals. So our prime filtration is a composition series, and M has
finite length.

Equivalently, an R-module M over a Noetherian ring has finite length if and only if it is
finitely generated and all of its associated primes are maximal ideals of R.

Exercise 19. Let (R,m) be a Noetherian local ring. An R-module M has finite length if
and only if M is finitely generated and mnM = 0 for some n.

Example 6.24. Let (R,m) be a local ring. Then M = (R/m)n is a finite length module for
any n ⩾ 1. Note that ℓ(M) = dimR/m((R/m)n) = n, while mM = 0.

Finally, we can show that Artinian rings are just zero-dimensional Noetherian rings.

Theorem 6.25. The following are equivalent:

a) R is Noetherian of dimension zero.

b) R is a finite product of local Noetherian rings of dimension zero.

c) R has finite length as an R-module.

d) R is Artinian.
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Proof. (1)⇒(2): Since R is Noetherian of dimension zero, every prime is maximal and min-
imal. Since there are finitely many minimal primes in R, by Theorem 5.5, there are finitely
many primes in R. By Theorem 6.11, R decomposes as a direct product of Noetherian local
rings, which all must have dimension zero.

(2)⇒(3): It suffices to deal with the case when (R,m) is a local Noetherian ring of
dimension 0. In this case, the maximal ideal is the unique minimal prime, so m =

√
(0).

Since R is Noetherian, Lemma 5.62 yields mn = 0 for some n. Then R has finite length by
Exercise 19.

(3)⇒(4): This follows by Lemma 6.21, noting that R is an Artinian R-module if and
only if R is an Artinian ring.

(4)⇒(1):
First we show that R has dimension zero. If p is any prime, then R/p is Artinian, since

the ideals of R/p are in bijection with the ideals of R containing p. Pick a ∈ R/p some
nonzero element. The ideals

(a) ⊇ (a2) ⊇ (a3) ⊇ · · ·

stabilize, so an = an+1b for some b. Since R/p is a domain, ab = 1 in A, so a is a unit. Thus,
R/p is a field, so every prime is maximal. In particular, dim(R) = 0.

Second, note that there are only finitely many maximal ideals. Otherwise, of mi are
distinct primes for all i ⩾ 1, consider the chain

m1 ⊇ m1 ∩m2 ⊇ m1 ∩m2 ∩m3 ⊇ · · · .

This stabilizes, since R is Artinian, so mn+1 ⊇ m1 ∩ · · · ∩ mn ⊇ m1 · · ·mn. Since mn+1 is
prime, mn+1 ⊇ mi for some i ⩽ n, and since mi is maximal, we conclude that mi = mn+1.
This contradicts the hypothesis that the mi are all distinct maximal ideals, so we conclude
that R has finitely many primes, all maximal. Now, we apply Theorem 6.11 to conclude that
R is a finite direct product of local rings of dimension zero. Each of the factors is a quotient
of R, and thus each is Artinian. It suffices to show that each factor is Noetherian. So our
proof will be complete if we show that any Artinian local ring (R,m) with only one prime
must be a Noetherian ring.

The chain m ⊇ m2 ⊇ m3 ⊇ · · · stabilizes, so that mn = mn+1. Notice that we cannot
apply NAK yet, since we don’t know mn is finitely generated. If mn ̸= 0, consider the family
S of ideals I ⊆ m such that Imn ̸= 0. This family contains m, so in particular it is nonempty,
and thus it must have a minimal element since R is Artinian. Take J minimal in S. For
some x ∈ J , xmn ̸= 0, and (x) ⊆ J ⊆ m, so J = (x) is principal by minimality. Now,
((x)m) ·mn = (x)mn+1 = (x)mn ̸= 0, so (x)m ⊆ (x) is in S, and by minimality, (x) = m(x).
Now we can apply NAK 4.30, so (x) = (0), contradicting that mn ̸= 0. Therefore,

0 = mn ⊆ mn−1 ⊆ · · · ⊆ m ⊆ R.

Each of the quotient modules mi/mi+1 has annihilator m, so it is a vector space over the field
R/m. Since R is Artinian, so is mi and therefore also mi/mi+1. While this only shows that
mi/mi+1 is Artinian as an R-module, its R/m structure is the same, and thus mi/mi+1 is
Artinian over the field R/m. As noted in Remark 6.18, this implies that mi/mi+1 is a finite
length R/m-module, but again that implies it is also finite length over R.
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As a consequence, we can stitch together composition series for each quotient and con-
clude that R has finite length as an R-module; this also follows by Lemma 6.16. Therefore,
R is a Noetherian R-module by Lemma 6.21. We conclude that R is also a Noetherian
ring.

Example 6.26. Some Artinian local rings include k[x, y]/(x2, y2), k[x, y]/(x2, xy, y2), and
Z/(pn).

Note that dim(R) = 0 does not imply R Artinian unless R is also Noetherian.

Example 6.27. As we saw in Example 6.10, there are rings of dimension 0 that are
not Noetherian, and thus also not Artinian. In Example 6.10 we considered the ring
k[x1, x2, . . .]/(x

2
1, x

2
2, . . .), which in fact has only one prime ideal. Note however that

(x1, x2, . . .) ⊇ (x2, x3, . . .) ⊇ (x3, x4, . . .) ⊇ · · ·

is an infinite descending chain.

Even though every Artinian ring is Noetherian and has finite length, it is not true that
Artinian modules are always Noetherian or of finite length.

Example 6.28. Let R = CJxK, andM = R[1/x]/R. Note that R[1/x] is the ring of Laurent
series, so M is the module of “tails” of these functions. This module does not have finite
length; it is not even finitely generated! Observe that any submodule N ofM either contains
1/xn for all n, or else there is a largest n for which 1/xn ∈ N , and N = R · 1/xn for this n.
The module R · 1/xn ⊆ M has length n, so it is Artinian, Then every proper submodule of
M is Artinian, and thus M itself is Artinian.

Definition 6.29. If (R,m, k) is local, a coefficient field for R is a subfield K ⊆ R such
that the map K → R→ R/m ∼= k is an isomorphism.

Rings like K[x](x)/I have coefficient fields: the copy of K. Some rings without coefficient
fields are Z(p) and R[x](x2+1). Other rings have lots of coefficient fields: C[x, y](x) contains
C(y) and C(x+ y), which both are coefficient fields!

Remark 6.30. If (R,m, k) is local with coefficient field K, then a finite length R-moduleM
may not be a k-module (it may not be killed by m), but it is a K-vector space by restriction
of scalars, and ℓ(M) = dimK(M).

6.3 Height and number of generators

Theorem 6.31 (Krull’s Principal Ideal theorem). Let R be a Noetherian ring, and f ∈ R.
Then, every minimal prime of (f) has height at most one.

Note that this is stronger than the statement that the height of (f) is at most one: that
would only mean that some minimal prime of (f) has height at most one.
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Proof. Suppose the theorem is false, so that there is some ring R, a prime p, and an element
f such that p is minimal over (f) and ht(p) > 1. If we localize at p and then mod out by
an appropriate minimal prime, we obtain a Noetherian local domain (R,m) of dimension at
least two in which m is the unique minimal prime of (f). Let’s work over that Noetherian
local domain (R,m). Note that R = R/(f) is zero-dimensional, since m is the only minimal
prime over (f). Back in R, let q be a prime strictly in between (0) and m, and notice that
we necessarily have f /∈ q.

Consider the symbolic powers q(n) of q. We will show that these stabilize in R. Since
R = R/(f) is Artinian, the descending chain of ideals

qR ⊇ q(2)R ⊇ q(3)R ⊇ · · ·

stabilizes. We then have some n such that q(n)R = q(m)R for all m ⩾ n, and in particular,
q(n)R = q(n+1)R. Pulling back to R, we get q(n) ⊆ q(n+1) + (f). Then any element a ∈ q(n)

can be written as a = b + fr, where b ∈ q(n+1) ⊆ q(n) and r ∈ R. Notice that this implies
that fr ∈ q(n). Since f /∈ q, we must have r ∈ q(n). This yields q(n) = q(n+1) + fq(n). Thus,
q(n)/q(n+1) = f(q(n)/q(n+1)), so q(n)/q(n+1) = m(q(n)/q(n+1)). By NAK 4.30, q(n) = q(n+1) in
R. Similarly, we obtain q(n) = q(m) for all m ⩾ n.

Now, if a ∈ q is nonzero, we have an ∈ qn ⊆ q(n) = q(m) for all m, so⋂
m⩾1

q(m) =
⋂
m⩾n

q(m) = q(n).

Notice that qn ̸= 0 because R is a domain, and so q(n) ⊇ qn is also nonzero. So⋂
m⩾1

q(m) = q(n) ̸= 0.

On the other hand, q(m) = qmRq ∩R for all m, and⋂
m⩾1

q(m)Rq ⊆
⋂
m⩾1

qmRq =
⋂
m⩾1

(qRq)
m = 0

by the Krull intersection theorem 5.63. Since R is a domain, the contraction of (0) in Rq

back in R is (0). This is the contradiction we seek. So no such q exists, so that R has
dimension 1, and in the original ring, all the minimal primes over f must have height at
most 1.

We want to generalize this, but it is not so straightforward to run an induction. We will
need a lemma that allows us to control the chains of primes we get.

Lemma 6.32. Let R be Noetherian, p ⊊ q ⊊ a be primes, and f ∈ a. Then there is some q′

with p ⊊ q′ ⊊ a and f ∈ q′.

Proof. If f ∈ p, there is nothing to prove, since we can simply take q′ = q. Suppose f /∈ p.
After we quotient out by p and localize at a, we may assume that a is the maximal ideal.
We want to find a nonzero prime q′ ⊊ a. Our assumption implies that f ̸= 0, and then by
the principal ideal theorem 6.31, minimal primes of (f) have height one, hence are not a nor
p. We can take q′ to be one of the minimal primes of f .
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Theorem 6.33 (Krull’s Height Theorem). Let R be a Noetherian ring. If I is an ideal
generated by n elements, then every minimal prime of I has height at most n.

Proof. By induction on n. The case n = 1 is the Principal Ideal Theorem 6.31.
Let I = (f1, . . . , fn) be an ideal, p a minimal prime of I, and p0 ⊊ p1 ⊊ · · · ⊊ ph = p

be a saturated chain of length h ending at p. If f1 ∈ p1, then we can apply the induction
hypothesis to the ring R = R/((f1) + p0) and the ideal (f2, . . . , fn)R. Then by induction
hypothesis, the chain p1R ⊊ · · · ⊊ phR has length at most n− 1, so h− 1 ⩽ n− 1 and p has
height at most n.

If f1 /∈ p1, we use the previous lemma to replace our given chain with a chain of the same
length but such that f1 ∈ p1. To do this, note that f1 ∈ pi for some i; after all, f1 ∈ I ⊆ p.
So in the given chain, suppose that f1 ∈ pi+1 but f1 /∈ pi. If i > 0, apply the previous lemma
with a = pi+1, q = pi, and p = pi−1 to find qi such that f1 ∈ qi. Replace the chain with

p0 ⊊ p1 ⊊ · · · ⊊ pi−1 ⊊ qi ⊊ pi ⊊ · · · ⊊ ph = p.

Repeat until f1 ∈ p1.

Example 6.34.

a) The bound is certainly sharp: an ideal generated by n variables (x1, x2, . . . , xn) in a
polynomial ring has height n. There are many other such ideals. For example, (u3 −
xyz, x2 + 2xz − 6y5, vx + 7vy) ∈ k[u, v, w, x, y, z]. An ideal of height n generated by n
elements is called a complete intersection.

b) The ideal (xy, xz) in k[x, y, z] has minimal primes of heights 1 and 2.

c) It is possible to have associated primes of height greater than the number of generators.
For a cheap example, in R = k[x, y]/(x2, xy), the ideal generated by zero elements (the
zero ideal) has an associated prime of height two, namely (x, y).

d) The same phenomenon can happen even in a nice polynomial ring. For example, consider
the ideal I = (x3, y3, x2u + xyv + y2w) ⊆ R = k[u, v, w, x, y]. Note that (u, v, w, x, y) =
(I : x2y2), so I has an associated prime of height 5.

e) Noetherianity is necessary. Let R = k[x, xy, xy2, . . . ] ⊆ k[x, y]. For all a ⩾ 1, xya /∈ (x),
since ya /∈ R, but (xya)2 = x · xy2a ∈ (x). Then (x) is not prime in R, and moreover m =
(x, xy, xy2, . . . ) ⊆

√
(x). Since m is a maximal ideal, we have equality, so Min (x) = {m}.

However, p = (xy, xy2, xy3, . . . ) = (y)k[x, y] ∩ R is prime, and the chain (0) ⊊ p ⊊ m
shows that ht(m) > 1.

Lemma 6.35. Let R be a Noetherian ring, and I be an ideal. Let f1, . . . , ft ∈ I, and
Ji = (f1, . . . , fi) for each i. Suppose that for each i,

fi /∈
⋃

a∈Min(Ji−1)
a/∈V (I)

a.

Then any minimal prime of Ji either contains I or has height i.
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Proof. We use induction on i. For i = 0, J0 = (0), and every minimal prime has height
zero. Suppose know the statement holds for i = m, and consider a minimal prime q of Jm+1.
Since Jm ⊆ Jm+1, q must contain some minimal prime of Jm, say p. If p ⊇ I, then q ⊇ I.
If q does not contain I, then neither does p. On the one hand, fm+1 ∈ Jm+1 ⊆ q. On the
other hand, since p ∈ Min(Jm) and p /∈ V (I), our assumption implies that fm+1 /∈ p. In
particular, p ⊊ q. By the induction hypothesys, p has height m, and thus the height of q is
at least m + 1. But Jm+1 is generated by m + 1 elements, so by the Krull Height Theorem
6.33, the height of q is then exactly m+ 1.

Theorem 6.36. Let R be a Noetherian ring of dimension d.

a) If p is a prime of height h, then there are h elements f1, . . . , fh ∈ p such that p is a
minimal prime of (f1, . . . , fh).

b) If I is any ideal in R, then there are (at most) d+ 1 elements f1, . . . , fd+1 ∈ I such that√
I =

√
(f1, . . . , fd+1).

c) Suppose that R is either a local ring or an N-graded ring with R0 a field. Let I is an ideal
in R, homogeneous in the graded case. There are d elements, which can be chosen to be
homogeneous in the graded case, say f1, . . . , fd ∈ I, such that

√
I =

√
(f1, . . . , fd).

Proof. We will use the notation from the previous lemma.

a) If p is a minimal prime in R, then p is minimal over the ideal generated by 0 elements,
(0). Otherwise, we will use the recipe from the lemma above with I = p. First, we need
to show that we can choose h elements satisfying the hypotheses. So we will show that
starting from J0 = (0), we can find elements f1, . . . , fh ∈ p such that Ji = (f1, . . . , fi)

p ̸⊆
⋃

a∈Min(Ji)
a/∈V (I)

a

for i = 0, . . . , h− 1. As long as the set on the right is nonempty,

(f1, . . . , fi) ⊆
⋃

a∈Min(Ji)
a/∈V (I)

a,

so the previous statement allows us to choose fi+1 as in the Lemma. So fix any i ⩽ h−1,
and suppose we have constructed Ji. The Krull Height Theorem 6.33 implies that all the
elements in Min(Ji) have height strictly less than h. Since p has height h, that implies
that the sets Min(Ji) and V (p) are disjoint. So we want to show that

p ̸⊆
⋃

a∈Min(f1,...,fi)
a/∈V (I)

a =
⋃

a∈Min(f1,...,fi)

a

This is immediate by prime avoidance 5.36, again because p is not contained in a minimal
prime of (f1, . . . , fi). Thus, we can choose (f1, . . . , fh) ⊆ p as in the lemma, and by the
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lemma its minimal primes either have height h or contain p. Since (f1, . . . , fh) ⊆ p, some
minimal prime q of Jh is contained in p. We know that this q either contains p, and hence
is p, or else is contained in and has the same height as p, so again must be equal to p.
Therefore, p is a minimal prime of (f1, . . . , fh).

b) Again, we use the recipe from Lemma 6.35. We again need to see that we can do
this. Inductively, we will choose elements inside of I, so each Ji is contained in I, and
V (I) ⊆ V (Ji). We start with J0 = (0).

If for some i we have Min(Ji) ∖ V (I) = ∅, then each minimal prime of Ji lies in V (I),
so V (Ji) ⊆ V (I). Then V (Ji) = V (I), so

√
Ji =

√
I. If Min(Ji)∖ V (I) ̸= ∅, then I ̸⊆ q

for any q ∈ Min(Ji) ∖ V (I), and I ̸⊆
⋃

Min(Ji)∖V (I) q by prime avoidance 5.36, so we can
choose elements as in the lemma.

If
√
(f1, . . . , fi) =

√
I for i ⩽ d, we are done. Suppose not. Then we get elements

(f1, . . . , fd+1) = Jd+1 ⊆ I such that the minimal primes of Jd+1 either contain I or have
height at least d + 1. By the assumption that dim(R) = d, no prime has height d + 1,
so all the minimal primes of Jd+1 must contain I. Since Jd+1 ⊆ I, any minimal prime of
Jd+1 must also be minimal over I. Thus, Min(Jd+1) ⊆ Min(I), so V (Jd+1) ⊆ V (I), and
equality holds, so the radicals are equal.

c) We again run the same argument, using homogeneous prime avoidance in the graded case.
The point is that the only (homogeneous, in the graded case) ideal of height d already
contains I.

Corollary 6.37. Let (R,m, k) be a Noetherian local ring. Then

dim(R) = min{n |
√

(f1, . . . , fn) = m for some f1, . . . , fn} ⩽ µ(m).

In particular, a Noetherian local ring has finite dimension.

Proof. The dimension of a local ring is the height of its maximal ideal. Thus, by Krull’s
Height Theorem 6.33, the minimum n in the middle is at least dim(R), and Theorem 6.36
gives the other direction. Since m is generated by µ(m) elements, there are in particular
µ(m) elements whose radical is m.

Definition 6.38. The embedding dimension of a local ring (R,m) is the minimal number
of generators of m, µ(m). We write embdim(R) := µ(m) for the embedding dimension of R.

So Corollary 6.37 can be restated as dim(R) ⩽ embdim(R).

Corollary 6.39. Let k be a field and R = kJx1, . . . , xdK. Then dim(R) = d.

Proof. Let m = (x1, . . . , xd). The strict chain of primes

(0) ⊊ (x1) ⊊ (x1, x2) ⊊ · · · ⊊ (x1, . . . , xd)

shows that dim(R) ⩾ d. On the other hand, the images of x1, . . . , xd in m/m2 are linearly
independent, so µ(m) = d. By Corollary 6.37, dim(R) = d.
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Rings whose dimension and embedding dimension agree are very nicely behaved.

Definition 6.40. A Noetherian local ring (R,m) is regular if dim(R) = embdim(R).

So we just showed that power series rings kJx1, . . . , xdK are regular local rings.

In general, a ring is regular if all its localizations are regular local rings. In order for this
definition to make sense, we need to first make sure that regularity localizes, meaning that
if (R,m) is a regular local ring, then RP is also regular for all primes P . But to do that, we
need some homological algebra. However (spoiler alert!), things do work out alright, and as
you might expect, polynomial rings over fields are also regular.

Definition 6.41. A sequence of d elements x1, . . . , xd in a d-dimensional Noetherian local
ring (R,m) is a system of parameters or SOP if

√
(x1, . . . , xd) = m. If k is a field, a

sequence of d homogeneous elements x1, . . . , xd in a d-dimensional N-graded finitely generated
k-algebra R, with R0 = k, is a homogeneous system of parameters if

√
(x1, . . . , xd) = R+.

We say that elements x1, . . . , xt are parameters if they are part of a system of parame-
ters; this is a property of the set, not just the elements.

By Theorem 6.36, every local (or graded) ring admits a system of parameters, and these
can be useful in characterizing the dimension of a local Noetherian ring, or the height of a
prime in a Noetherian ring.

To help characterize systems of parameters, we pose the following definition:

Definition 6.42. Let R be a Noetherian ring. A prime p of R is absolutely minimal if
dim(R) = dim(R/p).

An absolutely minimal prime is minimal, since dim(R) ⩾ dim(R/p) + height(p).

Theorem 6.43. Let (R,m) be a Noetherian local ring, and x1, . . . , xt ∈ m.

1) dim(R/(x1, . . . , xt)) ⩾ dim(R)− t.

2) x1, . . . , xt are parameters if and only if dim(R/(x1, . . . , xt)) = dim(R)− t.

3) x1, . . . , xt are parameters if and only if x1 is not in any absolutely minimal prime of
R and xi is not contained in any absolutely minimal prime of R/(x1, . . . , xi−1) for each
i = 2, . . . , t.

Proof.

1) If dim(R/(x1, . . . , xt)) = s, then take a system of parameters y1, . . . , ys for R/(x1, . . . , xt),
and pull back to R to get x1, . . . , xt, y

′
1, . . . , y

′
s in R such that the quotient of R modulo

the ideal generated by these elements has dimension zero. By Krull height, we get that
t+ s ⩾ dim(R).

2) Let d = dim(R). Suppose first that dim(R/(x1, . . . , xt)) = d − t. Then, there is
a SOP y1, . . . , yd−t for R/(x1, . . . , xt); lift back to R to get a sequence of d elements
x1, . . . , xt, y1, . . . , yd−t that generate an m-primary ideal. This is a SOP, so x1, . . . , xt are
parameters.
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On the other hand, if x1, . . . , xt, are parameters, extend to a SOP x1, . . . , xd. If I is the
image of (xt+1, . . . , xd) in R′ = R/(x1, . . . , xt), we have R′/I is zero-dimensional, hence
has finite length, so AssR′(R′/I) = {m}, and I is m-primary in R′. Thus, dim(R′) is equal
to the height of I, which is then ⩽ d− t by Krull height. That is, dim(R′) ⩽ d− t, and
using the first statement, we have equality.

3) This follows from the previous statement and the observation that dim(S/(f)) ≨ dim(S)
if and only if f is not in any absolutely minimal prime of S.

It is worth comparing the characterization in part three with our existence proof: we
constructed a system of parameters by inductively avoiding all the minimal primes; a system
a parameters is a sequence where we inductively avoid all of the absolutely minimal primes.



Chapter 7

Dimension theory II

7.1 Over, up, and down

Given a ring homomorphism R
φ
// S , we want to study the behavior of chains of primes

under φ, meaning how chains in R behave under expansion to S or chains in S behave under
contraction to R.

First, we need a technical definition.

Definition 7.1. Let R
φ
// S be a ring homomorphism, and consider a prime p in R. The

ring
κϕ(p) := (R∖ p)−1(S/pS)

is the fiber ring of ϕ over p. As a special case, we write κ(p) for the fiber of the identity
map; this is Rp/pRp, the residue field of the local ring Rp.

The point of this definition is that the primes ideals in this ring correspond to the primes
in S that contract to p.

Lemma 7.2. Let R
φ
// S be a ring homomorphism, and p ∈ Spec(R). The set of primes

in S that contract to p correspond to the primes in κϕ(p). More precisely, Spec(κϕ(p)) ∼=
(φ∗)−1(p).

Proof. Consider the maps S
π // S/pS

g
// (R∖ p)−1(S/pS) . In Example 3.39 we saw

that the map on spectra induced by π can be identified with the inclusion of V (pS) into
Spec(S). For the second map, g, we saw in Proposition 4.27 that the map on spectra can
be identified with the inclusion of the set of primes that do not intersect R ∖ p, i.e., those
whose contraction is contained in p. Together, these say (g ◦π)∗ is an inclusion, whose image
is the set of primes in S that contract to p.

We have seen that taking IS ∩R does not always recover the ideal I. When I is a prime
ideal, we can characterize this in terms of the induced map on Spec.

Lemma 7.3 (Image criterion). Let R
φ
// S be a ring homomorphism. For any p ∈

Spec(R), p ∈ im(φ∗) if and only if pS ∩R = p.

94
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Proof. If pS ∩R = p, then
R

p
=

R

pS ∩R
↪→ S

pS
,

so localizing at (R∖ p), we get an inclusion κ(p) ⊆ κφ(p). Since κ(p) is nonzero, so is κφ(p),
and thus its spectrum is nonempty. By Lemma 7.2, there is a prime mapping to p.

If pS ∩ R ̸= p, then pS ∩ R ⊋ p. If q ∩ R = p, then q ⊇ pS, so q ∩ R ⊋ p. So no prime
contracts to p.

Note that pS may not be prime, in general.

Example 7.4. Let R = C[xn] ⊆ S = C[x]. The ideal (xn − 1)R is prime. On the other
hand, if ζ is a primitive nth root of unity, then

(xn − 1)S =

(
n−1∏
i=0

x− ζ i
)
S,

which is not prime. However, each of its minimal primes (x− ζ i)S contracts to (xn−1)R, so
(xn− 1)S ∩R = (xn− 1)R. Similarly, the ideal xnR is prime, while xnS is not even radical.

Example 7.5. Consider the inclusion R := k[xy, xz, yz] �
� φ

// S := k[x, y, z] and the prime

p = (xy) in R. Notice that (xz)(yz) ∈ pS ∩ R, but not in p, so pS ∩ R ⊋ p, and thus
p /∈ im(φ∗). We can check this more directly, by noting that any prime Q in S contracting
to p would contain pS = (x) ∩ (y), so Q ⊇ (x) or Q ⊇ (y). But (x) ∩ R = (xy, xz) ⊋ p and
(y) ∩R = (xy, yz) ⊋ p, so no prime in S contracts to p.

Corollary 7.6. If R ⊆ S is a direct summand, then Spec(S) → Spec(R) is surjective, so
Lemma 7.3 says the map on Spec is surjective.

Proof. By Lemma 2.17, we know IS ∩R = I for all ideals in this case.

We want to extend the idea of the last corollary to work for all integral extensions.

Definition 7.7. Let R be a ring, S an R-algebra, and I an ideal. An element r of R is
integral over I if it satisfies an equation of the form

rn + a1r
n−1 + · · ·+ an−1r + an = 0 with ai ∈ I i for all i.

An element of S is integral over I if

sn + a1s
n−1 + · · ·+ an−1s+ an = 0 with ai ∈ I i for all i.

The integral closure of I in R is the set of elements of R that are integral over I, denoted

I. Similarly, we write I
S
for the integral closure of I in S.

The convention is that I0 = R for any ideal I of R.

Remark 7.8. Notice that I
S ∩R = I is immediate from the definition.
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Exercise 20. Let R ⊆ S, I be an ideal of S, and t be an indeterminate. Consider the rings
R[It] ⊆ R[t] ⊆ S[t]. Here R[It] is the subalgebra of R[t] generated by elements of the form
at for all a ∈ I. Notice that we can give this a structure of a graded ring by setting all
elements in R to have degree 0 and t to have degree 1, so

R[It] =
⊕
n⩾0

Intn.

This is usually called the Rees algebra of I.

a) I
S
= {s ∈ S | st ∈ S[t] is integral over the ring R[It]}.

b) I
S
is an ideal of S.

In older texts and papers (e.g., Atiyah–Macdonald [AM69] and [Kun69]) a different defi-
nition is given for integral closure of an ideal. The one we use here is now the more universally
used notion.

Lemma 7.9 (Extension–contraction lemma for integral extensions). Let R ⊆ S be integral,

and I be an ideal of R. Then IS ⊆ I
S
, and hence IS ∩R ⊆ I.

Proof. Let x ∈ IS. We can write x = a1s1 + · · · + atst for some ai ∈ I. Moreover, taking

S ′ = R[s1, . . . , st], we also have x ∈ IS ′. We will show that x ∈ I
S′

, so x ∈ I
S
follows

as a corollary. So we might as well replace S with S ′, so that R ⊆ S is also integral and
module-finite. By Corollary 1.37, the extension is also module-finite.

Let S = Rb1 + · · ·+Rbn. We can write

xbi =

(
t∑

k=1

aksk

)
bi =

∑
j

aijbj

with aij ∈ I. We can write these equations in the form xv = Av, where v = (b1, . . . , bu), and
A = [aij]. By the determinantal trick, Lemma 1.35, we have det(xI − A)v = 0. Since we
can assume b1 = 1, we have det(xI − A) = 0. The fact that this is the type of equation we
want follows from the monomial expansion of the determinant: any monomial is a product
of n terms where some of them are copies of x, and the rest are elements of I. Since this is
a product of n terms, a term in xi has a coefficient coming from a product of n− i elements
of I.

So this shows that IS ⊆ I
S
. Now notice that I

S∩R = I is immediate from the definition,
as noted in Remark 7.8.

Theorem 7.10 (Lying over). If R ⊆ S is an integral extension, then pS ∩ R = p for every
p ∈ Spec(R), so the induced map Spec(S) −→ Spec(R) is surjective.

Proof. We claim that I ⊆
√
I. Indeed, if r ∈ I, then

rn + a1r
n−1 + · · ·+ an−1r + an = 0
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for some n and some ai ∈ I i for all i, so

rn = −a1rn−1 − · · · − an−1r − an ∈ I.

Therefore, if p is a prime in R, by Lemma 7.9 we have pS ∩R ⊆ p, and

pS ∩R ⊆ p ⊆
√
p = p.

Then pS ∩ R = p, and by Lemma 7.3 we conclude that p is in the image of the map on
Spec.

Example 7.11. We saw in Example 7.5 that the map induced on Spec by the inclusion
k[xy, xz, yz] ⊆ k[x, y, z] is not surjective. So Theorem 7.10 does not apply — indeed, this
inclusion is not module-finite, and thus it is not integral. For example, the infinite set
{1, xn, yn, zn | n ⩾ 1} is a minimal generating set for k[x, y, z] over k[xy, xz, yz]

Both assumptions that the extension is integral and that it is an inclusion are needed in
Theorem 7.10.

Example 7.12.

a) Suppose f is a regular element on R, but not a unit. Since f is regular, the map R −→ Rf

is an inclusion, but we claim it is not integral. If 1
f
was integral over R, there would be

ai ∈ R such that
1

fn
+
an−1

fn−1
+ · · ·+ a1

f
+ a0 = 0.

After multiplying by fn all terms are of the form r
1
, and thus in R, since the localization

map is injective. So
1 = an−1f + · · ·+ a1f

n−1 + a0f
n ∈ (f),

and f must be a unit.

So R −→ Rf is an example of an inclusion that is not integral. Note that the image of
the map on Spec is the complement of V (f), so in particular the map is not surjective.

b) In contrast, the map R −→ R/(f) is integral, but it is not an inclusion. The map on
Spec is again not surjective: its image is V (f).

Remark 7.13. Let I be an ideal in S. Suppose R −→ S is an integral extension. There
is an induced map R/(I ∩ R) −→ S/I, and that map is integral: an equation of integral
dependance for s ∈ S over R give an equation for integral dependance of its class in S/I
over R/(I ∩R).

Lemma 7.14. If R
φ
// S is integral, Q∩R is maximal if and only if Q is maximal in S.

If R ⊆ S is an integral extension of domains, R is a field if and only S is a field.

Proof. By Remark 7.13, the induced map R/(Q ∩ R) ⊆ S/Q is an integral extension of
domains, and Q (respectively, Q∩R) is maximal if and only if S/Q (respectively, R/(Q∩R))
is a field. So it is sufficient to show the second statement, about inclusions of domains.
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Now suppose R ⊆ S is an integral extension of domains. Assume R is a field, and take
any nonzero s ∈ S. Consider some equation of integral dependance of s over R, say

sn + an−1s
n−1 + · · ·+ a1s+ a0 = 0.

Since a0 is a unit in R ⊆ S, we can divide by a0, so that

−s(sn−1 + an−1s
n−2 + · · ·+ a1) = 1.

The s is a unit, and S is a field.
If S is a field, and r ∈ R is nonzero, then there exists an inverse s for r in S, which is

integral over R. Then
sn + an−1s

n−1 + · · ·+ a1s+ a0 = 0

for some ai ∈ R, and multiplying through by rn−1 gives

s = −(an−1 + an−2r · · ·+ a1r
n−2 + a0r

n−1) ∈ R.

Then R is a field.

Theorem 7.15 (Incomparability). If R −→ S is integral and P ⊆ Q are such that P ∩R =
Q ∩R, then P = Q.

Proof. Since the map on spectra induced by R −→ R/ ker(R) is injective, we can replace R
by the quotient and assume φ is an integral inclusion.

So suppose R ⊆ S is integral, and let p = P ∩ R = Q ∩ R. We claim that localizing at
(R∖ P ) preserves integrality: if x ∈ S and w ∈ R∖ p, then we have equations of the form

xn + r1x
n−1 + · · ·+ rn = 0 =⇒

( x
w

)n
+
r1
w

( x
w

)n−1

+ · · ·+ rn
wn

= 0.

By localizing R at (R∖p), the image of p is a maximal ideal. So we reduced to the situation
where R ∩ P = R∩Q is a maximal ideal. By Lemma 7.14, P ⊆ Q are both maximal ideals.
Therefore, P = Q.

Corollary 7.16. Suppose R −→ S is integral and that S is Noetherian. If S is Noetherian,
then only finitely many primes contract to each p ∈ Spec(R).

Proof. If P ∈ Spec(S) contracts to p, then P ⊇ pS, so in particular P contains some prime
Q minimal over pS. Then

pS ⊆ Q ⊆ P =⇒ p ⊆ Q ∩R ⊆ P ∩R = p,

so Q ∩ R = P ∩ R. By Theorem 7.15, Q = P . So all the primes contracting to p are in
Min(pS), which is a finite set since R is Noetherian.

Corollary 7.17. If R −→ S is integral, then ht(q) ⩽ ht(q ∩ R) for any q ∈ Spec(S). In
particular, dim(S) ⩽ dim(R).

Proof. Given a chain of primes a0 ⊊ · · · ⊊ an = q in Spec(S), we can contract to R, and by
Theorem 7.15 we get a chain of distinct primes in Spec(R).
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Theorem 7.18 (Going up). If R −→ S is integral, then for every p ⊊ q in Spec(R) and
P ∈ Spec(S) with P ∩R = p, there is some Q ∈ Spec(S) with P ⊊ Q and Q ∩R = q.

The picture looks something like this:

P P ⊆ Q
∃Q

//

p

⊆

⊆ q p

⊆

⊆ q

⊆

Proof. Consider the map R/p −→ S/pS −→ S/P . This is integral, as we observed in
Remark 7.13. It is also injective, so Lying Over, Theorem 7.10, applies. Thus, there is a
prime a of S/P that contracts to the prime q/p in Spec(R/p). We can write a = Q/P for
some Q ∈ Spec(S), and we must have that Q contracts to q.

Corollary 7.19. If R ⊆ S is integral, then dim(R) = dim(S).

Proof. We have already shown that dim(S) ⩽ dim(R) in Corollary 7.17, so we just need to
show that dim(R) ⩽ dim(S). Fix a chain of primes p0 ⊊ · · · ⊊ pn in Spec(R). By Lying
Over, Theorem 7.10, there is a prime q0 ∈ Spec(S) contracting to p0. Then by Going up,
Theorem 7.18, we have q0 ⊊ q1 with q1 ∩ R = p1. Continuing, we can build a chain of
distinct primes in S of length n. So dim(R) ⩽ dim(S), and equality follows.

Recall that a domain is normal if it is integrally closed in its field of fractions. In a
previous problem set, you showed that Z is normal; we now extend that result to any unique
factorization domain.

Lemma 7.20. A unique factorization domain is normal. In particular, a polynomial ring
over a field is normal.

Proof. Let R be a UFD, and r
s
∈ frac(R) be integral over R. We can assume that r and s

have no common factor. Then we have some ai ∈ R such that

rn

sn
+ a1

rn−1

sn−1
+ · · ·+ an = 0 =⇒ rn = −(a1rn−1s+ · · ·+ ans

n).

Any irreducible factor of s must then divide rn, and hence divide r. If s is not a unit in R,
then this contradicts that there is no common factor. Therefore, r/s ∈ R.

Lemma 7.21. Let R be a normal domain, x be an element integral over R in some larger
domain. Let k be the fraction field of R, and f(t) ∈ k[t] be the minimal polynomial of x over
k.

a) If x is integral over R, then f(t) ∈ R[t] ⊆ k[t].

b) If x is integral over a prime p, then f(t) has all of its nonleading coefficients in p.
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Proof. Let x be integral over R. Fix an algebraic closure of k containing x, and let x1 =
x, x2, . . . , xu be the roots of f . Since f(t) divides any polynomial with coefficients in k that
x satisfies, it also divides a monic equation of integral dependance for x over R. Therefore,
each xi is a solution to such an equation of integral dependence, and thus must be integral
over R.

Let S = R[x1, . . . , xu] ⊆ k. This is a module-finite extension of R, so all of its elements
are integral over R. The leading coefficient of f(t) is 1, and the remaining coefficients of f(t)
are polynomials in the xi, hence they lie in S. On the other hand, R is normal, so S∩k = R.
We conclude that all the coefficients of f are in R, and f ∈ R[t].

Now let x be integral over p. By the same argument as above, all of the xi are integral
over p. Since each xi ∈ pS, any polynomial in the xi lies in pS. So the nonleading coefficients
of f lie in pS ∩R = p, by Theorem 7.10.

Theorem 7.22 (Going down). Suppose that R is a normal domain, S is a domain, and
R ⊆ S is integral. Then, for every p ⊊ q in Spec(R) and Q in Spec(S) with Q ∩ R = q,
there is some P ∈ Spec(S) with P ⊊ Q and P ∩R = p.

The picture looks like
Q P ⊆ Q

∃P //

p ⊆ q

⊆

p
⊆

⊆ q
⊆

Proof. As before, we can replace R and S by their localizations at the multiplicatively closed
set R \ q without loss of generality, since that extension is still integral. So now q is the
unique maximal ideal in R, and want to show that p is the contraction of some prime ideal
P ⊆ Q, so it suffices to find some prime ideal in SQ. Se we can further compose with the
localization of S at Q, and as before R −→ SQ is still an integrally closed extension. We
have thus reduced to the case when (R, q) and (S,Q) are local. By Lemma 7.3, it suffices to
show that pS ∩R = p.

Let r ∈ pS ∩ R. Then r = s1a1 + · · · ,+snan for some si ∈ S and ai ∈ p, so r ∈
R[s1, . . . , sn].

Let W = (S∖Q)(R∖p) be the multiplicative set in S consisting of products of elements
in S ∖ Q and R ∖ p. Note that each of these sets contains 1, so each set is contained in
W , the product of the two. We will show that W ∩ pS is empty. Once we do that, it will
follow from Lemma 3.41 that there is a prime ideal P in S containing pS such that W ∩P is
empty. Notice that such a prime is necessarily contained in Q, since S ∖Q ⊆ W . Moreover,
R \ p ⊆ W , so (Q ∩ R) ∩ (R \ p) is empty, or equivalently, Q ∩ R ⊆ p. We conclude that
Q ∩R = p.

So our goal is to show that W ∩ pS is empty. We proceed by contradiction, and assume
there is some x ∈ pS∩W . We can write x = rs for some r ∈ R∖p and s ∈ S∖Q. Moreover,
since x ∈ pS, x is integral over p, by Lemma 7.9.

Consider the minimal polynomial of x over frac(R), say

h(x) = xn + a1x
n−1 + · · ·+ an = 0.
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By Lemma 7.21, each ai ∈ q ⊆ R. Then substituting x = rs in frac(R) and dividing by rn

yields

g(s) = sn +
a1
r
sn−1 + · · ·+ an

rn
= 0.

We claim that this is the minimal polynomial of s. If s satisfied a monic polynomial of degree
d < n, multiplying by rd would give us a polynomial of degree d that x satisfies, which is
impossible. So indeed, this is the minimal polynomial of s.

Since s ∈ S, and thus integral over R, Lemma 7.21 says that each ai
ri

=: vi ∈ R. Since
r /∈ p and rivi = ai ∈ p, we must have vi ∈ p. The equation g(s) = 0 then shows that
s ∈
√
pS. Since Q ∈ Spec(S) contains qS and hence pS, we have s ∈

√
pS ⊆ Q. This is the

desired contradiction.

Corollary 7.23. If R is a normal domain, S is a domain, and R ⊆ S is integral, then
ht(q) = ht(q ∩R) for any q ∈ Spec(S).

Proof. We already know from Corollary 7.17 that ht(Q) ⩽ ht(q ∩ R). Given a saturated
chain up to q∩R, we can apply Going Down, Theorem 7.22 to get a chain just as long that
goes up to Q.

7.2 Noether normalization and dimension of affine rings

Lemma 7.24 (Making a pure-power leading term).

a) Let A be a domain, and f ∈ R = A[x1, . . . , xn] be a (not necessarily homogeneous)
polynomial of degree at most N . The A-algebra automorphism of R given by ϕ(xi) =
xi+x

Nn−i

n for i < n and ϕ(xn) = xn maps f to a polynomial that, viewed as a polynomial
in xn with coefficients in A[x1, . . . , xn−1], has leading term dxan for some d ∈ A and a ∈ N.

b) Let k be an infinite field, and let R = k[x1, . . . , xn] be standard graded, meaning deg(xi) =
1. Let f ∈ R be a homogeneous polynomial of degree N . There is a degree-preserving k-
algebra automorphism of R given by ϕ(xi) = xi+aixn for i < n and ϕ(xn) = xn that maps
f to a polynomial that viewed as a polynomial in xn with coefficients in k[x1, . . . , xn−1],
has leading term axNn for some (nonzero) a ∈ k.

Proof.

a) The map ϕ sends a monomial term dxa11 · · ·xann to a polynomial with unique highest
degree term dxa1N

n−1+a2Nn−2+···+an−1N+an
n . For each of the monomials dxa11 · · ·xann in f

with nonzero coefficient d ̸= 0, we must have each ai ⩽ N , so the map (a1, . . . , an) 7→
a1N

n−1 + a2N
n−2 + · · · + an−1N + an is injective when restricted to the set of exponent

tuples of f . Therefore, none of the terms can cancel. We find that the leading term is of
the promised form.

b) We just need to show that the xN coefficient of ϕ(f) is nonzero for some choice of
ai. One can check that the coefficient of the xN term is f(−a1, . . . ,−an−1, 1). But
f(−a1, . . . ,−an−1, 1), when thought of as a polynomial in the ai, is identically zero, then
f must be the zero polynomial.
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Theorem 7.25 (Noether Normalization). Let A be a domain, and R be a finitely generated
A-algebra. There is some nonzero a ∈ A and x1, . . . , xt ∈ R algebraically independent over
A such that Ra is module-finite over Aa[x1, . . . , xt]. In particular, if A = k is a field, then R
is module-finite over k[x1, . . . , xt].

Proof. We proceed by induction on the number of generators n of R over A. There is nothing
to prove in the case when n = 0.

Now suppose that we know the result holds for A-algebras generated by at most n − 1
elements, and let R = A[r1, . . . , rn]. If r1, . . . , rn are algebraically independent over A, we
are done. If not, there is some f(x1, . . . , xn) ∈ A[x1, . . . , xn] such that f(r1, . . . , rn) = 0.
After possibly applying Lemma 7.24 to change our choice of algebra generators, we can
assume that f has leading term axNn for some a. Then f is monic in xn after inverting a,
so Ra is module-finite over Aa[r1, . . . , rn−1]. By hypothesis, Aab[r1, . . . , rn−1] is module-finite
over Aab[x1, . . . , xs] for some b ∈ A and x1, . . . , xs that are algebraically independent over
A. Since Rab is module-finite over Aab[r1, . . . , rn−1], Rab must also be module-finite over
Aab[x1, . . . , xs], and we are done.

Theorem 7.26 (Graded Noether Normalization). Let k be an infinite field, and R be a
finitely generated N-graded k-algebra with R0 = k and R = k[R1]. There are homogeneous
elements x1, . . . , xt ∈ R1 algebraically independent over k such that R is module-finite over
k[x1, . . . , xt].

Proof. We repeat the proof of Theorem 7.25 but use Lemma 7.24 (2), the graded version.

Remark 7.27. There also exist Noether normalizations for quotients of power series rings
over fields: after a change of coordinates, one can rewrite any nonzero power series in
kJx1, . . . , xnK as a series of the form u(xdn+ad−1x

d−1
n + · · ·+a0) for a unit u and a0, . . . , ad−1 ∈

kJx1, . . . , xn−1K. This is called Weierstrass preparation. The proof of the Noether normal-
ization theorem proceeds in essentially the same way. Thus, given kJx1, . . . , xnK/I, we have
some module-finite inclusion of another power series ring kJz1, . . . , zdK ⊆ kJx1, . . . , xnK/I.

Theorem 7.28. Let R be a domain that is a finitely generated algebra over a field k, or a
quotient of a power series ring over a field. Let k[z1, . . . , zd] be any Noether normalization
for R. For any maximal ideal m of R, the length of any saturated chain of primes from 0 to
m is d. In particular, dim(R) = d.

Proof. We will show the proof in the case when R is a finitely generated domain over a
field k; the power series case is similar, and left as an exercise. We prove by induction on
d that for any finitely generated domain with a Noether normalization with d algebraically
independent elements, any saturated chain of primes ending in a maximal ideal has length
d.

When d = 0, R is a domain that is integral over a field, hence R is a field by Lemma 7.14.
So suppose the statement holds for d−1, and let R be a finitely generated domain over some
field k with Noether normalization k[z1, . . . , zd]. Consider a maximal ideal m of R, and a
saturated chain

0 ⊊ q1 ⊊ · · · ⊊ qk = m.
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Consider the contraction of this chain to A = k[z1, . . . , zd], which by Theorem 7.15 are
distinct primes in R:

0 ⊊ p1 ⊊ · · · ⊊ pk.

Our assumption that the original chain is saturated implies that q1 has height 1. If p1 had
height 2 or more, then by Going Down, Theorem 7.22, so would q1, so p1 has height 1 as
well. Since k[z1, . . . , zd] is a UFD, p1 = (f) for some prime element f , by Example 6.3 d.
After a change of variables, as in Lemma 7.24, we can assume that f is monic in zd with
coefficients in k[z1, . . . , zd−1]. So k[z1, . . . , zd−1] ⊆ A/(f) ⊆ R/q1 are module-finite, and the
induction hypothesis applies to R/q1. Now

0 = q1/q1 ⊊ q2/q1 ⊊ · · · ⊊ qk/q1 = m/q1

is a saturated chain in the affine domain R/q1 going up to the maximal ideal m/q1. The
induction hypothesis then says that this chain has length d − 1, so k − 1 = d − 1, and
k = d.

Corollary 7.29. The dimension of the polynomial ring k[x1, . . . , xd] is d.

Proof. The polynomial ring k[x1, . . . , xd] is a Noether normalization of itself, and Theo-
rem 7.28 says that it must have dimension d.

This matches our geometric intuition: k[x1, . . . , xd] corresponds to Ad
k, and we are used

to thinking of Ad
k as a d-dimensional space. Moreover, if R is a finitely generated k-algebra,

then R is a quotient of k[x1, . . . , xd], where d is the number of generators of R as a k-algebra.
Therefore, dim(R) ⩽ d.

Corollary 7.30. If R is a k-algebra, the dimension of R is less than or equal to the minimal
size of an algebra generating set for R over k. If R = k[f1, . . . , fd] and dim(R) = d, then R is
isomorphic to a polynomial ring over k, and the generators fi are algebraically independent.

Proof. The first statement is trivial unless R is finitely generated, in which case we can write
R = k[f1, . . . , fs] ∼= k[x1, . . . , xs]/I for some ideal I, so

dim(R) ⩽ dim(k[x1, . . . , xs]) = d.

Suppose we chose s to be minimal. If I ̸= 0, then dim(R) < s, since the zero ideal is not
contained in I.

Corollary 7.31. Let R be a finitely generated algebra or a quotient of a power series ring
over a field.

1) R is catenary.

If additionally R is a domain, then

2) R is equidimensional, and

2) ht(I) = dim(R)− dim(R/I) for all ideals I.
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Proof.

1) Let p ⊆ q be primes in R. We can quotient out by p, and assume that R is a domain
and p = 0. Fix a saturated chain C from q to a maximal ideal m. Given two saturated
chains C ′, C ′′ from 0 to q, the concatenations C ′|C and C ′′|C are saturated chains from
0 to m, so by Theorem 7.28 they must have the same length. It follows that C ′ and C ′′

have the same length.

2) Equidimensionality is immediate from Theorem 7.28.

3) We have
ht(I) = min{ht(p) | p ∈ Min(I)}

and
dim(R/I) = max{dim(R/p) | p ∈ Min(I)}.

Therefore, it suffices to show the equality for prime ideals, since if p ∈ Min(I) attains the
minimal ht(p), then it also attains the maximal dim(R/p). Now, take a saturated chain
of primes C from 0 to p, and a saturated chain C ′ from p to a maximal ideal m. Since
R is catenary, C has length ht(p). Moreover, C ′ has length dim(R/p) by Theorem 7.28,
and C|C ′ has length dim(R) by Theorem 7.28.

Example 7.32. Let’s use our dimension theorems to give a few different proofs that R =
k[x, y, z]/(y2 − xz) has dimension 2 for any field k.

1) k[x, z] is a Noether normalization for R, so the dimension is 2.

2) We observe that y2 − xz is irreducible, e.g., by thinking of it as a polynomial in y and
applying Eisenstein’s criterion. Then (y2−xz) is a prime of height one, so the dimension
of R is dim(k[x, y, z])− ht((y2 − xz)) = 3− 1 = 2.



Chapter 8

Hilbert functions

8.1 Hilbert functions of graded rings

We now introduce a useful combinatorial book keeping tool for the vector space dimensions
of the graded components of a finitely generated k-algebra.

Definition 8.1. Let k be a field. If R is an N-graded k-algebra, the Hilbert function1 of
R is the functionHR : Z // N ∪∞ defined by

HR(t) := dimk(Rt)

If M is a Z-graded R-module, the Hilbert function of M is the function HR : Z // N ∪∞
defined by

HM(t) := dimk(Mt).

We may write Hk
R(t) or H

k
M(t) if we want to emphasize what field k we are considering.

Sometimes it’s useful to collect the values of the Hilbert function in the form of a power
series.

Definition 8.2. If R is Z-graded or N-graded we define the Hilbert series of R or of a
graded R-module M by hR(z) =

∑
i∈ZHR(i)z

i and hM(z) =
∑

i∈ZHM(i)zi.

Example 8.3. Consider the standard graded ring

R = k[x, y]/(x2, y3) = k︸︷︷︸
R0

⊕
(k x⊕ k y)︸ ︷︷ ︸

R1

⊕
(k xy ⊕ k y2)︸ ︷︷ ︸

R2

⊕
k xy2︸ ︷︷ ︸
R3

.

Then HR(t) =


1 if t = 0

2 if t = 1, 2

1 if t = 3

0 if t ⩾ 4

and hR(z) = 1 + 2z + 2z2 + z3.

Notice that in this example HR(t) is eventually the zero function, which we will take
by convention to have degree −1 as a polynomial. Note also that R is a finite dimensional
k-algebra, hence Artinian. So dim(R) = 0.

1Some authors call the Hilbert series the Poicaré series, but in modern terminology that means something
else.
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The key example of a Hilbert function is what happens in the case of a polynomial ring.

Example 8.4. Let k be a field, and R = k[x1, . . . , xd] be a polynomial ring with the standard
grading, meaning deg xi = 1 for each i. To compute the Hilbert function of R, we need to
compute the size of a k-basis for HR(t) for each t. Such a basis is given by all the monomials
in x1, . . . , xd of degree t:

Rt =
⊕

a1+···+ad=t

k · xa11 · · ·x
ad
d .

We can easily count the number of monomials of degree t using elementary combinatorics,
and we find that

HR(t) =

(
t+ d− 1

d− 1

)
=

(
t+ d− 1

t

)
for t ⩾ 0.

We claim that the binomial function here can be expressed as a polynomial in t for t ⩾ 0.
Consider

Pd(t) =
(t+ d− 1)(t+ d− 2) · · · (t+ 1)

(d− 1)!
∈ Q[t].

Observe that Pn(t) has −1,−2, . . . ,−(d− 1) as roots. Then

HR(t) =

{
Pd(t) if t > −d
0 if t < 0.

Note that the two cases overlap for −(d− 1) ⩽ t ⩽ −1.
Notice that in this example the Hilbert function is eventually (for t ⩾ −d) equal to a

polynomial of degree d− 1. Moreover, recall that dim(R) = d.
To compute the Hilbert series, notice that the number of monomials of degree t is equal

to the number of ordered tuples (a1, . . . , ad) with a1 + · · ·+ ad = t. This is the coefficient of
zt in the product

(1 + z + z2 + · · ·+ za1 + · · · )(1 + z + z2 + · · ·+ za2 + · · · ) · · · (1 + z + z2 + · · ·+ zad + · · · )

hence

hR(z) = (1 + z + z2 + · · ·+ zi + · · · )d = 1

(1− z)n
.

While the Hilbert function is a polynomial for any n ∈ N in this example, this is not
always the case. Here’s a cheap example:

Example 8.5. Let k be a field, and R = k[x1, . . . , xn] a polynomial ring with the standard
grading |xi| = 1 for each i as in the previous example and let d be an integer. Then

HR(−d)(t) = dimk(R(−d)t) = dimk(R(−d)t−d) = HR(t− d)

and hR(−d)(z) = zdhR(z). In particular, we see that HR(−d)(t) = Pn(t−d) for t−d > −n, can
be expressed as a polynomial in t when t− d > −n, so for t > d− n. This Hilbert function
is no longer a polynomial for all nonnegative integers, but it is a polynomial for high enough
values of t.
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To compute more sophisticated examples, we use short exact sequences. Unsurprisingly,
Hilbert polynomials behave well with respect to short exact sequences.

Lemma 8.6. Let R be a graded ring, and

0 // L //M // N // 0

be a degree-preserving short exact sequence of graded R-modules. Then HM = HL +HN .

Proof. In each degree t we get short exact sequences of vector spaces

0 // Lt
f
//Mt

g
// Nt

// 0 .

The claim follows from the Rank–Nullity Theorem from Linear Algebra:

dim(Mt) = dim(im g) + dim(ker f) = dim(im g) + dim(im g) = dim(Nt) + dim(Lt).

We can now compute a more sophisticated example.

Example 8.7. Let f be a homogeneous element of degree d in a Z-graded ring R. We have
the short exact sequence

0 // R(−d) // R // R/(f) // 0 .

By Lemma 8.6 and the definition of shift, this gives

HR = HR(−d) +HR/(f) =⇒ HR/(f)(t) = HR(t)−HR(−d)(t) = HR(t)−HR(t− d)

and

hR = hR(−d) + hR/(f) =⇒ hR/(f)(z) = hR(z)− hR(−d)(z) = hR(z)− zdhR(z).

Then
HR/(f)(t) = HR(t)−HR(t− d)

and
hR/(f)(z) = (1− zd)hR(z).

When R = k[x1, . . . , xn], we saw in Example 8.4 that HR(t) = Pn(t) is a polynomial for
t > −n. If d < n, then t− d > −n for all t ⩾ 0, so

HR/(f)(t) = Pn(t)− Pn(t− d) =
(
t+ n− 1

t

)
−
(
t− d+ n− 1

t

)
is still given by a polynomial. When d > n, HR/(f)(t) still agrees with a polynomial eventu-
ally : for all t ⩾ d− n.

We can now show that Hilbert function is always eventually equal to a polynomial, as in
Example 8.7.
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Theorem 8.8. Let k be a field, and R be a finitely graded k-algebra such that R0 = k and
R is generated by elements of degree one. Let M be a finitely generated graded R-module.2

There is a polynomial PM(t) ∈ Q[t] and some n ∈ N such that HM(t) = PM(t) for t ⩾ n.
Moreover, deg(PM) = dim(M)− 1, and we can write

PM(t) =
e

(dim(M)− 1)!
tdim(M)−1 + lower order terms

for some positive integer e. Finally, if dim(M) = 0 then PM = 0.

Proof. We will use induction on the dimension of M .
If dim(M) = 0, then M has finite length by Lemma 6.23. In particular, it must be finite

dimensional as a k-vector space, so only finitely many graded pieces can be nonzero. So for
t≫ 0, HM(t) = 0, which is a polynomial of degree −1, by our convention.

Now suppose that the theorem holds for every ring R satisfying our hypotheses and for
every R-module of dimension n− 1. Assume M has dimension n, and take a homogeneous
prime filtration of M , which we constructed in Theorem 5.28. Say this prime filtration is

M =Mm ⊋Mm−1 ⊋Mm−2 ⊋ · · · ⊋M1 ⊋M0 = 0

with Mi/Mi−1
∼= R/pi(di) for some homogeneous primes pi and integers di. This breaks into

short exact sequences

0 //Mi
//Mi+1

//Mi+1/Mi
// 0 .

Using Lemma 8.6 inductively on i, we get that HM(t) = HR/p1(d1)(t) + · · · + HR/pm(dm)(t).
Observe that HR/pi(di)(t) = HR/pi(t + di) for each i. Since the associated primes of M
are contained in V (annR(M)), we have dim(R/pi) ⩽ dim(M). Moreover, there must be
some pi for which equality occurs, since every associated prime of M occurs among the
pi, so in particular all the minimal primes of annR(M) are among the pi. If we can show
that each module of the form R/pi verifies the conclusion of the theorem, then we are
done: all of the claims of polynomiality, degree, and positivity of leading term pass to
HM(t) by the equality above, as the shifting does not change degree or the leading term,
dim(M) = max{dim(R/pi)}, and the leading term satisfies the hypotheses again.

If M = R/pi, then take a homogeneous Noether normalization A for this k-algebra M ,
and consider a homogeneous prime filtration for M as an A-module. Every factor is either
a shift of A, or else has dimension less than a := dim(A) = dim(M), since A is a domain.
Applying the induction hypothesis and the formula

HM(t) = HR/p1(d1)(t) + · · ·+HR/pm(dm)(t)

from above to this context, we find that HM(t) is a sum of shifts of the polynomial Pa(t)
from Example 8.4, plus polynomials of lower degree. Notice that

Pa(t) =
(t+ a− 1)(t+ a− 2) · · · (t+ 1)

(a− 1)!
=

1

(a− 1)!
ta−1 + lower degree terms.

Thus, the claims hold for M .
2Recall that the dimension of a module M is the dimension of R/ annR(M).
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Definition 8.9. The Hilbert polynomial of a graded module is the polynomial PM(t)
that agrees with HM(t) for t≫ 0. The multiplicity of an R-module M ̸= 0 is the positive
integer e(M) such that

PM(t) =
e(M)

(dim(M)− 1)!
tdim(M)−1 + lower order terms.

Example 8.10. The multiplicity of a standard graded ring is e(k[x1, . . . , xn]) = 1.

Proposition 8.11. Let k be a field, and R be a finitely graded k-algebra such that R0 = k
and R is generated by elements of degree one. Let

0 // L //M // N // 0

be a short exact sequence of graded R-modules. Then PM(t) = PL(t) + PN(t). If dim(L) =
dim(M) = dim(N), then e(M) = e(L) + e(N).

Proof. Both claims follow immediately from the fact that Hilbert functions are additive on
short exact sequences, Lemma 8.6.

Example 8.12. If R is a polynomial ring, then e(R) = 1. If R = S/fS for a polynomial
ring S and a homogeneous element f of degree d, then e(R) = d.

Example 8.13. If k[x1, . . . , xn] is a standard N-graded ring and f is a homogeneous element
of degree d, then R = k[x1, . . . , xn]/(f) satisfies e(R) = d. We can compute this using
Example 8.7.

We can use Theorem 8.8 something about the Hilbert series as well, thanks to the fol-
lowing lemma.

Lemma 8.14. Let ϕ: N → N, and consider its generating function g(z) =
∞∑
i=0

ϕ(i)zi. The

following are equivalent:

a) there is a polynomial P ∈ Q[t] of degree d− 1 such that ϕ(n) = P (n) for n≫ 0

b) g(z) =
q(z)

(1− z)d
for some q ∈ Z[z] such that q(1) ̸= 0 and d ⩾ 0.

Proof sketch. Use the “negative binomial” formula

1

(1− z)d
=

∞∑
i=0

(
i+ d− 1

d− 1

)
zi.

Corollary 8.15. Let k be a field, and R be a finitely graded k-algebra such that R0 = k and
R is generated by elements of degree one. Let M be a finitely generated graded R-module.
Then the Hilbert series of M is of the form

hM(z) =
q(z)

(1− z)d
,

for some q ∈ Z[z], where d = dim(M).
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Proof. Immediate from Theorem 8.8 and Lemma 8.14.

We have now given many different characterizations for the dimension for a finitely gen-
erated graded k-algebra. Here’s a summary:

Theorem 8.16 (The dimension theorem — graded version). Let k be a field, and R be a
finitely generated graded k-algebra such that R0 = k and R is generated by elements of degree
one, i.e. R = R0[R1]. The following numbers are equal:

a) The Krull dimension of R.

b) The smallest d such that
√

(x1, . . . , xd) = R+ for some homogeneous x1, . . . , xd.

c) 1 + deg(PR), where PR is the Hilbert polynomial of R.

d) The order of pole of the Hilbert series of R at 1, that is, the number d such that hR(z) =
q(z)

(1−z)d and this fraction is in lowest terms, i.e. q(1) ̸= 0.

Finally, we also want to consider the case when the ring is not necessarily generated in
degree one. The key fact we will need is the following:

Exercise 21. Let k be a field, and R be a finitely generated positively graded k-algebra

with R0 = k. There is some d ∈ N such that the subring R(d) =
⊕
i⩾0

Rid is generated as a

k-algebra by Rd.

The Hilbert function of a non-standard graded k-algebra is no longer eventually a poly-
nomial. But it is eventually a quasipolynomial.

Definition 8.17. A function f: Z −→ R is a quasipolynomial if there exists an integer b
and polynomials p0, . . . , pb−1 ∈ R[t] such that f(n) = pc(n) for c ≡ n mod b for each n ∈ Z.

So a quasipolynomial alternates between various polynomials.

Theorem 8.18. Let k be a field, and R be a finitely graded k-algebra such that R0 = k. Let
M be a finitely generated graded R-module. Then there is a quasipolynomial with rational
coefficients PM(t) such that HM(t) = PM(t) for t≫ 0.

Proof. Let d be such that R(d) is generated by Rd, which exists by Exercise 21. We can
think of R(d) as a standard graded k-algebra, where we consider the elements of Rid to have
degree i. Since R is finitely generated as a k-algebra, it is also a finitely generated R(d)-
algebra. Moreover, any homogeneous element x ∈ R satisfies a monic equation of the form
td − xd ∈ R(d)[t], so R is integral over R(d). By Corollary 1.37, R is module-finite over R(d).
So M is a finitely generated R(d)-module. However, its grading over R is not consistent with
the grading of R(d). We can decompose M as an R(d)-module as

M = N0 ⊕N1 ⊕ · · · ⊕Nd−1, where Nj =
⊕
i∈N

Mj+id.

Set [Nj]i := Mj+id. This gives us a grading on each Nj that is compatible with R(d). Note
also that each Nj is a submodule of a finitely generated module over a Noetherian ring, so
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is also finitely generated. Therefore, each Nj admits its own Hilbert polynomial. Taking
each of these, we obtain a quasipolynomial that agrees with the Hilbert function for large
values.

One can then show (see [Mat89, Theorem 13.2]) that the Hilbert series of a finitely
generated graded module over a non-standard graded k-algebra with R0 = k is of the form

q(t)

(1− t)d1 · · · (1− t)dn
,

where the integers di are the degrees of the algebra generators of R.

8.2 Associated graded rings and Hilbert functions for

local rings

We next wish to give a version of the dimension theorem from the previous section in the
local case. For this, we need a notion of Hilbert function that applies to local rings. We get
this by associating a graded ring to each local ring.

Definition 8.19. The associated graded ring of an ideal I in a ring R is the ring

grI(R) :=
⊕
n⩾0

In/In+1

with n-th graded piece In/In+1 and multiplication

(a+ In+1)(b+ Im+1) = ab+ Im+n+1 for a ∈ In, b ∈ Im.

If (R,m) is local, then gr(R) := grm(R) will be called the associated graded ring of R.

Note that the multiplication is well-defined.

Remark 8.20. If a ∈ In, b ∈ Im, u ∈ In+1, v ∈ Im+1, that is, a + u ∈ a + In+1 and
b+ v ∈ b+ Im+1 then

(a+ u)(b+ v) = ab = av + bu+ uv ∈ ab+ Im+n+1.

So the multiplication on the associated graded ring is indeed well-defined.

Remark 8.21.

a) [grI(R)]0 = R/I, so if (R,m, k) is local then [gr(R)]0 = R/m = k.

b) Each graded piece [gr(R)]n = In/In+1 is an R-module annihilated by I, so it is an R/I-
module. If (R,m, k) is local then [gr(R)]n is a k-vector space.

c) Let R be Noetherian and I = (f1, . . . , fn). Then f1 + I2, . . . , fn + I2 ∈ [grI(R)]1 and
grI(R) = (R/I)[f1, . . . , fn] is finitely generated as a [gr(R)]0-algebra by elements of degree
one. If (R,m, k) is Noetherian and local, then by NAK Proposition 4.32 a basis for [gr(R)]n
corresponds to a minimal set of generators for mn, and in particular dimk[gr(R)]n =
µ(mn) <∞.
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Example 8.22. Take R = k[x, y] and I = (x, y). Then

grI(R) = R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · · = k ⊕ (k x⊕ k y)⊕ (k x2 ⊕ k xy ⊕ k y2)⊕ · · ·

so we see that in fact gr(x,y)(k[x, y]) = k[x, y]. Similarly, for any graded k-algebra generated
in degree 1, grR+

(R) = R.

Example 8.23. Let R = k[x, y](x,y).

a) Let I = (x, y). The same computation as above applies to show

gr(x,y) k[x, y](x,y) = k[x, y].

b) Now take I = (x2, y2). Then

grI(R) = R/I ⊕ (x2R/I ⊕ y2R/I)⊕ (x2R/I ⊕ x2y2R/I ⊕ y2R/I)⊕ · · ·

so we get
grI(R) = (R/I)[x2, y2]

with deg (x2) = deg (y2) = 1 and deg (r + I) = 0 for all r ∈ R. In this case the R/I-
algebra generators for grI(R) are algebraically independent.

c) Finally take I = (x2, xy). Then

grI(R) = (R/I)[x2, xy],

with deg(x2) = deg(xy) = 1 and deg(r + I) = 0 for all r ∈ R. However, in this case
the algebra generators x2, xy are not algebraically independent over R/I. For example,
yx2 − xxy = 0.

Definition 8.24. Let (R,m) be a local ring. The Hilbert function of R is

HR(t) := Hgr(R)(t).

and Hilbert series of R is
hR(t) := hgr(R)(t).

Example 8.25. When R = k[x, y](x,y),

HR(t) = Hk[x,y](t) = t+ 1.

More generally, if R = k[x1, . . . , xn](x1,...,xn) then

HR(t) = Hk[x1,...,xn](t) = Pn(t)

as in Example 8.4.

To get a completely satisfactory analogue of the Hilbert function theory in this setting,
we would like to understand the dimension of the associated graded ring. To understand
this, we use the following related object.
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Definition 8.26. Let R be a ring, and I an ideal. Recall that the Rees algebra of I is the
N-graded ring

R[It] =
⊕
n⩾1

Intn = R⊕ It⊕ I2t2 ⊕ · · · ⊆ R[t],

The extended Rees algebra of I is the Z-graded ring

R[It, t−1] = · · · ⊕Rt−2 ⊕Rt−1 ⊕R⊕ It⊕ I2t2 ⊕ · · · . ⊆ R[t, t−1].

In both cases, the grading is given by setting deg t = 1, and deg r = 0 for all r ∈ R.

Note that t /∈ R[It, t−1] since 1 /∈ I, so t−1 is not a unit, even though it looks like one.

Example 8.27. If R = k[x, y] and I = (x2, y2) then R[It, t−1] = R[x2t, y2t, t−1]. Think
about t as being a constant which is allowed to vary in k. Then the extended Rees algebra
of I can be viewed as a family of R-algebras, one for each value of t−1. Let’s explore some
of the algebras in this family by plugging in values for t−1:

• if t−1 = 0, which is ok to do since t−1 is not actually a unit, then we get

R[It, t−1]|t−1=0 = R[x2t, y2t] ∼= grI [t].

• If t−1 = 1 then we get x2t = x2t · 1 = x2tt−1 = x2 ∈ R and similarly y2t = y2 ∈ R so

R[It, t−1]|t−1=1 = R[x2R, y
2
R]
∼= R.

In fact the same is true for every value t−1 ∈ k×.

The following lemma makes these observations rigorous.

Lemma 8.28. There are isomorphisms

R[It, t−1]/(t−1) ∼= grI(R) and R[It, t−1]/(t−1 − 1) ∼= R.

Proof. For the first isomorphism, since t is homogeneous, we can use the graded structure.
We have

t−1R[It, t−1] = · · · ⊕Rt−2 ⊕Rt−1 ⊕ I ⊕ I2t⊕ I3t2 ⊕ · · · ,

so matching the graded pieces, we see that

R[It, t−1]/(t−1) =
· · · ⊕Rt−2 ⊕Rt−1 ⊕R⊕ It⊕ I2t2 ⊕ · · ·
· · · ⊕Rt−2 ⊕Rt−1 ⊕ I ⊕ I2t⊕ I3t2 ⊕ · · ·

∼= R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · ·
= grI(R).

For the second isomorphism, we consider the map R[It, t−1] −→ R given by sending
t 7→ 1. This is surjective, and the kernel is the set of elements amt

m + · · · + ant
n such that

am + · · · + an = 0. We claim that this ideal is generated by (t−1 − 1). We proceed by
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induction on n −m. The case n −m = 0 corresponds to there being at most one nonzero
term, say atm, in which case atm is in the kernel if and only if a = 0. In n−m = 1, we have
an element of the form atn−1 − atn for some a, which is of the form (atn)(t−1 − 1). For the
inductive step, if am + · · ·+ an = 0, write

amt
m + · · ·+ ant

n = (amt
m + · · ·+ (an−1 + an)t

n−1) + (−antn−1 + ant
n).

Observe that −antn−1 + ant
n 7→ −an + an = 0, and thus amt

m + · · ·+ (an−1 + an)t
n−1 must

also be in the kernel. The induction hypothesis now applies to both −antn−1 + ant
n and

amt
m+· · ·+(an−1+an)t

n−1, which must then be in (t−1−1). Therefore, so is amtm+· · ·+antn,
and we are done.

Lemma 8.29. Let R be a Noetherian ring, and I an ideal in R. The minimal primes of
R[It, t−1] are exactly the primes of the form pR[t, t−1] ∩R[It, t−1] for p ∈ Min(R).

Proof. Let (0) = q1∩· · ·∩qt be a minimal primary decomposition of (0) in R, and pi =
√
qi.

One can check (exercise!) that qiR[t] is primary with radical piR[t]. Then the same is true
in R[t, t−1], by localizing at {1, t, t2, . . .}. Contracting to R[It, t−1], we get primary ideals
that intersect to (0); none is contained in the intersection of the others, since this is the case
after contracting to R, and likewise the radicals are distinct since they contract to different
primes in R.

Therefore, setting q′i = qiR[t, t
−1] ∩ R[It, t−1], q′1 ∩ · · · ∩ q′t is a minimal primary de-

composition of (0) in R[It, t−1], and thus the minimal primes in R[It, t−1] are piR[t, t
−1] ∩

R[It, t−1]

Theorem 8.30. Let (R,m) be a Noetherian local ring, and I ⊆ m an ideal. Then

dim(R) = dim(R[It, t−1])− 1 = dim(grI(R)).

Proof. First, let’s show dim(R) = dim(R[It, t−1])− 1. By Lemma 8.29, we can reduce to the
case when R is a domain by localizing at each of the minimal primes of R. In particular,
R[It, t−1] is also a domain.

By Lemma 8.28, R[It, t−1]/(t−1 − 1) ∼= R, so dim(R[It, t−1]) ⩾ dim(R). Also, since
(t−1 − 1) is principal, ht(t−1 − 1) ⩽ 1, by Theorem 6.33. But R[It, t−1] is a domain, so
ht(t−1 − 1) = 1. By Corollary 7.31,

dimR = dim(R[It, t−1])− ht(t−1 − 1) = dim(R[It, t−1])− 1.

Now, we claim that

Q = · · · ⊕Rt−2 ⊕Rt−1 ⊕m⊕ It⊕ I2t2 ⊕ · · · = (m, It, t−1)R[It, t−1]

is a maximal ideal of height dim(R) + 1 in R[It, t−1]. The quotient ring is R/m, so it
is clearly maximal. Given a chain p0 ⊊ · · · ⊊ ph = m of length h = dim(R), let qi =
piR[t, t

−1] ∩ R[It, t−1]. Since qi ∩ R = pi[t, t
−1] ∩ R = pi, this is a proper chain of primes in

R[It, t−1]. We have

qh = · · · ⊕mt−2 ⊕mt−1 ⊕m⊕ It⊕ I2t2 ⊕ · · · = (m, It)R[It, t−1] ⊊ Q
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so the height of Q is at least dim(R) + 1, and hence equal to dim(R) + 1 using the previous
upper bound on the dimension.

For the last equality, since t−1 is a nonzerodivisor on R[It, t−1], we have

dim(grI(R)) ⩽ dim(R[It, t−1])− 1.

For the other inequality, let Q = Q/(t−1). Then

dim(grI(R)) ⩾ dim(grI(R)Q) = dim(R[It, t−1]Q/(t
−1))

⩾ dim(R[It, t−1]Q)− 1

= height(Q)− 1

= dim(R).

Theorem 8.31. . Let (R,m, k) be a local ring. Then there is a polynomial PR(t) ∈ Q[t] of
degree equal to dim(R) − 1 such that HR(t) = PR(t) for t ≫ 0. Moreover, if dim(R) > 0
then

P +R(t) =
e

(dim(R)− 1)!
tdim(R)−1 + lower order terms.

.

Proof. Because HR(t) = Hgr(R)(t), we already know by Theorem 8.8 that HR(t) is eventually
equal to a polynomial of degree dim(gr(R))− 1 and that (dim(gr(R))− 1)! times the leading
coefficient is positive. So the theorem follows as long as dim(R) = dim(gr(R))).

Definition 8.32. The Hilbert polynomial of a local ring R is the polynomial PR(t) that
agrees with HR(t) for t≫ 0. The multiplicity of R is the positive integer e(R) such that

PR(t) =
e(R)

(dim(R)− 1)!
tdim(M)−1 + lower order terms.

This gives an analogue of the dimension theorem in the local case:

Theorem 8.33 (The dimension theorem — local version). Let (R,m, k) be a Noetherian
ring. The following numbers are equal:

a) the Krull dimension of R.

b) 1 + deg(PR), where PR is the Hilbert polynomial of R (and gr(R)).

c) The order of pole of the Hilbert series of R (really, of gr(R)) at 1, that is, the number d
such that

hR(z) =
q(z)

(1− z)d

and this fraction is in lowest terms with q(1) ̸= 0.
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Chapter 9

What is homological algebra?

Homological algebra first appeared in the study of topological spaces. Roughly speaking,
homology is a way of associating a sequence of abelian groups (or modules, or other more
sophisticated algebraic objects) to another object, for example a topological space. The ho-
mology of a topological space encodes in topological information about the space in algebraic
language — this is what algebraic topology is all about.

Despite its very concrete origins, modern homological algebra lives somewhere in the
realm of abstract nonsense, and can be described as the study of abelian categories. An
abelian category is, roughly speaking, modeled after Ab, the category of abelian groups
and abelian group homomorphisms. It is this more general setting, rather than the classical
topological setting, that we are interested in. However, it is very hard to understand general
abelian categories without some good concrete examples we can get our hands on, so we
should first start from a reasonable middle ground. While it might be very difficult to get
a concrete handle on a general abelian category, it turns out that every reasonable abelian
category embeds into R-mod, the category of R-modules and R-module homomorphisms.
In this first chapter we introduce the main characters — complexes, homology, categories —
and then we will spend most of our time studying R-mod, while keeping in mind that what
happens in a general abelian category is simply an abstraction of what happens in R-mod.

9.1 Complexes and homology

Homological algebra is a branch of abstract algebra that studies the homology of chain
complexes.

Definition 9.1. A chain complex of R-modules (C•, δ•), also referred to simply as a
complex, is a sequence of R-modules Ci and R-module homomorphisms

· · · // Cn+1
δn+1

// Cn
δn // Cn−1

// · · ·

such that δnδn+1 = 0 for all n. We refer to Cn as the module in homological degree n.
The maps δn are the differentials of our complex. We may sometimes omit the differentials
δn and simply refer to the complex C• or even C; we may also sometimes refer to δ• as the
differential of C•.

117



118

In some contexts, it is important to make a distinction between chain complexes and
co-chain complexes, where the arrows go the opposite way: a co-chain complex would look
like

· · · // Cn−1
δn // Cn

δn+1
// Cn+1

// · · · .

We will not need to make such a distinction, so we will call both of these complexes and
most often follow the convention in the definition above. We will say a complex is bounded
above if Fn = 0 for all n ≫ 0, and bounded below if Fn = 0 for all n ≪ 0. A bounded
complex is one that is both bounded above and below. If a complex is bounded, we may
sometimes simply write it as a finite complex, say

Cn
δn // Cn−1

// · · · // Cm.

Remark 9.2. The condition that δnδn+1 = 0 for all n implies that im δn+1 ⊆ ker δn.

Definition 9.3. The complex (C•, δ•) is exact at n if im δn+1 = ker δn. An exact sequence
is a complex that is exact everywhere.

Historically, chain complexes first appeared in topology. To study a topological space, one
constructs a particular chain complex that arises naturally from information from the space,
and then calculates its homology, which ends up encoding important topological information
in the form of a sequence of abelian groups.

Definition 9.4 (Homology). The homology of the complex (C•, δ•) is the sequence of
R-modules

Hn(C•) :=
ker δn
im δn+1

.

The nth homology of (C•, δ•) is Hn(C•). The submodules Zn(C•) := ker δn ⊆ Cn are called
cycles, while the submodules Bn(C•) := im δn+1 ⊆ Cn are called boundaries.

The homology of a complex measures how far our complex is from being exact at each
point. Again, we can talk about the cohomology of a cochain complex instead; we will for
now not worry about the distinction.

Remark 9.5. Note that (C•, δ•) is exact at n if and only if Hn(C•) = 0.

Example 9.6. Let Z π // Z/2Z be the canonical projection map. Then

C = Z 4 // Z π // Z/2Z
2 1 0

is a complex, since the image of multiplication by 4 is 4Z, and that is certainly contained in
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kerπ = 2Z. The homology of C is

Hn(C) = 0 for n ⩾ 3

H2(C) =
ker(Z 4−→ Z)
im(0 −→ Z)

=
0

0
= 0

H1(C) =
ker(Z −→ Z/2Z)

im(Z 4−→ Z)
=

2Z
4Z
∼= Z/2Z

H0(C) =
ker(Z/2Z −→ 0)

im(Z −→ Z/2Z)
=

Z/2Z
Z/2Z

= 0

Hn(C) = 0 for n < 0

Notice that our complex is exact at 2 and 0. The exactness at 2 says that the map Z 4−→ Z
is injective, while exactness at 0 says that Z −→ Z/2Z is surjective.

Those last remarks were not a coincidence. We repeat Remark 1.11 but now in this more
general context.

Remark 9.7. The sequence 0 // A
f
// B is exact if and only if f is injective. Similarly,

B
f
// C // 0 is exact if and only if f is surjective. So

0 // A
f
// B

g
// C // 0

is a short exact sequence if and only if

• f is injective • g is surjective • im f = ker g.

Requiring that f be injective is the same as asking that ker f = 0, while g is surjective if
and only if coker g = 0.1 When this is indeed a short exact sequence, we can identify A with
its image f(A), and A = ker g. Moreover, since g is surjective, by the First Isomorphism
Theorem we conclude that C ∼= B/A, so we might abuse notation and identify C with B/A.

Remark 9.8. The complex 0 //M
f
// N // 0 is exact if and only if f is an isomor-

phism.

Remark 9.9. The complex 0 //M // 0 is exact if and only if M = 0.

Example 9.10. Let π be the canonical projection Z −→ Z/2Z. The following is a short
exact sequence:

0 // Z 2 // Z π // Z/2Z // 0 .

We will most often be interested in complexes of R-modules, where the abelian groups
that show up are all modules over the same ring R.

1The cokernel of a homomorphism f : M −→ N is the R-module N/ im f .
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Example 9.11. Let R = k[x] be a polynomial ring over the field k. Then following is a
short exact sequence:

0 // R ·x // R π // R/(x) // 0 .

The first map is multiplication by x, and the second map is the canonical projection.

Here are some more examples of complexes.

Example 9.12. Let R = k[x]/(x2). The following complex is exact:

· · · // R
·x // R

·x // R // · · · .

Indeed, the image and the kernel of multiplication by x are both (x).

Example 9.13. Let R = k[x]/(x3). Consider the following complex:

F• = · · · // R
·x2 // R

·x2 // R // · · · .

The image of multiplication by x2 is (x2), while the the kernel of multiplication by x2 is
(x) ⊇ (x2). For all n,

Hn(F•) = (x)/(x2) ∼= R/(x).

9.2 Categories for the working homological algebraist

Most fields in modern mathematics follow the same basic recipe: there is a main type
of object one wants to study — groups, rings, modules, topological spaces, etc — and a
natural notion of arrows between these — group homomorphisms, ring homomorphisms,
module homomorphisms, continuous maps, etc. The objects are often sets with some extra
structure, and the arrows are often maps between the objects that preserve whatever that
extra structure is. Category theory is born of this realization, by abstracting the basic
notions that make math and studying them all at the same time. How many times have we
felt a sense of déjà vu when learning about a new field of math? Category theory unifies all
those ideas we have over and over in different contexts.

Category theory is an entire field of mathematics in its own right. As such, there is a lot
to say about category theory, and unfortunately it doesn’t all fit in the little time we have
to cover it in this course. We include here some basic definitions and ideas from category
theory we will need throughout the course, but you are strongly encouraged to learn more
about category theory, for example from [ML98] or [Rie17].

First, we want to note that there is a long and fun story about why we used the word
collection when describing the objects in a category. Not all collections are allowed to be
sets, an issue that was first discovered by Russel with his famous Russel’s Paradox. Russel
exposed the fact that one has to be careful with how we formalize set theory. We follow the
ZFC (Zermelo–Fraenkel with choice, short for the Zermelo–Fraenkel axioms plus the Axiom
of Choice) axiomatization of set theory, and while we will not discuss the details of this
formalization here, you are encouraged to read more on the subject.
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Definition 9.14. A category C consists of three different pieces of data:

• a collection of objects, ob (C ),

• for each two objects, say A and B, a collection HomC (A,B) of arrows or morphisms
between A and B, and

• for each three objects A, B, and C, a composition

HomC (A,B)× HomC (B,C) // HomC (A,C)

(f, g) � // g ◦ f

.

We will often drop the ◦ and write simply fg for f ◦ g.

These ingredients satisfy the following axioms:

1) The HomC (A,B) are all disjoint. In particular, if f is an arrow in C , we can talk about
its source A and its target B as the objects such that f ∈ HomC (A,B).

2) For each object A, there is an identity arrow 1A ∈ HomC (A,A) such that 1A ◦ f = f
and g ◦ 1A = g for all f ∈ HomC (B,A) and all g ∈ HomC (A,B).

3) Composition is associative, meaning f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Here are some categories you have likely encountered before:

Example 9.15.

a) The category Set with objects all sets and arrows all functions between sets.

b) The category Grp whose objects are the collection of all groups, and whose arrows are
all the homomorphisms of groups. The identity arrows are the identity homomorphisms.

c) The category Ab whose objects are the collection of all abelian groups, and whose ar-
rows are the homomorphisms of abelian groups. The identity arrows are the identity
homomorphisms.

d) The category Ring of rings and ring homomorphisms.2

e) The category R-mod of modules over a fixed ring R and with R-module homomorphisms.
Sometimes one writes R-Mod for this category, and reserve R-mod for the category of
finitely generated R-modules with R-module homomorphisms.

f) The category Top of topological spaces and continuous functions.

While the objects and arrows might not actually be sets, sometimes they are.

Definition 9.16. A category C is locally small if for all objects A and B in C , HomC (A,B)
is a set. A category C is small if it is locally small and the collection of all objects in C is
a set.

2Contrary to what you may expect, this is not nearly as important as the next one.



122

Many important categories one would think about are at least locally small. For example,
Set is locally small but not small. In a locally small category, we can now refer to its Hom-
sets.

Not all categories consist of sets with extra structure and functions between them.

Example 9.17. Given a partially ordered set X, we can regard X as a category: the objects
are the elements of X, and HomX(x, y) is either a singleton if x ⩽ y or empty if x ̸⩽ y.

This category is clearly locally small, since all nonempty Hom-sets are in fact singletons.

There are some special types of arrows we may want to consider.

Definition 9.18. Let C be any category.

• An arrow f ∈ HomC (A,B) is an isomorphism if there exists g ∈ HomC (B,A) such
that gf = 1A and fg = 1B. Unsurprisingly, such an arrow g is called the inverse of f .

• An arrow f ∈ Hom(B,C) is monic, a monomorphism, or a mono if for all arrows

A
g1
//

g2
// B

f
// C

if fg1 = fg2 then g1 = g2.

• Similarly, an arrow f ∈ Hom(A,B) is an epi or an epimorphism if for all arrows

A
f
// B

g1
//

g2
// C

if g1f = g2f then g1 = g2.

We follow a familiar pattern and define the related concepts one can guess should be
defined.

Definition 9.19. A subcategory C of a category D consists of a subcollection of the
objects of D and a subcollection of the morphisms of D such that the following hold:

• For every object C in C , the arrow 1C ∈ HomD(C,C) is an arrow in C .

• For every arrow in C , its source and target in D are objects in C .

• For every pair of arrows f and g in C such that fg is an arrow that makes sense in D ,
fg is an arrow in C .

In particular, C is a category in its own right.

Example 9.20. The category of finitely generated R-modules with R-module homomor-
phisms is a subcategory of R-mod.

Of course that once we have categories, we want maps between categories as well.
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Definition 9.21. Let C and D be categories. A covariant functor F : C −→ D is
a mapping that assigns to each object A in C an object F (A) in D , and to each arrow
f ∈ HomC (A,B) an arrow F (f) ∈ HomD(F (A), F (B)), such that

• F preserves the composition of maps, meaning F (fg) = F (f)F (g) for all arrows f and
g in C , and

• F preserves the identity arrows, meaning F (1A) = 1F (A) for all objects A in C .

A contravariant functor F: C −→ D is a mapping that assigns to each object A in C an
object F (A) in D , and to each arrow f ∈ HomC (A,B) an arrow F (f) ∈ HomD(F (B), F (A)),
such that

• F preserves the composition of maps, meaning

F (fg) = F (g)F (f)

for all composable arrows f and g in C , and

• F preserves the identity arrows, meaning F (1A) = 1F (A) for all objects A in C .

So a contravariant functor is a functor that flips all the arrows. We can also describe
a contravariant functor as a covariant functor from C to the opposite category of D , Dop,
which is a category built out of D by flipping all the arrows.

Definition 9.22. Let C be a category. The opposite category of C , denoted C op, is a
category whose objects are the objects of C , and such that each arrow f ∈ HomC op(A,B) is
the same as some arrow in HomC op(A,B). The composition of two morphisms fg in C op is
defined as the composition gf in C .

Many objects and concepts one might want to describe are obtained from existing ones
by flipping the arrows. Opposite categories give us the formal framework to talk about such
things. We will often want to refer to dual notions, which will essentially mean considering
the same notion in a category C and in the opposite category C op; in practice, this means
we should flip all the arrows involved. We will see examples of this later on.

In particular, we can now make our previous remark more precise.

Remark 9.23. A contravariant functor F : C −→ D can be thought of as a covariant functor
C op −→ D , or also as a covariant functor C −→ Dop. If using one of these conventions, one
needs to be careful, however, when composing functors, so that the respective sources and
targets match up correctly. While we haven’t specially discussed how one composes functors,
it should be clear that applying a functor F : C −→ D and G : D −→ E is the same as
applying a functor C −→ D , which we can write as GF .

For example, if F : C −→ D and G : D −→ E are both contravariant functors, the
composition GF : C −→ E is a covariant functor, since

A

f
��

F (A) GF (A)

GF (f)
��

// //

B F (B)

F (f)

OO

GF (B)
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So we could think of F as a covariant functor C −→ Dop and G as a covariant functor
Dop −→ E . Similarly, if F : C −→ D is a covariant functor and G : D −→ E is a
contravariant functor, GF : C −→ E is a contravariant functor. In this case, we can think
of G as a covariant functor D −→ E op, so that GF is now a covariant functor C −→ E op.

But back to functors, let’s see some examples.

Example 9.24. Here are some examples of functors you may have encountered before.

a) In many categories one may think about, the objects are sets with some extra structure,
and the arrows are functions between those sets that preserved that extra structure. The
forgetful functor from such a category to Set is the functor that, just as the name says,
forgets that extra structure, and sees only the underlying sets and functions of sets. For
example, the forgetful functor Gr −→ Set sends each group to its underlying set, and
each group homomorphism to the corresponding function of sets.

b) The identity functor on any category C does what the name suggests: it sends each object
to itself and each arrow to itself.

c) Localization is a functor. Let R be a ring and W be a multiplicatively closed set in
R. There is localization at W induces a a functor R-mod −→ W−1R-mod that sends
each R-module M to W−1M , and each R-module homomorphism α : M −→ N to the
R-module homomorphism W−1α : W−1M −→ W−1N .

Remark 9.25. Any functor sends isomorphisms to isomorphisms, since it preserves compo-
sitions and identities.

If we think about functors as functions between categories, it’s natural to consider what
would be the appropriate versions of the notions of injective or surjective.

Definition 9.26. A covariant functor F : C −→ D between locally small categories is

• faithful if all the functions of sets

HomC (A,B) // HomD(F (A), F (B))

f � // F (f)
are injective.

• full if all the functions of sets

HomC (A,B) // HomD(F (A), F (B))

f � // F (f)
are surjective.

• fully faithful if it is full and faithful.

• an embedding if it is fully faithful and injective on objects.
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Example 9.27. The forgetful functor R-mod −→ Set is faithful since any two maps of
R-modules with the same source and target coincide if and only if they are the same function
of sets. This functor is not full, since there not every functions between the underlying sets
of two R-modules is an R-module homomorphism.

Remark 9.28. A fully faithful functor is not necessarily injective on objects, but it is
injective on objects up to isomorphism.

Definition 9.29. A subcategory C of D is a full subcategory if C includes all of the
arrows in D between any two objects in C . In other words, a subcategory is full if the
inclusion functor F : C −→ D is full.

Example 9.30.

a) The category Ab of abelian groups is a full subcategory of Grp.

b) The category whose objects are all sets and with arrows all bijections is a subcategory of
Set that is not full.

And finally, because mathematicians do not lack a sense of humor, things do not stop
there. We can then consider mappings between functors, because why not.3

Definition 9.31. Let F and G be covariant functors C −→ D . A natural transfor-
mation between F and G is a mapping that to each object A in C assigns an arrow
ηA ∈ HomD(F (A), G(A)) such that for all f ∈ HomC (A,B), the diagram

F (A)

F (f)
��

ηA // G(A)

G(f)
��

F (B) ηB
// G(B)

commutes. A natural isomorphism is a natural transformation η where each ηA is an

isomorphism. We sometimes write C
F

))

G

66�� η D or simply η : F =⇒ G.

Saying that the diagram commutes means that the resulting compositions are all the
same whichever way we go, meaning τBF (f) = G(f)τA. We could have started our story
by saying that homological algebra is the study of commutative diagrams, and we wouldn’t
exactly be far off from reality.

Often, when studying a particular topic, we sometimes say a certain map is natural to
mean that there is actually a natural transformation behind it.

Example 9.32. The abelianization of a group G is the abelian group Gab = G/[G,G], where
[G,G] denotes the commutator subgroup of G, the subgroup generated by all commutators
of elements in G, given by

[G,G] :=
〈
ghg−1h−1 | g, h ∈ G

〉
.

3And also because they are useful.



126

It turns out that [G,G] is a normal subgroup of G, and so Gab is simply a quotient of G. In
particular, the abelianization comes equipped with a natural projection map πG : G −→ Gab,
the usual quotient map from G to a normal subgroup. Here we mean natural in two different
ways: both that this is common sense map to consider, and that this is in fact coming
from a natural transformation. What’s happening behind the scenes is that abelianization
is a functor ab : Grp −→ Grp. On objects, the abelianizations functor is defined as

G −→ Gab. Given an arrow, meaning a group homomorphism G
f−→ H, one can check that

[G,G] is contained in the kernel of πHf , so πHf factors through Gab, and there exists a
group homomorphism f ab making the following diagram commute:

G
πG //

f

��

Gab

fab

��

H
πH // Hab

.

So the abelianization functor takes the arrow f to f ab. The commutativity of the diagram
above says that π− is a natural transformation between the identity functor on Grp and the

abelianization functor, which we can write more compactly as Grp
id

**

ab

44�� π Grp .

Definition 9.33. Let F,G : C −→ D be two functors between the categories C and D . We
write

Nat(F,G) = {natural transformations F −→ G}.

Given two categories C and D , one can build a functor category4 with objects all
covariant functors C −→ D , and arrows the corresponding natural transformations. This
category is denoted DC . Sometimes one writes Hom(F,G) for Nat(F,G), but we will avoid
that, as it might make things even harder to follow.

For the functor category to truly be a category, though, we need to know how to compose
natural transformations.

Remark 9.34. Consider natural transformations

C
F

))

G

66�� φ D and C
G

))

H

55�� η D .

We can compose them for form a new natural transformation

C
F

))

H

66�� ηφ D

We should think of this composition as happening vertically. For each object C in C , ηφ

4Yes, the madness is neverending.
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sends C to the arrow F (A)
φA // G(A)

ηA // H(A) . This makes the diagram

F (A)

φA

��

F (f)
// F (B)

φB

��

G(A)

ηA
��

G(f)
// G(B)

ηB
��

H(A)
H(f)

// H(B)

commute.

Even though this is only a short introduction to category theory, we would be remiss not
to mention the Yoneda Lemma, arguably the most important statement in category theory.
For that, we will need some of the most important functors we will discuss in this class.

Definition 9.35. Let C be a locally small category. An object A in A induces two Hom
functors:

• The covariant functor HomC (A,−) : C −→ Set sends each object B to the set
HomC (A,B), and each f ∈ HomC (B,C) to the function HomC (f,B) =: f∗

HomC (A,B) // HomC (A,C)

g � // fg

.

• The contravariant functor HomC (−, B) : C −→ Set sends each object A to the set
HomC (A,B), and each f ∈ HomC (A,C) to the function HomC (A, f) =: f ∗

HomC (A,B) // HomC (C,B)

g � // gf

.

Theorem 9.36 (Yoneda Lemma). Let C be a locally small category, and fix an object A in
C . Let F : C −→ Set be a covariant functor. Then there is a bijection

Nat(HomC (A,−), F )
γ
// F (A) .

Moreover, this correspondence is natural in both A and F .

Proof. Let φ be a natural transformation in Nat(HomC (A,−), F ). The proof of Yoneda’s
Lemma is essentially the following diagram:
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HomC (A,A)

φA

��

HomC (A,f)
// HomC (A,X)

φX

��

1A_

��

� // f
_

��

u � // (F (f))u = φX(f)

F (A)
F (f)

// F (X)

Our bijection will be defined by γ(φ) := φA(1A). We should first check that this
makes sense: arrows in Set are just functions between sets, and so φA is a function of
sets HomC (A,A) −→ F (A). Also, HomC (A,A) is a set that contains at least the element
1A, and φA(1A) is some element in the set F (A).

Given any fixed f ∈ HomC (A,X), the fact that φ is a natural transformation trans-
lates into the outer commutative diagram. In particular, the maps of sets F (f)φA and
φX HomC (A, f) coincide, and must in particular take 1A to the same element in F (X). This
is the commutativity of the inner diagram, with u := φA(1A).

The commutativity of the diagram above says that φ is completely determined by φA(1A),
since for any other object X in C and any arrow f ∈ HomC (A,X), we necessarily have
φX(f) = F (f)φA(1A). In particular, our map γ(φ) = φA(1A) is injective. Moreover, note
that each choice of u ∈ F (A) gives rise to a different natural transformation φ by setting
φX(f) = F (f)u. So our map γ is indeed a bijection.

We now have two naturality statements to prove. Naturality in the functor means that
given a natural isomorphism η : F −→ G, the diagram

Nat(HomC (A,−), F )
η∗
��

γF // F (A)

ηA
��

Nat(HomC (A,−), G) γG
// G(A)

commutes. Given a natural transformation φ between HomC (A,−) and F ,

ηA ◦ γF (φ) = ηA(φA(1A)) by definition of γ

= (η ◦ φ)A(1A) by definition of composition of natural transformations

= γG(η ◦ φ) by definition of γ

= γG ◦ η∗(φ) by definition of η∗

so commutativity does hold. Naturality on the object means that given an arrow f : A −→ B,
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the diagram

Nat(HomC (A,−), F )
(f∗)∗

��

γ
// F (A)

F (f)

��

Nat(HomC (B,−), F ) γ
// F (B)

commutes. Given a natural transformation φ between HomC (A,−) and F ,

F (f) ◦ γA(φ) = F (f)(φA(1A)),

while
γB ◦ (f ∗)∗(φ) = γB(φ ◦ f ∗) = (φ ◦ f ∗)B(1B).

Now notice that

HomC (B,B)
f∗
// HomC (A,B)

φB // F (B)

1B
� // f � // φB(f)

.

Let’s look back at the big commutative diagram we started our proof with. It says, in
particular, that φB(f) = F (f)(φA(1A)). So again commutativity does hold, and we are
done.

One can naturally (pun intended) define the notion of functor category of contravariant
functors, and then prove the corresponding Yoneda Lemma, which will instead use the
contravariant Hom functor.

Exercise 22 (Contravariant version of the Yoneda Lemma). Let C be a locally small cate-
gory, and fix an object B in C . Let F : C −→ Set be a contravariant functor. Then there
is a bijection

Nat (HomC (−, B), F )
γ
// F (B) .

In a way, the Yoneda Lemma says that to give a natural transformation between the
functors HomC (A,−) and F is choosing an element in F (A).

Remark 9.37. Notice that the Yoneda Lemma says in particular that the collection of all
natural transformations from HomC (A,−) to F is a set. This wasn’t clear a priori, since the
collection of objects in C is not necessarily a set.

Remark 9.38. If we apply the Yoneda Lemma 9.36 to the case when F itself is also a Hom
functor, say F = HomC (B,−), the Yoneda Lemma says that there is a bijection between
Nat(HomC (A,−),HomC (B,−)) and HomC (B,A). In particular, each arrow in C determines
a natural transformation between Hom functors.

One of the consequences of the Yoneda Lemma is the Yoneda Embedding, which roughly
says that every locally small category can be embedded into the category of contravariant
functors from C to Set. In particular, the Yoneda embedding says that natural transforma-
tions between representable functors correspond to arrows between the representing objects.
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Theorem 9.39 (Yoneda Embedding). Let C be a locally small category. The covariant
functor

C // SetC
op

A

f
��

HomC (−, A)
f∗
��

� //

B HomC (−, B)

from C to the category of contravariant functors C −→ Set is an embedding. Moreover, the
contravariant functor

C // SetC

A

f
��

HomC (A,−)
� //

B HomC (B,−)
f∗
OO

from the category C to the category of covariant functors C −→ Set is also an embedding.

Proof. First, note that our functors are injective on objects because the Hom-sets in our
category are all disjoint. We need to check that given objects A and B in C , we have
bijections

HomC (A,B) ∼= Nat(HomC (−, A),HomC (−, B))

and
HomC op(A,B) ∼= Nat(HomC (A,−),HomC (B,−)).

We will do the details for the first one, and leave the second as an exercise.
First, let us take a sanity check and confirm that indeed our proposed functors take arrows

f : A −→ B in C to natural transformations between HomC (−, A) and HomC (−, B). This
is essentially the content of Remark 9.38, but let’s carefully check the details. The Yoneda
Lemma 9.36 applied here tells us that each natural transformation φ between HomC (−, A)
and F = HomC (−, B) corresponds to an element u ∈ HomC (A,B), which we obtain by
taking u := φA(1A). As we discussed in the proof of the Yoneda Lemma 9.36, we can
recover φ from u by taking the natural transformation φ that for each object X in C has
φX : HomC (X,A) −→ HomC (X,B) given by φX(f) = HomC (f,B)(u) = f∗(u).

We can see that different arrows f give rise to different natural transformations by ap-
plying the resulting natural transformation f;∗ to the identity arrow 1A, which takes it to
f . Moreover, the Yoneda Lemma 9.36 tells us that every natural transformation φ between
HomC (−, A) and HomC (−, B) is the image of some u, as described above.

The functors that are naturally isomorphic to some Hom functor are important.

Definition 9.40. A covariant functor F : C −→ Set is representable if there exists an
object A in C such that F is naturally isomorphic to HomC (A,−). A contravariant functor
F : C −→ Set is representable if there exists an object B in C such that F is naturally
isomorphic to HomC (−, B).
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Example 9.41. We claim that the identity functor Set −→ Set is representable. Let 1 be
a singleton set. Given any set X, there is a bijection between elements x ∈ X and functions
1 −→ X sending the one element in 1 to each x. Moreover, given any other set Y , and a
function f : X −→ Y , our bijections make the following diagram commute:

HomSet(1, X)

f∗
��

∼= // X

f

��

HomSet(1, Y )
∼= // Y.

This data gives a natural isomorphism between the identity functor and HomSet(1,−).

A representable functor encodes a universal property of the object that represents it.
For example, in Example 9.41, mapping out of the singleton set is the same as choosing
an element x in a set X. We have all seen constructions that are at first a bit messy but
that end up satisfying some nice universal property that makes everything work out. At the
end of the day, a universal property allows us to ignore the messy details and focus on the
universal property, which usually says everything we need to know about the construction.
And as you may have already realized, universal properties are everywhere. Here is a formal
definition.

Definition 9.42. Let C be a locally small category. A universal property of an object C
in C consists of a representable functor F : C −→ Set together with a universal element
X ∈ F (C) such that F is naturally isomorphic to either HomC (C,−) (if F is covariant) or
HomC (−, C) (if F is contravariant), via the natural isomorphism that corresponds to X via
the bijection in the Yoneda Lemma 9.36.

We can rephrase this in terms of universal arrows.

Definition 9.43. Let F : C −→ D be covariant functor. Given an object D ∈ D , a
universal arrow from D to F is a unique pair (U, u) where U is an object in C and a
unique arrow u ∈ HomD(D,F (U)) with the following universal property: for any arrow
f ∈ HomD(D,F (Y )), there exists a unique arrow h ∈ HomC (U, Y ) such that the following
diagram commutes:

U

h

��

D u //

f
!!

F (U)

F (h)
��

Y F (Y )

There is a dual to this definition. A universal arrow from F to D is a unique pair
(U, u), where C is an object in C and u ∈ HomD(F (U), D) that satisfy the following univer-
sal property: for any arrow f ∈ HomD(F (Y ), D), there exists a unique h ∈ HomC (Y, U)
such that the following diagram commutes:

U D F (U)uoo

Y

h

OO

F (Y )

f

aa

F (h)

OO
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Remark 9.44. Let F : C −→ D be a covariant functor, and fix an object U in C , an object
DD in D , and an arrow u ∈ HomD(D,F (U)). Notice that HomD(D,F (−)) determines a
covariant functor C −→ Set. By the Yoneda Lemma 9.36, the following is a recipe for a
natural transformation between HomC (U,−) and HomD(D,F (−)): for each object Y in C
and each arrow h ∈ HomC (U, Y ), set φX(h) := HomD(D,F (h))(u). Notice that

HomD(D,F (U))
HomD(D,F (h))

// HomD(D,F (Y ))

f � // F (h) ◦ u
,

so φX(h)(f) = F (h) ◦ u.
We get the following commutative diagram:

HomC (U,U)

φU

��

HomC (U,h)
// HomC (U, Y )

φY

��

1U_

��

� // h_

��

u � // F (h) ◦ u =: φY (h)

HomD(D,F (U))
HomD(D,F (h))

// HomD(D,F (Y ))

Given an arrow f ∈ HomD(D,F (Y )), φY (h) = f for some h ∈ HomC (U, Y ) if and only
if F (h) ◦ u = f .

On the one hand, φ is a natural isomorphism if and only if for every object Y in C and
every f ∈ HomD(D,F (Y )) there exists a unique h ∈ HomC (U, Y ) such that F (h) ◦ u = f .
On the other hand, that is exactly the condition required for (U, u) to be a universal arrow
from D to F . So we have shown that the following are equivalent:

• (U, u) is a universal arrow from D to F .

• U represents the functor HomD(D,F (−)) : C −→ Set, via u ∈ HomD(D,F (U)).

Similarly, one can prove the dual statement:

• (U, u) is a universal arrow from F to D.

• U represents the functor HomD(F (−), D) : C −→ Set, via u ∈ HomD(F (U), D).

Products and coproducts are a great example of constructions with universal properties.

Definition 9.45. Let C be a locally small category, and consider a family of objects {Ai}i∈I
in C . The product of the Ai is an object in C , denoted by

∏
iAi or A1 × · · · × An if I
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is finite, together with arrows πj ∈ HomC (
∏

iAi, Aj) for each j, satisfying the following
universal property: given any object B in C and arrows fi : B −→ Ai for each i,

B

f

��

fi

||

fj

""

Ai
∏

iAi πj
//

πi
oo Aj

The coproduct of the Ai is an object in C , denoted by
∐

iAi or in some contexts
⊕

iAi,
together with arrows ιj ∈ HomC (Aj,

∐
iAi, ) for each j, satisfying the following universal

property: given any object B in C and arrows fi : Ai −→ B for each i, the following diagram
commutes:

B

Ai ιi
//

fi

<<

∐
iAi

f

OO

Ajιj
oo

fj
bb

Let’s phrase the universal property of products as a universal property in this formal
sense, at least in the case of the product of two object C1 and C2 in C . To do that, we need
to consider the product category C×C with objects given by pairs (C1, C2) of objects in C
and arrows in (C1, C2) −→ (C3, C4) given by pairs of arrows (f1, f2) with f1 ∈ HomC (C1, C3)
and f2 ∈ HomC (C2, C4). The diagonal functor ∆ : C −→ C × C is exactly what it sounds
like: ∆(C) = (C,C) for every object C in C and ∆(f) = (f, f) for every arrow f in C .

Given objects X and Y in C , consider the projection arrows π1 : X × Y −→ X and
π2 : X×Y −→ Y . We claim that the object X×Y together with the arrow (π1, π2) in C ×C
form a universal arrow from ∆ to (X, Y ) in C ×C . Why? This means that given any arrow
(f1, f2) ∈ HomC×C ((X1, X2),∆(Y )), there exists a unique h ∈ C (X1 ×X2, Y ) such that

X1 ×X2 (X1, X2) ∆(X1 ×X2)
(π1,π2)
oo

Y

h

OO

∆(Y )
(f1,f2)

hh

∆(h)

OO

commutes. This is indeed the universal property of products we just described less formally
above: given f1 : Y −→ X1 and f2 : Y −→ X2, there is a unique h : Y −→ X1×X2 such that

X1 ×X2 (X1, X2) (X1 ×X2, X1 ×X2)
(π1,π2)
oo

Y

h

OO

(Y, Y )

(f1,f2)

ii

∆(h)

OO

Equivalently, following the recipe we described in Remark 9.44, the universal property
of the product is encoded in the representable functor HomC×C (∆(−), (X1, X2)), which is
represented by X1 × X2 via (π1, π2). So more precisely, that says that there is a natural
isomorphism

HomC (−, X1 ×X2) ∼= HomC×C (∆(−), (X1, X2)),
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and that is precisely the natural transformation that the Yoneda bijection we constructed in
Theorem 9.36 takes to (π1, π2) ∈ HomC (∆(X1 ×X2), (X1, X2)). If we follow that bijection,
our natural isomorphism φ sends an object Y in C to the arrow

HomC (Y,X1 ×X2)
φY // HomC×C (∆(Y ), (X1, X2))

f � //

(
∆(Y )

(f,f)−−→ ∆(X1 ×X2)
(π1,π2)−−−−→ (X1, X2)

)
.

Since φY is a bijection, every arrow (f1, f2) ∈ HomC×C (∆(Y ), (X1, X2)) is φY (f) for some
f ∈ HomC (Y,X1 ×X2). Ultimately, this means that there exists f such that f1 = π1f and
f2 = π2f . And suprise surprise: we just rediscovered the universal property of the product.

Universal properties are closely related to adjoint functors.

Definition 9.46. Let C and D be locally small categories. Two covariant functors

C
F //

D
G
oo

form an adjoint pair (F,G) if given any objects C ∈ C and D ∈ D , there is a bijection
between the Hom-sets

HomD(F (C), D)
∼= // HomC (C,G(D))

which is natural on both objects, meaning that for all f ∈ HomC (C1, C2) and g ∈ HomD(D1, D2),
the diagrams

HomD(F (C2), D)

F (f)∗

��

∼= // HomC (C2, G(D))

f∗

��

HomD(F (C1), D)
∼= // HomC (C1, G(D))

and

HomD(F (C), D1)

g∗
��

∼= // HomC (C,G(D1))

G(g)∗
��

HomD(F (C), D2)
∼= // HomC (C,G(D2))

commute for all C ∈ C and all D ∈ D . We say that F is the left adjoint of G, or that F
has a right adjoint, and that G is the right adjoint of F , or that G has a left adjoint.

We can think of adjoint functors as solutions to optimization problems. A particular
adjoint functor gives the most efficient functorial solution to some problem.

Example 9.47. Given a set I, what is the most efficient way to assign an R-module to I
in a functorial way? The solution to this problem is the construction of free modules, the
functor Free : Set −→ R-mod that sends each set I to the free R-module RI on I. The
free functor is precisely a left adjoint to the forgetful functor R-mod −→ Set.

As Mac Lane said [ML98], “the slogan is adjoint functors arise everywhere”.

Remark 9.48. We can rephrase the condition that G : D −→ C has a left adjoint functor
F : C −→ D as follows: for every object C in C , there is a universal arrow from C to
G, and for every object D in D there exists a universal arrow from F to D. To see that,
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let ηD ∈ HomD(F (G(D)), D) be the image of the identity on HomD(G(D), G(D)) via the
bijection

HomC (G(D), G(D))
∼= // HomD(F (G(D)), D)

idG(D)
� // ηD

given by the definition of adjoint functors, and let εC ∈ HomC (C,GF (C)) be be the image
of the identity on HomC (F (C), F (C)) via the bijection

HomD(F (C), F (C))
∼= // HomD(C,GF (C))

idF (C)
� // εC

.

We claim that (F (C), εC) is a universal arrow from C to G. That would mean that given
arrow f ∈ HomC (C,G(Y )), there must exist a unique arrow h ∈ HomD(F (C), Y ) such that
the following diagram commutes:

F (C)

h
��

D
εC //

f
##

G(F (C))

G(h)

��

Y G(Y ).

This says that G(h)∗(εC) = G(h) ◦ εC = f , which means that

1F (C)_

��

� // εC_

��

HomD(F (C), F (C))

h∗

��

∼= // HomC (C,GF (C))

G(h)∗

��

HomD(F (C), Y ) ∼=
// HomC (C,G(Y ))

h � // f

On the one hand, such an h does exist: just take h ∈ HomC (F (C), Y ) that is sent to f via
the bijection between HomD(F (C), Y ) and HomC (C,G(Y )). Since this map is a bijection,
such an h is unique.

Similarly, we claim that (G(D), ηD) is a universal arrow from F to D. That would mean
that for any arrow f ∈ HomD(F (Y ), D), there exists a unique h ∈ HomC (Y,G(D)) such
that the following diagram commutes:

G(D) D F (G(D))
ηDoo

Y

h

OO

F (Y )

f

dd

F (h)

OO

This means that (F (h))∗(ηD) = ηD ◦ F (h) = f , which means that
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1G(D)_

��

� // ηD_

��

HomC (G(D), G(D))

h∗

��

∼= // HomD(D,FG(D))

F (h)∗

��

HomC (G(D), Y ) ∼=
// HomD(D,F (Y ))

h � // f

Again, such an h exists and it is unique because it must correspond to f via the bijection
between HomD(D,F (Y )) and HomC (G(D), Y ).

We can talk about the left or right adjoint to a given functor.

Exercise 23. Left and right adjoints are unique up to natural isomorphism. More precisely,
given an adjoint pair of functors (F,G), show that if G′ is also a right adjoint to F , then G′

and G are naturally isomorphic. Similarly, one can show that if F ′ is also a left adjoint to
G, then F and F ′ are naturally isomorphic.

Example 9.49. Fix a ring R. The forgetful functor F : R-mod −→ Set has a left adjoint.
That left adjoint is the functor G : Set −→ R-mod that takes a set S to the free R-module
⊕SR on S, meaning the R-module whose elements are finite formal linear combinations
r1s1 + · · · + rnsn of elements si ∈ S with coefficients ri ∈ R. This is the same free module
we described much earlier. Each function of sets defines an R-module map by sending each
basis element to its image via the given function.

Even without any category theory, one often describes the free R-module on a set S by
the following universal property: given a function f from a set S to an R-module M , there
exists a unique R-module homomorphism from the free module ⊕SR to M that agrees with
f on the basis elements. And indeed, one can check that this is the universal property we
formally obtain from the fact that the free R-module functor is left adjoint to the forgetful
functor from R-mod.

This type of free construction is quite common, and often gives rise to adjunctions. We
can think about the free functor from Set to R-mod as the most efficient way of defining
an R-module from a given set. It’s efficient because it comes with a nice universal property.

We close this short detour into the wonderful world of category theory to point out that if
we wanted to sound really obscure, we could have defined chain complexes in this categorical
language.

Remark 9.50. First, we view Z as a partially ordered set under ⩾. As in Example 9.15 9.17,
Z now gives us a category whose objects are the integers, and where we have an arrow in
HomZ(n,m) if n ⩾ m. If we ignore the identity maps HomZ(n, n) and composite maps, we
can represent this category in the following diagram:

· · · // n+ 1 // n // n− 1 // · · · .
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From this perspective, a chain complex is a functor F : Z −→ Ab: for each n ∈ Z, we get
an R-module Fn, and we also get an R-module homomorphisms Fn+1 −→ Fn for each n.
Indeed, this can all be represented as a sequence

· · · // Fn+1
// Fn // Fn−1

// · · · .

For our functor to truly be a complex, though, we must require that all compositions
Fn+1

// Fn // Fn−1 be 0. A map of complexes, also known as a chain map, is a natural
transformation between two such functors.

9.3 Maps of complexes

Unsurprisingly, we can form a category of complexes, but to do that we need the right
definition of maps between complexes. We also take this section as a chance to set up some
definitions we will need later.

Definition 9.51. Let (F•, δ
F
• ) and (G•, δ

G
• ) be complexes. A map of complexes or a chain

map, which we write as h : (F•, δ
F
• ) −→ (G•, δ

G
• ) or simply h : F• −→ G•, is a sequence of

homomorphisms of R-modules hn: Fn −→ Gn such that the following diagram commutes:

· · · // Fn+1

hn+1

��

// Fn

hn
��

// Fn−1

hn−1

��

// · · ·

· · · // Gn+1
// Gn

// Gn−1
// · · ·

This means that hnδ
F
n+1 = δGn+1hn+1 for all n.

Example 9.52. The zero and the identity maps of complexes (F•, δ•) −→ (F•, δ•) are exactly
what they sound like: the zero map 0F• is 0 in every homological degree, and the identity
map 1F• is the identity in every homological degree.

This is the notion of morphism we would want to form a category of chain complexes.

Definition 9.53. Let R be a ring. The category of chain complexes of R-modules,
denoted Ch(R−mod) or simply Ch(R), is the category with objects all chain complexes of
R-modules and arrows all complex maps between them. When R = Z, we write Ch(Ab) for
Ch(Z), the category of chain complexes of abelian groups.

Exercise 24. Show that the isomorphisms in the category Ch(R) are precisely the maps of
complexes

· · · // Fn+1

hn+1

��

// Fn

hn
��

// Fn−1

hn−1

��

// · · ·

· · · // Gn+1
// Gn

// Gn−1
// · · ·

such that hn is an isomorphism for all n.

This is a good notion of map of complexes: it induces homomorphisms in homology.
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Lemma 9.54. Let h : (F•, δ
F
• ) −→ (G•, δ

G
• ) be a map of complexes. For all n, hn restricts

to homomorphisms Bn(h) : Bn(F•) −→ Bn(G•) and Zn(h) : Zn(F•) −→ Zn(G•). As a
consequence, h induces homomorphisms on homology Hn(h) : Hn(F•) −→ Hn(G•).

Proof. Since hnδ
F
n+1 = δGn+1hn+1, any element a ∈ Bn(F•), say a = δFn+1(b), is taken to

hn(a) = hnδ
F
n+1(b) = δGn+1hn+1(b) ∈ im δGn+1 = Bn(G•).

Similarly, if a ∈ Zn(F•) = ker δFn , then

δnhn(a) = hn−1δ
F
n (a) = 0,

so hn(a) ∈ ker δGn = Zn(G•). Finally, the restriction of hn to Zn(F•) −→ Zn(G•) sends
Bn(F•) into Bn(G•), and thus it induces a well-defined homomorphism on the quotients
Hn(F•) −→ Hn(G•).

In particular, this says that taking nth homology is a functor Hn : Ch(R) −→ R-mod,
which takes each map of complexes h : F•,−→ G• to the R-module homomorphism Hn(h) :
Hn(F•) −→ Hn(G•).

Definition 9.55. A map of chain complexes h is a quasi-isomorphism if it induces an
isomorphism in homology, meaning Hn(h) is an isomorphism of R-modules for all n.

Remark 9.56. Note that saying that if f is a quasi-isomorphism between F and G says
more than just that Hn(F ) ∼= Hn(G) for al n: it says that there are such isomorphisms that
are all induced by f .

Exercise 25. Let π denote the projection map from Z to Z/2Z. The chain map

· · · // 0 //

0

��

Z 2 //

0

��

// Z
π

��

// 0

0

��

// · · ·

· · · // 0 // 0 // Z/2Z // 0 // · · ·

is a quasi-isomorphism.

Definition 9.57. Let f, g : F −→ G be maps complexes. A homotopy, sometimes referred
to as a chain homotopy, between f and g is a sequence of maps hn : Fn −→ Gn+1

· · · δn+2
// Fn+1

fn+1

��

gn+1

��

δn+1
// Fn

fn

��

gn

��

hn

}}

δn // Fn−1

fn−1

��

gn−1

��

δn−1
//

hn−1

}}

· · ·

· · ·
δn+2

// Gn+1 δn+1

// Gn δn
// Gn−1 δn−1

// · · ·

such that
δn+1hn + hn−1δn = fn − gn
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for all n. If there exists a homotopy between f and g, we say that f and g are homotopic.
If f is homotopic to the zero map, we say it is null-homotopic. If f : (F•, δ

F
• ) −→ (G•, δ

G
• )

and g : (G•, δ
G
• ) −→ (F•, δ

F
• ) are maps of complexes such that fg is homotopic to the identity

map on (G•, δ
G
• ) and gf is homotopic to the identity chain map on (F•, δ

F
• ), we say that f

and g are homotopy equivalences and (F•, δ
F
• ) and (G•, δ

G
• ) are homotopy equivalent.

Exercise 26. Homotopy is an equivalence relation.

This is an interesting relation because homotopic maps induce the same map on homology.

Lemma 9.58. Homotopic maps of complexes induce the same map on homology.

Proof. Let f, g : (F•, δ
F
• ) −→ (G•, δ

G
• ) be homotopic maps of complexes, and let h be a

homotopy between f and g. We claim that the map of complexes f − g (defined in the
obvious way) sends cycles to boundaries. If a ∈ Zn(F•), then

(f − g)n(a) = δn+1hn + hn−1δn(a)︸ ︷︷ ︸
0

= δn+1(hn(a)) ∈ Bn(G•).

The map on homology induced by f − g must then be the 0 map, so f and g induce the
same map on homology.

Corollary 9.59. Homotopy equivalences are quasi-isomorphisms.

Proof. If f : (F•, δ
F
• ) −→ (G•, δ

G
• ) and g : (G•, δ

G
• ) −→ (F•, δ

F
• ) are such that fg is homotopic

to 1G• and gf is homotopic to 1F• , then by Lemma 9.58 fg induces the identity map on
homology. Then for each n, Hn(f)Hn(g) = Hn(fg) is an isomorphism, and thus Hn(f) and
Hn(g) must both be isomorphisms.

The converse is false.

Exercise 27. Let π denote the projection map from Z to Z/2Z. The chain map

· · · // 0 //

0

��

Z 2 //

0

��

// Z
π

��

// 0

0

��

// · · ·

· · · // 0 // 0 // Z/2Z // 0 // · · ·

is a quasi-isomorphism but not a homotopy equivalence.

Remark 9.60. In fact, the relation “there is a quasi-isomorphism from F to G” is not
symmetric: in the example in Exercise 27, there is no quasi-isomorphism going in the opposite
direction of the one given.

Now that we know about maps between complexes, it’s time to point out that we can
also talk about complexes and exact sequences of complexes. While we will later formalize
this a little better when we discover that Ch(R) is an abelian category, let’s for now give
quick definitions that we can use.
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Definition 9.61. Given complexes B and C, B is a subcomplex of C if Bn is a submodule
of Cn for all n, and the inclusion maps ιn : Bn ⊆ Cn define a map of complexes ι : B −→ C.
Given a subcomplex B of C, the quotient of C by B is the complex C/B that has Cn/Bn

in homological degree n, with differential induced by the differential on Cn.

Exercise 28. If B is a subcomplex of C, then the differential d on C satisfies dn(Bn) ⊆ Bn−1.
Therefore, dn induces a map of R-modules Cn/Bn −→ Cn−1/Bn−1 for all n, so that our
definition of the differential on C/B actually makes sense.

We can also talk about kernels and cokernels of maps of complexes.

Definition 9.62. Given any map of complexes f : B• −→ C•, the kernel of f is the
subcomplex ker f of B• that we can assemble from the the kernels ker fn. More precisely,
ker f is the complex

· · · // ker fn+1
// ker fn // ker fn−1

// · · ·
where the differentials are simply the corresponding restrictions of the differentials on B•.
Similarly, the image of f is the subcomplex of C•

· · · // im fn+1
// im fn // im fn−1

// · · ·
where the differentials are given by restriction of the corresponding differentials in C•. The
cokernel of f is the quotient complex C•/ im f .

Again, there are some details to check.

Exercise 29. Show that the kernel, image, and cokernel of a complex map are indeed
complexes.

Definition 9.63. A complex in Ch(R) is a sequence of complexes of R-modules Cn and
chain maps dn : C

n −→ Cn−1 between them

· · · // Cn+1 dn+1
// Cn dn // Cn−1 // · · ·

such that dndn+1 = 0 for all n.

Given a complex C in Ch(R), we can talk about cycles and boundaries, which are a
sequence of subcomplexes of the complexes in C, and thus its homology. Such a complex is
exact if im dn+1 = ker dn for all n.

Definition 9.64. A short exact sequence of complexes is an exact complex in Ch(R) of
the form

0 // A
f
// B

g
// C // 0.

Equivalently, a short exact sequence of complexes is a commutative diagram

0 // Ai+1

δi+1

��

fi+1
// Bi+1

gi+1
//

δi+1

��

Ci+1

δi+1

��

// 0

0 // Ai

δi
��

fi // Bi

δi
��

gi // Ci

δi
��

// · · ·

· · · // Ai−1
fi−1

// Bi−1
gi−1

// Ci−1
// · · ·

where the rows are exact and the columns are complexes.



141

9.4 Long exact sequences

A long exact sequence is just what it sounds like: an exact sequence that is, well, long.
Long exact sequences arise naturally in various ways, and are often induced by some short
exact sequence. The first long exact sequence one encounters is the long exact sequence on
homology. All other long exact sequences are, in some way, a special case of this one. The
main tool we need to build it is the Snake Lemma.

Theorem 9.65 (Snake Lemma). Consider the commutative diagram of R-modules

A′ i′ //

f

��

B′ p′
//

g

��

C ′

h
��

// 0

0 // A
i
// B p

// C .

If the rows of the diagram are exact, then there exists an exact sequence

ker f // ker g // kerh ∂ // coker f // coker g // cokerh

Given c′ ∈ C ′, pick b′ ∈ B′ such that p′(b′) = c′, and a ∈ A such that i(a) = g(b′). Then

∂(c′) = a+ im f ∈ coker f.

The picture to keep in mind (and which explains the name of the lemma) is the following:

ker f //

��

ker g //

��

kerh

��

A′ //

f
��

B′ //

g
��

C ′

h
��

A //

��

B //

��

C

��

coker f ////

∂

coker g // cokerh

Definition 9.66. The map ∂ in the Snake Lemma is the connecting homomorphism.

Proof. If a′ ∈ ker f , then b′ := i′(a′) must satisfy g(b′) = if(a′) = 0, by commutativity, so
b′ ∈ ker g. Similarly, the image of b′ ∈ ker g by p′ is in the kernel of h. So the maps

ker f // ker g // kerh

are restrictions of the maps A′ i′ // B′ p′
// C ′ , so i′(ker f) ⊆ ker( B′ p′

// C ′ ). If b′ ∈ ker g
is such that p′(b′) = 0, then there exists a′ ∈ A′ such that i′(a′) = b′; we only need to check
that a′ ∈ ker f . An indeed, by commutativity we have

if(a′) = gi′(a′) = g(b′) = 0,

and since i is injective, we must have f(a′) = 0.
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Similarly, if a ∈ im f , the commutativity of the diagram guarantees that i(a) ∈ im g, and

if b ∈ im g, then p(b) ∈ imh. So the maps A
i // B

p
// C restrict to maps

im f // im g // imh ,

which then induce maps
coker f // coker g // cokerh .

Again, we automatically get i(coker f) ⊆ ker( coker g // cokerh ), so we only need to check

equality. If b ∈ B is such that p(b) = 0 in cokerh, meaning p(b) ∈ imh, let c′ ∈ C be such
that h(c′) = p(b). Since p is surjective, there exists b′ ∈ B′ such that p′(b′) = c′, and by
commutativity,

pg(b′) = hp′(b′) = h(c′) = p(b).

Then b− g(b′) ∈ ker p = im i. Since b = b− g(b′) in coker g, this shows that the class of b in
coker g is in i(coker f). So we have shown exactness at ker g and coker g.

So everything we need to prove concerns the connecting homomoprhism ∂. Our definition
of ∂ can be visualized as follows:

c′ ∈ kerh

��

A′ i′ //

f

��

b′ ∈ B′ � p′
//

_

g

��

c′ ∈ C ′

h

��

a ∈ A �
i

//
_

��

g(b′) ∈ B p
// 0 ∈ C +3 g(b′) ∈ ker p = im i

a+ im f ∈ coker f

We need to show the following:

1) ∂ is well-defined.

2) p′(ker g) = ker ∂.

3) im ∂ = ker( coker f i // coker g ).

The last two points together say that the sequence

ker g // kerh ∂ // coker f // coker g
is exact.

To show that ∂ is well-defined, let’s fix some c′ ∈ kerh ⊆ C ′. Since p′ is surjective,
c′ ∈ im p′. Consider b′1, b

′
2 ∈ B′ such that p′(b′1) = p′(b′2) = c′. Then p′(b′1 − b′2) = 0. We will

show that our definition of δ(0) is independent of the choice of b′ ∈ ker g, which implies that
our definition of δ(c′) is independent of our choice of b′1 or b

′
2. Given b′ ∈ ker p′ = im i′, there

exists a′ ∈ A′ such that i′(a′) = b′. Notice that a := f(a′) ∈ A is such that

i(a) = if(a′) = gi′(b′)
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so δ(0) is defined as a + im f ∈ coker f . Since a = f(a′) ∈ im f , we conclude that δ(0) = 0
for any choice of b′. This shows that δ is well-defined, and 1) holds.

If b′ ∈ ker g, then g(b′) = 0 and the only a ∈ A such that i(a) = g(b′) = 0 is a = 0.
Therefore, δ(p′(b′)) = 0, so p′(ker g) ⊆ ker δ. On the other hand, let c′ ∈ kerh be such that
∂(c′) = 0. That means that for any b′ ∈ B′ such that p′(b′) = c′ we must have g(b′) = i(a)
for some a ∈ im f . Let a′ ∈ A′ be such that f(a′) = a. Then

gi′(a′) = if(a′) = i(a) = g(b′)

so b′ − i′(a′) ∈ ker g. Since p′i′ = 0, p′(b′ − i′(a′)) = p′(b′) = c′, so c′ ∈ im p′. We conclude
that ker ∂ = p′(ker g), and this shows 2).

Let a ∈ A. The statement i(a + im f) = 0 lifts to B as i(a) ∈ im g, so we can
choose b′ ∈ B′ such that g(b′) = i(a). Then ∂(p′(b′)) = a + im f , and moreover p′(b′) is
in kerh, since by commutativity we have hp′(b′) = pg(b′) = pi(b′) = 0. This shows that

ker( coker f i // coker g ) ⊆ im ∂. Finally, if c′, b′, and a are as in the diagram above,

i(a+ im f) = g(b′) + im g = 0, so im ∂ ⊆ ker( coker f i // coker g ). This shows 3).

This proof is what we call a diagram chase, for reasons that may be obvious by now: we
followed the diagram in the natural way, and everything worked out in the end.

Now that we have the Snake Lemma, we can construct the long exact sequence in ho-
mology:

Theorem 9.67 (Long exact sequence in homology). Given a short exact sequence in Ch(R)

0 // A
f
// B

g
// C // 0,

there are connecting homomorphisms ∂ : Hn(C) −→ Hn−1(A) such that

· · · // Hn+1(C)
∂ // Hn(A)

f
// Hn(B)

g
// Hn(C)

∂ // Hn−1(A) // · · ·

is an exact sequence.

Proof. For each n, we have short exact sequences

0 // An // Bn
// Cn // 0.

The condition that f and g are maps of complexes implies, by Lemma 9.54, that f and g
both take boundaries to boundaries, so that we get exact sequences

An/ im dAn+1
// Bn/ im dBn+1

// Cn/ im dCn+1
// 0 .

Again by Lemma 9.54, the condition that f and g are maps of complexes also implies that
f and g take cycles to cycles, so we get exact sequences

0 // Zn(A) // Zn(B) // Zn(C) .
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Let F be one of A, B, of C. The boundary maps on F induce maps Fn −→ Zn−1(F )
that send im dn+1 to 0, so we get induced maps Fn/ im dn+1 −→ Zn−1(F ). Putting all this
together, we have a commutative diagram with exact rows

An/ im dAn+1

dAn
��

// Bn/ im dBn+1

dBn
��

// Cn/ im dCn+1

dCn
��

// 0

0 // Zn(A) // Zn(B) // Zn(C)

.

For each F = A,B,C, the kernel of Fn/ im dFn+1

dFn // Zn−1(F ) is Hn(F ), and its cokernel is

Zn−1(F )/ im dFn = Hn−1(F ). The Snake Lemma now gives us exact sequences

Hn(A) // Hn(B) // Hn(C)
∂ // Hn−1(A) // Hn−1(B) // Hn−1(C)

Finally, we glue all these together to obtain the long exact sequence in homology.

Remark 9.68. It’s helpful to carefully consider how we compute the connecting homomor-
phisms in the long exact sequence, which we can easily put together from the proof of the
Snake Lemma. Suppose that c ∈ ker dCn+1. When we view c as an element in Cn+1, we
can find b ∈ Bn+1 such that gn+1(b) = c, since gn+1 is surjective by assumption. Since
dBn+1(b) ∈ ker gn, we can find a ∈ An with fn(a) = dBn+1(b). Finally, ∂(c) = a+ im dAn+1.

We will soon see that long exact sequences appear everywhere, and that they are very
helpful. Before we see more examples, we want to highlight a connection between long and
short exact sequences.

Remark 9.69. Suppose that

· · · // Cn+1
fn+1

// Cn
fn
// // · · ·

is a long exact sequence. This long exact sequence breaks into the short exact sequences

0 // ker fn
i // Cn

π // coker fn+1
// 0 .

The first map i is simply the inclusion of the submodule ker fn into Cn, while the second
map π is the canonical projection onto the quotient. While it is clear that i is injective and
π is surjective, exactness at the middle is less obvious. This follows from the exactness of
the original complex, which gives im i = ker fn = im fn+1 = ker π.

The long exact sequence in homology is natural.

Theorem 9.70 (Naturality of the long exact sequence in homology). Any commutative
diagram in Ch(R)

0 // A
i //

f
��

B
p
//

g

��

C

h
��

// 0

0 // A′
i′
// B′

p′
// C ′ // 0
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with exact rows induces a commutative diagram where the rows are long exact sequences

· · · // Hn+1(C)

h
��

∂ // Hn(A)

f
��

i // Hn(B)

g

��

p
// Hn(C)

h
��

∂ // Hn−1(A)

f
��

// · · ·

· · · // Hn+1(C
′)

∂′
// Hn(A

′)
i′
// Hn(B)

p′
// Hn(C)

∂′
// Hn−1(A) // · · ·

Proof. The rows of the resulting diagram are the long exact sequences in homology induced
by each row of the original diagram, as in Theorem 9.67. So the content of the theorem
is that the maps induced in homology by f , g, and h make the diagram commute. The
commutativity of

Hn(A)

f

��

i // Hn(B)

g

��

p
// Hn(C)

h
��

Hn(A
′)

i′
// Hn(B)

p′
// Hn(C)

follows from the fact that Hn is a functor, so we only need to check commutativity of the
square

Hn(C)

h
��

∂ // Hn−1(A)

f

��

Hn(C)
∂′
// Hn−1(A)

that involves the connecting homomorphisms ∂ and ∂′. Consider the following commutative
diagram:

0 // An

��

i //

d

||

Bn
p

//

��

d

||

Cn

��

d

||

// 0

0 // An−1

��

// Bn−1

��

// Cn−1

��

// 0

0 // A′
n

//

d

}}

B′
n

//

d

}}

C ′
n

d

}}

// 0

0 // A′
n−1 i′

// B′
n−1 p′

// C ′
n−1

// 0

Given c ∈ ker(dn : Cn −→ Cn−1), we need to check that fn−1(∂(c)) = ∂′hn(c) in Hn−1(A). To
compute ∂(c), we find a lift b ∈ Bn such that pn(b) = c, and a ∈ An−1 with in−1(a) = dn(b),
and set ∂(c) = a+ im dn ∈ Hn−1(A). So fn−1∂(c) = fn−1(a) + im dn. On the other hand, to
compute ∂′hn(c), we start by finding b′ ∈ B′

n such that p′n(b
′) = hn(c). By commutativity of

the top square

Bn
pn
//

gn

��

Cn

hn
��

B′
n p′n

// C ′
n
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we can choose b′ = gn(b), since

p′n(b
′) = p′ngn(b) = hnpn(b) = hn(c).

Next we take a′ ∈ A′
n−1 such that i′n−1(a

′) = dn(b
′), and set ∂′(h(c)) = a′+im dn ∈ Hn−1(A

′).
By commutativity of the middle square

Bn
dn //

gn

��

Bn−1

gn−1

��

B′
n dn

// B′
n−1

we have
dn(b

′) = dngn(b) = gn−1dn(b).

By our choice of a, we have

dn(b
′) = gn−1dn(b) = gn−1in−1(a),

and by commutativity of the front left square

An−1
in−1

//

fn−1

��

Bn−1

gn−1

��

A′
n−1 i′n−1

// B′
n−1

we have
i′n−1fn−1(a) = gn−1in−1(a) = dn(b

′).

So we can take a′ = fn−1(a). Finally, this means ∂′(hn(c)) = fn−1(a)+im dn−1, as we wanted
to prove.

Remark 9.71. Let
0 // A i // B

p
// C // 0

be a short exact sequence in Ch(R). We can think of Theorem 9.70 as saying that the
induced maps on homology i∗ : Hn(A) −→ Hn(B) and p∗ : Hn(B) −→ Hn(C) and the
connecting homomorphism ∂ : Hn(C) −→ Hn−1(A) are all natural transformations. More
precisely, consider the category SES of short exact sequences of R-modules, which is a full
subcategory of Ch(R). Homology gives us functors SES −→ R-mod that given a short
exact sequence

0 // A
i // B

p
// C // 0

return the R-modules Hn(A), Hn(B), or Hn(C)). A map between two short exact sequences
then induces R-module homomorphisms between the corresponding homologies. With this
framework, Theorem 9.70 says that i∗ : Hn(A) −→ Hn(B), and p∗ : Hn(B) −→ Hn(C) and the
connecting homomorphism ∂ : Hn(C) −→ Hn−1(A) are all natural transformations between
the corresponding homology functors.



Chapter 10

R-mod

Before we study abelian categories in general, we want to understand our best prototype
for what an abelian category looks like: the category R-mod of R-modules and R-module
homomorphisms.

10.1 Hom

From now on, let’s fix a ring R. Our goal is to get to know the category R-mod, which as
we are about to discover is a very nice category. To make the notation less heavy, we write
HomR(M,N) instead of HomR-mod(M,N) for the Hom-set between M and N in R-mod.
The arrows in HomR(M,N) are all the R-module homomorphisms from M to N . This is
a locally small category, meaning that the Hom-sets are actual sets, but more even is true:
the Hom-sets are actually R-modules.

Given f, g ∈ HomR(M,N), f + g is the R-module homomorphism defined by

(f + g)(m) := f(m) + g(m).

Given r ∈ R and f ∈ HomR(M,N), r · f is the R-module homomorphism defined by

(r · f)(m) := r · f(m).

Exercise 30. Let M and N be R-modules. Then HomR(M,N) is an R-module.

Some Hom-sets can easily be identified with other well-understood modules.

Exercise 31. Let M be an R-module, and I an ideal in R. Then:

a) HomR(R,M) ∼= M .

b) HomR(R
n,M) ∼= Mn for any n ⩾ 1.

c) HomR(R/I,M) ∼= (0 :M I) := {m ∈M | Im = 0}.
Since R-mod is a locally small category, we saw in Definition 9.35 that there are two

Hom-functors from R-mod to Set, the covariant functor HomR(M,−) : R-mod −→ Set
and the contravariant functor HomR(−, N) : R-mod −→ Set. In light of Exercise 30, we
can upgrade these functors to land in R-mod, not just in Set. And they are indeed functors
to R-mod, since they preserve identities and compositions.

147
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Definition 10.1. Let R and S be rings. A functor T : R-mod −→ S-mod is an additive
functor if

T (f + g) = T (f) + T (g)

for all f, g ∈ HomR(M,N).

So an additive functor is one that restricts to a homomorphism of abelian groups for all
Hom-sets.

Exercise 32. Show that HomR(M,−) and HomR(−, N) are both additive functors.

Lemma 10.2. Let T : R-mod −→ S-mod be an additive functor.

a) If 0 is the 0 map between any two R-modules M and N , then T (0) = 0.

b) If 0 is the 0 R-module, T (0) = 0 is the zero S-module.

Proof.

a) As a function defined on each fixed HomR(M,N), T is a group homomorphism, so it
must send 0 to 0.

b) An R-module M is the zero module if and only if the zero and identity maps on M
coincide. Let N be the image of the zero R-module via T . On the one hand, any functor
must send identity maps to identity maps, so the identity map on the zero module must
be sent to the identity on N . On the other hand, we have shown that the zero map must
be sent to the zero map on N , so the zero and identity maps on N must coincide, so
N = 0.

We want to study some of the properties of the Hom functor.1 For starters, it behaves
well with direct sums and products.

First, a note on direct sums versus (direct) products. When we have finitely many
Ni,

∏
iNi =

⊕
iNi = Nn

i . The only difference is when we take infinitely many direct
sums or products: the direct sum

⊕
iNi is the submodule of

∏
iNi whose elements, when

written as tuples of elements in each Ni, have only finitely many nonzero entries. These two
constructions are dual to each other, and have the following universal properties:

• Mapping out of a direct sum is completely determined by mapping out of each factor.
More precisely, given homomorphisms fi : Mi −→ N for each i, then there exists a

unique homomorphism f :
⊕
i

Mi −→ N such that the following diagram commutes:

N

Mi ιi
//

fi
;;

⊕
iMi

f

OO

Mj.ιj
oo

fj
dd

1Indeed there are two of them, but they are so similar that we will sometimes refer to the Hom functor
when talking about properties that are common to both of them.
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• Mapping in to a product is completely determined by mapping in to each of the factors.
More precisely, given homomorphisms fi : M −→ Ni for each i, there exists a unique
homomorphism f :M −→

∏
iNi making the following diagram commute:

N

f

��

fi

{{

fj

##

Mi

∏
iMi πj

//
πi
oo Mj.

In categorical language, this says that the product of R-modules is the product in R-mod,
while the direct sum of modules is the coproduct in R-mod.

Given this, it should not be surprising that Hom behaves well when we map into products
or out of corpoducts.

Theorem 10.3. Let M , N , Mi, and Ni be R-modules. There are isomorphisms

HomR(M,
∏
i

Ni) ∼=
∏
i

HomR(M,Ni) and HomR(
⊕
i

Mi, N) ∼=
∏
i

HomR(Mi, N).

In particular,
HomR(A⊕B,C) ∼= HomR(A,C)⊕ HomR(B,C)

and
HomR(A,B ⊕ C) ∼= HomR(A,B)⊕ HomR(A,C).

Proof. For each i, let πi :
∏

j Nj −→ Ni be the canonical projection map. Consider the map

HomR(M,
∏

iNi)
α //
∏

iHomR(M,Ni)

f � // (πif)

.

We claim this map is the desired isomorphism. First, take (fi)i ∈
∏

iHomR(M,Ni). Define
a map

M
ψ
//
∏

iNi

m � // (fi(m))

.

This makes the diagram
Ni

∏
j

Nj

πi

>>

M
ψ

oo

fi

]]

commute, so that α(ψ) = (πiψ)i = (fi). This shows that α us surjective. Now suppose
f inHomR(M,

∏
iNi) is such that α(f) = 0. For each m ∈ M , let f(m) = (ni)i, so

πif(m) = ni. By assumption, (πif(m)) = 0, which means that πiα = 0 for all i, and thus
ni = 0 for all i. So f = 0. We conclude that α is an isomorphism.
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Now consider the map

HomR(
⊕
i

Mi, N)
β
//
∏
i

HomR(Mi, N)

f � // (fιi)

where ιj : Mj −→
⊕

iMi is the inclusion of the jth factor. Given (fi)i ∈
∏
i

HomR(Mi, N),

let ⊕
i

Mi
ψ

// N

(mi)
� //

∑
i

fi(mi)

Then β(ψ) = (ψιi)i, so for each i and each mi ∈ Mi, ψιi(mi) = fi(mi), and β(ψ) = (fi)i.
This shows that β is surjective. Now assume β(f) = 0, which implies that fιi is the zero
map for each i. Consider any (mi)i ∈

⊕
iMi. For each i, fιi(mi) = 0. On the other

hand, (mi)i =
∑

i ιi(mi), so f((mi)i) =
∑

i ιi(mi) = 0. We conclude that f = 0, and β is
injective.

Another important property of Hom is how it interacts with exact sequences.

Definition 10.4. A covariant additive functor T : R-mod −→ S-mod is left exact if it
takes every exact sequence

0 // A
f
// B

g
// C

of R-modules to the exact sequence

0 // T (A)
T (f)

// T (B)
T (g)

// T (C)

of S-modules, and right exact if it takes every exact sequence of R-modules

A
f
// B

g
// C // 0

to the exact sequence of S-modules

T (A)
T (f)

// T (B)
T (g)

// T (C) // 0 .

Finally, T is an exact functor if it preserves short exact sequences, meaning every short
exact sequence

0 // A
f
// B

g
// C // 0

is taken to the short exact sequence

0 // T (A)
T (f)

// T (B)
T (g)

// T (C) // 0 .
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A contravariant additive functor T : R-mod −→ S-mod is left exact if it takes every exact
sequence

A
f
// B

g
// C // 0

of R-modules to the exact sequence

0 // T (C)
T (g)

// T (B)
T (f)

// T (A)

of S-modules, and right exact if it takes every exact sequence of R-modules

0 // A
f
// B

g
// C

to the exact sequence of S-modules

T (C)
T (g)

// T (B)
T (f)

// T (A) // 0 .

Finally, T is an exact functor if it preserves short exact sequences, meaning every short
exact sequence

0 // A
f
// B

g
// C // 0

is taken to the short exact sequence

0 // T (C)
T (g)

// T (B)
T (f)

// T (A) // 0 .

Exercise 33. The definitions above all stay unchanged if for each condition we start with
a short exact sequence. For example, a covariant additive functor T is left exact if for every
short exact sequence

0 // A
f
// B

g
// C // 0

of R-modules,

0 // T (A)
T (f)

// T (B)
T (g)

// T (C)

is exact.

Remark 10.5. Left exact covariant functors take kernels to kernels, while right exact co-
variant functors take cokernels to cokernels. Similarly, left exact contravariant functors take
kernels to cokernels, and right exact contravariant functors take cokernels to kernels.

Exactness is preserved by natural isomorphisms

Remark 10.6. Suppose that F,G : R-mod −→ S-mod are naturally isomorphic additive
functors. We claim that F is exact if and only if G is exact. Let’s prove it in the case when
F and G are covariant. Given any short exact sequence

0 // A // B // C // 0
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applying each of our functors yields complexes of R-modules which may or may not be exact.
Our natural isomorphism gives us an isomorphism of complexes (displayed vertically)

0 // F (A)

��

// F (B) //

��

F (C)

��

// 0

0 // G(A) // G(B) // G(C) // 0.

Isomorphisms of complexes induce isomorphisms in homology, so the top sequence is exact
if and only if the bottom sequence is exact.

The same argument shows that F is left (respectively, right) exact if and only if G is left
(respectively, right) exact.

Hom is left exact.

Theorem 10.7. Let M be an R-module.

a) The covariant functor HomR(M,−) is left exact: for every exact sequence

0 // A
f
// B

g
// C

of R-modules, the sequence

0 // HomR(M,A)
HomR(M,f)

// HomR(M,B)
HomR(M,g)

// HomR(M,C)

is exact.

b) The contravariant functor HomR(−,M) is left exact: for every exact sequence

A
f
// B

g
// C // 0

of R-modules, the sequence

0 // HomR(C,M)
HomR(g,M)

// HomR(B,M)
HomR(f,M)

// HomR(A,M)

is exact.

Proof. To make the notation less heavy, we will write f∗ := HomR(M, f), g∗ := HomR(M, g),
f ∗ := HomR(f,M), and g∗ := HomR(g,M).

a) We have three things to show:

• f∗ is injective.

Suppose that h ∈ HomR(M,A) is such that f∗(h) = 0. By definition, this means
that fh = 0. But f is injective, so

fh(a) = 0 =⇒ h(a) = 0.

We conclude that h = 0, and f∗ is injective.
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• im f∗ ⊆ ker g∗.

Let h ∈ HomR(M,A). Then g∗f∗(h) = gfh, but gf = 0 by assumption, so g∗f∗(h) =
gfh = 0.

• ker g∗ ⊆ im f∗.

Let h ∈ HomR(M,B) be in the kernel of g∗. Then gh = g∗(h) = 0, so for each
m ∈ M , gh(m) = 0. Then h(m) ∈ ker g = im f , so there exists a ∈ A such that
f(a) = h(m). Since f is injective, this element a is unique for each m ∈ M . So
setting k(m) := a gives us a well-defined function k : M −→ A. We claim that k
is in fact an R-module homomorphism. To see that, notice that if k(m1) = a1 and
k(m2) = a2, then

f(a1 + a2) = f(a1) + f(a2) = h(m1) + h(m2) = h(m1 +m2),

so that k(m1 +m2) = a1 + a2 = k(m1) + k(m2). Similarly, given any r ∈ R,

f(ra1) = rf(a1) = rh(m1) = h(rm1),

so k(rm1) = ra1 = rk(m1). Finally, this element k ∈ HomR(M,A) satisfies

f∗(k)(m) = f(k(m)) = h(m)

for all m ∈M , so f∗(k) = h and h ∈ im f∗.

b) Again, we have three things to show:

• g∗ is injective.

If g∗(h) = 0 for some h ∈ HomR(C,M), then hg = g∗(h) = 0. Consider any c ∈ C.
Since g is surjective, there exists b ∈ B such that g(b) = c. Then h(c) = hg(b) = 0,
so h must be the zero map.

• im g∗ ⊆ ker f ∗.

Let h ∈ HomR(B,M) be in im g∗, so that there exists k ∈ HomR(C,M) such that
kg = g∗(k) = h. Then

f ∗(h) = hf = k gf︸︷︷︸
0

= 0,

so h ∈ ker f ∗.

• ker f ∗ ⊆ im g∗.

Let h ∈ HomR(B,M) be in ker f ∗, so that hf = 0. Given any c ∈ C, there exists
b ∈ B such that g(b) = c, since g is surjective. Let k : C −→ M be the function
defined by k(c) := h(b) for some b with g(b) = c. This function is well-defined,
since whenever g(b′) = g(b) = c, b − b′ ∈ ker g = im f , say b − b′ = f(a), and thus
h(b − b′) = h(f(a)) = 0. Moreover, we claim that k is indeed a homomorphism of
R-modules. If c1, c2 ∈ C, and g(b1) = c1, g(b2) = c2, then g(b1 + b2) = c1 + c2, so

k(c1 + c2) = h(b1 + b2) = h(b1) + h(b2) = k(b1) + k(b2).

Finally, this element k ∈ HomR(C,M) is such that g∗(k) satisfies

(g∗(k))(b) = k(g(b)) = h(b)

for all b ∈ B, so g∗(k) = h, and h ∈ im g∗.
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So HomR(M,−) preserves kernels, and HomR(−, N) sends kernels to cokernels. However,
Hom is not right exact in general.

Example 10.8. Consider the short exact sequence of abelian groups

0 // Z // Q // Q/Z // 0,

where the first map is the inclusion of Z into Q, and the second map is the canonical
projection. The elements in the abelian group Q/Z are cosets of the form p

q
+ Z, where

p
q
∈ Q, and whenever p

q
∈ Z, p

q
+ Z = 0. While Theorem 10.7 says that

0 // HomZ(Z/2,Z) // HomZ(Z/2,Q) // HomZ(Z/2,Q/Z)

is exact, we claim that this cannot be extended to a short exact sequence, since the map
HomZ(Z/2,Q) −→ HomZ(Z/2,Q/Z) is not surjective. On the one hand, there are no non-
trivial homomorphisms from Z/2 to either Z nor Q, since there are no elements in Z nor Q
of order 2. This shows that HomZ(Z/2,Q) ∼=∼= 0. On the other hand, HomZ(Z/2,Q/Z) is
nonzero, since 1

2
+ Z is an element of order 2 in Q/Z, so the map sending 1 in Z/2 to 1

2
+ Z

in Z/Q is nonzero. So after applying HomZ(Z/2,−), we get the exact sequence

0 // 0 // 0 // HomZ(Z/2,Q/Z) .

So this shows that HomZ(Z/2,−) is not an exact functor, only left exact.
Similarly, we can show that HomZ(−,Z) is not exact by applying it to the same original

short exact sequence. This time, Theorem 10.7 says that

0 // HomZ(Q/Z,Z) // HomZ(Q,Z) // HomZ(Z,Z) .

is exact. We claim that the last map is not surjective. By Exercise 31, HomZ(Z,Z) ∼= Z. On
the other hand, we claim that HomZ(Q,Z) = 0. Indeed, if f : Q −→ Z is a homomorphism
of abelian groups, then for all n ⩾ 1 we have f(1) = nf( 1

n
). This says that f(1) is an integer

that is divisible by every integer, which is impossible unless f(1) = 0. We conclude that
f = 0.

10.2 Tensor products

Definition 10.9. LetM , N , and L be R-modules. A function f :M×N −→ L is R-bilinear
if for all m,m′ ∈M , all n, n′ ∈ N , and all r ∈ R we have

• f(m+m′, n) = f(m,n) + f(m′, n)

• f(m,n+ n′) = f(m,n) + f(m,n′)

• f(rm, n) = f(m, rn) = rf(m,n).

Example 10.10. The product on R is a bilinear function R×R −→ R.
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Definition 10.11. LetM and N be R-modules. The tensor product ofM and N is an R-
module M ⊗RN together with an R-bilinear map τ :M ×N −→M ⊗RN with the following
universal property: for every R-module A and every R-bilinear map f :M ×N −→ A there
exists a unique R-module homomorphism f̃ :M⊗RN −→ A such that the following diagram
commutes:

M ⊗R N
f̃

##

M ×N

τ

OO

f
// A

Remark 10.12. We can express this universal property in the framework of Definition 9.42.
Consider the functor Bilin(M × N,−) : R-mod −→ Set that sends an R-module A to the
set of R-bilinear maps M ×N −→ A, and a map of R-modules f A −→ B to the function of
sets induced by post-composition of functions. The universal property of the tensor product
is encoded in the representable functor Bilin(M × N,−) : R-mod −→ Set together with
the bilinear map τ ∈ Bilin(M × N,M ⊗R N). Indeed, this says that τ induces a natural
isomorphism between HomR(M ⊗R N,−) and Bilin(M × N,−) by sending each R-module
A to the bijection

HomR(M ⊗R N,A) // Bilin(M ×N,A)
f � // Bilin(M ×N, f)τ = f∗(τ) = fτ.

The fact that this is a bijection says that for every R-bilinear map g there exists a unique
R-module homomorphism f such that

M ⊗R N
f

##

M ×N

τ

OO

g
// A

commutes. So this is indeed the universal property we described before.

Tensor products exist.

Theorem 10.13. Given any two R-modules M and N , their tensor product exists.

Proof. Let F be the free R-module on the set M ×N , meaning that F has a basis element
for each (m,n) with m ∈ M and n ∈ N . In what follows, we identify (m,n) with the
corresponding basis element for F . Let S be the submodule of F generated by

S =


(m,n+ n′)− (m,n)− (m,n′)
(m+m′, n)− (m,n)− (m′, n)

(rm, n)− r(m,n), (m, rn)− r(m,n)

∣∣∣∣∣∣
m,m′ ∈M
n, n′ ∈ N
r ∈ R


 .

Let M ⊗R N := F/S, and let m ⊗ n denote the class of (m,n) in the quotient. We claim
that this module M ⊗R N is a tensor product for M and N , together with the map

M ×N τ //M ⊗N

(m,n) � //m⊗ n
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Notice τ is the restriction of the quotient map F −→ F/S to the basis elements of F .
Moreover, by construction of M ⊗R N , the following identities hold:

m⊗ (n+ n′) = m⊗ n+m⊗ n′

(m+m′)⊗ n = m⊗ n+m⊗ n′

(rm)⊗ n = m⊗ (rn)

Together, these make τ an R-bilinear map. The map M × N −→ F that sends each pair
(m,n) to the corresponding basis element is R-bilinear by construction. Moreover, there is
a natural quotient map F −→M ⊗R N , which, and these maps make the diagram

M ×N

i
##

τ //M ⊗R N

F

:: ::

commute.
Now suppose that A is any other R-module, and consider any R-bilinear mapM×N f−→ A.

Since F is the freeR-module onM×N , f induces a homomorphism ofR-modules φ : F −→ A
such that fi = φ, meaning f(m,n) = φ(m,n) for all m ∈M and all n ∈ N . Finally, the fact
that f is bilinear implies that S ⊆ kerφ. Therefore, φ induces an R-module homomorphism
on F/S =M ⊗R N . All this fits in the following commutative diagram:

M ×N

f

��

i
##

τ //M ⊗R N

f̃

��

F

:: ::

φ

��

A

Finally, this map f̃ we constructed agrees satisfies f̃(n ⊗ n) = f(m,n), and since M ⊗R N
is generated by such elements, f̃ is completely determined by the images of m⊗n, and thus
unique.

The construction in Theorem 10.13 gives us generators m ⊗ n for M ⊗R N . These are
usually called simple tensors. So any element in M ⊗R N is of the form

k∑
i=1

mi ⊗ ni.

Such expressions are not unique. For a cheap example, consider the relations we used to
construct M ⊗R N from the free R-module on M × N , which gives us nontrivial ways to
write the 0 element in M ⊗R N :

0 = m⊗ (n+ n′)−m⊗ n−m⊗ n′

0 = (m+m′)⊗ n−m⊗ n−m⊗ n′

0 = (rm)⊗ n−m⊗ (rn).
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This makes things unexpectedly tricky. For example, a particular tensor product might
unexpectedly be the zero module. Also, whenever we try to define some R-module homo-
morphism from M ⊗R N into some other R-module, we must carefully check that our map
is well-defined, which is in principle not an easy task. Therefore, the easiest way to define
some R-module homomorphism from M ⊗R N is to give some R-bilinear map from M ×N
into our desired R-module.

Before we get in too deep with such details, we point out that we can talk about the
tensor product of two R-modules.

Lemma 10.14. The tensor product of M and N is unique up to unique isomorphism. More
precisely, if M × N τ1−→ T1 and M × N τ2−→ T2 are two tensor products, then there exists a

unique isomorphism T1
i−→ T2 such that

T1

i

��

M ×N

τ1
88

τ2 &&
T2

Proof. First, note that the universal property of the tensor product implies that there exists
a unique φ such that

Ti
φ

""

M ×N

τi

OO

τi
// Ti

commutes. Since the identity map Ti −→ Ti is such a map, it must be the only such map.
Similarly, there are unique maps φ1 : T1 −→ T2 and φ2 : T2 −→ T1 such that

T1
φ1

""

T2
φ2

""

M ×N

τ1

OO

τ2
// T2 M ×N

τ2

OO

τ1
// T1

both commute. Stacking these up, we get commutative diagrams

T1
φ1

""

T2
φ2

""

T2
φ2

��

T1
φ1

��

M ×N

τ1

OO

τ1
//

τ2

<<

T1 M ×N

τ2

OO

τ2
//

τ1

<<

T2

so that φ2φ1 must be the identity on T1 and φ1φ2 must be the identity on T2. In particular,
T1 and T2 are isomorphic, and the isomorphisms φ1 and φ2 are unique.
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From now on we talk about the tensor product M ⊗RN of M and N , which is generated
by the simple tensors m ⊗ n. It’s also important to remember (though we’re all bound to
forget once or twice) that not all elements in M ⊗R N are simple tensors, and that even
though M and N are nonzero, M ⊗R N could very well be zero.

So let’s study some properties of and get some practice with tensor products.

Remark 10.15. Two R-module maps M ⊗R N −→ L coincide if and only if they agree on
simple tensors, since these are generators for M ⊗R N .

Lemma 10.16. Let f : A −→ C, g : B −→ D be R-module homomorphisms. There exists a
unique homomorphism of R-modules f ⊗ f : A⊗R B −→ C ⊗R D such that

(f ⊗ g)(a⊗ b) = f(a)⊗ g(b)

for all a ∈ A and b ∈ B.

Proof sketch. The function
A×B // C ⊗R D

(a, b) � // f(a)⊗ g(b)

is R-bilinear, so the universal property of tensor products gives the desired R-module homo-
morphism, which is unique.

Lemma 10.17. Given R-module maps A1
f1
// A2

f2
// A3 and B1

b1 // B2
g2
// B3 , the

composition of f1 ⊗ g1 satisfies f2 ⊗ g2

(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (f2f1)⊗ (g2g1).

Proof. It’s sufficient to check that these maps agree on simple tensors, and indeed they both
take a⊗ b to (f2f1(a))⊗ (g2g1(b)).

We are particularly interested in tensor products because of the tensor functor.

Theorem 10.18. Let M be an R-module. There is an additive covariant functor

M ⊗R − : R-mod −→ R-mod

that takes each R-module N to M ⊗RN , and each R-module homomorphism f : A −→ B to
the R-module homomorphism 1M ⊗ f :M ⊗R A −→M ⊗R B.

Similarly, there is an additive covariant functor

−⊗R N : R-mod −→ R-mod

that takes each R-module M to M ⊗ RN , and each R-module homomorphism f : A −→ B
to the R-module homomorphism f ⊗ 1N : A⊗R N −→ B ⊗RM .
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Proof. We do the case of T :=M ⊗R −, and leave −⊗R N as an exercise.
First, note that T preserves identities, meaning T (1N) = 1T (N), since the identity map on

M⊗RN agrees with T (1N) = 1M⊗1N on simple tensors. Moreover, T preserves compositions,
since by Lemma 10.17 we have

T (f)T (g) = (1⊗ f)(1⊗ g) = 1⊗ (fg) = T (fg).

Thefore, T is a functor. To check that it is an additive functor, we need to prove that
T (f + g) = T (f) + T (g) for all f, g ∈ HomR(A,B). Again, the maps T (f + g) = 1⊗ (f + g)
and T (f) + T (g) = 1⊗ f + 1⊗ g agree on simple tensors, and so they are equal.

Lemma 10.19. If f and g are isomorphisms of R-modules, then f ⊗ g is an isomorphism.

Proof. On the one hand, 1 ⊗R g is the image of an isomorphism by a functor, and thus an
isomorphism. Similarly, f ⊗R 1 must be an isomorphism. Finally, f ⊗ g = (f ⊗ 1)(1⊗ g), by
Lemma 10.17, which is a composition of isomorphisms, and thus an isomorphism.

We can now prove some useful properties of tensor products.

Lemma 10.20 (Commutativity of tensor products). Let M and N be R-modules. Then
M ⊗R N ∼= N ⊗RM , and this isomorphism is natural.

Proof sketch. The map M × N −→ N ⊗R M given by (m,n) 7→ n ⊗m is R-bilinear. The
universal property of the tensor product M ⊗R N gives us an R-module homomorphism φ
such that the diagram

M ⊗R N
φ

%%

M ×N

99

// N ⊗RM
(m,n) � // n⊗m

.

commutes. Similarly, we get a map ψ and a commutative diagram

N ⊗RM
ψ

%%

N ×M

99

//M ⊗R N
(m,n) � // n⊗m

.

Then φψ agrees with the identity on N ⊗R M on simple tensors, so it is the identity.
Similarly, ψφ is the identity on M ⊗R N , and these are the desired isomorphisms.

The statement about naturality is more precisely the following: for every R-module
maps f :M1 −→M2 and g : N1 −→ N2, our isomorphism maps M1 ⊗R N1

∼= N1 ⊗RM1 and
M2 ⊗R N2

∼= N2 ⊗RM2 make the diagram

M1 ⊗R N1

∼= //

f⊗g
��

N1 ⊗RM1

g⊗f
��

M2 ⊗R N2

∼= // N2 ⊗RM2
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commute. To check this, it’s sufficient to check commutativity on simple tensors, and indeed

m⊗ n_

��

� // n⊗m_

��

M1 ⊗R N1

∼= //

f⊗g

��

N1 ⊗RM1

g⊗f

��

M2 ⊗R N2

∼= // N2 ⊗RM2

f(m)⊗ g(n) � // g(n)⊗ f(m).

Lemma 10.21 (Associativity of tensors). Let A, B, and C be R-modules. Then

(A⊗R B)⊗R C ∼= A⊗R (B ⊗R C).

Proof. Fix c ∈ C. The map

A×B // A⊗R (B ⊗R C)

(a, b) � // a⊗ (b⊗ c)

is R-bilinear, so it induces a homomorphism of R-modules φc : A⊗R B −→ A⊗R (B ⊗R C).
Then

(A⊗R B)× C // A⊗R (B ⊗R C)

(a⊗ b, c) � // a⊗ (b⊗ c)

is also R-bilinear, and it induces a homomorphism of R-modules that sends (a ⊗ b) ⊗ c to
a⊗(b⊗c). Similarly, we can define a homomorphism of R-modules A⊗R (B⊗RC) −→ (A⊗R
B)⊗RC that sends a⊗ (b⊗ c) to (a⊗ b)⊗ c. The composition of these two homomorphisms
of R-modules in either order is the identity on simple tensors, and thus they are both
isomorphisms.

Lemma 10.22. There is a natural isomorphism between R ⊗R − and the identity functor
on R-mod. In particular, R⊗RM ∼= M for every R-module M .

Proof. The R-bilinear map
R×M //M

(r,m) � // rm

induces a homomorphism of R-modules R⊗RM
φM //M. By definition, φM is surjective.

Moreover, the map

M
fM // R⊗RM

m � // 1⊗m
is a homomorphism of R-modules, since

fM(a+ b) = 1⊗ (a+ b) = 1⊗ a+ 1⊗ b and fM(ra) = 1⊗ (ra) = r(1⊗ a) = rfM(a).
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For every m ∈ M , φMfM(m) = φM(1 ⊗ m) = 1m = m, and for every simple tensor,
fMφM(r ⊗m) = fM(rm) = 1⊗ (rm) = r ⊗m. This shows that φM is an isomorphism.

Finally, given any f ∈ HomR(M,N), since f is R-linear we conclude that the diagram

r ⊗m_

��

� // rm_

��

R⊗RM
φM //

1⊗f

��

M

f

��

R⊗N φN

// N

r ⊗ f(m) � // rf(m) = f(rm)

commutes, so our isomorphism is natural.

Example 10.23. We claim that Z/(2) ⊗Z Q = 0, despite the fact that both of these Z-
modules are nonzero. To see that, simply note that given any a ∈ Z/2 and any p ∈ Q,

a⊗ p = a⊗ 2p

2
= (2a)⊗ p

2
= 0⊗ p

2
= 0.

Since Z/(2)⊗Z Q is generated by simple tensors, which are all 0, we conclude that Z/(2)⊗Z
Q = 0.

Example 10.24. Consider the abelian group Q/Z. Again, this is very much nonzero, and
yet we claim that Q/Z⊗Z Q/Z = 0. For any simple tensor,(

p

q
+ Z

)
⊗
(a
b
+ Z

)
=

(
bp

bq
+ Z

)
⊗
(a
b
+ Z

)
=

(
p

bq
+ Z

)
⊗ b

(a
b
+ Z

)
=

(
p

bq
+ Z

)
⊗ 0 = 0⊗ 0 = 0.

Example 10.25. Let p and q be distinct prime integers. Then p has inverse modulo q, say
ap ≡ 1 mod q, and q has an inverse modulo p, say bq ≡ 1 mod p. Given any simple tensor
n⊗m in Z/(p)⊗Z Z/(q),

n⊗m = ((bq)n)⊗ ((ap)m) = (pbn)⊗ (qam) = 0⊗ 0.

Since all simple tensors are 0 and Z/(p)⊗ZZ/(q) is generated by simple tensors, we conclude
that Z/(p)⊗Z Z/(q) = 0.

Of course not all tensor products are 0. But showing an element in a tensor product
is nonzero is somehow harder than showing an element is zero. Usually, to show that a
particular element inM⊗RN is nonzero, one shows there is a homomoprhism fromM⊗RN
to some R-module L that takes that particular element no some nonzero element in L
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Example 10.26. Consider the abelian group 2Z⊗Z Z/(2). The map

2Z× Z/(2) // Z/(2)

(a, b) � // ab
2

is Z-bilinear, and thus it induces an R-module homomorphism 2Z⊗Z Z/(2) −→ Z/(2). Via
this map, 2⊗ 1 7→ 1 ̸= 0, so 2⊗ 1 is nonzero in 2Z⊗Z Z/(2), and 2Z⊗Z Z/(2) ̸= 0.

Exercise 34. Show that if d = gcd(m,n), then Z/(n)⊗Z Z/(m) ∼= Z/(d).

Similarly to the Hom functor, tensor behaves well with respect to arbitrary direct sums.

Theorem 10.27. Let M be and R-module, and let {Ni}i∈I be an arbitrary family of R-
modules. There is an isomorphism

M ⊗R
(⊕

i∈I Ni

) ∼= //
⊕

i∈IM ⊗R Ni

which is natural, meaning that given two families of R-modules {Ai}i∈I and {Bj}j∈J , and
R-module homomorphisms σij : Ai −→ Bj, the R-module homomorphisms⊕

i∈I

Ai
σ //

⊕
j∈J

Bj

(ai)i∈I
� // (σij(ai))j∈J

and σ̃ =
⊕
i∈I

σij :
⊕
i∈I

M ⊗R Ai −→
⊕
j∈J

M ⊗R Bj

give a commutative diagram

M ⊗R

(⊕
i∈I

Ai

)
1⊗σ
��

∼= //
⊕
i∈I

M ⊗R Ai

σ̃

��

M ⊗R

(⊕
j∈J

Bj

)
∼=
//
⊕

j∈JM ⊗R Bj.

Proof. First, note that the function

M ×

(⊕
i∈I

Ai

)
//
⊕
i∈I

(M ⊗R Ai)

(m, (ai)i)
� // (m⊗ ai)

is R-bilinear, so it induces a homomorphism M ⊗R

(⊕
i∈I

Ai

)
τ //
⊕
i∈I

(M ⊗R Ai) .
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For each k ∈ I, let ιk denote the inclusion map Ak ⊆
⊕

iAi. The universal property of
the coproduct (which in the case of R-modules, means the direct sum) gives an R-module
homomorphism ⊕

i∈I

(M ⊗R Ai) λ //M ⊗R
⊕
i∈I

(Ai)

(m⊗ ai)i � //m⊗
∑
i

ιi(ai)

which we obtain by assembling the R-module homomorphisms 1⊗ ιi. It is routine to check
that λ is the inverse of τ , which must then be an isomorphism. Finally, we can check
naturality by checking commutativity of the square above, element by element:

m⊗ (ai)i
� //

_

��

(m⊗ ai)i_

��

m⊗ (σij(ai))i
� // (m⊗ σij(ai)).

Tensor is right exact.

Theorem 10.28. Let M be an R-module. The functor M ⊗R − : R-mod −→ R-mod is
right exact, meaning that for every exact sequence

A i // B
p
// C // 0

the sequence

M ⊗R A
1⊗i
//M ⊗R B

1⊗p
//M ⊗R C // 0

is exact.

Proof. We have three things to show:

• (1⊗ p)(1⊗ i) = 0.

It is sufficient to show the map is 0 on simple tensors. And indeed,

(1⊗ p)(1⊗ i)(m⊗ a) = (1⊗ p)(m⊗ p(a)) = m⊗ ip(a) = m⊗ 0 = 0.

• 1⊗ p is surjective.

Consider any m1 ⊗ c1 + · · · +mn ⊗ cn ∈ M ⊗R C. Since p is surjective, we can find
b1, . . . , bn ∈ B such that p(bi) = ci. Therefore,

(1⊗p)(m1⊗b1+ · · ·+mn⊗bn) = m1⊗p(b1)+ · · ·+mn⊗p(bn) = m1⊗c1+ · · ·+mn⊗cn.
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• ker(1⊗ p) = im(1⊗ i)
Let I = im(1 ⊗ i). We have already shown that I ⊆ ker(1 ⊗ p), so 1 ⊗ p induces a
map q : (M ⊗R B)/I −→M ⊗R C. Let π :M ⊗R B −→ (M ⊗R B)/I be the canonical
projection. By definition, qπ = 1⊗ p.
Consider the map

M × C f
// (M ⊗R B)/I

(m, c) � //m⊗ b

,

where b is such that p(b) = c. First, we should check this map f is well-defined. To
see that, suppose that b′ ∈ B is another element with p(b′) = c, so that p(b− b′) = 0.
Then b− b′ ∈ ker p = im i, so m⊗ (b− b′) ∈ im(1⊗ i) ⊆ I. Therefore, m⊗ b = m⊗ b′
modulo I, and f is well-defined.

Moreover, we can easily check that f is R-bilinear, so f induces a homomorphism of
R-modules M ⊗RC −→ (M ⊗RB)/I, which we will denote by f̂ . We will show that f̂
is a left inverse of q, so q is injective. And indeed, given mi ∈M and bi ∈ B, we have

f̂ q

(
n∑
i=1

mi ⊗ bi

)
= f

(
n∑
i=1

mi ⊗ p(bi)

)
=

n∑
i=1

f(mi ⊗ p(bi)) =
n∑
i=1

mi ⊗ bi.

We conclude that q is injective, and thus

ker(1⊗ p) = ker(qπ) = ker π = I = im(1⊗ i).

Exercise 35. Let M be an R-module. The functor −⊗R M : R-mod −→ R-mod is right
exact, meaning that for every exact sequence

A
i // B

p
// C // 0

the sequence

A⊗RM
i⊗1
// B ⊗RM

p⊗1
// C ⊗RM // 0

is exact.

However, tensor is not exact.

Example 10.29. Consider the short exact sequence

0 // Z i // Q p
// Q/Z // 0.

Applying the functor Z/2⊗Z −, we get an exact sequence

Z/2⊗Z Z // Z/2⊗Z Q // Z/2⊗Z Q/Z // 0.

However, we claim that 1 ⊗ i is not injective. On the one hand, Z/2 ⊗Z Z ∼= Z/2. On the
other hand, we have seen in Example 10.23 that Z/2 ⊗Z Q = 0, so the map 1 ⊗ i cannot
possibly be injective.
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10.3 Hom-tensor adjunction

The Hom and tensor functors are closely related.

Theorem 10.30 (Hom-tensor adjunction I). Let M , N , and P be R-modules. There is an
isomorphism of R-modules

HomR(M ⊗R N,P ) ∼= HomR(M,HomR(N,P ))

that is natural on M , N , and P .

Proof. The universal property of the tensor product says that to give an R-module homo-
morphism M ⊗R N −→ P is the same as giving an R-bilinear map M × N −→ P . Given
such a bilinear map f , the map n 7→ f(m⊗ n) is R-linear for each m ∈ M , so it defines an
R-module homomorphism N −→ P . Now the assignment

M // HomS(N,P )

m // (n 7→ f(m⊗ n))

is R-linear, f is an R-module homomorphism, and m 7→ m⊗ n is R-linear on m.
Conversely, given an R-module homomorphism f ∈ HomR(M,HomR(N,P )), one can

easily check (exercise!) that (m,n) 7→ f(m)(n) is an R-bilinear map, so it induces an R-
module homomorphism M ⊗R N −→ P .

So we have constructed a bijection of Hom-sets

HomR(M ⊗R N,P ) τ // HomR(M,HomR(N,P ))

f � // (m 7→ (n 7→ f(m⊗ n)))

(m⊗ n 7→ g(m)(n)) g�oo

.

It’s routine to check that both of these bijections are indeed homomorphisms of R-modules,
so we leave it as an exercise.

Finally, we have the following commutative diagrams:

A

f

��

HomR(A⊗R N,P )
∼= //

(f⊗1N )∗

��

HomR(A,HomR(N,P ))

f∗

��

//

B HomR(B ⊗R N,P ) ∼=
// HomR(B,HomR(N,P ))

,

A

f

��

HomR(M ⊗R A,P )
∼= //

(1M⊗f)∗
��

HomR(M,HomR(A,P ))

(f∗)∗
��

//

B HomR(M ⊗R B,P ) ∼=
// HomR(M,HomR(B,P ))

,

and

A

f

��

HomR(M ⊗R N,A)
∼= //

f∗
��

HomR(M,HomR(N,A))

(f∗)∗

��

//

B HomR(M ⊗R N,B) ∼=
// HomR(M,HomR(N,B))

.

We leave checking these do indeed commute as an exercise.
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Corollary 10.31 (Tensor and Hom are adjoint functors). Let R be a ring, and M an
R-module. The functor − ⊗R M : R-mod −→ R-mod is left adjoint to HomR(M,−) :
R-mod −→ R-mod.

Proof. The adjointness translates into the fact that for all R-modules N and P there is a
bijection

HomR(N ⊗RM,P ) ∼= HomR(N,HomR(M,P ))

which is natural on N and P , which is a corollary of Theorem 10.30.

Later, when we talk about more general abelian categories, we will see that this adjunction
implies that Hom is left exact and that tensor is right exact; in fact, this is a more general fact
about adjoint pairs. For now, we want to discuss a more general version of this Hom-tensor
adjunction.

One of the reasons tensor products are useful is the fact that we can use tensor products
to extend modules to ring extensions.

Lemma 10.32. Let R
f−→ S be a ring homomorphism. Then S ⊗R − determines a functor

from R-modules to S-modules.

Proof. First, we claim that S⊗RM is an S-module for every R-moduleM . Since S⊗RM is an
R-module, it is in particular an abelian group. For each fixed s ∈ S, the multiplication map
S

·s−→ S is an R-module homomorphism, and thus it induces an R-module homomorphism
µs : S ⊗RM −→ S ⊗RM . For each s ∈ S and each

∑
i si ⊗mi ∈ S ⊗RM , we define

s ·

(∑
i

si ⊗mi

)
:= µs

(∑
i

si ⊗mi

)
.

We claim that this determines an S-module structure on S ⊗RM .

• 1 · (
∑

i si ⊗mi) = ·(
∑

i si ⊗mi), since µ1 is the identity on S ⊗RM .

• Since S
·s1−→ S

·s2−→ S is the multiplication by s2s1, we conclude that µs2µs1 = µs2s1 , and
s2(s1t) = (s2s2)t for all t ∈ S ⊗RM .

• Similarly, µs1 + µs2 = µs1+s2 , so (s1 + s2)t = s1t+ s2t for all t ∈ S ⊗RM .

• Finally, all the µs are R-module homomorphisms, so s · (t1 + t2) = s · t1 + s · t2 for all
s ∈ S and all t1, t2 ∈ S ⊗RM .

Now given any R-module homomorphism f : M −→ N , idS ⊗1 is an R-module homo-
morphism, which we claim is also an S-module homomorphism via the S-module structure
we just discussed.

Definition 10.33. Let R
f−→ S be a ring homomorphism. The extension of scalars from

R to S is the functor S ⊗R − : R-mod −→ S-mod we discussed above. For each R-module
M , we get an S-module S ⊗RM with

s ·

(∑
i

si ⊗mi

)
:=
∑
i

(ssi)⊗mi,
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and for each R-module homomorphism f : M −→ N we get the S-module homomorphism
1⊗R f .

This is in closely related to restriction of scalars, which we discussed before, although we
did not phrase it in this categorical language.

Definition 10.34. Let R
f−→ S be a ring homomorphism. The restriction of scalars

functor from S to R is the functor f ∗ : S-mod −→ R-mod that takes each S-module M
to the R-module f ∗M with underlying abelian group M and R-module structure

r ·m := f(r)m

induced by f . Moreover, for each S-module homomorphism g : M −→ N we get the R-
module homomorphism f ∗(g) : f ∗(M) −→ f ∗(N) defined by f ∗(g)(m) := g(n).

Exercise 36. Check that restriction of scalars as defined above is indeed a functor.

Theorem 10.35 (Hom-tensor adjunction II). Let S be an R-algebra, M be an R-module,
and P and N be S-modules. There is an isomorphism of abelian groups

HomS(M ⊗R N,P ) ∼= HomR(M,HomS(N,P )).

Moreover, this isomorphism is natural on M , N , and P , meaning that it induces natural
isomorphisms

• between HomS(−⊗R N,P ) and HomR(−,HomS(N,P )).

• between HomS(M ⊗R −, P ) and HomR(M,HomS(−, P )).

• between HomS(M ⊗R N,−) and HomR(M,HomS(N,−)).

Proof. Consider the map

HomS(M ⊗R N,P ) τ // HomR(M,HomS(N,P ))

f � //m 7→ (n 7→ f(m⊗ n))

.

Fix f . For each m ∈ M , let τm be the map N −→ P defined by τm(n) := f(m ⊗ n). Note
that τm is indeed a homomorphism of S-modules, since it is the composition of two S-module
maps, f and m⊗R idN , where m is the constant map M −→M equal to m.

We should check that our proposed map τ is indeed a map of abelian groups. It is
immediate from the definition that τ sends the 0-map to the 0-map. Moreover, given S-
module homomorphisms f, g :M ⊗N −→ P , and any n ∈ N , we have

τm(f + g)(n) = (f + g)(m⊗ n) by definition

= f(m⊗ n) + g(m⊗ n) since f and g are S-module maps

= τm(f)(n) + τm(g)(n) by definition

so τm(f + g) = τm(f) + τm(g) for all m ∈M , and thus τ(f + g) = τ(f) + τ(g).
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Suppose that τ(f) = 0. Then for every m ∈M and every n ∈ N ,

0 = τ(f)(m)(n) = τm(f)(n) = f(m⊗ n),

so f vanishes at every simple tensor, and we must have f = 0. On the other hand, if
we are given g ∈ HomR(M,HomS(N,P )), consider the map M × N −→ P defined by
f̃(m,n) = g(m)(n). Since g is a homomorphism of R-modules, it is R-linear onm. Moreover,
for each fixed m, g(m) is a homomorphism of S-modules, so in particular g(m) is R-linear.
Together, these say that f̃ is an R-bilinear map. Let f be the homomorphism of R-modules
M ⊗R N −→ P induced by f̃ . By definition, f(m ⊗ n) = f̃(m,n) = g(m)(n), so τ(f) = g.
We conclude that τ is a bijection.

We leave the statements about naturality as exercises.

Corollary 10.36 (Adjointness of restriction and extension of scalars). Let f R −→ S be a
ring homomorphism. The restriction of scalars functor f ∗ : S-mod −→ R-mod is the right
adjoint of the extension of scalars functor f! : R-mod −→ S-mod.

Proof. We need to show that for every R-module M and every S-module N there are bijec-
tions

HomS(f!(M), N) ∼= HomR(M, f ∗(N))

which are natural on both M and N . By Theorem 10.35, we have natural bijections

HomS(M ⊗R S,N) ∼= HomR(M,HomS(S,N)).

The module M ⊗R S is precisely f!(M). By Exercise 31, HomS(S,N) ∼= N as an S-module.
An isomorphism of S-modules HomS(S,N) −→ N is in particular an R-linear map, and thus
also an isomorphism of R-modules. So HomS(S,N) ∼= f ∗(N) as R-modules. Therefore, the
Hom-tensor adjuntion gives us the natural bijections we were looking for.

The idea is that restriction of scalars and extension of scalars are the most efficient ways
of making an R-module out of an S-module, and vice-versa.



Chapter 11

Enough (about) projectives and
injectives

11.1 Projectives

While the Hom functors on R-mod are not exact, they are always left exact. Modules M
that make HomR(M,−) or HomR(−,M) exact functors are special.

Definition 11.1. An R-module P is projective if given any surjective R-module homo-

morphism A
p−→ B and any R-module homomorphism P

f−→ B, there exists an R-module
homomorphism g such that the diagram

P
g

��

f

��

A p
// B // 0

commutes.

Remark 11.2. The commutativity of the diagram

P
g

��

f

��

A p
// B // 0

says that p∗(g) = f , where p∗ is the map HomR(P,A) −→ HomR(P,B) induced by p.
Whenever this happens, we say that g is a lifting of f .

Free modules are projective.

Theorem 11.3. If F is a free R-module, then F is projective.

Proof. Suppose we are given R-module homomorphisms A
p−→ C and P

f−→ B such that p
is surjective. Fix a basis B = {bi}i for F . Since p is surjective, for each i we can choose

169
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ai ∈ A such that p(ai) = f(bi). Consider the function u : B −→ A given by u(bi) = ai.
The universal property of free modules says that there exists an R-module homomorphism
g : P −→ A that coincides with u for all basis elements. Now

pg(bi) = pu(bi) = p(ai) = f(bi),

so pg agrees with f for all basis elements. Since B generates F , we conclude that pg = f .

Projective modules are precisely those that make the covariant Hom functor exact.

Theorem 11.4. Let P be an R-module. The functor HomR(P,−) is exact if and only if P
is projective.

Proof. By Theorem 10.7, HomR(P,−) is left exact. So the statement is really that P is
projective if and only for any short exact sequence

0 // A i // B
p
// C // 0 ,

the induced map p∗ : HomR(P,B) −→ HomR(P,C) is surjective. So say we are given a
surjective map

B
p
// C // 0 .

The induced map p∗ is surjective if and only of for every f ∈ HomR(P,C) there exists a
lifting g ∈ HomR(P,B) of f , meaning p∗(g) = f . By Remark 11.2, the existence of such a g
for all such surjective maps p is precisely the condition that P is projective.

We can rephrase the condition that a module is projective or injective in terms of split
exact sequences.

Definition 11.5. We say that a short exact sequence

0 // A // B // C // 0

splits or is a split short exact sequence if it is isomorphic to

0 // A i // A⊕ C p
// C // 0

where i is the inclusion of the first component and p is the projection onto the second
component.

Lemma 11.6 (Splitting Lemma). Consider the short exact sequence

0 // A
f
// B

g
// C // 0

of R-modules. The following are equivalent:

a) There exists a homomorphism of R-modules q : B −→ A such that qf = idA.

b) There exists a homomorphism of R-modules r : C −→ B such that gr = idC.
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c) The short exact sequence splits.

Proof. If the sequence splits, then consider an isomorphism of complexes

0 // A

a

��

f
// B

g
//

b
��

C //

c

��

0

0 // A i // A⊕ C
π

dd

p
// C //

j

ee
0,

meaning that the diagram commutes and a, b, and c are isomorphisms of R-modules, i is
the inclusion in the first component, and p is the projection onto the second component. Let
π : A ⊕ C −→ A be the projection onto the first component, and j : C −→ A ⊕ C be the
inclusion onto the first component. Now consider the maps q := a−1πb and r := b−1jc. Then

qf = a−1πbf

= a−1πia by commutativity

= a−1a because πi = idA

= 1A

and

gr = gb−1jc

= c−1(cg)b−1jc multiplied by c−1c = 1C

= c−1(pb)b−1jc by commutativity

= c−1pjc because bb−1 = 1B

= c−1c because pj = idC

= 1C

Therefore, c implies a and b.
Now suppose that a holds, and let’s show that the sequence splits. First, we need to

show that B ∼= A⊕ C.
Every b ∈ B can be written as

b = (b− fq(b)) + fq(b),

where fq(b) ∈ im f ∼= A, and

q(b− fq(b)) = q(b)− qf︸︷︷︸
idA

(q(b)) = q(b)− q(b) = 0,

so b − fq(b) ∈ ker q. This shows that B = im f + ker q. Moreover, if f(a) ∈ ker q, then
a = qf(a) = 0, so im f ∩ ker q = 0, and B = im f ⊕ ker q. Now when we restrict g to ker q, g
becomes injective. We claim it is also surjective, and thus an isomorphism. Indeed, for any
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c ∈ C we can pick b ∈ B such that g(b) = c, since g is surjective, and we showed that we
can write b = f(a) + k for some k ∈ ker q. Then

g(k) = gf︸︷︷︸
0

(a) + g(k) = g(b) = c.

Finally, note that im f ∼= A, so we conclude that B ∼= A ⊕ C, via the isomorphism φ given
by

B // im f ⊕ ker q // A⊕ C
b � // (fq(b), b− fq(b)) � // (q(b), g(b)).

Since gf = 0 and qf = idA, φf(a) = (qf(a), 0) = (a, 0), so φf = i, where i : A −→ A⊕C
is the inclusion on the first factor. If p : A⊕C −→ C denotes the projection onto the second
factor, pφ = g. Together, these two facts say that the following is a map of complexes:

0 // A
f

// B
g
//

φ

��

C // 0

0 // A
i
// A⊕ C p

// C // 0.

Since φ is an isomorphism, so is our map of complexes, and thus our original sequence is a
split exact sequence. This shows that a implies c.

Now assume b holds. Every b ∈ B can be written as

b = (b− rg(b)) + rg(b),

where rg(b) ∈ im r and

g(b− rg(b)) = g(b)− gr︸︷︷︸
idC

(g(b)) = g(b)− g(b) = 0,

so b− rg(b) ∈ ker g. This shows that B = ker g + im r. Moreover, if r(c) ∈ ker g, then

c = idC(c) = gr(c) = 0.

Therefore, B = ker g ⊕ im r. Now r is injective, since r(c) = 0 =⇒ c = gr(c) = 0, and thus
im r ∼= C. Since ker g = im f ∼= A, we conclude that B ∼= A⊕ C, via the isomorphism

A⊕ C ψ
// B

(a, c) � // f(a) + r(c).

Finally, let i : A −→ A ⊕ C denote the inclusion of the first factor, and p : A ⊕ C −→ C
denote the projection onto the second factor. By construction, ψi = f . Moreover,

gψ(a, c) = gf︸︷︷︸
0

(a) + gr︸︷︷︸
idC

(c) = c,
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so gψ = p. Together, these say that the diagram

0 // A
i // A⊕ C p

//

ψ
��

C // 0

0 // A
f

// B g
// C // 0

commutes, and must then be an isomorphism of short exact sequences.

Not every short exact sequence is split.

Example 11.7. The short exact sequence

0 // Z 2 // Z // Z/2 // 0

is not split. Indeed, Z does not have any 2-torsion elements, so it is not isomorphic to
Z⊕ Z/2.

An alternative explanation is that there is no splitting to the inclusion Z 2 // Z . On the
one hand, every Z-module map is given by multiplication by a fixed integer n, so a splitting
f : Z −→ Z would be of the form f(a) = na for some fixed n. On the other hand, our
proposed splitting f must send 2 to 1, but there is no integer solution n to 2n = f(2) = 1.

More surprisingly, a short exact sequence of the form

0 // A
f
// A⊕ C g

// C // 0

is not necessarily split, not unless f is the inclusion of the first component and g is the
projection onto the second component.

Example 11.8. Consider the short exact sequence

0 // Z/(2) f
// Z/(4) g

// Z/(2) // 0

where f is the inclusion of the subgroup generated by 2, so f(1) = 2, and g is the quotient
onto that subgroup, meaning g(1) = 1. This is not a split short exact sequence, because
Z/(4) ̸∼= Z/(2) ⊕ Z/(2). Now let M =

⊕
N(Z/(2) ⊕ Z/(4)) be the direct sum of infinitely

many copies of Z/(2)⊕ Z/(4). Then

Z/(2)⊕M ∼= M ∼= M ⊕ Z/(4),

and the sequence

0 // Z/(2) h // Z/(4)⊕M t // Z/(2)⊕M // 0

with h(a) = (f(a), 0) and t(a,m) = (g(a),m) is still exact. The middle term is indeed
isomorphic to the direct sum of the other two, and yet this is not a split exact sequence: a
splitting q : Z/(4) ⊕M −→ Z/(2) of h would restrict to a splitting Z/(4) −→ Z/(2) of f ,
which we know cannot exist.



174

Given splittings q and r for a short exact sequence as in Lemma 11.6, we can quickly
show that our short exact sequence splits using the Five Lemma.

Exercise 37 (The Five Lemma). Consider the following commutative diagram of R-modules
with exact rows:

A′

a

��

// B′ //

b
��

C ′ //

c

��

D′

d
��

// E ′

e

��

A // B // C // D // E

Show that if a, b, d, and e are isomorphisms, then c is an isomorphism.

Remark 11.9. Given a short exact sequence, suppose we have R-module homomorphisms
q and r

0 // A
f
// B

q

aa

g
// C

r

aa
// 0

such that qf = idA and rg = idC . Then we get an induced map

B
φ

// A⊕ C
b � // (q(b), g(b))

such that the diagram

0 // A
f

// B
g
//

φ

��

C // 0

0 // A
i
// A⊕ C p

// C // 0.

commutes. The Five Lemma 37 guarantees that φ must be an isomorphism, so our diagram
is an isomorphism of short exact sequences.

There are many ways in which R-mod behaves better than the category of groups, and
this is one of them.

Remark 11.10. Lemma 11.6 does not hold if we replace R-modules with the category Grp
of groups. For example, consider the symmetric group on 3 elements S3 and the inclusion
A3 ↪→ S3 of the alternating group in S3. Notice that A3 is precisely the kernel of the sign
map sign : S3 −→ Z/2, so that

0 // A3
// S3

// Z/2 // 0

is a short exact sequence. Moreover, this exact sequence is not split, since S3 is not abelian
but A3⊕Z/2 is, and thus S3 ̸∼= A3⊕Z/2. However, any group homomorphism u : Z/2 −→ S3

defined by sending the generator to any two cycle is a splitting for our short exact sequence,
meaning sign ◦ u = idZ/2.

Funny enough, there is no splitting for the inclusion A3 ⊆ S3, since there are no nontrivial
homomorphisms S3 −→ A3: A3 has no elements of order 2, so a group homomorphism
S3 −→ A3 must send every 2-cycle in S3 must be sent to the identity, but 2-cycles generate S3.
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We can now characterize projective modules in term of split short exact sequences.

Theorem 11.11. An R-module P is projective if and only if every short exact sequence

0 // A // B // P // 0

splits.

Proof. Consider a short exact sequence

0 // A
f
// B

g
// P // 0 .

If P is projective, the identity map on P lifts to a map P −→ B, meaning that

P
h

��

B g
// P // 0

commutes. This says that our map h

0 // A
f
// B

g
// P //

h

aa 0

is a splitting for our short exact sequence, which must then be split, by Lemma 11.6.
Conversely, suppose that every short exact sequence

0 // A // B // P // 0

splits, and consider any diagram

P

f

��

B p
// C // 0.

Let F be a free module that surjects onto P — for example, the free module on a set of
generators of P — and fix a surjection π : F ↠ P . By assumption, the short exact sequence

0 // ker p // F π // P //

h

aa 0

splits, so by Lemma 11.6 there exists h such that πh = idP . Now since F is free, we can
define an R-module map ĝ : F −→ B that such that

F π
//

ĝ
��

P

h
{{

f
��

B p
// C // 0
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commutes, by sending each basis element b ∈ F to any lift of fπ(b) in B via p. Now set
g := ĝh. Now

pg = pĝh by definition

= fπh by commutativity

= f since πh = idP ,

so g is a lift of p by f .

We have seen that free modules are projective; what other modules are projective?

Definition 11.12. An R-moduleM is a direct summand of an R-module N if there exists
an R-module A such that A⊕M ∼= N .

Remark 11.13. Saying that M is a direct summand of N is equivalent to giving a splitting

s of the inclusion map M
i−→ N , meaning that si = idN . As we’ve argued in Lemma 11.6,

such a splitting s gives
N = im i⊕ ker s.

Essentially repeating the argument we used in Lemma 11.6, every element in N can be
written as

n = (n− is(n)) + is(n),

where is(n) ∈ im i and n − is(n) ∈ ker s, and ker s ∩ im i = 0 because if i(a) ∈ ker s then
a = si(a) = 0.

When we are dealing with graded modules over a graded ring, the kernels and images of
graded maps are graded modules, and the equality N = im i ⊕ ker s is a graded direct sum
of graded modules.

Theorem 11.14. An R-module is projective if and only if it is a direct summand of a free
R-module. In particular, a finitely generated R-module is projective if and only if it is a
direct summand of Rn for some n.

Proof. Let P be a projective module, and fix a free module F surjecting onto P . If P is
finitely generated, we can take F = Rn for some n. The short exact sequence

0 // ker p // F
π // P // 0

must split by Theorem 11.11, so P is a direct summand of F .
Now suppose P is a direct summand of a free module F . In particular, we have an

inclusion map i : P −→ F and a projection map π : F −→ F , and πi = idP . Given any
diagram

P

f

��

B p
// C // 0,
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we can again define an R-module homomorphism

F π
//

h
��

P

i
{{

f

��

B p
// C // 0,

such that ph = fπ. Setting g := hi, we do indeed obtain pg = f , since

pg = phi by definition

= fπi because ph = fπ

= f since πi = idP .

Corollary 11.15.

1) Every direct summand of a projective module is projective.

2) Every direct sum of projective modules is projective.

Proof.

1) Suppose M ⊕ A ∼= P for some projective module P . By Theorem 11.14, there exists a
free R-module F and an R-module B such that P ⊕B ∼= F . Then M ⊕A⊕M ∼= F , and
by Theorem 11.14 this implies M is projective.

2) Suppose {Pi}i∈I are all projective modules. By Theorem 11.14, there exist free modules
Fi such that each Pi is a direct summand of Fi. Therefore, ⊕Pi is a direct summand of
⊕iFi, which is also free. By Theorem 11.14, this implies that ⊕Pi is projective.

Projective modules are not necessarily free.

Example 11.16. The ring R = Z/(6) can be written as a direct sum of the ideals

I = (2) and J = (3).

Indeed, R = I + J and I ∩ J = 0, so R = I ⊕ J . By Corollary 11.15, I and J are projective
R-modules. However, I and J are not free. This can easily be explained numerically: every
finitely generated free R-module is of the form Rn, so it has 6n elements for some n, while
I and J have 3 and 2 elements respectively.

However, over a local ring, every projective module is indeed free.

Theorem 11.17. Let (R,m) be a local ring. Every finitely generated projective R-module is
free.
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Proof. Let P be a finitely generated projective module. Let n := µ(P ) be the minimal
number of generators of P , and let m1, . . . ,mn be a minimal generating set. The map

Rn π // P

(r1, . . . , rn) // r1m1 + · · ·+ rnmn

is surjective, and an element (r1, . . . , rn) ∈ kerπ corresponds to a relation r1m1+· · ·+ rnmn = 0.
As we saw in Proposition 4.32 and Definition 4.34, our assumption that m1, . . . ,mn form a
minimal generating set means that their images in P/mP are linearly independent, and thus
form a basis for P/mP . Therefore, if (r1, . . . , rn) ∈ kerπ then we must have r1, . . . , rn ∈ m.
In particular, ker π ⊆ mF .

By Theorem 11.11, the short exact sequence

0 // kerπ // F π // P // 0

splits, and there exists an injective map j : P −→ F such that F = im j ⊕ kerπ. We have
shown that kerπ ⊆ mF , so we must have kerπ = m(kerπ). Since ker π is a finitely generated
module, NAK 4.31 implies that kerπ = 0. We conclude that π is an isomorphism, and P is
free.

Kaplansky [Kap58] showed that this holds even for modules that are not necessarily
finitely generated, but only generated by countably many elements.

Theorem 11.18. Let R be an N-graded k-algebra with R0 = k, and m = R+. If M is a
graded R-module. which is a direct sum of a finitely generated graded R-module, then M is
free.

Proof. Let f1, . . . , fs be a minimal set of homogeneous generators forM , of degrees d1, . . . , ds,
respectively. The surjective R-module homomorphism

F := R(−d1)⊕ · · · ⊕R(−ds) π //M

(r1, . . . , rs) // r1f1 + · · ·+ rsfs

is a graded map of degree 0. We claim this is an isomorphism, so we just need to show
that ker π = 0. Our elements f1, . . . , fs give a basis for the R/m-vector space M/mM , so if
(r1, . . . , rs) ∈ kerπ, or equivalently r1f1 + · · · + rsfs = 0, then r1, . . . , rs ∈ m. In particular,
kerπ ⊆ mF .

Now suppose that M ⊕N ∼= G for some graded free R-module G, and let g1, . . . , gt be a
homogenous basis for G. Let p be the degree 0 graded projection map G −→M . Now both
π and p are degree 0 surjective maps, so for each i there exists some homogeneous element
hi ∈ F of the same degree such that π(hi) = p(gi). Since G is a free graded module, we
can define a degree 0 graded homomorphism of R-modules G

α−→ F by setting α(gi) = hi.
Let β : M −→ F be the restriction of α to M . Now notice that πβ is the identity on M
by construction, and thus π is a splitting of β. In particular, as described in Remark 11.13,
F = im β ⊕ kerπ. We showed above that ker π ⊆ mF , so in particular F = im β +mF . By
NAK 4.30, we must have F = im β. Then kerπ = 0 and π is an isomorphism. In particular,
M is a graded free R-module.
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Finally, we record an easy result that we have used repeatedly at this point.

Lemma 11.19. For every R-module M , there exists a free module F surjecting onto M . If
M is finitely generated, we can take F to be finitely generated.

11.2 Injectives

Injective modules are dual to projectives.

Definition 11.20. An R-module I is injective if given an injective R-module homomor-
phism i : A −→ B and an R-module homomorphism f : A −→ I, there exist an R-module
homomorphism g such that

I

0 // A

f

OO

i
// B

g
__

commutes.

These are precisely the modules I such that HomR(−, I) is exact.

Theorem 11.21. An R-module I is injective if and only if HomR(−, I) is exact, meaning
that for every short exact sequence

0 // A
i // B

p
// C // 0

we get an exact sequence

0 // HomR(C, I)
p∗
// HomR(B, I)

i∗ // HomR(A, I) // 0.

Proof. By Theorem 10.7, HomR(−, I) is left exact, so for any short exact sequence

0 // A
i // B

p
// C // 0

we get an exact sequence

0 // HomR(C, I)
p∗
// HomR(B, I)

i∗ // HomR(A, I).

So the content of the theorem is that I is injective if and only if every injective R-module
homomorphism i : A −→ B, the induced map i∗ is surjective. Now notice that i∗ is surjective
if and only if every f ∈ HomR(A, I) lifts to some g ∈ HomR(B, I), meaning

I

0 // A

f

OO

i
// B

g
__

commutes. That is precisely what we want for I to be injective.
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The product of injectives is injective.

Lemma 11.22. Given any family {Mi}i∈I of injective modules,
∏

i∈IMi is injective.

Proof. Let πj :
∏

i∈IMi −→Mj be the projection onto the jth factor. Given any diagram∏
i∈IMi

0 // A

f

OO

i
// B,

the fact that Mi is injective gives us R-module homomorphisms gi such that

Mi

0 // A

πif

OO

i
// B

gi
``

commutes for each i. Now the R-module homomorphism

B
g
//
∏

i∈IMi

b � // (gi(b))

makes the diagram ∏
i∈IMi

0 // A

f

OO

i
// B)− g

ee

commute, so
∏

i∈IMi is injective.

Direct summands of injective modules are also injective.

Lemma 11.23. If M ⊕N = E is an injective R-module, then so are M and N .

Proof. Any diagram
M

0 // A

f

OO

i
// B

can be extended to a map A −→ E by composing f with the inclusion of the first factor.
Since E is injective, there exists h such that

M
j
// E

0 // A

f

OO

i
// B

h

OO
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commutes. Let π : E −→ M be the projection onto M , so that πj = idM . Now if we set
g := πh,

M // E

π
zz

0 // A

f

OO

i
// B

h

OO gi =πhi by definition

=πjf by commutativity

=f because πj = idM .

We can reduce injectivity to the ability to extend maps from ideals to the entire ring.

Theorem 11.24 (Baer Criterion). An R-module E is injective if and only if every R-module
homomorphism I −→ E from an ideal I in R can be extended to the whole ring, meaning
that there exists g making the diagram

E

0 // I

f

OO

// R

g
__

commute.

Proof. On the one hand, if E is injective then our condition is simply a special case of the
definition of injective module. On the other hand, suppose that this condition holds, and
consider any diagram

E

0 //M

f

OO

// N.

To simplify notation, let’s assume our mapM −→ N is indeed the inclusion of the submodule
M , so we can write m ∈ N for the image of m in N . Consider the set

X := {(A, g) | A is a submodule of N,M ⊆ A ⊆ N, and g extends f}.

First, notice X is nonempty, since (M, f) ∈ X. Moreover, we can partially order X by
setting (A, g) ⩽ (B, h) if A ⊆ B and h|A = g. So we have a non-empty partially ordered set;
let’s show we can apply Zorn’s Lemma to it.

Given a chain in X, meaning a sequence

(A1, g1) ⩽ (A2, g2) ⩽ · · ·

of nested submodules A1 ⊆ A2 ⊆ · · · and maps gi that extend all gj with j ⩽ i, let
A :=

⋃
iAi, and define

A
g

// E

a // gi(a) if a ∈ Ai.

This map g is indeed a map of R-modules, since so are all the gi, and it is well-defined, since
the gi(a) = gj(a) whenever a ∈ Ai ∩ Aj. By construction, this map extends all the gi, so
we conclude that (A, g) is an upper bound for our chain. Moreover, M ⊆ A ⊆ N follows
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immediately from our construction, and since each gi extends f , so does g. We conclude that
(A, g) ∈ X, and more generally that any chain in X has an upper bound in X. So Zorn’s
Lemma applies.

By Zorn’s Lemma, X has a maximal element, say (A, g). Now we claim that A = N .
Suppose not, and let n ∈ N be an element not in A. One can easily check that

I := {r ∈ R | rn ∈ A}

is an ideal in R, and that

I h // E

r // g(rn)

is an R-module homomorphism. By assumption, we can extend h to an R-module homo-
morphism R −→ E, which we will write as h as well. Now the R-module homomorphism

A+Rn
φ

// E

a+ rn // g(a) + h(r)

is well-defined by construction, since any rn ∈ A satisfies g(rn) = h(r), and if rn = r′n then
h(r) = rn = r′n = h(r′). Finally, this map agrees with g on A, and thus it agrees with f on
M , so (A+Rn, φ) ∈ X and (A, g) ⩽ (A+Rn, φ). By the maximality of (A, g), we conclude
that A + Rn = A, and thus n ∈ A, which is a contradiction. We conclude that A = N .
Therefore, g makes the diagram

E

0 //M

f

OO

// N.

g
aa

commute.

Over a Noetherian ring, a direct sum of injective modules is injective.

Corollary 11.25. Let R be a Noetherian ring. If {Mj}j∈J are all injective R-modules, then
so is

⊕
j∈JMj.

Proof. By Theorem 11.24, it is enough to show that any R-module map⊕
j∈JMj

0 // I

f

OO

// R

from an ideal I into
⊕

j∈JMj extends to R. Since R is Noetherian, I is finitely generated,
so let I = (a1, . . . , an). For each i = 1, . . . , n, f(ai) = (bi,j)j∈J has bi,j ̸= 0 only for finitely
many values of j ∈ J . Then

K := {j ∈ J | f(ai)j ̸= 0 for some i = 1, . . . , n}
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is a finite set, and f(I) ⊆
⊕

j∈KMj. Direct sums of finitely many modules coincide with
their product, so by Lemma 11.22,

⊕
j∈KMj is injective. Therefore, there exists g such that⊕

k∈KMk

0 // I

f

OO

// R

g
dd

commutes. Now
⊕

k∈KMk is a submodule of
⊕

j∈JMj, so we can think of g as an R-module
homomorphism with codomain

⊕
j∈JMj, and⊕

j∈JMj

0 // I

f

OO

// R

g
dd

commutes.

It is very easy to see that every R-module is a quotient of a free module. The dual
statement is true as well, but it is a little more delicate.

Definition 11.26. An R-module D is divisible if for every nonzero r ∈ R and every d ∈ D
there exists b ∈ D such that rb = d.

Remark 11.27. Given r ∈ R, and an R-moduleM , the multiplication by r map M
·r //M

is an R-module homomorphism. The module M is divisible if and only if multiplication by
r is surjective for all nonzero r ∈ R.

Example 11.28. If R is a domain, the fraction field Frac(R) of R is an injective R-module.

Remark 11.29. We claim that any quotient of a divisible module is also divisible. Indeed,
given r ∈ R and any class d ∈ D/E, let d ∈ D be a lift of d. By assumption, there exists
e ∈ D such that re = d. The image e of e in D/E is still a solution to re = d.

Lemma 11.30. Over a domain, every injective module is divisible.

Proof. Suppose that E is an injective R-module, where R is a domain. Fix r ∈ R and
a ∈ E. Since R is a domain, we have sr = s′r =⇒ s = s′ for any s, s′, r ∈ R, so the map of
R-modules

(r) // E

sr // sa

is well-defined. Since E is injective, we can extend this to a homomorphism f : R −→ E.
Finally, f(1) ∈ E is an element such that e = f(r) = rf(1), and E is divisible.

This not true in general if we do not assume R is a domain.
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Example 11.31. Let k be a field and R = k[x]/(x2). On the one hand, R is not a divisible
R-module, since there is no y ∈ R such that xy = 1. On the other hand, R is actually
an injective module over itself, although we do not yet have the tools to justify that this is
indeed an injective R-module.1

The converse of Lemma 11.30 does not hold in general.

Example 11.32. Consider the domain R = k[x, y] and its fraction field Q. The R-module
M = Q/R is divisible but not injective.

The converse of Lemma 11.30 does hold for some special classes of rings.

Lemma 11.33. Let R be a principal ideal domain.

a) An R-module E is injective if and only if it is divisible.

b) Quotients of injective modules are injective.

Proof.

a) Given Lemma 11.30, we only need to show that divisible modules are injective. So let E
be a divisible R-module, and consider any map I −→ E from an ideal I to E. If I = 0,
we could extend our map by taking the 0 map from R to E, so we might as well assume
that I ̸= 0. By assumption, I = (a) for some a ∈ R, and since E is divisible, there exists
e ∈ E such that f(a) = ae. Now consider the multiplication by r map,

R
g
// E

r // re.

For every r ∈ R, g(ra) = rae = rf(a) = f(ra), so g extends f . Therefore, by Theo-
rem 11.24, E is injective.

b) if E is injective, it is also divisible, by Lemma 11.30. Given any submodule D ⊆ E, any
e ∈ E, and a nonzero r ∈ R, there exists y ∈ E such that ry = e, and so this also holds
in E/D. Then E/D is divisible, and thus injective by a.

Given an injective abelian group, we can always construct an injective R-module over
our favorite ring R.

Lemma 11.34. Given an injective abelian group D, HomZ(R,D) is an injective R-module.

1Using fancy words we haven’t learned yet, this ring R is an example of a complete intersection, which
is a subclass of Gorenstein rings. One thing we do know how to justify is that dimR = 0. Now it turns out
that Gorenstein rings of dimension 0 are injective modules over themselves.
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Proof. Let E := HomZ(R,D). This abelian group E is an R-module, via

r · f := (a 7→ f(ra)).

We claim that E is actually an injective R-module. To show that, we will prove that
HomR(−,HomZ(R,D)) is an exact functor, which is sufficient by Theorem 11.21. By Corol-
lary 10.31, HomR(−,HomZ(R,D)) is naturally isomorphic to HomZ(− ⊗Z R,D). This last
functor is the composition of

HomZ(−⊗Z R,D) = HomZ(−, D) ◦ (−⊗Z R).

On the one hand, −⊗ZR is naturally isomorphic to the identity on R-mod, by Lemma 10.22,
so it is exact. On the other hand, D is an injective Z-module, so HomZ(−, D) is exact by
Theorem 11.21. The composition of exact functors is exact, and thus HomR(−,HomZ(R,D))
is exact.

Theorem 11.35. Every R-module M is a submodule of some injective R-module.

Proof. First, let us show that M includes in some injective abelian group. On the one hand,
M is a quotient of some free abelian group, say M ∼= (⊕iZ)/K. Now Z embeds in Q, and
thus M embeds into a quotient of ⊕iQ. By Example 11.28, Q is an injective abelian group,
and by Corollary 11.25, ⊕iQ is an injective abelian group. By Lemma 11.33, any quotient
of ⊕iQ is also injective, so we have shown that M embeds into an injective abelian group,
say D. Let i :M −→ D be the inclusion map.

Let E := HomZ(R,D). By Lemma 11.34, E is an injective R-module. Since Hom is left
exact, by Theorem 10.7, we have an inclusion HomZ(R,M) ⊆ HomZ(R,D). Now consider
the map

M
ψ
// HomZ(R,M)

m // (r 7→ rm).

This is an R-module homomorphism, since

• Given a, b ∈M ,

ψ(a+ b)(r) = r(a+ b) = ra+ rb = ψ(a)(r) + ψ(b)(r),

so ψ(a+ b) = ψ(a) + ψ(b).

• Given r ∈ R, m ∈M , and s ∈ R,

ψ(rm)(s) = s(rm) = r(sm) = rψ(m)(s),

so ψ(rm) = rψ(m).

Moreover, if ψ(m) = 0 then m = ψ(m)(1) = 0. So ψ is injective, and thus composing ψ
with our previous inclusion HomZ(R,M) ⊆ HomZ(R,D) gives us an inclusion φ of M into
the injective R-module HomZ(R,D). However, the inclusion HomZ(R,M) ⊆ HomZ(R,D)
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is only a map of abelian groups, so we should check that φ is indeed R-linear. For each
m ∈M , φ(m) is the map φm : R −→ D given by

φm(r) = i(rm).

For every r ∈ R, m ∈M , and s ∈ R,

φrm(s) = i(s(rm)) by definition

= i(r(sm))

= r · i(sm) by definition of R-module structure on HomZ(R,D)

= rφm(s) by definition,

so φ(rm) = rφ(m).

We can even do better and talk about the smallest injective module that M embeds in.

Definition 11.36. Let M ⊆ E. We say E is an essential extension of M if every nonzero
submodule N ⊆ E intersects M nontrivially, meaning E ∩ M ̸= 0. More generally, an
injective map α :M −→ E is an essential extension if α(M) ⊆ E is an essential extension in
the sense above.

Exercise 38. The property of being an essential extension is transitive, meaning that if
A ⊆ B and B ⊆ C is an essential extension, then A ⊆ C is an essential extension.

Moreover, if A ⊆ B is an essential extension, and C is a submodule of B with A ⊆ C ⊆ B,
then A ⊆ C and C ⊆ B are both essential extensions.

A module M always has the trivial essential extension M ⊆ M . If only has more
interesting essential extensions when it is not injective.

Theorem 11.37. An R-module M is injective if and only if it has no proper essential
extensions.

Proof. Suppose that M is injective, and that M ⊆ E is an essential extension. By Theo-
rem 11.40, the short exact sequence

0 //M // E // E/M // 0

splits, so E =M ⊕N for some submodule N . If N ̸= 0, we must have N ∩M ̸= 0, which is
a contradiction. Therefore, E =M .

Now suppose M has no nontrivial essential extensions, and let E be an injective module
such that M ⊆ E, which exists by Theorem 11.35. We claim that the extension M ⊆ E is
essential, and thus we must have M = E. Suppose not, so that there exists some nonzero
submodule N ⊆ E with N ∩M = 0. Then the set

S := {N ⊆ E submodule | N ∩M = 0}

is nonempty. It is also partially ordered by inclusion, and we claim that we can apply Zorn’s
Lemma to find a maximal element in S. To see that, consider a chain

N1 ⊆ N2 ⊆ · · ·
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of submodules of E such that M ∩ Ni ̸= 0. Then N :=
⋃
iNi is a submodule of E, and

any element in N ∩M must be in Ni ∩M for some i, so N ∩M = 0. This shows that
our increasing chain has an upper bound, and thus Zorn’s Lemma says there is a maximal
element in S. More precisely, there exists a submodule N of E maximal with respect to the
property that N ∩M = 0, meaning that if A ⊇ N , then A ∩M ̸= 0.

Now consider the canonical projection map π : E −→ E/N . We assumed that N∩M = 0,
and since N = ker π, π is injective. For simplicity, identify M with its image in E/N via
π. Submodules of E/N are of the form A/N for some submodule A ⊇ N of E, and if
A/N ∩ M = 0 then we must have A ∩ M = 0. We conclude that M ∼= π(M) ⊆ E/N
is an essential extension. By assumption, this essential extension must be trivial, and thus
π :M −→ E/N is surjective. Finally, this shows that E ∼= N⊕M , soM is a direct summand
of an injective module. By Lemma 11.23, M is an injective module.

Theorem 11.38. Given R-modules M ⊆ E, the following are equivalent:

1) M ⊆ E is a maximal essential extension, meaning that if M ⊆ E ⊆ N is such that
M ⊆ N is an essential extension, then E = N .

2) M ⊆ E is an essential extension and E is injective.

3) E is injective and for every injective R-module I, if M ⊆ I ⊆ E then I = E.

Proof. If 1 holds, and E ⊆ N is an essential extension, then so is M ⊆ N , by Exer-
cise 38. Therefore, E has no nontrivial essential extensions, and it must be injective by
Theorem 11.37.

Suppose 2 holds, and let I be an injective R-module with M ⊆ I ⊆ E. Then I ⊆ E is
an essential extension, by Exercise 38, but since I is injective, Theorem 11.37 says we must
have I = E.

Now if 3 holds, let us show that M ⊆ E is an essential extension. First, consider the set

S := {N submodule of E |M ⊆ N is an essential extension}.

This set is nonempty, since it contains M , and it is partially ordered by inclusion. Given an
ascending chain

N1 ⊆ N2 ⊆ · · ·

in S, let N :=
⋃
iNi. This is a submodule of E and it contains M . Given a nonzero

submodule A ⊆ N , take any nonzero a ∈ A. Then a ∈ Ni for some i, so Ra ⊆ Ni and we
must have Ra ∩M ̸= 0. Therefore, A ∩M ̸= 0, and M ⊆ N is an essential extension.

Now let us show that N has no proper essential extensions. We know it has no proper
essential extensions within E, but not that it has no proper essential extensions elsewhere.
Let i : N −→ E denote the inclusion map, and suppose that j : N ⊆ E ′ is an essential
extension. Since E is injective, there exists g such that

E

0 // N

i

OO

j
// E ′

g
``
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commutes. Since N ⊆ E ′ is an essential extension, ker g ∩N = ker g ∩ im j ̸= 0. But gj = i
is injective, so g must also be injective. So we have submodules N ⊆ g(E ′) ⊆ E, and since
N is a maximal essential extension of M inside E ′, M ⊆ g(E ′) is not an essential extension.
On the other hand, N ⊆ E ′ is an essential extension, and since g is injective, N ⊆ g(E ′) is
also an essential extension. By Exercise 38, M ⊆ g(E ′) must also be an essential extension,
which is a contraction unless j(N) = E ′.

Ultimately, this says that N has no nontrivial essential extensions. By Theorem 11.37, N
must be injective. But by assumption, that implies that N = E. So this shows that M ⊆ E
is an essential extension and also that it is maximal.

So now we can define the smallest injective module that M embeds in.

Definition 11.39. Let M be an R-module. An R-module E(M) is said to be an injective
hull or injective envelope of M if M ⊆ E(M) is a maximal essential extension.

Exercise 39. Any two injective hulls of M must be isomorphic.

The story of the structure of injective modules then continues in a beautiful way. Over
a Noetherian ring, it turns out that every injective module can be decomposed into a direct
sum of injective modules of the form E(R/P ), where P is a prime ideal in R. Moreover, the
injective modules E(R/P ) are the indecomposable injective modules, so the basic building
blocks of injective modules. We can in fact compute the injective hull of any finitely generated
R-module very explicitly. This story begins in Eben Matlis’ beautiful PhD thesis [Mat58].

And finally, just like we did for projectives, we can characterize injectives in terms of
split short exact sequences.

Theorem 11.40. An R-module I is injective if and only if every short exact sequence

0 // I // B // C // 0

splits.

Proof. Let I be an injective R-module, and consider any short exact sequence

0 // I i // B
p
// C // 0.

Since I is injective, there exists a map g making

I

0 // I
i
// B

g
__

commute, and such a g gives a splitting for our short exact sequence.
Conversely, suppose that every short exact sequence 0 // I // B // C // 0

splits, and consider a diagram
I

0 // A

f

OO

i
// B.



189

By Theorem 11.35, I embeds into some injective R-module E, say by the inclusion j. By
assumption, the short exact sequence

0 // I
j
// E // coker j // 0

splits, so there exists a map q : E −→ I such that qi = idI . Since E is injective, we can lift
i through jf , obtaining an R-module homomorphism ℓ such that

I
j
// E

q

}}

0 // A

f

OO

i
// B

ℓ

OO

commutes. Now g := qℓ satisfies

gi =qℓi by definition

=qjf by commutativity

=f since qj = idI ,

so
I

0 // A

f

OO

i
// B.

g
``

commutes.

11.3 Flat modules

Finally, we turn to the modules that make tensor exact.

Definition 11.41. An R-module M is said to be flat if M ⊗R − is an exact functor.

Remark 11.42. By Theorem 10.28, M ⊗R− is right exact. Therefore, M is flat if and only

if for every injective R-module map i : A −→ B, M ⊗R A
1⊗i−−→M ⊗R B is injective.

Lemma 11.43. Given a family of R-modules {Mi}i∈I , ⊕iMi is flat if and only if every Mi

is flat.

Proof. Given a family of R-module homomorphisms fi : Mi −→ Ni, there is an R-module
homomorphism ⊕

i∈IMi
(fi)i∈I

//
⊕

i∈I Ni

(mi)
� // (fi(mi))

which is injective if and only if every fi is injective.
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Let f : A −→ B be an injective R-module homomorphism. There is a commutative
diagram (⊕

i∈I

Mi

)
⊗R A

φ:=1⊗f
��

∼= //
⊕
i∈I

Mi ⊗R A

(1⊗f)i=:ψ

��

(⊕
i∈I

Mi

)
⊗R B ∼=

//
⊕

i∈IMi ⊗R B

where the horizontal maps are the isomorphisms from Theorem 10.27. In particular, φ is
injective if and only if ψ is injective. Moreover, ψ is injective if and only if each component
is injective, meaning 1⊗ f :Mi ⊗ A −→Mi ⊗B is injective for all i.

On the one hand,
⊕

i∈IMi is flat if and only if for every injective map f , the corresponding
map ψ is injective. On the other hand, all the Mi are flat if and only if for every injective
maps f , 1⊗ f :Mi ⊗A −→Mi ⊗B is injective for all i, or equivalently, as explained above,
if φ is injective for any given injective map f . This translates into the equivalence we want
to show.

All projectives are flat.

Theorem 11.44. Every projective R-module is flat.

Proof. First, recall thatR⊗R− is naturally isomorphic to the identity functor, by Lemma 10.22,
and thus exact (see Remark 10.6). This shows that R is flat, and thus any free module, being
a direct sum of copies of R, must also be flat, by Lemma 11.43. Finally, every projective
module is a direct summand of a free module, by Theorem 11.14. Direct summands of flat
modules are flat, by Lemma 11.43, so every projective module is flat.

We can test whether a given module if flat by looking at the finitely generated submodules.

Theorem 11.45. If every finitely generated submodule of M is flat, then M is flat.

Proof. Let i : A −→ B be an injective map of R-modules. We want to show that

M ⊗R A
1⊗i
//M ⊗R B

is injective. Suppose that u ∈ ker(1M ⊗ i). We are going to construct a finitely generated
submodule j : N ⊆ M and an element v ∈ N ⊗R M such that v ∈ ker(1N ⊗ i) and
u = (j ⊗ 1A)(v). Once we do that, our assumption will say that 1N ⊗ i is injective, so v = 0
and thus u = 0. This will show that 1M ⊗ i is also injective, and M is flat.

Let’s say that u = m1⊗ a1+ · · ·+mn⊗ an. In Theorem 10.13, we constructed the tensor
product M ⊗RB as a quotient of the free module F on M ×B by the submodule S with all
the necessary relations we need to impose. This gives us a short exact sequence

0 // S // F
π //M ⊗R B // 0.
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The fact that m1 ⊗ i(a1) + · · · + mn ⊗ i(an) = 0 means we can rewrite this element as
π(s) for some s ∈ S. This element s is a linear combination of elements of finitely many
(m, b) ∈M ×B. Let n1, . . . , ns be all the M -coordinates of those elements.

Now we take N to be the finitely generated submodule of M generated by m1, . . . ,mn

and n1, . . . , ns, and v = m1 ⊗ a1 + · · ·+mn ⊗ an ∈ N ⊗ A. Now

(j ⊗ 1A)(m1 ⊗ a1 + · · ·+mn ⊗ an) = m1 ⊗ a1 + · · ·+mn ⊗ an ∈M ⊗R A,

and
(1N ⊗ i)(m1 ⊗ a1 + · · ·+mn ⊗ an) = m1 ⊗ i(a1) + · · ·+mn ⊗ i(an) = 0,

as desired.
The reason we needed to add in these extra elements ni is that a priori N⊗B is not neces-

sarily a submodule ofM⊗B, so we do not necessarily havem1⊗i(a1)+· · ·+mn⊗ i(an) = 0
in (Rm1 + · · ·+Rmn)⊗B without adding in all relations that make it true.

Definition 11.46. Let R be a domain and M be an R-module. The torsion submodule
of M is

T (M) := {m ∈M | rm = 0 for some regular element r ∈ R}.

The elements of T (M) are called torsion elements, and we say that M is torsion if
T (M) =M . Finally, M is torsion free if T (M) = 0.

Lemma 11.47. If R is a domain and M is a flat R-module, then M is torsion free.

Proof. Let Q = frac(R) be the fraction field of R, which is a torsion free R-module. Now
M ⊗R Q is a Q-vector space, so isomorphic to a direct sum of copies of Q. In particular,
M ⊗R Q is torsion free as an R-module. Since M is flat, the inclusion R ⊆ Q induces an
injective R-module map

0 //M ⊗R R //M ⊗R Q,

and sinceM ∼= M⊗RR, by Lemma 10.22, we conclude thatM is isomorphic to a submodule
of M ⊗R Q. Submodules of torsion free modules are also torsion free, so M ⊗R Q is torsion
free.

In general, the converse does not hold.

Example 11.48. Let k be a field and R = k[x, y]. Consider the ideal m = (x, y). This is a
submodule of the torsion free module R, and thus torsion free. However, it is not flat. For
example, when we apply R/m⊗R − to the inclusion m ⊆ R we obtain a map of R/m-vector
spaces

m/m2 // R/m .

This map cannot possibly be injective: m/m2 is a 2-dimensional R/m-vector space, and R/m
is 1-dimensional.

The converse does over a PID.

Lemma 11.49. If R is a principal ideal domain, an R-module M is flat if and only if it is
torsion free.
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Proof. Suppose M is a torsion free finitely generated R-module. The structure theorem for
PIDs says that M must be isomorphic to a direct sum of copies of cyclic modules. The
cyclic module R/I has torsion (all the elements are killed by I) unless I = 0. Therefore,
M must be isomorphic to a direct sum of copies of R, and thus free. By Theorem 11.3 and
Theorem 11.44, M is flat.

Now let M be any torsion free R-module. All of the finitely generated submodules of R
are also torsion free, and thus flat.

Not all flat modules are projective.

Example 11.50. The Z-module Q is torsion free and thus flat, by Lemma 11.49. However,
Q is not a projective Z-module. Suppose Q is a projective Z-module. By Theorem 11.14,
Q must be a direct summand of a free module, say F =

⊕
I Z. Consider the inclusion

ι : Q ↪→ F , and pick i ∈ I such that the image of Q contains some element with a nonzero
entry in the i component. Now consider the projection π : F −→ Z onto the ith factor.
By assumption, the composition πi : Q −→ Z is nonzero. However, there are no nontrivial
abelian group homomorphisms Q −→ Z, contradicting the fact that πi is nonzero. We
conclude that Q is not projective.

We now turn to an important example: localization. In particular, we can finally prove
Theorem 4.25, a theorem we claimed a long time ago.

Theorem 11.51 (Flatness of localization). Let R be a ring, and W ∋ 1 a multiplicative
subset of R. Then

1) For every R-module M , there is an isomorphism W−1R ⊗R M ∼= W−1M of W−1R-
modules, and given an R-module map M

α−→ N , W−1R ⊗ α corresponds to W−1α un-
der these isomorphisms. In fact, we have a natural isomorphism between W−1(−) and
W−1R⊗R −.

2) W−1R is flat over R.

3) W−1(−) is an exact functor; i.e., it sends exact sequences to exact sequences.

Proof.

1) The bilinear map

W−1R×M //W−1M

( r
w
,m) � // rm

w

induces a map ψ from the tensor product that is clearly surjective. For an inverse map,
set ϕ(m

w
) := 1

w
⊗ m. To see this is well-defined, suppose m

w
= m′

w′ , so there exists some
v ∈ W such that v(mw′ −m′w) = 0. Then,

ϕ
(m
w

)
− ϕ

(
m′

w′

)
=

1

w
⊗m− 1

w′ ⊗m
′.
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We can multiply through by vww′

vww′ to get

vw′

vww′ ⊗m−
vw

vww′ ⊗m
′ =

1

vww′ ⊗ v(mw
′ −m′w) = 0.

To see this is a homomorphism, we note that

ϕ(
m

w
+
m′

w′ ) = ϕ(
mw′ +m′w

ww′ ) =
1

ww′ ⊗ (mw′ +m′w) =
1

ww′ ⊗mw
′ +

1

ww′ ⊗m
′w

=
w′

ww′ ⊗m+
w

ww′ ⊗m
′ =

1

w
⊗m+

1

w′ ⊗m
′ = ϕ

(m
w

)
+ ϕ

(
m′

w′

)
,

and

ϕ
(
r
m

w

)
=

1

w
⊗ rm = r

(
1

w
⊗m

)
= rϕ

(m
w

)
.

The composition ϕ ◦ ψ sends

r

w
⊗m 7→ rm

w
7→ 1

w
⊗ rm =

r

w
⊗m.

Since this is the identity on simple tensors, it must be the identity.

For the claim about maps, we need check that ψN ◦ (W−1R⊗ α) = W−1α ◦ ψM for every
M

α−→ N . And indeed,

(ψN ◦ (W−1R⊗ α))
( r
w
⊗m

)
= ψN

( r
w
⊗ α(m)

)
=
rα(m)

w

=
α(rm)

w
= W−1α

(rm
w

)
= (W−1α ◦ ψM)

( r
w
⊗m

)
.

Finally, we note that our isomorphisms W−1R⊗R M ∼= W−1M give a natural isomor-
phism between the localization functor W−1 and the tensor functor W−1R⊗R−. Indeed,
given a map of R-modules M

f−→ N , the diagram

W−1R⊗M //

id⊗f
��

W−1M

W−1(f)

��

W−1R⊗N //W−1N

commutes, since it commutes for simple tensors:

r
w
⊗m //

id⊗f
��

rm
w

W−1(f)
��

r
w
⊗ f(m) // rf(m)

w
= f(rm)

w
.

2) This follows from the earlier observation that W−1(−) preserves injective maps, Re-
mark 4.23.
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3) This is immediate from part 2).

Corollary 11.52 (Hom and localization). Let R be a Noetherian ring, W be a multiplicative
set, M be a finitely generated R-module, and N an arbitrary R-module. Then,

HomW−1R(W
−1M,W−1N) ∼= W−1HomR(M,N).

In particular, if p is prime,

HomRp(Mp, Np) ∼= HomR(M,N)p.



Chapter 12

Resolutions

12.1 Projective resolutions

Definition 12.1. Let M be an R-module. A projective resolution is a complex

C• = · · · // Pn // · · · // P1
// P0

// 0
n 1 0

where all the Pi are projective, H0(C) =M , and Hi(C) = 0 for all i ̸= 0. We may also write
a projective resolution for M as an exact sequence

· · · // Pn // · · · // P1
// P0

//M // 0
n 1 0

where all the modules Pi are projective.

You’ll find both these definitions in the literature, often indicating the second option as
an abuse of notation. We will be a bit sloppy and consider both equivalently, since at the
end of the day they contain the same information.

Theorem 12.2. Every R-module has a projective resolution.

Proof. Let M be an R-module. We are going to construct a projective resolution quite
explicitly. The first step is to find a projective module P0 that surjects onto M . In fact, we
can find a free module surjecting onto M , by Lemma 11.19. Now consider the kernel of that
projection, say

0 // K0
i0 // P0

π0 //M // 0.

Set ∂0 := π0. There exists a free module P1 surjecting onto K0. Now the map ∂1 = i0π1
satisfies im ∂1 = K0 = ker ∂0.

0

!!

0

K0

i0
==

  

P1

π1
>>

∂1
// P0

∂0 //M.

195
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Now the process continues analougously. We find a free module P2 surjecting ontoK1 := ker ∂1,
and set

0

!!

0

K0

==

i0

  

P2

π2
  

∂2 // P1

π1
>>

∂1
// P0

∂0 //M.

K1

!!

i1

>>

0

==

0.

At each stage, πi : Pi −→ Ki−1 is a surjective map, Ki := ker ∂i, ii is the inclusion of the
kernel of ∂i into Pi, and we get short exact sequences

0 // Kn+1
in+1

// Pn+1
πn+1

// Kn
// 0.

In fact, im(in+1) = ker ∂n+1 = ker(inπn+1) = ker πn+1. We can continue this process indef-
initely for as long as Pn ̸= 0, and the resulting sequence will be a projective resolution for
M .

In fact, we showed that every R-module has a free resolution.

Definition 12.3. A free resolution of an R-module M is a projective resolution for M by
free modules, meaning each Pi is free.

We can think of a free resolution

· · · // F2
// F1

// F0
//M

as giving a detailed description of our module M . The first free module, F0, gives us
generators for M . The second free module, F1, gives us generators for all the relations
among our generators for M . The next module describes the relations among the relations
among our generators. And so on.

More interestingly, we can do this minimally as long as some reasonable assumptions are
satisfied.

Definition 12.4. Let (R,m) be either a local ring or an N-graded graded k-algebra with
R0 = k and homogeneous maximal ideal m = R+. A complex

· · · // F2
∂2 // F1

∂1 // F0
// · · ·

is minimal if im ∂n+1 ⊆ mFn for all n.
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Remark 12.5. A complex

F = · · · // F2
∂2 // F1

∂1 // F0
// · · ·

is minimal if and only if the differentials in the complex F ⊗R R/m are all identically 0.
If all the Fi are free, our complex is minimal if and only if all the entries in the matrices
representing ∂i are in m, whatever our bases are.

Lemma 12.6. Let (R,m) be either a local ring or a N-graded graded k-algebra with R0 = k
and homogeneous maximal ideal m = R+. Let M be a (graded) finitely generated R-module.
A free resolution

F = · · · // F2
∂2 // F1

∂1 // F0

for M is a minimal complex if and only if for all n, Fn is constructed by taking the free
module on a minimal set of (homogeneous, in the graded case) generators for ker ∂n−1.

Proof. Suppose for some n we have chosen Fn to be the free module on some non-minimal set
of generators m1, . . . ,ms for Kn−1 := ker ∂n−1. More precisely, there is a basis e1, . . . , es for
Fn so that ∂n(ei) = mi, and the images of m1, . . . ,ms in the vector space Kn−1/mKn−1 are
linearly dependent. Then we can choose r1, . . . , rs ∈ R, not all in m, such that r1m1 + · · ·+
rsms = 0 in R. In the graded case, we can take all these coefficients ri to be homogeneous.
At least one of these coefficients is not in m, and thus it must be invertible.1 we can multiply
by its inverse. So perhaps after reordering our elements, we get

ms = r1m1 + · · ·+ rs−1ms−1.

Now
es − r1e1 − · · · − rs−1es−1 ∈ ker ∂n = im ∂n+1

is not in mFn, so im ∂n+1 /∈ mFn.
Now suppose that im ∂n+1 ⊈ mFn for some n. Let e1, . . . , es be a basis for Fn, so that

∂n(e1), . . . , ∂(es) form a generating set forKn−1 := ker ∂n−1. By assumption, ker ∂n = im ∂n+1

contains some (homogeneous, in the graded case) element that is not in mFn. So there is
an element r1e1 + · · · + rses ∈ ker ∂n not in mFn. In particular, some ri /∈ m, which we can
assume without loss of generality to be r1. Multiplying by the inverse of r1, we get some
ci ∈ R such that

e1 − c2e2 − · · · − cses ∈ ker ∂n,

so
∂n(e1) = c2∂n(e2) + · · ·+ cs∂n(es).

This is a nontrivial relation among our chosen set of generators of Kn−1, which must then
be non-minimal.

So to construct a minimal free resolution of M , we simply take as few generators as
possible in each step. Ultimately, we can talk about the minimal free resolution of M . To
show that, we need some definitions and a lemma.

1In the graded case, homogeneous elements not in m must be nonzero elements in R0, and thus invertible.
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Definition 12.7. Let (F, ∂) and (G, δ) be complexes of R-modules. The direct sum of F
and G is the complex of R-modules F ⊕G that has (F ⊕G)n = Fn ⊕Gn, with differentials
given by

Fn+1
∂n+1

// Fn

⊕ ⊕

Gn+1 δn
// Dn,

together with the complex maps F ↪→ F ⊕ G and G ↪→ F ⊕ G given by the corresponding
inclusion in each homological degree.

Remark 12.8. The direct sum of complexes is the coproduct in the category Ch(R).

Remark 12.9. The homology of a direct sum is the direct sum of the homologies, since

(∂n, δn)(a, b) = (0, 0)⇔ ∂n(a) = 0 and δn(b) = 0,

and (a, b) ∈ im(∂n, δn) if and only if a ∈ im ∂n and b ∈ im ∂n, so

Hn(F ⊕G) =
ker(∂n, δn)

im(∂n+1, δn+1)
=

ker ∂n
im ∂n+1

⊕ ker δn
im δn+1

.

Remark 12.10. Suppose that C is a subcomplex of D, and that we know that each Cn is a
direct summand of Dn, say by Dn = Cn⊕Bn. In order for C to be a free summand of D, we
also need that the differentials of D behave well with C: for each n, we need that ∂(B) ⊆ B
and ∂(C) ⊆ C.

Definition 12.11. A complex C of R-modules is trivial if it is a direct sum of complexes
of the form

· · · // 0 // R
1 // R // 0 // · · · .

Example 12.12. The complex

0 // R

1
0


// R2

(
0 1

)
// R // 0 =

0 // R
1 //// R // 0

⊕
0 // R

1 //// R // 0

is trivial.

Remark 12.13. Trivial complexes are exact, since they are the direct sums of exact com-
plexes, by Remark 12.9.

Lemma 12.14. Let (R,m) be either a local ring or a N-graded graded k-algebra with R0 = k
and homogeneous maximal ideal m = R+. Every (graded) complex

· · · // T2
∂2 // T1

∂1 // T0 // 0

of finitely generated (graded) free R-modules that is exact everywhere must be trivial.
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Proof. Since T0 is projective, Theorem 11.11 says that the short exact sequence

0 // ker ∂1 // T1
∂1 // T0 // 0

splits, so T1 ∼= ker ∂1⊕ T0. In fact, ∂1 is the map T0⊕ ker ∂1 given by (1, 0), and our original
exact sequence breaks off as

· · · // T2
∂2 // ker ∂1 // 0

⊕
0 // T0

1 // T0 // 0.

In particular, since 0 // T0
1 // T0 // 0 is trivial and homology commutes with taking

direct sums of complexes, by Remark 12.9, we conclude that

· · · // T2
∂2 // ker ∂1 // 0

is also exact everywhere. We’ve also shown that ker ∂1 is a (graded) direct summand of the
(graded) free R-module T1. In the local case, ker ∂1 is a projective by Theorem 11.14, and
thus free by Theorem 11.17. In the graded setting, Theorem 11.18 says that ker ∂1 is free.
So we are back at our original situation, and we can repeat the same argument repeatedly
to show that our complex breaks off as the direct sum of the trivial complexes

0 // ker ∂n
1 // ker ∂n // 0

and must therefore be trivial.

Theorem 12.15. Let

P = · · · // Pn // · · ·P1
//

∂1 // P0
∂0 //M // 0

be a complex of projective R-modules, and let

C = · · · // Cn // · · ·C1
//

δ1 // C0
δ0 // N // 0

be an exact complex. Every (graded) R-module map M
f−→ N lifts to a map of complexes

P
φ−→ C, and any two such lifts are homotopic.
Moreover, when R is an N-graded graded k-algebra with R0 = k, M and N are finitely

generated graded R-modules, Pn and Cn are finitely generated graded R-modules, and f is a
graded homomorphism, the induced map of complexes is made out of graded R-module maps.

Proof. Since P0 is projective and δ0 is surjective, there exists an R-module homomorphism
φ0 such that

P0

φ0

��

∂0 //M //

f

��

0

C0 δ0
// N // 0



200

commutes. Notice in fact that

δ0φ0(im ∂1) ⊆ δ0φ0(ker ∂0) because P is a complex

= f∂0(ker ∂0) by commutativity of the square above

= 0,

so φ0(im ∂1) ⊆ ker δ0 = im δ1.
In the graded case, note that we can define φ0 by sending the elements bi in a homogeneous

basis of P0 to homogeneous ci ∈ C0 such that δ0(ci) = f∂0(bi).

We now proceed by induction. Suppose we have constructed Pn−1
φn−1−−−→ Cn−1 such that

φn−1(im ∂n) ⊆ im δn. Since Pn is projective, there exists a map φn such that

Pn
∂n //

φn

��

Pn−1

φn−1

��

Cn δn
// im δn

commutes. And again,

δnφn(im ∂n+1) ⊆ δnφn(ker ∂n−1) because P is a complex

= φn+1∂n(ker ∂n) by commutativity of the square above

= 0,

so φn(im ∂n+1) ⊆ im δn. By induction, we obtain our map of complexes φ lifting f .
Now suppose we are given two such maps of complexes P −→ C lifting f , say φ and ψ.

Note that φ − ψ and 0 are two liftings of the 0 map. We are going to show that any map
lifting the 0 map M −→ N must be nullhomotopic, which will then imply that φ and ψ are
homotopic as well (essentially via the same homotopy!).

So let φ : P −→ C be a map of complexes lifting the 0 map M −→ N .

· · ·P1
//

φ1

��

∂1 // P0

φ0

��

∂0 //M //

0

��

0

· · ·C1
//

δ1 // C0
δ0 // N // 0

We will explicitly construct a nullhomotopy for φ using induction. Set hn = 0 for all n <
0. The commutativity of the rightmost square says that δ0φ0 = 0, so imφ0 ⊆ ker δ0 = im δ1.
Since P0 is projective, there exists an R-module homomorphism h0 such that

P0

h0

||

φ0

��

C1 δ1
// im δ1

commutes, and thus φ0 = δ1h0 + h−1∂0. Notice also that

δ1(φ1 − h0∂1) = φ0∂1 − δ1h0∂1 because φ is a map of complexes

= (φ0 − δ1h0)∂1
= 0 since φ0 = δ1h0,
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so im(φ1 − h0∂1) ⊆ ker δ1 = im δ2.
Now assume that we have constructed maps h0, . . . , hn such that φn = hn−1∂n + δn+1hn

and im(φn+1 − hn∂n+1) ⊆ im δn+2. Since Pn+1 is projective, we can find a map hn+1 such
that

Pn+1

hn+1

zz

φn+1−hn∂n+1

��

Cn+2 δn+2

// im δn+2

commutes. Now

δn+2(φn+2 − hn+1∂n+2) = φn+1∂n+2 − δn+2hn+1∂n+2 since φ is a map of complexes

= (φn+1 − δn+2hn+1)∂n+2

= hn∂n+1∂n+2 = 0 since ∂n+1∂n+2 = 0.

So we again obtain im(φn+2 − hn+1∂n+2) ⊆ ker δn+1 = im δn+2. By induction, this process
allows us to construct our homotopy h.

Theorem 12.16. Let (R,m) be either a local ring or a N-graded graded k-algebra with R0 = k
and homogeneous maximal ideal m = R+. If F is a minimal free resolution of M , any free
resolution for M is isomorphic to a direct sum of F with a trivial complex. In particular,
the minimal free resolution of M is unique up to isomorphism.

Proof. Suppose that G is another free resolution ofM . By Theorem 12.15, there are complex
maps ψ : G −→ F and φ : F −→ G that lift the identity map on M . Then ψφ : F −→ F
is a map of complexes that lifts the identity on M , and thus by Theorem 12.15 φψ must be
homotopic to the identity on F . Let h be a homotopy between ψφ and the identity, so that
for all n,

id−ψnφn = ∂n+1hn + hn−1∂n.

Since F is minimal, we have im ∂n ⊆ mFn−1 and im ∂n+1 ⊆ mFn, so im(id−ψnφn) ⊆ mFn
for all n.

First we do the local case. Let A be the matrix representing ψnφn in some fixed basis
for Fn, and note that id−ψnφn is represented by Id − A, so all the entries in Id − A must
be in m. Our matrix A can be written as

A =


1− a11 a12 · · · a1s
a21 1− a22 · · · a2s

. . .

as1 · · · as s−1 1− ass


for some aij ∈ m, so that det(A) = 1 + a for some a ∈ m. In particular, det(A) is invertible,
and ψnφn is an isomorphism.

In the graded case, we have to be a bit more careful: not all elements not in m are
invertible, only homogeneous ones. First, we fix f1, . . . , fs a basis of homogeneous elements
for Fn with deg(f1) ⩽ deg(f2) ⩽ · · · deg(fs), and set Φ := id−ψnφn. Since our map Φ is
degree-preserving, Φ(fi) is homogeneous for each i, and so we can write Φ(fi) as a linear
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combination of our basis elements f1, . . . , fs using only pieces of degree deg(Φ(fi)). We
obtain a matrix C = (cij) such that cij ̸= 0 =⇒ deg(cij) = deg(fj) − deg(fi), and C
represents Φ, meaning Φ(fi) = ci1f1 + · · ·+ cisfs for all i. Now all the entries of C = Id−A
must be in m, so in particular we must have aii = 1 for all i. Moreover, since we chose
our basis to have increasing degrees, deg(cij) = 0 whenever i < j. Since we must also have
cij ∈ m whenever i ̸= j, we conclude that cij = 0 for i < j. We conclude that A is an upper
triangular matrix. Finally, det(A) = a11 · · · ass = 1, and A is invertible.

So we have shown in both cases that ψnφn is an isomorphism for all n. By Exercise 24,

ψφ is in fact an isomorphism of complexes, so let F
ξ−→ F be its inverse. Now we want to

claim that φ splits as a map of complexes. Notice that (ξψ)φ = ξ(ψφ) = idF , so ξψ will be
our proposed splitting for φ. We immediately get a splitting at the level of R-modules, since
Gn = φ(Fn)⊕ker(ξnψn), so ξψ provides at least splittings for the R-modules in each degree;
we just need to prove that G = φ(F )⊕ ker(ξψ) as complexes. To do that, let K := ker(ξψ),
and denote the differential in G by δ. We need to check that the differential δ satisfies
δ(φ(F )) ⊆ φ(F ) and δ(K) ⊆ K.

Since φ is a map of complexes, δφ = φ∂, so we do get δ(φ(F )) ⊆ φ(F ). Given a ∈ Kn+1,
we can write δn+1(a) = φ(b) + c for some b ∈ Fn and Kn, since Gn = φ(Fn)⊕Kn. Then

b = id(b)

= ξnψφn(b) since ξnψn is a splitting for φn

= ξnψn(φn(b) + c) since c ∈ Kn

= ξnψnδn+1(a) by assumption

= ξnδn+1ψn(a) since ψ is a map of complexes

= δn+1(ξnψn)(a) since ξ is a map of complexes

= 0 since a ∈ Kn.

We conclude that δn+1(a) ∈ Kn, and δ(K) ⊆ K. We have now shown that G ∼= F ⊕K.
Finally, we are going to show that K is a trivial complex. First, we claim that Kn is free

for all n. We have shown Kn is a (graded) direct summand of a (graded) free module. In
the local case, Theorem 11.14 says that Kn is projective, and then Theorem 11.17 says that
Kn must in fact be free. In the graded setting, Theorem 11.18 guarantees that Kn is free.

Since G ∼= F ⊕K, we have Hn(G) ∼= Hn(F )⊕Hn(K). Since F and G are both (graded)
free resolutions for M , so they have the same homology: Hn(F ) = Hn(G) = 0 for all n ̸= 0,
and H0(F ) = H0(G) = M . We conclude that K is exact everywhere. Finally, Lemma 12.14
shows that K is trivial.

We also want to keep track of the kernels of the differentials in a minimal free resolution.

Definition 12.17. Let (R,m) be either a local ring or an N-graded k-algebra with R0 = k
and homogeneous maximal ideal m = R+. Let F be a minimal free resolution for the finitely
generated (graded) R-module M . For each n ⩾ 1, the submodule

Ωn(M) := im ∂n = ker ∂n−1

is the nth syzygy of M .
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Remark 12.18. For each n, we have a short exact sequence

0 // ker ∂n // Fn // im ∂n // 0.

But ker ∂n = Ωn(M) and im ∂n = Ωn−1(M), so we get a short exact sequence

0 // Ωn(M) // Fn // Ωn−1(M) // 0.

Syzygies are indeed well-defined up to isomorphism.

Remark 12.19. Suppose that F and G are two minimal free resolutions for M . By The-
orem 12.16, there exists an isomorphism between F and G, say φ. Since φ is a map of
complexes, φ∂F = ∂Gφ, and thus φ must send elements in ker ∂F into elements in ker ∂G.
Similarly, an inverse ψ to φ sends ker ∂G into ker ∂F . In each homological degree, the induced
maps ker ∂Fn −→ ker ∂Gn and ker ∂Fn −→ ker ∂Gn are inverse, and thus isomorphisms. In the
graded case, one can show that we obtain graded isomorphisms, so that the graded syzygies
are also well-defined up to isomorphism.

The number of generators in each homological degree is also an important invariant.

Definition 12.20. Let (R,m) be either a local ring or a N-graded graded k-algebra with
R0 = k and homogeneous maximal ideal m = R+. Let F be a minimal free resolution for
the finitely generated (graded) R-module M . The nth betti number of M is

βi(M) := rank Fi = µ(Fi).

In the graded case, the (i, j)th betti number of M , βij(M), counts the number of generators
of Fi in degree j. We often collect the betti numbers of a module in its betti table:

β(M) 0 1 2 · · ·
0 β00(M) β01(M) β02(M)
1 β11(M) β12(M) β13(M)
2 β22(M) β23(M)
...

. . .

By convention, the entry corresponding to (i, j) in the betti table of M contains βi,i+j(M),
and not βij(M). This is how Macaulay2 displays betti tables as well, using the command
betti.

Example 12.21. Suppose that R = k[x, y, z] and that M = R/(xy, xz, yz) corresponds to
the variety defining the union of the three coordinate lines in A3

k. This variety has dimension
1 and degree 3. The minimal free resolution for M is

0 // R2


z 0
−y y
0 −x


// R3

(
xy xz yz

)
// R //M.

From this minimal resolution, we can read the betti numbers of M :
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• β0(M) = 1, since M is a cyclic module;

• β1(M) = 3, and these three quadratic generators live in degree 2;

• β2(M) = 2, and these represent linear syzygies on quadrics, and thus live in degree 3.

Here is the graded free resolution of M :

0 // R(−3)2


z 0
−y y
0 −x


// R(−2)3

(
xy xz yz

)
// R //M.

Notice that the graded shifts in lower homological degrees affect all the higher homological
degrees as well. For example, when we write the map in degree 2, we only need to shift the
degree of each generator by 1, but since our map now lands on R(−2)3, we have to bump up
degrees from 2 to 3, and write R(−3)2. The graded betti number βij(M) of M counts the
number of copies of R(−j) in homological degree i in our resolution. So we have

β00 = 1, β12 = 3, and β23 = 2.

We can collect the graded betti numbers of M in what is called a betti table:

β(M) 0 1 2
0 1 − −
1 − 3 2

.

Example 12.22. Let k be a field, R = k[x, y], and consider the ideal

I = (x2, xy, y3)

which has two generators of degree 2 and one of degree 3, so there are graded betti numbers
β12 and β13. The minimal free resolution for R/I is

0 //

R(−3)1⊕
R(−4)1


y 0
−x y2

0 −x


//

R(−2)2⊕
R(−3)1

(
x2 xy y3

)
// R // R/I.

β23(R/I) = 1
β24(R/I) = 1

β12(R/I) = 2
β13(R/I) = 1

So the betti table of R/I is
β(M) 0 1 2

0 1 − −
1 − 2 1
2 − 1 1

.
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We can also extract the Hilbert function of M from its betti numbers.

Theorem 12.23. Let k be a field and R be an N-graded k-algebra with R0 = k. Let M be a
finitely generated Z-graded R-module. Then the Hilbert series of M satisfies

hM(t) = hR(t)
∑

i⩾0,p∈Z

(−1)iβip(M)tp.

When R = k[x1, . . . , xn] is a standard graded polynomial ring,

hM(t) =

∑
i⩾0

∑
d∈Z

(−1)iβid(M)td

(1− t)n
.

Proof. First, notice that the fact that the resolution is minimal implies that at each stage,
the graded shifts in the copies of R in Fi must go up at least by 1. In particular, for each
fixed each d, βid = 0 for all i≫ 0.

The graded resolution of M breaks into graded pieces:

0 // · · · // Fi,d // Fi−1,d
// · · · // Fo,d //Md

// 0.

Here we denote the piece of Fi in degree d by Fi,d. Notice that this is in fact finite, since βid
is eventually 0. As a simple application of the Rank-Nullity theorem from Linear Algebra,
just like we did in Lemma 8.6, we obtain

dimk(Md) =
∑

(−1)i dimk(Fi,d).

Multiplying by td and summing over all d, we get

HM(t) =
∑
d

dimk(Md)t
d =

∑
i,d

(−1)i dimk(Fi,d)t
d

=
∑
i⩾0

(−1)i
(∑

i,d

dimk(Fi,d)t
d

)
=
∑
i⩾0

(−1)ihFi
(t).

Now Fi =
⊕

dR(−d)βid , and hR(−d) = tdhR(t) by Example 8.5, so hFi
=
∑

d βid(M)tdhR(t).
Then

hM(t) = hR(t)
∑
i⩾0

∑
d

(−1)iβid(M)td.

When R = k[x1, . . . , xn] is a standard graded polynomial ring, Example 8.4 says hR(t) =
1

(1−t)n , so

hM(t) =

∑
i⩾0

∑
d

(−1)iβid(M)td

(1− t)n
.

Example 12.24. We can now use the information we collected in Example 12.21 to calculate
the Hilbert series of M :

hM(t) =
1t0 − 3t2 + 2t3

(1− t)3
=

1 + 2t

(1− t)1

and since this last fraction is in lowest terms, we see that the dimension ofM is 1 (the degree
of the denominator) and that the degree of M is equal to p(1) = 1 + 2 · 1 = 3.
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The slogan is that we can get lots of information aboutM from its minimal free resolution.
In fact, even if all we know is the betti numbers of M , there is lots of information to we can
extract about M . For more about the beautiful theory of free resolutions and syzygies, see
[Eis05]. For a detailed treatment of graded free resolutions, see [Pee11].

12.2 Injective resolutions

Injective resolutions are analogous to projective resolutions, but now we want to approximate
our module M by injectives.

Definition 12.25. Let M be an R-module. An injective resolution of M is a complex

E = 0 // E0
// E1

// E2
// · · ·

with H0(E) =M and Hn(E) = 0 for all n ̸= 0. We may abuse notation and instead say that
an injective resolution of M is an exact sequence

0 //M // // E0
// E1

// E2
// · · · .

Remark 12.26. This is the first example we have encountered where we have a cocomplex
rather than a complex. Its homology should technically be referred to as cohomology, and
written with superscripts:

We can construct injective resolutions in a similar fashion to how we constructed projec-
tive resolutions.

Theorem 12.27. Every R-module M has an injective resolution.

Proof. By Theorem 11.35, every R-module embeds into an injective module. So we start by
taking an injective R-module E0 containing M , and look at the cokernel of the inclusion.

0 //M
i0 // E0

π0 // coker i0 // 0.

Now cokerπ0 includes in some other injective module E1.

0 //M
i0 // E0

π0
##

∂0 // E1

coker i0

$$

i1

;;

0

::

0

Take ∂0 := i1π0. Since i1 is injective,

ker ∂0 = ker(i1π0) = ker π0 = im i0.
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Notice also that coker i0 = im ∂0 = ker(E1 −→ coker ∂0). So we can now we continue in a
similar fashion, by finding an injective module E2 that coker ∂0 embeds into.

0

$$

0

coker ∂0

::

i2

$$

0 //M
i0 // E0

π0
##

∂0 // E1

π1
::

∂1
// E2

coker i0

i1
$$

;;

0

::

0

By construction and since i2 is injective, ker ∂1 = im ∂0, and our complex is exact at E1. The
process continues analogously.

We can again define a minimal free resolution for M as one where at each step we take
the injective hull of coker in. Perhaps unsurprisingly, one can show that the minimal free
resolution of a finitely generated module over a local ring is unique up to isomorphism. The
analogues to the betti numbers are called Bass numbers, although now there are some major
differences. When we construct a minimal free resolution, we have only to count copies of
R in each homological degree, while there are many different building clocks for injective
modules — the injective hulls of R/P , where P ranges over the prime ideals in R.

Example 12.28. Let’s construct a minimal free resolution for the abelian group Z. We
start by including Z in Q, and then note that the cokernel Q/Z is actually injective, by
Lemma 11.33. So Q/Z embeds in itself, and our resolution stops there. So the short exact
sequence

0 // Z // Q // Q/Z // 0

is in fact a minimal injective resolution for Z.



Chapter 13

Abelian categories

An abelian category is a category that has just enough extra structure to behave like R-
module: we have complexes and exact sequences, homology, the Snake Lemma, the long
exact sequence in homology, and many other nice features. On the one hand, every abelian
category embeds nicely in some R-mod, so it’s in some ways sufficient to study R-mod.
In other ways, the general nonsense definitions in an abelian category can sometimes give
us a uniform, simple way to prove many results about R-mod (and Ch(R-mod), and other
related categories) all at once.

13.1 What’s an abelian category?

Definition 13.1. A category A is a preadditive category if:

• For all objects x and y in A, HomA(x, y) is an abelian group.

• For all objects x, y, and z inA, the composition HomA(x, y)×HomA(z, x)
◦−→ HomA(z, y)

is bilinear, meaning

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2 and (g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f.

Example 13.2. Our favorite category R-mod is a preadditive category.

Definition 13.3. Let A and B be preadditive categories. An additive functor A −→ B
is a functor such that the map

HomA(x, y) // HomB(F (x), F (y))

f � // F (f)

is a homomorphism of abelian groups.

This extends our previous definition of additive functors in R-mod.

Definition 13.4. Let C be a category. An initial object in C is an object i such that for
every object x in C , HomC (i, x) is a singleton, meaning there exists a unique arrow i −→ x.
A terminal object in C is an object t such that for every object x in C , HomC (x, t) is a
singleton, meaning there exists a unique arrow x −→ t. A zero object in C is an object
that is both initial and terminal.

208
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Exercise 40. Initial objects are unique up to unique isomorphism. Terminal objects are
unique up to unique isomorphism.

So we can talk about the initial object, the terminal object, and the zero object, if they
exist.

Example 13.5.

a) The 0 module is the zero object in R-mod.

b) In the category of rings, Z is the initial object, but there is no terminal object unless we
allow the 0 ring.

c) There are no initial nor terminal objects in the category of fields.

Definition 13.6. Let C be a category with a zero object 0. Given two objects x and y in
C , the zero arrow from x to y is the unique arrow x −→ y that factors through 0, meaning
the composition of the unique arrows x −→ 0 −→ y. We will sometimes denote the 0 arrow
by 0.

Notice in particular that if a category A has a zero object, then HomA(x, y) is always
nonempty, since it contains at least the 0 arrow.

Remark 13.7. Composing the 0 arrow with any other arrow always yields the 0 arrow.

Remark 13.8. In any preadditive category A with a zero object 0, the 0 arrow x −→ y
coincides with the 0 of the abelian group HomA(x, y).

Remark 13.9. We can characterize the 0 object by the property that the zero arrow and

the identity arrows on 0 coincide. To see this, notice that if 1x = x
0−→ x, then given any

arrow x
f−→ y, f = f ◦ 1x = f ◦ 0 = 0, and similarly any arrow y

f−→ x must be 0. Then x is
terminal and initial, and it must be the zero object.

Definition 13.10. An additive category is a preadditive category A such that:

• A has a zero object.

• A has all finite products, meaning that given any two objects x and y in A, there exists
a product of x and y in A.

Lemma 13.11. In an additive category, finite coproducts exist and they agree with products.

Proof. Let x and y be objects in our additive category, and consider their product, which
we know exists:

z
π2

��

π1

��
x y

The universal property of the product give arrows ι1 and ι2 such that
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x

1x

��

0

��

ι1
��
z

π2
!!

π1
}}

x y

y

0

��

1y

��

ι2
��
z

π2
!!

π1
}}

x y
both commute. We claim that z together with ι1 and ι2 form a coproduct. So given an

object w and arrows x
f−→ w and y

g−→ w, we need to show that there exists a unique arrow
h such that

z

h

��

x

ι1
>>

f
  

y

ι2
__

g
��

w

commutes.
To see such an h exists, consider h := fπ1 + gπ2. Then

hι1 = f π1ι1︸︷︷︸
1x

+ gπ2ι1︸︷︷︸
0

= f and hι2 = f π1ι2︸︷︷︸
0

+ gπ2ι2︸︷︷︸
1y

= f,

so indeed our proposed h does the job.
To show the uniqueness of such an h, we will use the fact that z together with π1 and

π2 is a product for x and y. So suppose that h′ is another arrow such that h′ι1 = f and
h′ι2 = g. Then h − h′ satisfies (h − h′)ι1 = f − f = 0 and (h − h′)ι2 = g − g = 0, so it’s
sufficient to show that the 0 arrow is the unique arrow ψ such that

z

ψ

��

x

ι1
>>

0
  

y

ι2
__

0
��

w

commutes. First, we claim that ι1π1 + ι2π2 is the identity arrow on z. And indeed, this map
satisfies

π1(ι1π1 + ι2π2) = π1ι1︸︷︷︸
1x

π1 + π2ι1︸︷︷︸
0

π2 = π1 and π2(ι1π1 + ι2π2) = π2ι1︸︷︷︸
0

π1 + π2ι1︸︷︷︸
1y

π2 = π2,

and so does the identity arrow 1z, so the universal property of the product guarantees that
ι1π1 + ι2π2 = 1z. Now if ψι1 = 0 and ψι2 = 0, then

ψ = ψ1z = ψ(ι1π1 + ι2π2) = ψι1π + ψι2π2 = 0 + 0 = 0.
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Notation 13.12. In an additive category A, A ⊕ B denotes the product ≡ coproduct of the
objects A and B.

Remark 13.13. If A is additive category, A⊕B is characterized by the existence of arrows

A
iA−→ A ⊕ B, B

iB−−→ A ⊕ B, A ⊕ B
πA−−→ A and A ⊕ B

πA−−→ B such that πAiA = idA,
πBiB = idB, and iAπA + iBπB = idA⊕B.

Lemma 13.14. Let F : A −→ B an additive functor between additive categories.

a) If 0 is the 0 object, F (0) = 0. For any two objects x and y, F (x
0−→ y) = F (x)

0−→ F (y).

b) F preserves finite products and coproducts.

Proof. We show the statement assuming F is covariant, and note that the contravariant case
is essentially the same.

a) The statement about zero arrows follows immediately from the fact that Fxy is a group ho-
momorphism and that the 0 arrow is the 0 element in the abelian group HomA(F (x), F (y)).
Now the zero arrow and the identity arrows of 0 coincide, and so do their images by F .

On the one hand, F (10) = 1F (0), and as we have shown, F (10) = F (0)
0−→ F (0). Then

the identity and the zero on F (0) coincide, so by Remark 13.9 we must have F (0) = 0.

b) Fix objects A and B and the canonical arrows A
iA−→ A⊕B, B

iB−−→ A⊕B, A⊕B πA−−→ A

and A⊕B πA−−→ B. Any functor preserves identity arrows, so any additive functor F must
send

F (πA)F (iA) = F (πAiA) = idF (A) F (πB)F (iB) = F (πBiB) = idF (B)

and

F (iA)F (πA) + F (iB)F (πB) = idF (A⊕B) .

By Remark 13.13, this implies that F (A ⊕ B) is the product ≡ coproduct of F (A) and
F (B).

Exercise 41. Let A be an additive category. Show that an arrow f is a mono if and only
if fg = 0 implies g = 0. Similarly, an arrow f is an epi if and only if gf = 0 implies g = 0.

We can now define kernels and cokernels.

Definition 13.15. Let A be an additive category and f an arrow x −→ y. The kernel of

f is an arrow k
i−→ x such that

• k
i // x

f
// y is 0.
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• Given any g ∈ HomA(z, x) such that z
g
// x

f
// y is 0, there exists a unique arrow

φ such that iφ = g, meaning that

k
i // x

f
// y

z

g

OO

∃!φ

^^

0

@@

commutes. We denote the kernel of f by ker f .

We sometimes refer to the kernel as not just an arrow but the pair (object, arrow). Also,

we might use the notation ker f −→ x for the kernel of x
f−→ y. We might also abuse notation

and refer to the object that is the source of ker f as the kernel of f . Nevertheless, the kernel
of f is technically an arrow, not an object. A good reason for identifying the arrow ker f
with its source object is the following rewriting of the definition above:

Remark 13.16. If k1
i1 // x and k1

i2 // x are both kernels of f , then there exist unique
arrows k1 → k2 and k2 → k1 such that

k1
h

��

i1 // x
f
// y

k2

i2

OO

g

__

commutes. As we will see below in Remark 13.17, kernels are always mono. But then
i1gh = i2h = i1, and since i1 is a mono, we must have gh = 1. Similarly, hg = 1, and g and
h are isomorphisms.

This shows that if k i // x is the kernel of f ∈ HomA(x, y), the object k is, up to
isomorphism, the unique object that satisfies the following universal property: for every

object z and every arrow z
g−→ x such that fg = 0, there exists a unique arrow z

h−→ k such
that ih = g.

Remark 13.17. We claim that a kernel, if it exists, is always a mono. Indeed, suppose that

z
g1
//

g2
// k

i // x
f
// y

are such that ig1 = ig2. Then i(g1 − g2) = 0, so it’s sufficient to show that ig = 0 implies
g = 0. But then

k i // x
f
// y

z

g

OO

0

@@

commutes, and f ◦ 0 = 0, so 0 factors uniquely through the kernel. But both g and z
0−→ k

are such factorizations, so g = 0.
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Definition 13.18. Let A be an additive category and f ∈ HomA(x, y). The cokernel of

f is an arrow y
p−→ c such that

• x
f
// y

p
// c is 0.

• Given any g ∈ HomA(y, z) such that x
f
// y

g
// z is 0, there exists a unique arrow

φ such that iφ = g, meaning that

x
f
// y

g

��

p
// c

∃!φ
��

z

commutes.

We denote the cokernel of f by coker f .

We will sometimes use the notation y // coker f for the kernel of x
f
// y , although

once again the cokernel of f is an arrow rather than an object.

Example 13.19.

a) The kernels and cokernels in R-mod are what we think they are: the inclusion of the
usual kernel, and the projection onto the usual cokernel.

b) It’s not always true that all arrows have kernels or cokernels. For example, the category
of finitely generated R-modules over some non-Noetherian ring R is additive, but it does
not have all kernels. If I is some infinitely generated ideal in R, the kernel of the canonical
projection R −→ R/I does not exist in our category. In fact, this is an epi but not a
cokernel — it should be the cokernel of the inclusion map I −→ R, but this is not an
arrow in our category.

While not all epis are cokernels and not all monos are kernels, the converse is true. Just
like we saw for kernels, cokernels, if they exist, are always epi, and they are unique in the
sense we described in Remark 13.16.

Remark 13.20. Let A be an additive category, and f any arrow such that ker coker f
and coker ker f exist. Since f ◦ ker f = 0, f factors uniquely through coker ker f , say by
coker ker f

g−→ y. Now coker f ◦ g ◦ (coker ker f) = coker f ◦ f = 0. Since coker ker f is an epi,
by Exercise 44, we must have coker f ◦ g = 0. Then g factors uniquely through ker coker f ,
so we get a unique arrow such that

ker f // x

��

f
// y // coker f

coker ker f // ker coker f

OO

commutes.
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Definition 13.21. An abelian category is an additive category A such that

• The category A contains all kernels and cokernels of arrows in A.

• Every mono is a kernel of its cokernel.

• Every epi is the cokernel of its kernel.

• For every f , the canonical arrow coker ker f −→ ker coker f is an isomorphism.

Ultimately, an abelian category is one that has just enough structure so that we can
extend many of the desired properties of R-mod. In particular, we will see that we can
define complexes and their homology in any abelian category, and that the Snake Lemma
and the long exact sequence in homology hold.

Remark 13.22. Let A be an abelian category, and f any arrow. As described in Re-
mark 13.20, we have a commutative diagram

ker f // x

p

��

f
// y // coker f

coker ker f
ψ
// ker coker f

i

OO

where ψ is now assumed to be an iso. Now kernels are mono and cokernels are epi, by Exer-
cise 44, and composing an epi (respectively, mono) with an iso gives us an epi (respectively,
mono). Therefore, we can factor f as a composition mono ◦ epi.

Definition 13.23. Let A be an abelian category, and consider an arrow x
f−→ y. The image

of f is im f := ker(coker f).

Following Remark 13.22, the source of im f = ker coker f is the unique (up to unique
isomorphism) object such that f factors as

x
epi

// im f
mono // y .

Exercise 42. Let A be an abelian category. Show that f is a mono if and only if ker f = 0,
and f is an epi if and only if coker f = 0.

Remark 13.24. If A is an abelian category, its opposite category Aop is also abelian.

Example 13.25.

a) The category R-mod of R-modules is an abelian category.

b) The category of free R-modules is additive but not abelian, as kernels and cokernels do
not exist in general.

c) The category of finitely generated R-modules is abelian if and only if R is Noetherian,
which is exactly the condition we need to guarantee the existence of kernels and cokernels.
For a general ring R, the category of Noetherian R-modules is abelian.
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d) The category of Hilbert spaces with continuous linear functions is an additive category.
The monos are injective linear maps, and the epis are maps with dense image. The
kernels are the usual kernels, while the cokernel of f : X −→ Y is given by the orthogonal

projection Y −→ f(X)
⊥
. However, this is not an abelian category, since a mono might

not be the kernel of its cokernel. Indeed, if X ↪→ Y is a dense inclusion that is not
surjective, then this mono is not the kernel of its cokernel.

Remark 13.26. Suppose that g factors through f , meaning that there exists h such that

x
f
// y

z

g

OO

h

__

commutes. Then (coker f)◦g = (coker f)◦f ◦h = 0, so g factors through ker(coker f) = im f ,
meaning

x
f
// y

im f

==

z

g

OO

h
oo

also commutes.

Exercise 43. The kernel of x
0−→ y is the identity arrow 1x, its cokernel is the identity arrow

1y, and im(x
0−→ y) = 0.

Exercise 44. Let A be an abelian category, g an epi, and f a mono. Then ker(fg) = ker g,
coker(fg) = coker f , and im(fg) = im f = f .

13.2 Complexes and homology in an abelian category

Definition 13.27. Let A be an abelian category. A chain complex or simply complex
(C, ∂) (which we sometimes write just a C) is a sequence of objects and arrows

· · · // Cn
∂n // Cn−1

// · · ·

such that ∂n−1∂n = 0 for all n. A map of complexes f : C −→ D between two chain
complexes is a sequence of arrows fn such that the diagram

· · · // Cn
∂n //

fn
��

Cn−1

fn−1

��

// · · ·

· · · // Dn ∂n
// Dn−1

// · · ·

commutes. The category of (chain) complexes over A, denoted Ch(A), is the category
that has objects all chain complexes in A and arrows all the chain complex maps.
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Lemma 13.28. If A is an abelian category, so is Ch(A).

Proof sketch. First, note that Ch(A) is a preadditive category: given two maps of com-
plexes f and g, f + g is obtained degreewise, by taking (f + g)n := fn + gn. The facts
that HomCh(A)(C,D) is an abelian group and that composition is bilinear follows from the
analogous facts in A. The 0 object is the 0 complex, which has the 0 object in A in each
degree. Given two complexes C and D, their product is taken degreewise:

C ×D = · · · // Cn ×Dn
∂Cn ×∂Dn // Cn−1 ×Dn−1

// · · ·

and the projection maps in each degree assemble to make a map of complexes. So Ch(A) is
an additive category.

Let C
f−→ D be a map of complexes. The universal property of ker ∂n gives us a unique

arrow δn+1 such that

ker fn+1

δn+1

��

// Cn+1

∂n+1

��

fn+1
// Dn+1

∂n+1

��

ker fn // Cn fn
// Dn−1

commutes. The commutativity of ker fn+1

δn+1

��

// Cn+1

∂n+1

��

ker fn

δn
��

// Cn

∂n
��

ker fn−1
// Cn−1

and the fact that ∂n∂n+1 = 0 to-

gether with the fact that ker fn−1 is a mono imply that δnδn+1 = 0. Finally, we conclude
that

· · · // ker fn
δn // ker fn−1

// · · ·

is a complex in Ch(A), and the canonical maps ker fn −→ Cn assemble into a map of
complexes. One can check that the universal property of the kernels ker fn forces this complex
we just constructed to be ker f . In particular, Ch(A) has all kernels. Similarly, we construct
cokernels in Ch(A), building on the fact that A has all cokernels.

Finally, it remains to show that every mono is the kernel of its cokernel and every epi is
the cokernel of its kernel. This boils down to the fact that f is a mono if and only if all the
fn are monos, and dually that f is an epi if and only if all the fn are epis. The conclusion
will then follow from our construction of kernels and cokernels and the fact that A is abelian.
Our claim follows from Exercise 42 and the fact that f = 0 if and only if all fn = 0.

Definition 13.29. Let A be an abelian category. For each C in Ch(A), we define its cycles
Zn(C) and boundaries Bn(C) by

Zn(C) := source ker ∂n and Bn(C) := source im ∂n+1.
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Remark 13.30. Let A be an abelian category, and C
f−→ D

g−→ E be arrows in A such that
gf = 0. By Remark 13.22, we can factor f as an epi followed by im f .

C
f

//

epi
!!

D
g

// E

im f

==

Since g ◦ im f ◦ epi = gf = 0, we must have g ◦ im f = 0, so im f factors uniquely through
ker g. Most importantly, there is a canonical arrow im f −→ ker g.

Definition 13.31. Let A be an abelian category. A sequence of arrows C
f−→ D

g−→ E in A
is exact if gf = 0 and ker g = im f .

Remark 13.32. In our definition of exact sequence, we really mean that the canonical
arrow im f −→ ker g we described in Remark 13.30 is an isomorphism. But notice that is
equivalent to saying that the arrow im f is a kernel for g, and ker g is an image for f , hence
the equality we wrote above, which is a more compact way of saying this.

This immediately generalizes to define an exact sequence, and once again a short exact
sequence is one of the form

0 // A // B // C // 0.

Exercise 45. Show that 0 −→ A
f−→ B is exact if and only if f is a mono, and B

g−→ C −→ 0

is exact if and only if g is an epi. Moreover, 0 // A
f
// B

g
// C // 0 is a short exact

sequence if and only if

• f is a mono. • g is an epi. • f = im f = ker g. • coker f = g.

Remark 13.33. Let A be an abelian category and (C, ∂) a complex in Ch(R). Since
∂n∂n+1 = 0 for all n, we get a canonical arrow Bn(C) −→ Zn(C) for each n.

Exercise 46. Given an additive category A, Bn and Zn are additive functors Ch(A) −→ A.
In particular, an arrow C

f−→ D induces arrows Zn(C)
Zn(f)−−−→ Zn(D) and Bn(c)

Bn(f)−−−−→ Bn(D).

Definition 13.34. Let A be an abelian category and (C, ∂) a complex in Ch(R). The nth
homology of C is the object

Hn(C) := target of coker(Bn(C) −→ Zn(C)),

where Bn(C) −→ Zn(C) is the canonical arrow we described in Remark 13.30.

In fact, the nth homology is an additive functor Ch(ab) −→ A. But first, we need to
make sense of what homology does to maps of complexes.
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Let A be an abelian category and C
f−→ D a map of complexes in Ch(A). Fix an integer

n. We get induced arrows Bn(f) and Zn(f), since Bn and Zn are additive functors. This
gives us a commutative diagram

Bn(C)
α //

Bn(f)

��

Zn(C) //

Zn(f)

��

cokerα

Bn(C) β
// Zn(C) // coker β

where α and β are the canonical arrows. To construct Hn(f), we claim that there is a
unique arrow cokerα −→ coker β making the diagram commute. This is all explained in the
commutative diagram

Zn(C)

cokerα
��

cokerβ◦(Zn(f))

��

Bn(C)

α
::

0 ..

0 // Hn(C)
Hn(f)

$$

Hn(D)

where coker β ◦ (Zn(f)) ◦ α = coker β ◦ β ◦Bn(f) = 0, which gives us a unique factorization
Hn(f) through cokerα.

Exercise 47. Given any abelian category A, Hn is an additive functor Ch(A) −→ A.

Similarly, we can define homotopies.

Definition 13.35. Let A be an abelian category and f, g : F −→ G be maps complexes in
Ch(A). A homotopy, sometimes referred to as a chain homotopy, between f and g is a
sequence of arrows hn : Fn −→ Gn+1

· · · δn+2
// Fn+1

fn+1

��

gn+1

��

δn+1
// Fn

fn

��

gn

��

hn

}}

δn // Fn−1

fn−1

��

gn−1

��

δn−1
//

hn−1

}}

· · ·

· · ·
δn+2

// Gn+1 δn+1

// Gn δn
// Gn−1 δn−1

// · · ·

such that
δn+1hn + hn−1δn = fn − gn

for all n. If there exists a homotopy between f and g, we say that f and g are homotopic.
If f is homotopic to the zero map, we say it is null-homotopic. If f : F −→ G and
g : G −→ F are maps of complexes such that fg is homotopic to the identity arrow 1G and
gf is homotopic to the identity arrow 1F , we say that f and g are homotopy equivalences
and F and G are homotopy equivalent.
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Exercise 48. Homotopy is an equivalence relation in Ch(A).

Exercise 49. Let A be an abelian category. Homotopic maps of complexes in Ch(A) induce
the same map on homology.

Remark 13.36. Let F be an additive functor between abelian categories. Then F must
send complexes to complexes, and it induces a functor Ch(A) −→ Ch(A), which we also
call F . Now if h is a homotopy between two maps of complexes, F preserves the identities
δn+1hn + hn−1δn = fn − gn for all n, so F (h) is a homotopy between F (f) and F (g).

Finally, we set up some notation we will use later.

Definition 13.37. We will denote the full subcategory of Ch(A) of complexes C such that
Cn = 0 for all n < k by Ch⩾k(A).

13.3 Functors

Definition 13.38. Let A be an abelian category. A subcategory B of A is an abelian
subcategory of A if B is abelian and the inclusion B ⊆ A is an exact functor.

Exercise 50. Let B be a full subcategory of the abelian category A.

a) B is an additive category if and only if B contains 0 and is closed under finite coproducts.

b) B is an abelian subcategory of A if and only if B is additive and closed under kernels and
cokernels.

Definition 13.39. Let T : A −→ B be an additive covariant functor between abelian
categories. We say T is left exact if it takes every exact sequence

0 // A
f
// B

g
// C // 0

to the exact sequence

0 // T (A)
T (f)

// T (B)
T (g)

// T (C),

and right exact if it takes every exact sequence

0 // A
f
// B

g
// C // 0

to the exact sequence

T (A)
T (f)

// T (B)
T (g)

// T (C) // 0 .

Finally, T is an exact functor if it preserves short exact sequences, meaning every short
exact sequence

0 // A
f
// B

g
// C // 0

is taken to the short exact sequence

0 // T (A)
T (f)

// T (B)
T (g)

// T (C) // 0 .
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A contravariant additive functor T : A −→ B between abelian categories is left exact if it
takes every short exact sequence

0 // A
f
// B

g
// C // 0

to the exact sequence

0 // T (C)
T (g)

// T (B)
T (f)

// T (A),

and right exact if it takes every exact sequence

0 // A
f
// B

g
// C // 0

to the exact sequence

T (C)
T (g)

// T (B)
T (f)

// T (A) // 0 .

Finally, T is an exact functor if it preserves short exact sequences, meaning every short
exact sequence

0 // A
f
// B

g
// C // 0

is taken to the short exact sequence

0 // T (C)
T (g)

// T (B)
T (f)

// T (A) // 0 .

Theorem 13.40. Let A be an abelian category, and fix an object x in A. The functors

A //Ab and A //Ab

y � // HomA(x, y) y � // HomA(y, x)

are left exact.

Proof. We will show that HomA(x,−) is left exact. Notice that the contravariant functor
homA(−, x) can be viewed as the covariant functor HomAop(x,−). Since Aop is also an
abelian category, it will then follow that HomAop(x,−) is also left exact, or equivalently, that
HomA(−, x) is left exact.

So let

0 // A
f
// B

g
// C // 0

be an exact sequence in Ch(A). We want to show that

0 // HomA(x,A)
f∗
// HomA(x,B)

g∗
// HomA(x,C)

is exact, and notice this last line lives in the category of abelian groups.

• Exactness at A is equivalent to f being a mono. By assumption, f is a mono, so
f∗(h) = fh is injective.

• Since gf = 0, so is g∗f∗ = (gf)∗.
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• We want to show that ker g∗ = im f∗, and these are now maps of abelian groups. So we
need to show that every h ∈ HomA(x,C) such that gh = 0 factors uniquely through
f , meaning h = im f∗. Our assumption that the original sequence is exact implies
that f = im f = ker g. The universal of property of the kernel gives us that whenever
gh = 0, h must factor through ker g = f = im f .

Exercise 51. Let I be any small category. If A is an abelian category, then so is the category
AI of functors I −→ A.

Theorem 13.41 (Yoneda Embedding for abelian categories). Let A be an abelian category.
The covariant functor

A //AbA
op

x // HomA(−, x)

from A to the category of contravariant functors A −→ Ab is an embedding into a full
subcategory and it preserves exactness, meaning that whenever

HomA(−, x) // HomA(−, y) // HomA(−, z)

is exact, so is x // y // z .

Proof. First, it is clear that our functor is injective on objects, as our axioms for a category
include the assumption that the Hom-sets are all disjoint. We claim that

Nat(HomA(−, x),HomA(−, y)) // HomA(x, y)

η � // ηx(1x)

is a natural bijection. This is essentially Theorem 9.36, so we leave it as an exercise. But in
particular, the fact that this is a bijection says that our functor is indeed full and faithful.

To show that it reflects exactness, suppose that

HomA(−, x)
f∗
// HomA(−, y)

g∗
// HomA(−, z)

is exact. Then g∗f∗ = 0, so gf = g∗f∗(1x) = 0.
It remains to show that ker g = im f . Let ψ be the canonical arrow im f −→ ker g. The

exactness of

HomA(−, x)
f∗
// HomA(−, y)

g∗
// HomA(−, z)

together with the fact that g∗(ker g) = 0 imply that ker g factors through f . By Re-
mark 13.26, ker g must also factor through im f , say by φ. The universal property of the
kernels ker g and im f will give us that ψ and φ are inverse isos.

Corollary 13.42. Let (L,R) be an adjoint pair of additive functors A
L // B
R
oo between

abelian categories. Then L is right exact, and R is left exact.
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Proof. Consider a short exact sequence

0 // x // y // z // 0

in B, and let w be an object in A. The adjointness of the pair (L,R) gives us a commutative
diagram

0 // HomA(w,Rx)

��

// HomA(w,Ry)

��

// HomA(w,Rz)

��

0 // HomB(Lw, x) // HomB(Lw, y) // HomB(Lw, z)

where the vertical maps are bijections of sets. For every w in A, HomB(Lw,−) is left exact,
by Theorem 13.40, so the bottom row of the diagram above is exact. We claim this implies
that the top row must also be exact. Our vertical maps are a priori only bijection on sets,
but it is easy to see that these natural bijections restrict to a bijection between the images of
each pair of corresponding maps. Moreover, for any objects A and B, the natural bijection
HomA(A,RB) ∼= HomA(LA,B) must always send 0 to 0, since

0 = HomA(A,R(0)) //

��

HomA(A,R(B))

��

0 = HomA(L(A), 0) // HomA(LA,B)

commutes. It is then routine to check that our bijections also restrict to bijections between
the kernels of each pair of corresponding maps. The exactness of the bottom row then induces
exactness of the top row. By Theorem 13.41, Hom reflects exactness, and we conclude that

0 // Rx // Ry // Rz

must also be exact.
Finally, notice that Lop is the right adjoint to Rop, so Lop is left exact. Therefore, L must

be right exact.

Theorem 13.43 (Freyd-Mitchell embedding theorem). Let A be a small abelian category.
There exists a ring R, possibly not commutative, and an exact, fully faithful embedding
A −→ R-mod.

The full details of the proof are rather complicated, and can be found in [Fre03]. Here is a
very rough map of the proof. By Theorem 13.41, we already have a fully faithful embedding
of A in AbAop

, so it is sufficient to show that there is a fully faithful embedding of AbAop

into some R-mod. The idea is to quotient AbAop

by an abelian subcategory L that contains
all the kernels and cokernels of the arrows HomA(−, y) −→ HomA(−, z) for all epis y −→ z
in such a way that the composite of the embedding in Theorem 13.41 with this quotient
remains an embedding. Then one shows that this quotient category has all coproducts and
also what is called a projective generator. Roughly speaking, this is a projective object such
that every object P such that for every object M there exists an arrow P −→ M . Then
one shows that this implies that this category is equivalent to a full abelian subcategory of
R-mod for some R.
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Most of the theorems we have proved about R-mod extend to any abelian category. Some
of those theorems can in fact be deduced from the fact that they are true over R-mod. In
particular, short exact sequences of complexes in any abelian category induce a long exact
sequence in homology.

Theorem 13.44 (Snake Lemma). Consider an abelian category A and a commutative dia-
gram

A′ i′ //

f

��

B′ p′
//

g

��

C ′

h
��

// 0

0 // A
i
// B p

// C .

If the rows of the diagram are exact, then there exists an exact sequence

ker f // ker g // kerh ∂ // coker f // coker g // cokerh.

Theorem 13.45 (Long exact sequence in homology). Given a short exact sequence in Ch(R)

0 // A
f
// B

g
// C // 0,

there are connecting arrows ∂ : Hn(C) −→ Hn−1(A) such that

· · · // Hn+1(C)
∂ // Hn(A)

Hn(f)
// Hn(B)

Hn(g)
// Hn(C)

∂ // Hn−1(A) // · · ·

is an exact sequence.

Theorem 13.46 (The Five Lemma). Given an abelian category A, consider the following
commutative diagram in A with exact rows:

A′

a

��

// B′ //

b
��

C ′ //

c

��

D′

d
��

// E ′

e

��

A // B // C // D // E

If b and d are epi and e is a mono, then c is an epi. If b and d are mono and a is epi, then
c is mono.

One can prove these by invoking the Freyd-Mitchell theorem and checking that one can
go back and forth with our statements between some small subcategory of A containing our
diagram and all the necessary kernels, cokernels, etc, and some R-mod where that category
embeds. Alternatively, one can use what are called members, as in [ML98, VIII.4.5].
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Ext and Tor

While Hom and tensor are not exact functors, we can measure their lack of exactness using
their derived functors Ext and Tor. These are the poster child examples of what are called
derived functors, which can be constructed over any abelian category provided we have
enough projective or injective objects.

14.1 Preliminaries

Definition 14.1. Let A be an abelian category. An object P in A is projective if
HomA(P,−) is an exact functor. An object E in A is injective if HomA(−, E) is exact.

This generalizes the notion of projective and injective modules.

Remark 14.2. Let A be an abelian category. An object P is projective if and only if every
arrow P −→ Y factors through every epi X −→ Y :

P

��~~

X // Y // 0

and an object E is injective if and only if every arrow X −→ E factors through every mono
X −→ Y :

E

0 // X

OO

// Y

``

Exercise 52. Let A be an abelian category, and denote its coproduct by ⊕.

a) Show that HomA(x⊕ y, z) = HomA(x, z)⊕ HomA(y, z).

b) Show that if P and Q are projective, then so is P ⊕Q.

Definition 14.3. An abelian category A has enough projectives if for every object M
there exists a projective object P and an epi P −→ M . We say that A has enough
injectives if for every object M there exists an injective object E and a mono M −→ E.

224
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Lemma 11.19 and Theorem 11.35 say that R-mod has enough injectives and enough
projectives.

Example 14.4. The category of finite abelian groups has no projectives beside 0.

Definition 14.5. Let M be an object in the abelian category A. A projective resolution
of M is a complex

· · · // P2
// P1

// P0
// 0

where all the Pn are projective, H0(P ) = M , and Hn(P ) = 0 for all n ̸= 0. An injective
resolution of M is a cocomplex

0 // E0 // E1 // · · ·

such that every En is injective, Hn(E) = 0 for all n, and H0(E) =M .

Theorem 14.6. If A has enough projectives, every object in A has a projective resolution.
Similarly, if A has enough injectives, every object in A has an injective resolution.

This generalizes Theorem 12.2 in a natural way, and the proof is essentially the same.

Proof. Given be an objectM in A, let’s construct a projective resolution explicitly. We start
by picking an epi P0

ε−→ M from a projective P0. Since ϵ is an epi, it is the cokernel of its
kernel, so

0 // ker ε // P0
ε //M // 0

is a short exact sequence. Now we find an epi P1
ε1−→ K0 := ker ε, and set P1

∂1−→ P0 to be
the composition

P1
∂1 //

ε1
""

P0
ε //M // 0

ker ε
i0

<<

""
0

<<

0 .

We proceed the same way, at each step taking a projective Pn and an epi εn : Pn −→ ker ∂n−1,
and setting ∂n+1 to be the composition (ker ∂n−1) ◦ εn. By construction, ∂n = in−1εn, where
εn is an epi and ker ∂n−1 is mono. By Exercise 44, im ∂n = in−1 = ker ∂n−1.

We can also characterize injectives in term of split short exact sequences, as we did for
modules. In particular, the Splitting Lemma 11.6 extends to any abelian category.

Definition 14.7. Let A be an abelian category. A short exact sequence

0 // A
f
// B

g
// C // 0

splits if one of the following equivalent conditions hold:

1) There exists an arrow C
r−→ B such that gr = idC .
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2) There exists an arrow C
r−→ B such that gr = idC .

3) There exists an isomorphism of complexes between our sequence and

0 // A // A⊕ C // C // 0

where the arrows are the canonical arrows that come with the (co)product A⊕ C.

Theorem 14.8. Let A be an abelian category. Every short exact sequence

0 // A
f
// B

f
// C // 0

where A is injective or C is projective splits.

The proofs are exactly the same as in the case of R-mod, Theorem 11.11 and Theo-
rem 11.40.

Proof. If C is projective, there exists h such that

C
h

��

B g
// C // 0

commutes, so gh = idC and g is a splitting. If A is injective, there exists h such that

A

0 // A
f
// B.

h
``

commutes, so hf = idA, and h is a splitting.

More generally, we can talk about split exact complexes.

Definition 14.9. A complex C in Ch(A) is split if there are arrows sn : Cn −→ Cn+1 such
that the differential ∂ satisfies ∂ = ∂s∂. A complex is split exact if it is both exact and
split.

Remark 14.10. A split short exact sequence is precisely a short exact sequence that is a
split complex.

Exercise 53. Additive functors preserve split complexes, meaning that if C is a split com-
plex, then so is F (C) for any additive functor F . In particular, additive functors preserve
split short exact sequences.
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Lemma 14.11. Let A be an abelian category, (P, ∂) in Ch⩾0(A) with each Pi projective,

P0
∂0−→ M an arrow in A such that ∂0∂1 = 0 and (Q, δ) a projective resolution of N . Given

any M
f−→ in A, there exists a map of complexes P

φ−→ Q such that

P0

φ0

��

∂0 //M

f

��

Q0 δ0
// N

commutes, which is unique up to homotopy.

Proof. Since P0 is projective and δ0 is an epi, there exists φ0 such that

P0

φ0

��

∂0 //M //

f

��

0

Q0 δ0
// N // 0

commutes.
We proceed inductively, assuming we have φ0, . . . , φn−1 with φn−2∂n−1 = δn−2 φn−1.

Since Pn is projective, there exists φn such that

Pn
∂n //

φn

��

Pn−1

φn−1

��

∂n−1
// Pn−2

φn−2

��

Qn δn
// Qn δn−1

// Qn−1

commutes. Commutativity gives δn−1φn−1∂n = φn−2∂n−1∂n = 0, so φn−1∂n factors through
the kernel of δn−1.

Pn

∂n

��

**

Qn

δn

��

$$ $$

Zn−1(Q)

zz

Pn−1 φn−1

// Qn

Since Q is a projective resolution of N , the arrow Qn −→ Zn−1(Q) above is an epi, so the
arrow Pn −→ Zn−1(Q) we just constructed factors through Qn, giving us φn such that

Pn
φn

//

∂n

��

**

Qn

δn

��

$$ $$

Zn−1(Q)

zz

Pn−1 φn−1

// Qn
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commutes.
Now suppose we are given two such maps of complexes φ and ψ lifting f , say φ and ψ.

Note that φ − ψ and 0 are two liftings of the 0 map. We are going to show that any map
lifting the 0 map M −→ N must be nullhomotopic, which will then imply that φ and ψ are
homotopic as well (essentially via the same homotopy!).

So let φ : P −→ C be a map of complexes lifting the 0 map M −→ N .

· · ·P1
//

φ1

��

∂1 // P0

φ0

��

∂0 //M //

0

��

0

· · ·C1
//

δ1
// C0 δ0

// N // 0

We will construct a nullhomotopy for φ inductively. Set hn = 0 for all n < 0. The
commutativity of the rightmost square says that δ0φ0 = 0, so imφ0 ⊆ ker δ0 = im δ1. Since
∂0ϖ0 = 0, φ0 factors through Z0(Q). But Q1 ↠ Z0(Q) is an epi and P0 is projective, there
exists H0 such that

Q1

&& &&

δ1

��

Z0(Q)

xx

P0 φ0

//

∂0

��

33

H0

==

Q0

δ0

��

M
f

// N

commutes. So H0 satisfies δ0H0 = φ0. Set H−1 = 0.
Now suppose we have constructed H0, . . . , Hn−1 such that δnHn−1 + Hn−2∂n−1 = φn−1.

Then

δnφn = φn−1∂n since φ is a map of complexes

= (δnHn−1 +Hn−2∂n−1)∂n by assumption

= δnHn−1∂n +Hn−2∂n−1∂n

= δnHn−1∂n since ∂n−1∂n = 0

so δn(φn −Hn−1∂n) = 0. Therefore, φn factors through Zn(Q), and since Q is a projective
resolution of N , Qn+1 −→ Zn(Q) is an epi. Therefore, the factorization of φn − Hn−1∂n
through Zn(Q) also factors through Qn, and we end up with an arrow Hn such that

Qn+1

'' ''

δn+1

��

Zn(Q)

ww
Pn φn

//

∂n

��

22
Hn

;;

Qn

δn

��

Pn−1

Hn−1

88

φn−1

// Qn−1
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commutes. This Hn must then satisfy δn−1Hn + Hn−1∂n = φn, and ultimately H is a
homotopy between φ and 0.

Theorem 14.12 (Horseshoe Lemma). Let A be an abelian category, P be a projective res-
olution of A, and R be a projective resolution of C. If

0 // A
f
// B

g
// C // 0

is an exact sequence, there exists a projective resolution Q of B and maps of complexes F
and G lifting f and g such that

0 // P
F // Q

G // R // 0

is an exact sequence in Ch(A).

Proof. First, a word on notation: ⊕ denotes the coproduct in A, and given arrows x
f−→ z

and y
g−→ z, we will write f ⊕ g for the unique arrow x ⊕ y −→ z induced by f and g.

Moreover, we will denote the differential of P by ∂P , and the differential of R by ∂R.
Set Qn = Pn⊕Rn. Recall that the product and coproduct inA coincide, by Lemma 13.11,

so let Fn : Pn −→ Qn and Gn : Qn −→ Rn be the canonical arrows. One can show that in
fact we get short exact sequences

0 // Pn
Fn // Qn

Gn // Rn
// 0

for all n. Moreover, Qn is projective for all n, by Exercise 52. We will construct the missing
differentials ∂Q inductively.

Since R0 is projective and g is an epi, there exists γ such that

0 // P0
F0 //

∂0
��

Q0
G0 // R0

γ
}} ��

∂0
��

// 0

0 // A
f
// B

g
// C // 0

commutes. Set ∂Q0 := (f∂P0 )⊕ γ. The universal property of the coproduct guarantees that

0 // P0
F0 //

∂0
��

Q0

∂Q0
��

G0 // R0

γ
}} ��

∂0
��

// 0

0 // A
f
// B g

// C // 0

commutes. By the Five Lemma 13.46, ∂Q0 is epi. By the Snake Lemma 13.44,

ker ∂P0 // ker ∂Q0 // ker ∂R0

is exact. We then proceed by induction, and at each step we apply the base case to

0 // Pn+1
Fn+1

//

∂Pn+1
��

Qn+1
Gn+1

// Rn

∂Rn+1

��

// 0

0 // ker ∂Pn // ker ∂Qn // ker ∂Rn // 0
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where the vertical arrows are epi because P and R are projective resolutions and thus exact.

Remark 14.13. By duality, if A has enough injectives, 0 // A // B // C // 0 is
exact, and EA and EC are injective resolutions for A and C, there exists an injective resolu-
tion EB of B and a short exact sequence of complexes 0 // EA // EB // EC // 0
extending the given one.

We finally have all the tools we need to construct derived functors, and in particular, Ext
and Tor.

14.2 Derived functors

We start with the general construction of derived functors, although we will soon focus on
concrete examples, most importantly Ext and Tor, the derived functors of hom and tensor.

Definition 14.14 (Derived functors). LetA and B be abelian categories, and let F : A −→ B
be a covariant right exact functor. If A has enough projectives, the left derived functors
of F are a sequence of functors LiF : A −→ B, i ⩾ 0, defined as follows:

• For each object A in A, fix a projective resolution P of A, and set

LiF (A) := Hi(F (P )).

• Given an arrow A
f−→ B, fix projective resolutions P −→ A and Q −→ B, and a map

of complexes P
φ−→ Q lifting f . Then

LiF (f) := Hi(F (φ)).

Now let F : A −→ B be a covariant left exact functor. If A has enough injectives, the
right derived functors of F are a sequence of functors RiF : A −→ B, i ⩾ 0, defined as
follows:

• For each object A in A, fix an injective resolution E of A, and set

RiF (A) := Hi(F (E)).

• Given an arrow A
f−→ B, fix injective resolutions A −→ E and B −→ I, and a map of

complexes P
φ−→ Q extending f . Then

RiF (f) := Hi(F (φ)).

Let F : A −→ B be a contravariant left exact functor. If A has enough projectives, the
right derived functors of F are a sequence of functors RiF : A −→ B, i ⩾ 0, defined as
follows:
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• For each object A in A, fix a projective resolution P of A, and set

RiF (A) := Hi(F (P )).

• Given an arrow A
f−→ B, fix projective resolutions P −→ A and Q −→ B, and a map

of complexes P
φ−→ Q extending f . Then

RiF (f) := Hi(F (φ)).

Finally, let F : A −→ B be a contravariant right exact functor. If A has enough injectives,
the left derived functors of F are a sequence of functors LiF : A −→ B, i ⩾ 0, defined
as follows:

• For each object A in A, fix an injective resolution E of A, and set

LiF (A) := Hi(F (E)).

• Given an arrow A
f−→ B, fix injective resolutions A −→ E and B −→ I, and a map of

complexes E
φ−→ I extending f . Then

LiF (f) := Hi(F (φ)).

It is not clear a priori that this construction is well-defined, but we will soon show that
is indeed the case.

Remark 14.15. If F is exact, then Hi(F (C)) = F (Hi(C)), so LiF = 0 for all i > 0.

Remark 14.16. If P is projective, then 0 −→ P −→ 0 is a projective resolution of P , and
thus LiF (P ) = 0 for all i > 0. Similarly, if E is injective then RiF (E) = 0.

Proposition 14.17. Let A be an abelian category with enough projectives, and F a covariant
right exact functor.

a) LiF (A) is well-defined up to isomorphism for every object A.

b) LiF (f) is well-defined for every arrow f .

c) LiF is an additive functor for each i.

d) L0F = F .

Proof.

a) Let P and Q be projective resolutions of A. Theorem 12.15 gives us maps of complexes

P
φ−→ Q and Q

ψ−→ P such that φψ is homotopic to 1Q and ψφ is homotopic to 1P .
Additive functors preserve homotopies, by Remark 13.36, so F (φ)F (ψ) and F (ψ)F (φ)
are homotopic to the corresponding identity arrows. Homotopic maps induce the same
map in homology, by Exercise 49. Therefore, F (φ) and F (ψ) induce isomorphisms in
homology.
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b) Fix projective resolutions P and Q of M and N . Any two lifts φ and ψ of f : M −→ N
to P −→ Q are homotopic, by Lemma 14.11. Additive functors preserve homotopies, by
Remark 13.36, so F (φ) and F (ψ) are homotopic. Homotopic maps induce the same map
in homology, by Exercise 49, so LiF (φ) = LiF (ψ) for each i.

c) Given an arrow f , fix a lift φ of f to projective resolutions of the source and target. Since
F is an additive functor, Hi(F (φ)) is a homomorphism for each i, and thus LiF (f) is a ho-
momorphism between the corresponding Hom-groups, which as we’ve seen is independent
of our choice of φ.

d) Let A be any object and P be a projective resolution of A. Since P is right exact, and

P1
// P0

// A // 0

is exact, then so is
F (P1) // F (P0) // F (A) // 0.

We claim that H0(F (P )) = F (A). In R-mod, this is very simple to justify: the last se-
quence above says that F (A) = coker(F (P1) −→ F (P0)), and H0(F (P )) = P0/ im(F (P1) −→
F (P0)) = coker(F (P1) −→ F (P0)).

The argument in a general abelian category is essentially the same, modulo understanding
that our definitions were set just right to make this work as desired. By Exercise 43,
ker(F (P0) −→ 0) = 1F (P0), so the canonical arrow imF (∂1) −→ F (P0) is precisely
the image of imF (∂1). By exactness of the last sequence we wrote above, imF (∂1) =
ker(F (P0) −→ F (A)). On the other hand, exactness at F (A) says that F (P0) −→ F (A)
is an epi, by Exercise 45. Every epi is the cokernel of its kernel, so F (P0) −→ F (A) is
the cokernel of imF (∂1), which we saw was exactly the canonical arrow B1(F (P )) −→
Z0(F (P )). Therefore, H0(F (P )) = F (A), the target of the cokernel of B1(F (P )) −→
Z0(F (P )).

Exercise 54. Let A be an abelian category with enough injectives, and F a covariant left
exact functor.

a) RiF (A) is well-defined up to isomorphism.

b) RiF (f) is well-defined for every arrow f .

c) RiF (f) is an additive functor for every i.

d) R0F = F .

Remark 14.18. If A is an abelian category with enough injectives, then Aop is an abelian
category with enough projectives. This gives us a relationship between left derived and right
derived functors: RiF = (LiF

op)op.

And now we are ready to prove the most important result about derived functors: they
fix the lack of exactness of the functor we are deriving, by inducing a long exact sequence in
homology from any given short exact sequence.
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Theorem 14.19. Let A be an abelian category with enough projectives and F a right exact
covariant functor. Any short exact sequence

0 // A
f
// B

g
// C // 0

induces a natural long exact sequence which

· · · // L2F (C) // L1F (A) // L1F (B) // L1F (C) // F (A) // F (B) // F (C) // 0.

Similarly, if F is a left exact covariant functor, we obtain a long exact sequence

0 // F (A) // F (B) // F (C) // R1F (A) // R1F (B) // R1F (C) // R2F (A) // · · · .

If F is a contravariant left exact functor, we obtain a natural long exact sequence

0 // F (C) // F (B) // F (A) // R1F (C) // R1F (B) // R1F (A) // R2F (C) // · · · .

Proof. We give a proof for the case of right exact functors, and the remaining cases follow
by duality. We start by fixing projective resolutions P of A and R of C. By Theorem 14.12,
we can choose a projective resolution Q of B and lifts of f and g such that

0 // P // Q // R // 0

is a short exact sequence in Ch(A). By Proposition 14.17, LiF does not depend on the
choice of resolution, so we can compute LiF (A), LiF (B), and LiF (C) from P , Q, and R.
Now notice that for each n, Rn is projective, so

0 // Pn // Qn
// Rn

// 0

is a split short exact sequence. Now additive functors preserve split short exact sequences,
by Exercise 53, so

0 // F (Pn) // F (Qn) // F (Rn) // 0

is a short exact sequence for all n. Then

0 // F (P ) // F (Q) // F (R) // 0

is also a short exact sequence, now in Ch(A). Note, however, that this sequence is not
necessarily split anymore, since the splittings at each level do not necessarily assemble into
a map of complexes. The Long Exact Sequence in homology Theorem 13.45 now gives us
the long exact sequence we desire.

It remains to check naturality. What is left to check is that given a commutative diagram
with exact rows

0 // A //

a

��

B //

b
��

C

c

��

// 0

0 // A′ // B′ // C ′ // 0
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and chosen lifts of the original short exact sequences to projective resolutions, there are maps
of complexes such that

0 // P

α

��

// Q

β
��

// R

γ

��

// 0

0 // P ′ // Q′ // R′ // 0

commutes. Our derived functors LiF will preserve these maps of complexes and the com-
mutativity of the diagram above, so we get commutative diagrams

LiF (C)

LiF (γ)

��

// Li−1F (A)

Li−1F (α)

��

LiF (C
′) // Li−1F (A)

for each i. First, notice that we know that a, b, and c can be lifted to maps of complexes by
Lemma 14.11, and that any two lifts of each a, b, or c are unique up to homotopy. So let’s
start by fixing lifts α of a and γ of c, and we will construct an appropriate lift β of b. Since
the short exact sequences

0 // Pn // Qn
// Rn

// 0

split for each n, we might as well assume that Qn = Pn ⊕ Rn and that the arrows P −→ Q
and Q −→ R are given by the canonical arrows to and from the product ≡ coproduct in
each homological degree. We cannot, however, assume Q = P ⊕ R as complexes, only that
Qn = Pn ⊕Rn in each homological degree n. The commutativity of

0 // Pn //

∂Pn
��

Pn ⊕Rn

∂Qn
��

0 // Pn−1
// Pn−1 ⊕Rn−1

does imply that ∂Q(P ) ⊆ P , so we can say that ∂Q is of the form

∂Qn =

(
∂Pn µn
0 ∂Rn

)
for each n. Since this is a differential, we have

(∂Qn )
2 = 0 =⇒ ∂Pn−1µn + µn−1∂

R
n = 0.

Similarly, all this applies to ∂Q
′

n , which must be of the form

∂Q
′

n =

(
∂P

′
n µ′

n

0 ∂R
′

n

)
.

We claim that we can define βn =

(
αn νn
0 γn

)
for each n such that β is a map of complexes,

meaning
∂Q

′

n βn = βn−1∂
Q
n .
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Writing the corresponding products of matrices, we must have

(
∂P

′
n µ′

n

0 ∂R
′

n

)(
αn νn
0 γn

)
=

(
αn−1 νn−1

0 γn−1

)(
∂Pn µn
0 ∂Rn

)
=⇒


α is a map of complexes
∂P

′
n νn + µ′

nγn = αn−1µn + νn−1∂
R
n

0 = 0
γ is a map of complexes

The only nontrivial statement we want to guarantee is that ∂P
′

n νn+µ
′
nγn = αn−1µn+νn−1∂

R
n .

We can solve this inductively for each n, and construct an appropriate νn inductively. Given
νn−1, set

Γn := αn−1µn + νn−1∂
R
n − µ′

nγn,

We want to construct νn such that Rn
νn //

Γn !!

P ′
n

��

P ′
n−1

commutes, assuming we have constructed

νn−1. First, we claim that ∂P
′

n−1Γn = 0.

∂P
′

n−1Γn =∂P
′

n−1αn−1µn + ∂P
′

n−1νn−1∂
R
n − ∂P

′

n−1µ
′
nγn

=µ′
n−1∂

P ′

n γn + ∂P
′

n−1αn−1µn + ∂P
′

n−1νn−1∂
R
n since µ′

n−1∂
P ′

n = ∂Pn−1µn

By induction,
∂P

′

n−1νn−1 + µ′
n−1γn−1 = αn−2µn−1 + νn−2∂

R
n−1.

Using this to replace ∂P
′

n−1νn−1 in the equation above, we get

∂P
′

n−1Γn =µ′
n−1∂

P ′

n γn + ∂P
′

n−1αn−1µn + (αn−2µn−1 + νn−2∂
R
n−1 − µ′

n−1γn−1)∂
R
n

=αn−2µn−1∂
R
n + ∂P

′

n−1αn−1µn + νn−2∂
R
n−1∂

R
n − µ′

n−1(∂
P ′

n γn + γn−1∂
R
n )

=αn−2∂
P
n−1µn + ∂P

′

n−1αn−1µn + νn−2∂
R
n−1∂

R
n − µ′

n−1(∂
P ′

n γn + γn−1∂
R
n )

We showed above that ∂P
′

n γn + γn−1∂
R
n = 0. Moreover, ∂Rn−1∂

R
n = 0. We conclude that

∂P
′

n−1Γn =αn−2∂
P
n−1µn + ∂P

′

n−1αn−1µn

=αn−2∂
P
n−1µn + αn−2∂

P ′

n µn since α is a map of complexes

=αn−2(∂
P
n−1µn + ∂P

′

n µn)

=0 since ∂Pn−1µn + ∂P
′

n µn = 0.

So this concludes the proof that ∂P
′

n−1Γn = 0. Therefore, Γn must factor through the ker ∂P
′

n−1:

P ′
n

∂n // P ′
n−1

∂n−1
// P ′
n−2

ker ∂n−1

::

Rnψn

oo

Γn

OO
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On the other hand, P ′ is a resolution and thus exact, so im ∂n = ker ∂n−1, and ∂n factors
through ker ∂n−1 as

P ′
n

φn
##

∂n // P ′
n−1

∂n−1
// P ′
n−2

ker ∂n−1

::

Rnψn

oo

Γn

OO

via some epi φn. Finally, Rn is projective, so there exists νn such that

Rn

ψn

��

νn

{{

P ′
n φn

// ker ∂n−1

commutes — this was the νn we were searching for.

Theorem 14.19 can be phrased in a fancier way by saying that the derived functors of F
are a (co)homological δ-functor. In general, a δ-functor A −→ B is a sequence of additive
functors that produce a long exact sequence given a short exact sequence, in a functorial way
— meaning that each map of complexes between two short exact sequences gives rise to a
commutative diagram between the corresponding long exact sequences. It turns out that the
left/right derived functors of F form what is called a universal δ-functor, which boils down
to it having a certain universal property. While we will not discuss δ-functors in detail, the
topic can be found in any standard reference — for example, see [Wei94].

Without referencing universal δ-functors explicitly, the main point is that the derived
functors of F are, up to isomorphism, the unique sequence of functors that satisfy some
basic properties: they give rise to long exact sequences from any short exact sequence, they
vanish on projectives/injectives according to the type of functor we are considering, and the
0th functor agrees with our original functor F .

Theorem 14.20. Let Ti : A −→ B be a sequence of additive covariant functors between
abelian categories, where A has enough projectives, and F : A −→ B a right exact functor.
Suppose the following hold:

(1) For every short exact sequence 0 // A // B // C // 0 in A, we get a natural
long exact sequence

· · · // T2(C) // T1(A) // T1(B) // T1(C) // T0(A) // T0(B) // T0(C) // 0.

(2) T0 is naturally isomorphic to F .

(3) Tn(P ) = 0 for every projective object P in A, and all n ⩾ 1.

Then Tn is naturally isomorphic to LnF for all n.
Similarly, suppose Ti : A −→ B is a sequence of additive covariant functors, where A has

enough injectives, and F : A −→ B a left exact functor such that
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a) For every short exact sequence 0 // A // B // C // 0 in A, we get a long exact
sequence

0 // T0(A) // T0(B) // T0(C) // T1(A) // T1(B) // T1(C) // · · · .

b) T0 is naturally isomorphic to F .

c) Tn(E) = 0 for every injective object E in A, and all n ⩾ 1.

Then Tn is naturally isomorphic to RnF for all n.

Proof. We prove the first statement, noting the second statement follows by duality. How-
ever, we prove only the case when A = R-mod and B = S-mod for rings R and S.

We are going to show that Tn is naturally isomorphic to LnF by induction on n. The
statement for n = 0 is one of our assumptions. When n = 1, fix an R-module M , and
consider a short exact sequence

0 // K // P //M // 0

with P projective. By assumption (1), we get a long exact sequence on the Ti, and by (2),
there exist isomorphisms τ0 such that the following is a commutative diagram:

T1(P ) // T1(M)
∆1 // T0(K)

τ0(K)
��

// T0(P )

τ0(P )
��

// T0(M)

τ0(M)
��

// 0

L1F (P ) // L1F (M)
δ1
// F (K) // F (P ) // F (M) // 0

By (3), T1(P ) = 0, and L1F (P ) = 0 by construction. The exactness of each row now implies
that ∆1 and δ1 are both injective. We define τ1(M) : T1(M) −→ L1F (M) as follows: given
a ∈ T1(M), we send a to the unique b ∈ L1F (M) such that δ1(b) = τ0(K)∆1(a). This is a
homomorphism of R-modules because so are δ1, τ0(K), and ∆1. Moreover, note that τ0(K)
is an isomorphism and ∆1 is injective, so ∆1τ0(K) is injective. As a consequence, τ1(M) is
injective. On the other hand, given b ∈ L1F (M), its image in F (P ) is zero, and there exists
c ∈ T0(K) such that τ0(K)(c) = δ1(b). Since τ0(P ) is an isomorphism, the image of c in
T0(P ) must be 0. We conclude that c ∈ ker() =∈ ∆1. Finally, we can choose a ∈ T1(M)
such that ∆1(a) = c, which implies that τ1(M)(a) = b. Therefore, τ1(M) is an isomorphism.

This shows that T1(M) ∼= L1F (M) for any R-module M . Now let n ⩾ 1, and consider
the diagram with exact rows

Tn+1(P ) // Tn+1(M)
∆n+1

// Tn(K)

τn(K)
��

// Tn(P )

Ln+1F (P ) // Ln+1F (M)
δn+1

// LnF (K) // LnF (P )

By (3), Tn+1(P ) = 0 = Tn(P ), and Ln+1F (P ) = 0 = LnF (P ) by construction. Therefore,
∆n+1 and δn+1 are isomorphisms. Since τn(K) is also an isomorphism, we conclude that
Tn+1(M) ∼= Ln+1F (M). Therefore, Tn(M) ∼= LnF (M) for all n.
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The commutativity of the square for i = 0 holds by (2). It remains to show that these

isomorphisms are natural, that is, that anyR-module mapM
f−→ N gives rise to commutative

diagrams

Ti(M)

Ti(f)

��

τi(M)
// LiF (M)

LiF (f)

��

Ti(N)
τi(N)

// LiF (N).

Fix projectives P and Q and short exact sequences

0 // K // P //M // 0 and 0 // C // Q // N // 0.

Since Q is projective and Q → N is surjective, f lifts to a map g : P −→ Q. Finally, an
argument similar to the one we used above shows that we can define h such that

0 // K

h
��

// P

g

��

//M

f

��

// 0

0 // C // Q // N // 0

commutes. Now consider the following diagram:

Ti(M)

τi(M)

��

Ti(f)

%%

∆i // Ti−1(K)

τi−1(K)

��

Ti−1(h)

xx

3

Ti(N)

τi(N)

��

∆i // Ti−1(C)

τi−1(C)

��

2 1 4

LiF (N)
δi

// Li−1F (C)

5

LiF (M)

LiF (f)

99

δi
// LiF (K)

Li−1F (h)

ff

where:

• The big square and 1 commute by definition of τi.
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• The square 3 commutes because we assumed in (1) that Ti gives rise to long exact
sequences which are natural.

• The square 5 commutes because LiF gives rise to natural long exact sequences, by
Theorem 14.19.

• The square 4 commutes by induction hypothesis.

Therefore, 2 must commute.

14.3 A first look at Ext and Tor

It’s time to return to R-mod and study some concrete examples of derived functors: Ext, the
derived functor of Hom, and Tor, the derived functor of tensor. There are two Hom functors,
each with its own derived functor: given R-modules M and N , we may take a projective
resolution P ofM , and compute Hi(HomR(P,N)), or we could take an injective resolution E
of N , and compute Hi(HomR(M,E)). It turns out these two completely different sounding
constructions give us isomorphic R-modules, which we call ExtiR(M,N). Similarly, we have
two constructions for Tori(M,N): we may take a projective resolution P ofM , and compute
Hi(P ⊗ N), or take a projective resolution Q of N , and compute Hi(M ⊗R Q). Again, it
turns out that these two definitions are equivalent, and the resulting module is TorRi (M,N).

To show that for each of Ext and Tor these two seemingly unrelated definitions agree,
we will need some more tools.

Definition 14.21. Let A be an abelian category. A double complex in A is a family of
objects {Cp,q}p,q∈Z together with arrows dh : Cp,q −→ Cp−1,q and d

v : Cp,q −→ Cp,q−1

...

��

...

��

· · · Cp−1,q+1

dv

��

oo Cp,q+1

dv

��

dhoo · · ·oo

· · · Cp−1,q

��

oo Cp,q
dh

oo

��

· · ·oo

...
...

satisfying
dhdh = 0 dvdv = 0 dhdv + dvdh = 0.

Given a double complex C, its total complex is given by

Tot⊕(C)n :=
⊕
p+q=n

Cp,q
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with differential d = dh + dv. Similarly, its product total complex is given by

Tot
∏
(C)n :=

∏
p+q=n

Cp,q

with differential d = dh + dv.

If we fix p, Cp,• is a complex with differential dv. Similarly, if we fix q, C•,q is a complex
with differential dh. Moreover, the total complex of a chain complex is indeed a complex.

Remark 14.22. Let C be a double complex with differentials dv and dh. Then

(dh + dv)2 = dhdv︸︷︷︸
0

+ dhdh + dvdh︸ ︷︷ ︸
0

+ dvdv︸︷︷︸
0

= 0,

so (Tot⊕(C), d) and (Tot
∏
(C), d) are indeed complexes.

The most important examples — and the ones we will need as tools to prove our two
definitions of Ext agree — are the tensor and the Hom double complex.

Definition 14.23. Let R be a ring and C and D be complexes in Ch(R). The tensor
product double complex of C and D is the double complex C ⊗ D given by taking
(C ⊗D)p,q = Cp ⊗Dq, d

h = ∂C ⊗R 1D, and d
v = (−1)p1C ⊗R ∂D.

We call the total complex of the tensor product double complex of C and D the tensor
product of C and D in Ch(R), and denote it by C ⊗D.

So the tensor product total complex has Tot⊕(C ⊗D)n =
⊕

p+q=nCn ⊗R Dn and differ-
ential d(x⊗ y) = ∂(x)⊗ y + (−1)px⊗ ∂(y) for x ∈ Cp and y ∈ Dq.

Definition 14.24. Let R be a ring and C and D be complexes in Ch(R). The Hom
double complex of C and D is the double complex Hom(C,D) given by (Hom(C,D))p,q :=
HomR(C−p, Dq),

HomR(C−p, Dq)
dh // HomR(C−p−1, Dq)

f � // f ◦ ∂C
and HomR(C−p, Dq)

dv // HomR(C−p, Dq−1)

f � // (−1)p+q+1∂D ◦ f

.

We call the product total complex of the Hom double complex of C and D the (internal)
Hom complex of C and D, and denote it by Hom(C,D).

So the Hom complex of C and D is the complex

Hom(C,D)n =
∏

p+q=n

HomR(C−p, Dq)

with differential d(f) = f ◦ ∂C + (−1)p+q+1∂D ◦ f for each f ∈ HomR(C−p, Dq).

Remark 14.25. Given C andD in Ch(R), what is a 0-cycle in the Hom complex Hom(C,D)?
A 0-cycle is a sequence of maps of R-modules fk : Ck −→ Dk satisfying f∂C − ∂Df = 0,
so the 0-cycles are precisely the maps of complexes C −→ D. Similarly, a sequence of
maps fk is a 0-boundary if there exists a sequence of maps hk : Ck −→ Dk+1 such that
fk = ∂Dhk+hk−1∂

C . In other words, a 0-boundary indicates a homotopy relation — if f − g
is a 0-boundary, f and g are homotopic maps.
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Lemma 14.26 (Acyclic Assembly Lemma). Let C be a double complex in R-mod.

a) If C is an upper half plane double complex with exact rows, meaning Cp,q = 0 whenever
q < 0, then Tot⊕(C) is exact.

b) If C is a right half plane double complex with exact columns, meaning Cp,q = 0 whenever
p < 0, then Tot⊕(C) is exact.

c) If C is an upper half plane double complex with exact columns, meaning Cp,q = 0 whenever
q < 0, then Tot

∏
(C) is exact.

d) If C is a right half plane double complex with exact rows, meaning Cp,q = 0 whenever
p < 0, then Tot

∏
(C) is exact.

Proof. Notice that a ⇔ b and c ⇔ d by switching the indexes. Moreover, we claim that it
is sufficient to show c, since it implies b.

First, we need some notation. Given a double complex C, consider the nth truncation
τn(C) of C defined by

τn(C)p,q :=


Cp,q if q > n

ker( Cp,n
dv // Cp,n−1 ) if q = n

0 if q < n.

There is a natural inclusion τn(C) −→ C which induces an isomorphism in homology for
i ⩾ n.

So suppose that C is a right half plane double complex with exact columns, and assume
that c holds. Then τn(C) still has exact columns, so by c, Tot

∏
(τn(C)) is exact. On the

other hand, notice that up to a vertical shift, τn(C) is a first quadrant double complex,
and for each fixed m, there are only finitely many values of p and q with p + q = m and
such that τn(C)p,q ̸= 0. Therefore, Tot

∏
(τn(Cp,•)) = Tot⊕(τn(Cp,•)), so Tot⊕(τn(Cp,•)) is

exact. We claim that this implies that Tot⊕(C) is exact. One can make this precise by
saying Tot⊕(C) = colimn(Tot

⊕(C)). We haven’t discussed colimits, but this is actually
easy to check explicitly. The point is that any element a ∈ Zk(Tot⊕(C)), when we write a
explicitly as a = (ap,q) ∈ ⊕p+q=kCp,q in terms of its coordinates in each Cp,q, only finitely
many ap,q are nonzero. Let q be the smallest such that ap,q ̸= 0, and fix any n < q. Then
a ∈ Zk(Tot⊕(τn(C))) = Bk(Tot

⊕(τn(C))) ⊆ Bk(Tot
⊕(C)). So Tot⊕(C) is exact, so b holds.

All we have left to do is to show c, meaning that the product total complex of any
upper half plane double complex C with exact columns is exact. We are going to show
that H0(Tot

∏
(C)) = 0, and the remaining homologies follow by shifting C left and right.

Consider a 0-cycle in Tot
∏
(C), meaning a sequence of elements cp ∈ C−p,p for each p ⩾ 0

such that c = (cp) ∈ Z0(Tot
∏
(C)). So

d(c) = 0⇔ dv(cp) + dh(cp−1) = 0 for all p.

We will construct b−p,p+1 ∈ C−p,p+1 for each p such that dv(b−p,p+1)+d
h(b−p+1,p) = cp, proving

that c ∈ B0(Tot
∏
(C)).
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Set b1,0 = 0 ∈ C1,0 when p = −1. Since C0,−1 = 0, we must have dv(c0) = 0 ∈ C0,−1. We
also assumed that the columns are exact, so in particular the 0th column is exact. We can
then find b0,1 ∈ C0,1 such that dv(b0,1) = c0, and thus dv(b0,1) + dh(b1,0) = c0.

Now we proceed by induction. Suppose we have constructed b−s+1,s for −1 ⩽ s ⩽ p with
the desired property that dv(b−s,s+1) + dh(b−s+1,s) = cs for all s ⩽ p. Then

dv(c−p,p − dh(b−p+1,p)) = dv(cp) + dhdv(b−p+1,p) since dvdh + dhdv = 0

= dv(cp) + dh(cp−1 − dh(b−p+2,p−1)) as dv(b−p+1,p) + dh(b−p+2,p−1) = cp−1

= dv(cp) + dh(cp−1)− dhdh(b−p+2,p−1)

= dv(cp) + dh(cp−1) since dhdh = 0

= 0.

The last equality comes simply from the fact that (dv + dh)(c) = 0. So we have shown that
dv(c−p,p − dh(b−p+1,p)) = 0. Since the columns are exact, we can find b−p,p+1 ∈ C−p,p+1 such
that

dv(b−p,p+1) = c−p,p − dh(b−p+1,p).

Equivalently,
dv(b−p,p+1) + dh(b−p+1,p) = c−p,p.

We are also going to need a few other constructions with complexes.

Definition 14.27. Let A be an abelian category and C be a complex in Ch(A). The
suspension of C is the complex ΣC := C[−1] with (ΣC)n = Cn−1 and ∂ΣC = −∂C . Given
an integer k, the kth suspension of C is the complex ΣkC := Σ · · ·Σ︸ ︷︷ ︸

c times

C, so ∂Σ
kC = (−1)k∂C .

Definition 14.28. Let A be an abelian category and f : C −→ D be a map of complexes.
The cone of f is the complex cone(f) with cone(f)n = Cn−1⊕Dn and differential given by

∂n :=

(
−∂C 0
f ∂D

)
:

Cn−1
−∂C

//

f

$$

Cn−2

⊕ ⊕

Dn
∂D

// Dn−1

Remark 14.29. There are different conventions for the sign in front of f in the definition
of the differentials on the cone of f . Weibel defines

∂n :=

(
−∂C 0
−f ∂D

)
and some authors even write

∂n :=

(
−∂C 0

(−1)nf ∂D

)
.

All of these choices do make our proposed differential a differential (check it!). The facts
below about the mapping cone are all true up to sign whatever the sign convention we follow.
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Exercise 55. Show that giving a map of complexes cone( C
f
// D ) −→ E is the same as

giving

• a map of complexes D
g−→ E, and

• a homotopy between gf and 0.

Remark 14.30. Given any map of complexes C
f
// D , there is a short exact sequence

0 // D // cone(f) // Σ−1C // 0

determined by the canonical arrows to and from the product ≡ coproduct. The connecting
arrows from the Snake Lemma

Hn−1(C) = Hn(Σ
−1C) δ // Hn−1(D)

are exactly Hn−1(f) : Hn−1(C) −→ Hn−1(D) induced by f , so there is a long exact sequence

· · · // Hn+1(cone(f)) // Hn(C)
Hn(f)

// Hn(D) // Hn(cone(f)) // Hn−1(C) // · · · .

As a consequence, f is a quasi-isomorphism if and only if cone(f) is exact.

Remark 14.31. Given a map of complexes C
f
// D , we can construct a double complex

from f , as follows:
...

∂

��

...

−∂
��

0 D2

∂
��

oo C2
f
oo

−∂
��

0oo

X = 0 D1

∂
��

oo C1
f
oo

−∂
��

0oo

0 D0

∂
��

oo C0
f
oo

−∂
��

0oo

...
...

Note that Tot⊕(X) = cone(f).

Exercise 56. Given a double complex C with Cp,q = 0 for all p < n, the horizontal differ-
entials Cn+1,q −→ Cn,q induce a map of complexes

Tot⊕/
∏
(C>n,•) −→ Cn,• ,

where C>n,• denotes the double complex we obtain from C by excluding the leftmost nonzero
column, and Tot⊕(C) ∼= Σ−1 cone(φ).



244

Theorem 14.32 (Balancing Tor). Let R be a ring, M and N be R-modules, and fix a
projective resolution P of M and a projective resolution Q of N . For every n, there is an
isomorphism

Ln(M ⊗R −)(N) = Hn(M ⊗R Q) ∼= Hn(P ⊗R N) = Ln(−⊗R N)(M).

Proof. We have surjections π : P0 ↠ M and ε : Q0 ↠ N . Consider the double complex
P ⊗Q, which is a first quadrant double complex:

...

��

...

��

...

��

P0 ⊗Q2

1⊗∂Q
��

P2 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q2

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

P0 ⊗Q1

1⊗∂Q
��

P1 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q1

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

P0 ⊗Q0 P1 ⊗Q0
∂P⊗1
oo P2 ⊗Q0

∂P⊗1
oo · · ·oo

Each Pi and Qi is projective and thus flat, by Theorem 11.44, so Pi ⊗R − and −⊗R Qi are
both exact functors. The rows and columns of our double complex are thus exact everywhere
except for the 0th row and column. We can complete our double complex to make a double
complex C with both exact rows if we add in a column induced by the surjection π:

...

��

...

��

...

��

...

��

M ⊗Q2

��

P0 ⊗Q2π⊗1
oo

1⊗∂Q
��

P2 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q2

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

M ⊗Q1

��

P0 ⊗Q1

1⊗∂Q
��

π⊗1
oo P1 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q1

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

M ⊗Q0 P0 ⊗Q0π⊗1
oo P1 ⊗Q0

∂P⊗1
oo P2 ⊗Q0

∂P⊗1
oo · · · .oo

Similarly, we can make a double complex D with exact columns by adding in a row induced
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by ε:
...

��

...

��

...

��

P0 ⊗Q2

1⊗∂Q
��

P2 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q2

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

P0 ⊗Q1

1⊗∂Q
��

P1 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q1

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

P0 ⊗Q0

1⊗ε
��

P1 ⊗Q0
∂P⊗1
oo

1⊗ε
��

P2 ⊗Q0

1⊗ε
��

∂P⊗1
oo · · ·oo

P0 ⊗N P1 ⊗Noo P2 ⊗Noo · · ·oo .

By Lemma 14.26, Tot⊕(C) and Tot⊕(D) are both exact. Notice that π ⊗ Q is a map of
complexes Tot⊕(P⊗Q) −→M⊗Q, and P⊗ε is a map of complexes Tot⊕(P⊗Q) −→ P⊗N .
The mapping cone of π⊗Q is precisely ΣTot⊕(C), while the mapping cone of P⊗ε is precisely
ΣTot⊕(D). Since these are both exact, Remark 14.30 says that Tot⊕(P ⊗Q) π⊗Q−−−→M ⊗Q
and Tot⊕(P ⊗Q) P⊗ε−−−→ P ⊗N are quasi-isomorphisms, so that

Ln(M ⊗R −)(N) = Hn(M ⊗R Q) ∼= Hn(P ⊗R N) = Ln(−⊗R N)(M).

Theorem 14.33 (Balancing Ext). Let R be a ring, M and N be R-modules, and fix a
projective resolution P of M and an injective resolution E of N . For every n, there is an
isomorphism

RnHomR(M,−)(N) = Hn(HomR(M,E)) ∼= Hn(HomR(P,N)) = RnHomR(−, N)(M).

Proof. We have a surjection π : P0 −→ M and an inclusion ε : M −→ E0. The double
cocomplex HomR(P,E) with HomR(P,E)p,q = HomR(Pp, E

q) and

HomR(Pp, E
q) dh // HomR(Pp+1, E

q)

f � // f ◦ ∂P
and HomR(Pp, E

q) dv // HomR(Pp, Dq+1)

f � // (−1)p+q+1∂E ◦ f

.

is a first quadrant double cocomplex:

...
...

...

HomR(P0, E
2)

OO

// HomR(P1, E
2)

OO

// HomR(P2, E
2) //

OO

· · ·

HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·

HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·
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We proceed just like in Theorem 14.32, by considering the double cocomplex C

...
...

...
...

Hom(M,E2) //

OO

HomR(P0, E
2)

OO

// HomR(P1, E
2)

OO

// HomR(P2, E
2) //

OO

· · ·

Hom(M,E2) //

OO

HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·

Hom(M,E2) //

OO

HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·

obtained by adding in a column induced by π, and the double cocomplex D

...
...

...

HomR(P0, E
2)

OO

// HomR(P1, E
2)

OO

// HomR(P2, E
2) //

OO

· · ·

HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·

HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·

HomR(P0, N)

OO

// HomR(P1, N)

OO

// HomR(P2, N) //

OO

· · ·

obtained by adding in a row induced by ε. Now we notice that the cone of HomR(P,N) −→
Tot⊕(Hom(P,E)) is exactly Tot⊕(C), while the cone of HomR(M,E) −→ Tot⊕(Hom(P,E))
is exactly Tot⊕(C)

The dual of Lemma 14.26 says that Tot⊕(C) and Tot⊕(D) are both exact, and thus
HomR(P,N) −→ Tot⊕(Hom(P,E)) and HomR(M,E) −→ Tot⊕(Hom(P,E)) are both quasi-
isomorphisms. We conclude that

RnHomR(M,−)(N) = Hn(HomR(P,N)) ∼= Hn(HomR(M,E)) = RnHomR(−, N)(M).

Definition 14.34. Let R be a ring and M and N be R-modules. The ith Tor module from
M to N is

TorRi (M,N) := Li(M ⊗R −)(N) ∼= Li(−⊗R N)(M).

Notice in particular that the R-module TorRi (M,N) is defined only up to isomorphism.

Definition 14.35. Let R be a ring and M and N be R-modules. The ith Ext module from
M to N is

ExtiR(M,N) := RiHomR(M,−)(N) ∼= RiHomR(−, N)(M).
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Notice in particular that the R-module ExtiR(M,N) is only defined up to isomorphism.

Theorem 14.19 immediately gives us long exact sequences for Ext and Tor.

Theorem 14.36. Let R be a ring andM an R-module. Every short exact sequence in Ch(R)

0 // A
f
// B

g
// C // 0

induces a long exact sequence

· · · // TorRn+1(M,C) // TorRn (M,A) // TorRn (M,B) // TorRn (M,A) // · · ·

· · · // TorR1 (M,C) // A⊗RM // B ⊗RM // C ⊗RM // 0.

Theorem 14.37. Let R be a ring andM an R-module. Every short exact sequence in Ch(R)

0 // A
f
// B

g
// C // 0

induces a natural long exact sequence

0 // HomR(M,A) // HomR(M,B) // HomR(M,C) // Ext1R(M,A) // · · ·

· · · // ExtnR(M,B) // ExtnR(M,C) // Extn+1
R (M,A) // · · · .

and

0 // HomR(C,M) // HomR(B,M) // HomR(A,M) // Ext1R(C,M) // · · ·

· · · // ExtnR(B,M) // ExtnR(A,M) // Extn+1
R (C,M) // · · · .

Finally, we note that TorRi (M,N) ∼= TorRi (N,M), just like M ⊗R N ∼= N ⊗RM .

Theorem 14.38. Let M and N be R-modules. For all i, there are natural isomorphisms

TorRi (M,N) ∼= TorRi (N,M).

Proof. Let P be a projective resolution ofM . By Theorem 14.32, TorRi (M,N) = Hi(P⊗RN)
and TorRi (N,M) = Hi(N ⊗R P ). By Lemma 10.20, M ⊗R N and N ⊗R M are naturally
isomorphic. In fact, m⊗ n 7→ n⊗m determines an isomorphism. So consider the map

Pn ⊗R N
fn
// N ⊗R Pn N ⊗RM

gn
// Pn ⊗R N

m⊗ n � // n⊗m n⊗m � //m⊗ n

which again are isomorphisms for all n. Notice that these fn assemble into a map of complexes

P ⊗R N
f−→ N ⊗R P , since

fn(∂(m⊗ n)) = fn(∂(m)⊗ n) = n⊗ ∂(m) = ∂(n⊗m) = ∂fn+1(m⊗ n).

Since all the fn are isomorphisms, f is an isomorphism of complexes, and must then induce
isomorphisms in homology. We conclude that

TorRi (M,N) = Hi(P ⊗R N) ∼= Hi(N ⊗R P ) = TorRi (N,M).
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Exercise 57. If M and N are finitely generated R-modules and R is a Noetherian ring,
then ExtiR(M,N) and TorRi (M,N) are both finitely generated R-modules for all i.

Finally, we point out that there is an alternative description of Ext which we will not
discuss in detail. It turns out that Ext1R(M,N) measures the extensions ofM by N modulo
split extensions. More precisely, an extension of M by N is a short exact sequence

0 // N // B //M // 0.

We then put an abelian group structure on the set of isomorphism classes of extensions ofM
by N , using an operation called the Baer sum, and one can show that the resulting abelian
group is isomorphic to Ext1R(M,N). Via this description, the 0 in Ext1R(M,N) corresponds
to the split short exact sequence

0 // N // N ⊕M //M // 0.

Notice in particular that Ext1R(M,N) = 0 if and only if every short exact sequence of the
form

0 // N // B //M // 0.

splits.
The higher Ext modules can also be described in a similar fashion. First, we consider

the set of n-fold extensions of N by M , meaning short exact sequences of the form

0 // N // B1
// B2

// · · · // Bn
//M // 0

and the equivalence relation on this set given by the existence of a map of complexes

0 // N // B1

��

// · · · // Bn

��

//M // 0

0 // N // C1
// · · · // Cn //M // 0

where the maps between the Bi are not necessarily isomorphisms. We then define an oper-
ation on the set of equivalence classes of n-fold extensions of N by M that is also called the
Baer sum, and one shows that the resulting abelian group is isomorphic to ExtnR(M,n).

14.4 Computing Ext and Tor

Given R-modules M and N , we have two possible ways to compute TorRi (M,N) from the
definition.

Construction 14.39. Find a projective resolution

· · · // P2
// P1

// P0
//M // 0

of M . Applying −⊗R N to the resolution (not counting M), we get a complex

· · · // P2 ⊗R N // P1 ⊗R N // P0 ⊗R N // 0 .
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Its homology is TorR∗ (M,N):

TorRi (M,N) = Hi

(
· · · // P2 ⊗R N // P1 ⊗R N // P0 ⊗R N // 0

)
.

Alternatively, we can find a free resolution of N , say

· · · // Q2
// Q1

// Q0
// N // 0,

apply M ⊗R −,

· · · //M ⊗R Q2
//M ⊗R Q1

//M ⊗R Q0
// 0 ,

and compute the homology of the resulting complex:

TorRi (M,N) = Hi

(
· · · //M ⊗R Q2

//M ⊗R Q1
//M ⊗R Q0

// 0
)
.

Similarly, we have two possible ways to compute ExtiR(M,N).

Construction 14.40. Find a projective resolution

· · · // P2
// P1

// P0
//M // 0

ofM . Applying the contravariant functor HomR(−, N) to the resolution gives us a cocomplex
rather than a complex:

0 // HomR(P0, N) // HomR(P1, N) // HomR(P2, N) // · · · .

Its homology is Ext∗R(M,N):

ExtiR(M,N) = Hi
(
0 // HomR(P0, N) // HomR(P1, N) // HomR(P2, N) // · · ·

)
.

Alternatively, we can find an injective resolution of N , say

0 // N // E0 // E1 // E2 // · · · ,

apply the covariant functor HomR(M,−), which yields the cocomplex

0 // HomR(M,E0) // HomR(M,E1) // HomR(M,E2) // · · · ,

and compute the cohomology of the resulting cocomplex:

ExtiR(M,N) = Hi
(
0 // HomR(M,E0) // HomR(M,E1) // HomR(M,E2) // · · ·

)
.

It helps to keep a few simple ideas in mind:

• If P is a projective R-module, then TorRi (M,P ) = TorRi (P,M) = 0 and ExtiR(P,M) =
0 for all i > 0 and all R-modules M , since 0 −→ P −→ 0 is a projective resolution for
M . This is a special case of Remark 14.16.
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• If E is an injective R-module, ExtiR(M,E) = 0 for all i > 0 and all R-modules M .

• Free resolutions are often easier to compute explicitly, and the best path towards finding
ExtnR(M,N).

• Relating one of our modules to other, easier modules via a short exact sequence can
often simplify complicated computations.

Let’s compute some examples.

Example 14.41. Let’s compute ExtiZ(Z/(2),Z/(3)). Injective resolutions are not so easy to
find, so we start from a projective resolution for Z/(2):

0 // Z 2 // Z // Z/(2) // 0.

Notice that pdimZ(Z/(2)) ̸= 0, since Z/(2) is not a projective Z-module. We found a free
resolution of length 1 for Z/(2), so it must be that pdimZ(Z/(2)) = 1. This immediately
tells us that ExtiZ(Z/(2),Z/(3)) = 0 for all i ⩽ 2. Now we apply HomZ(−,Z/(3)) to our free
resolutions for Z/(2), and obtain

0 // HomZ(Z,Z/(3)) 2∗ // HomZ(Z,Z/(3)) // 0.

0 1

By Exercise 31, HomZ(Z,Z/(3)) ∼= Z/(3), via the isomorphism f 7→ f(1). Since 2∗ was the
map f 7→ (2 · −) ◦ f = 2f(−), we can simplify our complex to

0 // Z/(3) 2 // Z/(3) // 0.

Notice that multiplication by 2 is an isomorphism on Z/(3), so the complex above is exact,
and ExtiZ(Z/(2),Z/(3)) = 0 for all i.

Example 14.42. Given an integer n > 1,

0 // Z n // Z π // Z/(n) // 0

with π the canonical projection is a free resolution for Z/(n) over Z. Notice that since Z/(n)
is not a free Z-module, there is no shorter free resolution for Z/n. Now we can use this
resolution to compute TorZi (Z/(n),M) and ExtiZ(Z/(n),M) for any Z-module M . For Tor,

TorZi (Z/(n),M) = Hi( 0 // Z⊗Z M
n⊗1

// Z⊗Z M // 0 ).

By Lemma 10.22 Z⊗ZM ∼= M , via the map k⊗m 7→ km, and the map n⊗ 1M corresponds
to multiplication by n on M . Therefore,

TorZi (Z/(n),M) = Hi( 0 //M n //M // 0 ),

so

TorZi (Z/(n),M) =


M/nM for i = 0
(0 :M n) for i = 1
0 otherwise.
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Notice that TorZ0 (Z/(n),M) = M/nM = Z/nZ ⊗Z M , as we already knew from Proposi-
tion 14.17.

Similarly, we can compute all the Ext modules from Z/(n):

ExtZi (Z/(n),M) = Hi( 0 // HomZ(Z,M) n∗
// HomZ(Z,M) // 0 ).

By Exercise 31, HomZ(Z,M) ∼= M , via the map f 7→ f(1), and n∗ = HomZ(n,M) corre-
sponds to multiplication by n on M . So

ExtiZ(Z/(n),M) = Hi( 0 //M n //M // 0 ).

We conclude that

ExtiZ(Z/(n),M) =


M/nM for i = 1
(0 :M n) for i = 0
0 otherwise.

Notice that Ext1Z(Z/(n),M) = (0 :M n) = HomZ(Z/(n),M), as we already knew from
Proposition 14.17.

Alternatively, we can compute ExtiZ(Z/(n),M) and TorZi (Z/(n),M) by looking at some
long exact sequences. The long exact sequence for Tor induced by the short exact sequence

0 // Z n // Z // Z/(n) // 0

is

· · · // TorZn+1(Z/(n),M) // TorZn(Z,M) // TorZn(Z,M) // TorZn(Z/(n),M) // · · ·

· · · // TorZ1 (Z/(n),M) // Z⊗Z M // Z⊗Z M // Z/(n)⊗Z M // 0.

Since Z is a projective Z-module and thus flat, TorZi (Z,M) = 0 for all i > 0. As a con-
sequence, the long exact sequence above forces TorZ2 (Z/(n),M) = 0. So our long exact
sequence really gets reduced to

0 // TorZ1 (Z/(n),M) // Z⊗Z M // Z⊗Z M // Z/(n)⊗Z M // 0.

Now Z⊗ZM ∼= M via k⊗m 7→ km, and this isomorphism turns n⊗ 1M into multiplication
by n on M , same as above. So TorZ1 (Z/(n),M) is the kernel of multiplication by n on M ,
or (0 :M n).

If we want to compute ExtiZ(Z/(n),M), we should now look at the long exact sequence

0 // HomZ(Z/(n),M) // HomZ(Z,M) n∗
// HomZ(Z,M) // Ext1Z(Z/(n),M) // · · ·

· · · // ExtnZ(Z,M) // ExtnZ(Z,M) // Extn+1
Z (Z/(n),M) // · · · .

Again, Z is a free Z-module, so ExtiZ(Z,M) = 0 for all i > 0. Then ExtiZ(Z/(n),M) = 0 for
all i > 1, and our long exact sequence is actually just

0 // HomZ(Z/(n),M) // HomZ(Z,M) n∗
// HomZ(Z,M) // Ext1Z(Z/(n),M) // 0.

So Ext1Z(Z/(n),M) is the cokernel of n∗. As before, notice that HomZ(Z,M) ∼= M via
the map f 7→ f(1), and n∗ corresponds to multiplication by n on M . We conclude that
Ext1Z(Z/(n),M) ∼= M/nM .
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14.5 Other derived functors

Here are some other examples of derived functors you may encounter.

Group homology and group cohomology

Definition 14.43. Let G be a group. A (left) G-module is an abelian group A with an
action of G by additive maps on the left, meaning that

g(a+ b) = ga+ gb

for all a, b ∈ A and all g ∈ G, where we write ga for the action of g ∈ G on a ∈ A. Given

two G-modules A and B, a morphism of G-modules A
f−→ B is a group homomorphism that

is also G-equivariant, meaning f(ga) = gf(a) for all g ∈ G and a ∈ A. The category of
G-modules G-mod has objects all G-modules and arrows all G-module morphisms. We
write HomG(A,B) instead of HomG-mod(A,B).

This category can be identified with the category of ZG-modules, of modules over the
(noncommutative) ring ZG, the group ring of G. It can also be identified with the functor
category AbG of functors from the category with one object G and arrows the elements of
G to the category Ab of abelian groups.

Definition 14.44. The invariant subgroup AG of a G-module A is

AG := {a ∈ A | ga = a for all g ∈ G}.

The coinvariant subgroup AG of a G-module A is

AG := A/G-submodule generated by {ga− a ∈ A | g ∈ G, a ∈ A}.

Exercise 58. Given any G-module A, AG ∼= Z ⊗ZG A and AG ∼= HomG(Z, A), where Z
denotes the trivial G-module.

This automatically tells us that taking coinvariants is right exact, and taking invariants
is left exact.

Definition 14.45. Let G be a group and A a G-module. The homology groups of G
with coefficients in A are the G-modules Hi(G,A) obtained via the left derived functors
of the coinvariants functor:

Hi(G;A) := Li(−G)(A).
Similarly, the cohomology groups of G with coefficients in A are the G-modules
Hi(G,A) obtained via the right derived functors of the invariants functor:

Hi(G;A) := Ri(−G)(A).

By Exercise 58,

Hi(G;A) ∼= TorZGi (Z, A) and Hi(G;A) ∼= ExtiZG(Z, A).

By Proposition 14.17, H0(G;A) = AG and H0(G;A) = AG.

For a detailed treatment of group (co)homology, see Weibel’s Homological Algebra [Wei94].
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Local Cohomology

Let I be an ideal in a ring R. The I-torsion functor ΓI : R-mod −→ R-mod is defined by

ΓI(M) := {m ∈M | Inm = 0 for some n}

which acts on maps by restriction. This functor is left exact, and it gives rise to local
cohomology, the right derived functors Hi

I of ΓI . The ith local cohomology of M with
support on I is then given by

Hi
I(M) := RiΓI(M).

Local cohomology was introduced by Grothendieck in a series of famous seminars at Har-
vard in 1961. Grothendieck himself never published any notes on the subject, but Robin
Hartshorne’s notes of those lectures have been published. For a modern treatment of the
subject and its connections, the book 24 hours of local cohomology [ILL+07] and the very
nice notes by Craig Huneke, Mel Hochster, and Jack Jeffries are excellent resources.

Local cohomology modules play a crucial, ubiquitous role in commutative algebra. They
measure many important invariants, such as dimension and depth, and are extremely useful
tools for studying all sorts of topics; for example, they can be used to detect if a ring is
Gorenstein (meaning, if it has finite injective dimension as a module over itself) or Cohen-
Macaulay (a nice class we will introduce in the next chapter). However, local cohomology
modules are typically not finitely generated, a departure with most of the commutative
algebra ideas we have studied so far. One reason for this is that injective modules are also
often not finitely generated. Local cohomology is also a major reason why commutative
algebraists are interested in studying injective modules.

In fact, local cohomology is almost never finitely generated. Here’s a very simple example.

Example 14.46. Let R = k[x1, . . . , xn], k be a field, and m = (x1, . . . , xn). Then Hn
m(R)

has the k-vector space structure ⊕
all ai>0

k · 1

xa11 · · ·xann
,

with R-module structure given by

xb11 · · ·xbnn ·
z

xa11 · · ·xann
=

{
z

x
a1−b1
1 ···xan−bn

n

if all bi < ai

0 otherwise.

This is not a finitely generated module! Note also that every finitely generated submodule
only has terms with bounded negative degree. But this is still a very nice module: it looks
like R upside down.

· · · · ·

x3
x

^^

y

==

x2y
x

bb

y

<<

xy2
x

bb

y

<<

y3

`` @@

x2
x

__

y

>>

xy
x

aa

y

==

y2
x

``

y

@@

x
x

aa

y

<<

y
x

bb

y

==

1
x

cc

y

;;

k[x, y]

http://homepages.math.uic.edu/~bshipley/huneke.pdf
http://www.math.lsa.umich.edu/~hochster/615W11/loc.pdf
http://www-personal.umich.edu/~jackjeff/LCnotes.pdf
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1
xy

1
x2y

x
??

1
xy2

y
__

1
x3y

x
@@

1
x2y2

y__ x
??

1
xy3

y^^

·
x
AA

·
x
==y``

·
x
>>

yaa

·
y]]

H2
(x,y) (k[x, y])

Despite being infinitely generated, local cohomology modules enjoy many finiteness prop-
erties we have gotten used to expecting from finitely generated modules. For example, over
a local ring (R,m), the local cohomology modules Hi

m(M) of a finitely generated module M
are Artinian — but not Noetherian!

Huneke raised the question of whether local cohomology modules of Noetherian rings
always have finitely many associated primes, a problem which has been a very active research
are in commutative algebra in the last few decades. While the answer to Huneke’s question
is no — as famous examples by Katzmann, Singh, and Singh and Swanson show — the local
cohomology modules of finitely generated R-modules over a regular ring do have finitely
many associated primes.

One very important invariant we can study with local cohomology is the arithmetic rank.

Definition 14.47. Let I be an ideal in a Noetherian ring R. The arithmetic rank of I is
defined by

ara(I) := min{s | there exist some x1, . . . , xs such that
√

(x1, . . . , xs) =
√
I}.

Given a variety X = V (I) ⊆ An
k , the arithmetic rank of its defining ideal I(X) is

the minimum number of equations needed to define X. It turns out that this number is
difficult to study, and it is best understood via local cohomology, a thought best described
by Lyubeznik:

Part of what makes the problem about the number of defining equations so
interesting is that it can be very easily stated, yet a solution, in those rare cases
when it is known, usually is highly nontrivial and involves a fascinating interplay
of Algebra and Geometry.

(Lyubeznik, in [Lyu92])

The connection to local cohomology begins with the following two elementary facts about
local cohomology:

• If
√
I =
√
J , then Hi

I(−) = Hi
J(−).

• Given any ideal I, ara(I) ⩾ min{i | Hi
I(M) ̸= 0 for some R-module M}.

It turns out that local cohomology modules can be defined in a few different ways, which
are in no way obviously equivalent, and those different points of view are quite helpful. For
example, we can define local cohomology via the Čech complex.
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Definition 14.48 (Čech complex). LetM be an R-module and x ∈ R. The Čech complex
of x on R is given by

Č•(x) :=

 0 // R // Rx
// 0

0 1


The Čech complex of f1, . . . , ft ∈ R on M is given by

Č•(fn1 , . . . , f
n
t ;M) := Č•(f1)⊗ · · · ⊗ Č•(ft)⊗M.

Example 14.49. Let’s compute the Čech complex on f and g and an R-module M .

0 0

0 //Mg −1
//

OO

Mfg

OO

// 0

Č•(f, g;M) = = 0 //M
(11)

//Mf ⊕Mg
(1 −1)

//Mfg
// 0

0 //M

1

OO

1
//Mf

//

1

OO

0

0

OO

0

OO

2

1

0

Exercise 59.

a) Č•(f1, . . . , ft;M) ∼=
⊕

{j1,...,ji}⊆[t]

Mfj1 ···fji

b) The maps between components corresponding to subsets I, J are zero if I ̸⊆ J , and ±1
if J = I ∪ {k}.

As we mentioned above, it turns out that the cohomology of the Čech complex gives us local
cohomology. If I = (f1, . . . , fn) is an n-generated ideal, then

Hn
I (M) = Hi(Č•(f1, . . . , ft;M))

= cohomology of

(
0→M → · · · →

⊕
i

Mfi → · · ·
n⊕
i=1

Mf1···f̂i···fn →Mf1···fn → 0

)
so elements in the n-th local cohomology can be realized as equivalence classes of fractions.

Local cohomology is also closely related to Ext.

Definition 14.50. Given a directed system of modules

(Mi)i∈N =
(
· · · //Mi

//Mi+1
// · · ·

)
its direct limit is the module M = lim−→i∈NMi, equipped with maps Mi

ιi−→ M for all i,

satisfying the property that if there are maps Mi
αi−→ N that commute with the maps in the

system, then there is a unique map M
φ−→ N such that αi = φ ◦ ιi for all i.
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This notion is functorial: given two directed systems of complexes, and maps of complexes
for each i that commute with the maps in the systems, there is an induced map on the direct
limits. In fact, direct limits are a special case of the categorical notion of a colimit.

Direct limits can be realized explicitly as follows:

• Every element is represented by a class (m, i) with m ∈Mi.

• Two classes (m, i), (n, j) are the same if and only if for some k ⩾ max{i, j}, the images
of m and n under the composed transition maps agree in Mk.

In particular, an element represents the zero class if and only if it is in the kernel of a large
composition of the transition map.

Similar considerations hold for systems indexed by an arbitrary poset P ; this consists of
a collection of modules Mp for p ∈ P , and commuting maps Mp →Mq for all p ≤ q.

It turns out that local cohomology modules also arise as a direct limit of Ext modules:

lim−→
n

ExtiR(R/I
n,M)

The equivalence between all these different definitions is a fundamental result in the theory
of local cohomology.



Chapter 15

Homological methods in commutative
algebra

Homological methods are ubiquitous in commutative algebra. Our main goal in this chapter
is to showcase some of the main homological tools that appear all throughout commutative
algebra, with an eye towards answering some of the natural questions that the previous
chapters call for. One of the questions we will discuss is the question of when do finitely
generated modules have finite projective resolutions. Along the way we will discover that
some of the most important classes of rings that commutative algebraists study can be
characterized in pure homological fashion.

15.1 Projective and injective dimension

Definition 15.1. Let M be an R-module. The projective dimension of M

pdimR(M) := inf
{
c | 0 // Pc // · · · // P0

// 0 is a projective resolution for M
}
.

When R is a local Noetherian ring or a finitely generated N-graded k-algebra, the projec-
tive dimension of a finitely generated R-module is precisely the length of a minimal projective
resolution for M .

Definition 15.2. Let M be an R-module. The injective dimension of M

injdimR(M) := inf
{
c | 0 // E0

// · · · // Ec // 0 is an injective resolution for M
}
.

Remark 15.3. A module M has projective dimension 0 if and only if it is projective, and
injective dimension 0 if and only if it is injective.

The projective and injective dimension of a finitely generated module can be infinite.

Example 15.4. Let k be a field and R = k[x]/(x2), which is a local ring with maximal ideal
m = (x). The residue field k = R/m has infinite projective dimension:

· · · // R x // R x // R x // R // k // 0.

So even cyclic modules can have infinite projective dimension.

257
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These invariants can give us some information about Ext and Tor, and vice-versa.

Remark 15.5. If pdimR(M) = n is finite, then TorRi (M,−) = 0 for all i > n. For the
same reason, ExtiR(M,−) = 0 for all i > n, and if injdimR(M) is finite, we also have
ExtiR(−,M) = 0 for all i > injdimR(M).

Remark 15.6. Let (R,m, k) be either a local ring or an N-graded k-algebra, where k is a
field, with R0 = k and homogeneous maximal ideal m = R+, and M a finitely generated
(graded) R-module. The homomorphisms of R-modules R −→ R are precisely the multi-
plication maps by each fixed r ∈ R. The map (r · −) ⊗R k is simply multiplication by the

image of r in k = R/m on k. More generally, a homomorphism of R-modules Rn f−→ Rm can
be represented by an m × n matrix A with entries in R after we fix bases for Rn and Rm,
and the matrix representing f ⊗R k in the corresponding bases for km and kn is the matrix
obtained from A by considering the images of the entries in k.

Given any g ∈ HomR(R, k), the composition of f with multiplication by r is the map
g(r ·−) = rg(−). So HomR(r ·−, k) is multiplication by the image of r in k. More generally,

if A is an m × n matrix representing Rn f−→ Rm, the map HomR(f, k) is represented in the
corresponding bases for kn and km by the transpose of A, where the entries are now replaced
by their images in k = R/m.

Theorem 15.7. Let (R,m, k) be either a Noetherian local ring or an N-graded k-algebra,
where k is a field, with R0 = k and homogeneous maximal ideal m = R+, and M a finitely
generated (graded) R-module. Then

βi(M) = dimk(Tor
R
i (M,k)) = dimk(Ext

i
R(M,k)).

Proof. Let F be a minimal free resolution for M . The module in degree i in the complex
F ⊗R k is

Fi ⊗R k = Rβi(M) ⊗R k = kβi(M).

Minimal free resolutions are minimal complexes, by Lemma 12.6, so im(∂F ) ⊆ mF , and thus
∂ ⊗R k = 0. So

F ⊗R k = · · · // kβi(M) // kβi−1(M) // · · · // kβ1(M) // kβ0 // 0.

Therefore,
TorRi (M,k) = Hi(F ⊗R k) = kβi(M).

The module in degree i in the complex HomR(F, k) is

HomR(Fi, k) = HomR(R
βi(M), k) = kβi(M),

by Exercise 31. Following the discussion in Remark 15.6, the fact that ∂(F ) ⊆ mF implies
HomR(∂

F , k) = 0. Therefore,

HomR(F, k) = 0 // kβ0(M) 0 // kβ1(M) // · · · // kβi(M) // · · ·

so
ExtiR(M,k) = Hi(HomR(F, k)) = kβi(M).
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Corollary 15.8. Let (R,m, k) be either a local ring or an N-graded k-algebra, where k is
a field, with R0 = k and homogeneous maximal ideal m = R+. For every finitely generated
(graded) R-module M , pdimR(M) ⩽ pdimR(k).

Proof. When i > pdimR(k), Tor
R
i (M,k) = 0, so βi(M) = 0 by Theorem 15.7.

Remark 15.9. Also as a consequence of Theorem 15.7, we learn that

pdimR(M) = sup{i | βi(M) ̸= 0} = sup{i | ExtiR(M,k) ̸= 0} = sup{i | ToriR(M,k) ̸= 0}.

We can extend this to graded betti numbers once we realize that Tor and Ext of graded
modules can also be given graded structures.

Exercise 60. Let (R,m, k) be an N-graded k-algebra, where k is a field, with R0 = k and
homogeneous maximal ideal m = R+, and M a finitely generated graded R-module. Fix a
graded minimal free resolution F of M . Then

βi,j(M) = number of copies of R(−j) in Fi = dimk(Tor
R
i (M,k)j) = dimk(Ext

i
R(M,k)j).

If only we had an explicit minimal free resolution of k, maybe we could use it to say
something about the minimal free resolutions of other finitely generated R-modules. With
that goal in mind, take a break from thinking about free resolutions and projective dimension
to discuss a very important complex.

15.2 The Koszul complex

The Koszul complex is arguably the most important complex in commutative algebra (and
beyond). It appears everywhere, and it is a very powerful yet elementary tool any homological
algebraist needs in their toolbox. Every sequence of elements x1, . . . , xn in any ring R gives
rise to a Koszul complex.

Definition 15.10. The Koszul complex on r ∈ R is the complex

K(r) := 0 // R
r // R // 0.

0

More generally, the Koszul complex on the R-module M with respect to r ∈ R is the
complex

K(r;M) = K(r)⊗RM = 0 //M
r //M // 0.

Finally, given x1, . . . , xn ∈ R, the Koszul complex on M with respect to x1, . . . , xn is the
complex K(x1, . . . , xn) defined inductively as

K(x1, . . . , xn;M) = K(x1, . . . , xn−1;M)⊗R K(xn).

Example 15.11. The Koszul complex on x, y ∈ R is given by(
0 // R

x // R // 0
)
⊗R
(
0 // R

y
// R // 0

)
.
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To compute this tensor product, we take the double complex

R⊗R R
1⊗y
��

R⊗R R
x⊗1
oo

−1⊗y
��

R⊗R R R⊗R Rx⊗1
oo

which can be simplified to

R

y

��

R
xoo

−y
��

R Rx
oo

and then compute its total complex, which is

0 // R

−y
x


// R2

(
x y

)
// R // 0.

The Koszul complex has more structure than simply being a complex: it is an example of
a differentially graded algebra, or DG algebra for short, meaning it has an algebra structure
on it as well. We will briefly describe how to construct the Koszul complex in such a way,
but emphasize that this is only the beginning of a beautiful story about DG algebras.

In a rare moment on non-commutativity, we will need to consider exterior algebras. The
exterior algebra

∧
M on an R-module M is obtained by taking the the free R-algebra

R⊕M ⊕ (M ⊗M)⊕ (M ⊗M ⊗M)⊕· · · modulo the relations x⊗y = −y⊗x and x⊗x = 0
for all x, y ∈ N . We again denote the product on

∧
M by a ∧ b, and see

∧
M as a graded

algebra where the homogeneous elements in degree d are those in the image of N⊗n. This is
a skew commutative algebra, since

a ∧ b = (−1)deg(a) deg(b)b ∧ a

for any homogeneous elements a and b. We denote the homogeneous elements of degree n by∧nM . Note also that this construction is functorial: a map M
f−→ N of R-modules induces

a map
∧
M

∧f−−→
∧
N given by m1 ∧ · · · ∧ms 7→ f(m1) ∧ · · · ∧ f(ms).

We will use this construction in the case of free modules. When M = Rn with basis
e1, . . . , en, ∧kM ∼= R(

n
k), with basis ei1 ∧ · · · ∧ eis ranging over i1 < i2 < · · · < is, s =

(
n
k

)
.

Definition 15.12. Let x1, . . . , xn be elements in R. The Koszul complex on x1, . . . , xn is
the complex

K(x1, . . . , xn) := 0 //
∧nRn //

∧n−1Rn // · · · //
∧1Rn // R // 0

with differential given by

d(ei1 ∧ · · · ∧ eis) =
∑
1⩽p⩽s

(−1)p+1xipei1 ∧ · · · ∧ êip ∧ · · · ∧ eis .

More generally, given an R-module M , the Koszul complex on M with respect to x1, . . . , xn
is K(x1, . . . , xn;M) := K(x1, . . . , xn)⊗RM .
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Exercise 61. Show that d as defined above is indeed a differential, meaning d2 = 0.

So the Koszul complex looks like

0 // R // · · · // R(
n
i) // · · · // Rn // R // 0

and the matrices giving the differentials have entries consisting of our elements x1, . . . , xn
with carefully chosen some signs.

Example 15.13. In the case of two elements, say x and y in R,

K(x, y) = 0 // ∧2R2 // ∧1R2 // R // 0

with d(e1) = x, d(e2) = y, d(e1 ∧ e2) = xe2 − ye1, so

0 // R

−y
x


// R2

(
x y

)
// R // 0.

You will find different sign conventions for the Koszul complex in the literature, but at
the end of the day they all lead to isomorphic complexes.

Exercise 62. Check that our two definitions of the Koszul complex coincide.

Defining the Koszul complex via exterior powers has the advantage that it indicates a
bonus structure on our complex: it is also an algebra. While we will not have the chance to
explore this further, this DG algebra structure on the Koszul complex plays a major role in
commutative algebra.

The homology of the Koszul complex has some nice properties.

Definition 15.14. LetM be an R-module and x1, . . . , xn ∈ R. The ith Koszul homology
module of M with respect to x1, . . . , xd is

Hi(x1, . . . , xd;M) := Hi(K(x1, . . . , xd;M)).

Proposition 15.15. Let R be a ring, x = x1, . . . , xn ∈ R, and I = (x1, . . . , xn).

a) Hi(x;M) = 0 whenever i < 0 or i > n.

b) H0(x;M) =M/IM .

c) Hn(x;M) = (0 :M I) = annM(I).

d) Every Koszul homology module Hi(x;M) is killed by annR(M).

e) Every Koszul homology module Hi(x;M) is killed by I.

f) If M is a Noetherian R-module, so is Hi(x;M) for every i.

g) For every i, Hi(x;−) is a covariant additive functor R-mod −→ R-mod.



262

h) Every short exact sequence of R-modules

0 // A // B // C // 0

gives rise to a long exact sequence on Koszul homology,

· · · // H1(x;C) // H0(x;A) // H0(x;B) // H0(x;C) // 0.

Proof. First, note that the Koszul complex K(x;M) looks like

0 //M //Mn // · · · //Mn //M // 0

with the map in degree n being given by
x1
−x2
x3
...

(−1)n+1xn


and the map in degree 0 being (

x1 x2 x3 · · · xn
)
.

a) Immediate from the definition, since the Koszul complex is only nonzero in homological
degrees 0 through n.

b) The comment above tells us that

Hn(x;M) = coker
(
x1 x2 x3 · · · xn

)
=M/IM.

c) The comment above tells us that

Hn(x;M) = ker(M

(
x1 −x2 x3 · · · (−1)n+1xn

)T

//M ) =

= {m ∈M | rx1 = rx2 = · · · = rxn = 0} = (0 :M I).

d) In each homological degree, the Koszul complex is simply a direct sum of copies of M .
So the modules in K(x;M) in each degree are themselves already killed by annI(M).

e) We are going to show something stronger: that for every a ∈ I, multiplication by a
on K(x;M) is nullhomotopic, which proves that a kills the homology of K(x;M). It
is in fact sufficient to show that multiplication by a is nullhomotopic on K(x), since
additive functors preserve the homotopy relation. To do this, we will explicitly use the
multiplicative structure of the Koszul complex, and think of our description of the Koszul
complex via exterior powers. Given a ∈ I = (x1, . . . , xn), write a = a1x1 + · · · + anxn.
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Consider the map sa : K(x) −→ Σ−1K(x) given by multiplication by a1e1 ∧ · · · anen,
meaning

sa(ei1 ∧ · · · ∧ eit) =
n∑
j=1

ajej ∧ ei1 ∧ · · · ∧ eit .

Now we claim this map sa is a nullhomotopy for the map of complexes K(x) −→ K(x)
given by multiplication by a in every component. To check that, it is sufficient to check
that

sad (ei1 ∧ · · · ∧ eit) + dsa (ei1 ∧ · · · ∧ eit) = aei1 ∧ · · · ∧ eit .

We have

sad (ei1 ∧ · · · ∧ eit) = sa

(
t∑

k=1

(−1)k+1xkei1 ∧ · · · ∧ êjk ∧ · · · ∧ eit

)

=
n∑
j=1

t∑
k=1

(−1)k+1ajxkej ∧ ei1 ∧ · · · ∧ êjk ∧ · · · ∧ eit

and

dsa (ei1 ∧ · · · ∧ eit) = d

(
n∑
j=1

ajej ∧ ei1 ∧ · · · ∧ eit

)

=
n∑
j=1

t∑
k=1

(−1)k+2ajej ∧ ej1 ∧ · · · ∧ êik ∧ · · · ∧ eis +
n∑
j=1

ajxjei1 ∧ · · · ∧ eit

= −sad (ei1 ∧ · · · ∧ eit) +
n∑
j=1

ajxjei1 ∧ · · · ∧ eit

and since
∑n

j=1 ajxj = a, we conclude that

(sad+ dsa) (ei1 ∧ · · · ∧ eit) = aei1 ∧ · · · ∧ eit .

f) If M is Noetherian, then so is Mk for any k, as well as any submodules of Mk and any
of their quotients, by Proposition 1.2. Each Hi(x;M) is a subquotient of a direct sum of
copies of M , so it must be Noetherian.

g) Given an R-module homomorphismM
f−→ N , we get an induced mapK(f) : K(x;M) −→

K(x;N) by taking K(x)⊗ f , so Hi(x; f) = Hi(K(x)⊗ f).

h) In each homological degree, K(x) has a free module, so K(x)⊗R− is exact. We conclude
that

0 // K(x)⊗R A // K(x)⊗R B // K(x)⊗R C // 0

is a short exact sequence of complexes, and the long exact sequence we want is precisely
resulting the long exact sequence in homology, as in Theorem 9.67.

Finally, we point to a different, also useful, way to look at the Koszul complex.
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Remark 15.16. Following our iterative definition of the Koszul complex,

K(x1, . . . , xi+1;M) = K(x1, . . . , xi;M)⊗K(xi+1),

so setting C := K(x1, . . . , xi;M),

[K(x1, . . . , xi+1;M)]n = Cn−1 ⊗R R⊕ Cn ⊗R R ∼= Cn−1 ⊕ Cn.

Let’s explicitly write down the differential on K(x1, . . . , xi+1;M) in terms of the differential
on K(x1, . . . , xi;M). Given a ∈ Cn, b ∈ Cn−1, and r, s ∈ R, our differential is

d(a⊗ r + b⊗ s) = d(a)⊗ r + (−1)na⊗ (xi+1r) + d(b)⊗ s+ (−1)n−1b⊗ 0,

so dn :=

(
dC 0

(−1)n−1xi+1 dC

)
:

Cn−1
dC //

(−1)n−1xi+1

((

Cn−2

⊕ ⊕

Cn dC
// Cn−1

.

Notice that this is exactly1 the cone of the map K(x1, . . . , xi;M)
xi+1

// K(x1, . . . , xi;M)
given by multiplication by xi+1 in every degree. The cone comes together with a short exact
sequence

0 // K(x1, . . . , xi;M) // K(x1, . . . , xi+1;M) // Σ−1K(x1, . . . , xi;M) // 0

which in each homological degree looks like

0 // Cn
a7→(0,a)

// Cn−1 ⊕ Cn
(∗,c)7→(−1)n−1c

// Cn−1
// 0.

This short exact sequence gives rise to a long exact sequence in homology, where as described
in Remark 14.30 the connecting homomorphism is simply the map on homology induced by
multiplication by xi+1:

· · · // Hn(x1, . . . , xi+1;M) // Hn−1(x1, . . . , xi;M)
xi+1

// Hn−1(x1, . . . , xi;M) // · · · .

Then

ker( Hn(x1, . . . , xi;M) // Hn(x1, . . . , xi+1;M) )

= im( Hn(x1, . . . , xi;M)
xi+1

// Hn(x1, . . . , xi;M) )

= xi+1 · Hn(x1, . . . , xi;M)

so we get an inclusion

Hn(x1, . . . , xi;M)

xi+1 · Hn(x1, . . . , xi;M)
−→ Hn(x1, . . . , xi+1;M)

1Up to the sign convention differences we discussed in Remark 14.29.
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with image
ker( Hn(x1, . . . , xi+1;M) // Hn−1(x1, . . . , xi;M) ),

so that by the first isomorphism theorem, its cokernel is given by

im( Hn(x1, . . . , xi+1;M) // Hn−1(x1, . . . , xi;M) )

which by exactness is

ker
(
Hn−1(x1, . . . , xi;M)

xi+1
// Hn−1(x1, . . . , xi;M)

)
= annHn(x1,...,xi;M)(xi+1).

In summary, our long exact sequence breaks into short exact sequences

0 // Hn(x1,...,xi;M)
xi+1·Hn(x1,...,xi;M)

// Hn(x1, . . . , xi+1;M) // annHn−1(x1,...,xi;M)(xi+1) // 0.

15.3 Regular sequences

The Koszul complex is closely tied to the idea of regular elements and regular sequences.

Definition 15.17. Let R be a ring and M be an R-module. An element r ∈ R is regular
(or a nonzerodivisor) on an R-module M if rm = 0 =⇒ m = 0 for any m ∈ M . More
generally, a sequence of elements x1, . . . , xn is a regular sequence on M if

• (x1, . . . , xn)M ̸=M , and

• for each i, xi is regular on M/(x1, . . . , xi−1)M .

Remark 15.18. Requiring that xi is regular on M/(x1, . . . , xi−1)M is equivalent to asking
that ((x1, . . . , xi−1)M :M xi) = (x1, . . . , xi−1)M .

Example 15.19.

a) Consider the polynomial ring R = k[x1, . . . , xn] in n variables over a field k. The variables
x1, . . . , xn for a regular sequence on R.

b) Let k be a field and R = k[x, y, z]. The sequence xy, xz is not regular on R, since xz is
kills y on R/(xy).

The order we write the elements in is important.

Example 15.20. Let k be a filed and R = k[x, y, z]. The sequence x, (x − 1)y, (x − 1)z is
regular, while (x− 1)y, (x− 1)z, x is not.

Remark 15.21. An element r is regular on M if and only if H1(K(r;M)) = 0. Indeed,

H1(K(r;M)) = ker(M r //M ) = (0 :M r),

and by definition, r is regular on M if and only if (0 :M r) = 0.

The Koszul complex on a regular sequence is exact in all positive degrees.
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Theorem 15.22. If x = x1, . . . , xn ∈ R is a regular sequence on the R-module M , then
Hi(x;M) = 0 for all i > 0.

Proof. We proceed by induction on the length of the sequence, noting that the case n = 1
is Remark 15.21. Now suppose that Hj(x1, . . . , xi;M) = 0 for all j > 0. The long exact
sequence

· · · // Hn(x1, . . . , xi+1;M) // Hn−1(x1, . . . , xi;M)
xi+1

// Hn−1(x1, . . . , xi;M) // · · ·

we discussed in Remark 15.16 forces Hj(x1, . . . , xi+1;M) = 0 for all j > 1. Moreover,
Remark 15.16 also gave us the short exact sequence

0 // H1(x1,...,xi;M)
xi+1·H1(x1,...,xi;M)

// H1(x1, . . . , xi+1;M) // annH0(x1,...,xi;M)(xi+1) // 0.

Since xi+1 is regular on M/(x1, . . . , xi)M = H0(x1, . . . , xi;M), annH0(x1,...,xi;M)(xi+1) = 0.
Moreover, H1(x1, . . . , xi;M) = 0 by hypothesis. Therefore, the short exact sequence above
gives us H1(x1, . . . , xi+1;M) = 0.

Corollary 15.23. If x1, . . . xn is a regular sequence on R, then the Koszul complex on
x1, . . . , xn is a free resolution for R/(x1, . . . , xn). Moreover, if (R,m, k) is either a local ring
or an N-graded algebra over a field k with R0 = k and homogeneous maximal ideal m = R+,
then K(x1, . . . , xn) is a minimal free resolution for R/(x1, . . . , xn).

Proof. By Theorem 15.22, P = K(x1, . . . , xn) has Hi(P ) = 0 for all i > 0. This is a
complex of free modules, and thus a free resolution of H0(P ), which by Proposition 15.15 is
R/(x1, . . . , xn).

Early on, we mentioned three big theorems of Hilbert’s: Hilbert’s Basis Theorem, Hilbert’s
Nullstellensatz, and Hilbert’s Syzygy Theorem. We are finally ready to prove the third.

Theorem 15.24 (Hilbert Syzygy Theorem). Every finitely generated graded module M over
a polynomial ring R = k[x1, . . . , xn] over a field k has finite projective dimension. In fact,
pdim(M) ⩽ n.

Proof. By Corollary 15.23, the Koszul complex on the regular sequence x1, . . . , xd is a mini-
mal free resolution for k = R/(x1, . . . , xn), so pdimR k = n. But βi(M) = dimk Tor

i
R(M,k)

by Theorem 15.7, and since TorRi (M,k) = 0 for all i > n = pdimR(k), pdimR(M) ⩽ n.

It is natural to ask if Theorem 15.22 has a converse; over a nice enough ring, the answer
is yes: the vanishing of Koszul homology does characterize regular sequences.

Theorem 15.25. Let (R,m, k) is either a Noetherian local ring or an N-graded algebra over
a field k with R0 = k and homogeneous maximal ideal m = R+. Let M ̸= 0 be a finitely
generated R-module, and consider x = x1, . . . , xn ∈ m. In the graded case, we assume thatM
is graded and x1, . . . , xn are all homogeneous. If Hi(x;M) = 0 for all i ⩾ 1, then x1, . . . , xn
is a regular sequence on R.
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Proof. We proceed by induction on n, noting that the case n = 1 is simply Remark 15.21.
Now let n > 1 and suppose that the statement holds for all sequences of n− 1 elements. By
Remark 15.16, we have short exact sequences

0 // Hi(x1,...,xn−1;M)
xn·Hi(x1,...,xn;M)

// Hi(x1, . . . , xn;M) // annHi−1(x1,...,xn−1;M)(xn) // 0,

and since the middle term is 0 for all i ⩽ 1, we conclude that

• Hi(x1,...,xn−1;M)
xn·Hi(x1,...,xn;M)

= 0 for all i ⩽ 1, and

• annH0(x1,...,xn−1;M)(xn) = 0, so xn is regular on H0(x1, . . . , xn−1;M) =M/(x1, . . . , xn−1)M .

By Proposition 15.15, Hi(x1, . . . , xn−1;M) is a finitely generated R-module for all i. Since
xn ∈ m and xnHi(x1, . . . , xn−1;M) = Hi(x1, . . . , xn−1;M), NAK 4.30 (or Proposition 4.36 in
the graded case) implies that Hi(x1, . . . , xn−1;M) = 0 for all i ⩽ 1. By induction hypothesis,
x1, . . . , xn−1 is a regular sequence. We conclude that x1, . . . , xn is a regular sequence.

A corollary of Theorem 15.25 is that in a regular ring, the order of the elements in a
regular sequence does not matter.

Corollary 15.26. Let (R,m, k) is either a Noetherian local ring or an N-graded algebra over
a field k with R0 = k and homogeneous maximal ideal m = R+. Let M be a finitely generated
R-module, and consider x = x1, . . . , xn ∈ m. In the graded case, we assume that M is graded
and x1, . . . , xn are all homogeneous. If the sequence x is regular on M , then so is any of its
permutations.

Proof. If x1, . . . , xn is a regular sequence, then Hi(x1, . . . , xn;M) = 0 for all i > 0, by
Proposition 15.15. The Koszul homology on x agrees with the Koszul homology on any
permutation of x, which must then also vanish. By Theorem 15.25, any permutation of x is
a regular sequence.

In fact, we can extend this to any ring and any module under a reasonable assumption.

Lemma 15.27. Let R be a ring and M an R-module. If x, y is a regular sequence on M
and y is regular on M , then y, x is a regular sequence on M .

Proof. Suppose that xm = yn for some m,n ∈M . Since x, y is a regular sequence onM and
yn ∈ (x)M , we must have n ∈ (x)M , so there exists some w ∈ M such that n = xw. But
then xm = yn = xyw. Since x is regular on M , we conclude that m = yw, so m ∈ (y)M . In
particular, this shows that x is regular on M/(y)M .

Lemma 15.28. Let (R,m) be a Noetherian local ring. If x1, . . . , xn is a regular sequence on
M , then so is xa11 , . . . , x

an
n for any integers ai > 0.

Proof. By Corollary 15.26, we are allowed to permute the elements in our sequence. Let’s
use this fact to reduce our proof to the case n = 1. If the case n = 1 holds, since xn is a
regular sequence on M/(x1, . . . , xn−1) we can now say xann is regular on M/(x1, . . . , xn−1).
Therefore, x1, . . . , xn−1, x

an
n is regular on M . Now switch the order and repeat the argument

with each xi, until we conclude that xa11 , . . . , x
an
n is also regular on M .

Finally, we give a proof when n = 1. Now if x is a regular element on M , if xa ̸= 0, then
xam = 0 =⇒ xxa−1m = 0, and since x is regular we must have xa−1m = 0. Repeating this
a− 1 times, we conclude that xm = 0, and m = 0.
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Finally, we note a connection between regular sequences and height.

Theorem 15.29. If x1, . . . , xn is a regular sequence on R, then ht(x1, . . . , xn) = n.

Proof. We use induction on n. When n = 1, x1 is regular if and only if x1 is not in the set of
zero divisors of R. By Lemma 5.21, this means x1 is not in any associated prime of R, and
in particular, x1 is not in any of the minimal primes of R. Therefore, any prime containing
x1 must have height at least 1. By Theorem 6.33, ht(x1) ⩽ 1, so ht(x1) = 1. When n > 1,
xn is regular on R/(x1, . . . , xn−1), so by case n = 1, (x1, . . . , xn)/(x1, . . . , xn−1) has height 1
on R/(x1, . . . , xn−1). By induction hypothesis, ht(x1, . . . , xn−1) = n − 1. We conclude that
ht(x1, . . . , xn) = n.

15.4 Regular rings

Regular rings are the nicest possible kinds of rings, after fields. A regular local ring
(R,m, k) is a finite dimensional Noetherian ring of dimension d whose maximal ideal m is
generated by d elements. When we discussed height and dimension, we saw that this is in fact
the smallest possible value for the minimal number of generators of m; in general, µ(m) ⩾ d.
We are now ready to give a completely homological characterization of regular local rings.
This characterization, first proved by Auslander and Buchsbaum and independently by Serre,
solved a famous open problem called the Localization Problem.

Problem 15.30 (Localization Problem). If R is a regular local ring, must RP be regular for
every prime P in R?

This is asking if being regular is a local property. A positive answer allows for a simple
global definition of regularity:

Definition 15.31. A ring R is regular if RP is a regular local ring for all prime ideals P
in R.

Before we can get to this famous homological characterization of regular local rings, and
the solution to the localization problem, we will need to sharpen our tools a bit.

Lemma 15.32. Let (R,m, k) be a Noetherian local ring, and F
φ−→ G an R-module map

between finitely generated free R-modules. If φ ⊗R k is injective, then φ splits as a map of
R-modules.

Proof. Let F = Rn, G = Rm, and let {e1, . . . , en} be the standard basis for F . Our assump-
tion that φ ⊗R k is injective means that the images of φ(e1), . . . , φ(en) in G/mG = km are
linearly independent, so we can complete them to a basis φ(e1), . . . , φ(en), fn1 , . . . , fm for
G/mG. By NAK 4.32, we can lift those elements fi so that φ(e1), . . . , φ(en), fn+1, . . . , fm is
a basis for G. Now the projection onto φ(e1), . . . , φ(en) is a splitting for φ.

Theorem 15.33 (Serre). Let (R,m, k) be a Noetherian local ring. Moreover, if µ(m) = s,
then

dimk(Tor
R
i (k, k)) ⩾

(
s

i

)
.
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Proof. Let x1, . . . , xs be minimal generators for m, and set K := K(x1, . . . , xs). If F is a
minimal free resolution for m, we claim that Ki is a direct summand of Fi.

By Theorem 12.15, the identity map on k lifts to a map of complexes φ : K −→ F . We
claim that the maps φi split, which will prove our claim that Ki is a direct summand of Fi.
The map φ0 : K0 = R −→ F0 = R must be the identity map, so clearly φ0 splits.

We proceed by induction on i. Suppose we have shown that φi−1 splits, say by a split-
ting ψi−1. By Lemma 15.32, it is enough to show that φi ⊗R k to be injective. To show
our claim, we need to show that if z ∈ Ki is such that φi(z) ∈ mFi, then z ∈ mKi.
First, we note that ∂i+1φi+1(z) ∈ m2Fi, since F is minimal and thus im ∂ ⊆ mF , by
Lemma 12.6. By commutativity, φi−1di(z) ∈ m2Fi. Since ψi−1φi−1 = 1Ki−1

, we must have
di(z) = ψi−1φi−1di(z) ∈ m2Ki−1. We claim that this implies z ∈ mFi+1. To see that, we
compute di explicitly: first we write z as a linear combination of our basis elements, say

z =
∑

j1<···<ji

zjej1 ∧ · · · ∧ eji

so that
di(z) =

∑
j,k

±zjxjkej1 ∧ · · · ∧ êjk ∧ · · · ∧ eji .

The one thing to keep track of here is the coefficients: rewriting this carefully in the basis
for Ki−1, the coefficient for each basis element is a linear combination of terms of the form
zjxl. We showed that di(z) ∈ m2Fi−1, so each appropriate combination of zjxl is in m2. We
assumed that x1, . . . , xs were minimal generators for m to begin with, and thus a basis for
m/m2, so all our coefficients zj must be in m. We conclude that indeed z ∈ mFi, and thus
that φi ⊗R k is injective. By Lemma 15.32, φi splits.

So we have shown that Ki is a direct summand of Fi for all i, which implies that the
number of copies of R in Fi must be at least as large as the number of copies of R in Ki.
More precisely,

dimk(Fi ⊗R k) = dimk(Tor
R
i (k, k)) ⩾ dimk(Ki ⊗R k) =

(
d

i

)
.

Replacing k by M in the previous result leads to a famous open question.

Conjecture 15.34 (Buchsbaum—Eisenbud, Horrocks). Let (R,m, k) be a Noetherian lo-
cal ring of dimension d and M a finitely generated Artinian R-module of finite projective
dimension. Then

βi(M) = dimk(Tor
R
i (M,k)) ⩾

(
d

i

)
.

While this remains an open question, there is much evidence to support it. For example,
the conjecture predicts that ∑

i

βi(M) ⩾
∑
i

(
d

i

)
= 2d.

This is known as the Total Rank Conjecture, and it was recently shown by Walker in almost
all cases.
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Theorem 15.35 (Walker, 2017). Let (R,m, k) be a Noetherian local ring of dimension d
and characteristic not 2, M ̸= 0 a finitely generated R-module of finite projective dimension,
and c = ht(ann(M)). Then ∑

i

βi(M) ⩾
∑
i

(
c

i

)
= 2c.

The famous homological characterization of regular rings that solved the localization
problem is the following:

Theorem 15.36 (Auslander–Buchsbaum, Serre). Let (R,m, k) be a Noetherian local ring of
dimension d. The following are equivalent:

a) The residue field k has finite projective dimension.

b) Every finitely generated R-module has finite projective dimension.

c) The maximal ideal m is generated by a regular sequence.

d) The maximal ideal m is generated by d elements.

Proof. The implication b =⇒ a is obvious: just take M = k. The proof of a =⇒ b is
essentially the same as Hilbert’s Syzygy Theorem: βi(M) = dimk Tor

k
i (M,k) for all i, and

Torki (M,k) = 0 for all i > pdimR(k).
If m is generated by a regular sequence, then the Koszul complex on that regular sequence

is a minimal free resolution of k, by Corollary 15.23, so k has projective dimension d. This
is c =⇒ a.

Let’s now show that d =⇒ c. Set m = (x1, . . . , xd). In fact, we will show something
stronger: that (0), (x1), (x1, x2), . . . , (x1, . . . , xd) are distinct prime ideals in R. Notice in
particular that this implies that x1, . . . , xd form a regular sequence.

If d = 0, then m = ({}) = (0), and there is nothing to prove. We proceed by induction
on d, assuming that d > 0 and that we have shown that whenever m is generated by d − 1
elements, x1, . . . , xd−1, the ideals (0), (x1), (x1, x2), . . . , (x1, . . . , xd−1) are distinct prime ideals
in R.

When d > 0, m is not a minimal prime. By Prime Avoidance 5.36,

m ̸⊆
⋃

P∈Min(R)

P,

and using Theorem 5.38 we can find an element

y1 = x1 + r2x2 + · · ·+ rdxd /∈
⋃

P∈Min(R)

P.

Now we can replace x1 by y1, since m = (y1, x2, . . . , xd), so we can assume that x1 is not in any
minimal prime. By Krull’s Height Theorem 6.33, ht(x1) ⩽ 1, so dim(R/(x1)) = ht(m/(x1)) ⩾
d − 1. By construction, m/(x1) is generated by d − 1 elements, so again by Krull’s Height
Theorem, dim(R/(x1)) = ht(m/(x1)) ⩽ d − 1. We conclude that dim(R/(x1)) = d − 1.



271

By induction hypothesis, (x1)/(x1), . . . , (x1, . . . , xd)/(x1) are distinct prime ideals in R/(x1).
Therefore, (x1), (x1, x2), . . . , (x1, . . . , xd) are distinct prime ideals in R.

Now we claim that R is a domain, which will show that (0) ⊊ (x1) is also a prime ideal.
First, note that x1 is not contained in any minimal prime, but (x1) is a prime ideal, so there
exists some minimal prime P ⊊ (x1). Given any y ∈ P ⊆ (x1), we can write y = rx1 for
some r. By constrution, x1 /∈ P , so we must have r ∈ P . But we just showed that every
element in P is of the form rx1, so P = x1P . By NAK 4.30, P = (0). We conclude that R
is a domain, and this finishes the proof of d =⇒ c.

Finally, all that’s left to show is a =⇒ d. We claim that pdimR(k) < ∞ implies
pdimR(k) ⩽ dim(R) = d. If the claim holds, then Theorem 15.33 and Theorem 15.7 say that

βi(k) = dimk(Tor
R
i (k, k)) ⩾

(
µ(m)

i

)
for all i. Since βi(k) = 0 for all i > pdimR(k), we must have

µ(m) ⩽ pdimR(k) ⩽ dim(R) = d.

But ht(m) = dim(R) = d, so by Theorem 6.33, µ(m) ⩽ d. We conclude that m is generated
by exactly d elements, which is precisely d. So all we have left to do is to prove the claim
that pdimR(k) <∞ implies pdimR(k) ⩽ dim(R) = d.

By contradiction, suppose pdimR(k) > d but pdimR(k) <∞. Choose a maximal regular
sequence y1, . . . , yt ∈ m. By Theorem 15.29, t ⩽ d.

Since our regular sequence y1, . . . , yt was chosen to be maximal inside m, every element
in m is a zerodivisor on R/(y1, . . . , yt), or else we could increase our regular sequence. So m
is contained in the union of the zerodivisors on R/(y1, . . . , yt), which by Lemma 5.21 is the
same as the union of the associated primes of R/(y1, . . . , yt). By Prime Avoidance 5.36, m
must be contained in some associated prime of R/(y1, . . . , yt). But m is maximal, so m is an
associated prime of R/(y1, . . . , yt). Equivalently, k = R/m embeds into R/(y1, . . . , yt). This
gives us some short exact sequence

0 // k // R/(y1, . . . , yt) //M // 0.

Let’s look at the corresponding long exact sequence for Tor from Theorem 14.36,

· · · // TorRi+1(M,k) // TorRi (k, k) // TorRi (R/(y1, . . . , yt), k) // · · · .

We know t = pdimR(R/(y1, . . . , yt)), by Corollary 15.23, so TorRi (R/(y1, . . . , yt), k) = 0 for
i > t. But t ⩽ d < pdimR(k), so in particular TorRi (R/(y1, . . . , yt), k) = 0 for i = pdimR(k).

Moreover, Corollary 15.8 says that pdimR(M) ⩽ pdimR(k) for any finitely generated
R-module M , so in particular TorRi+1(M,k) = 0 for i = pdimR(k). But this is impossible:
our long exact sequence would then have TorRpdimR(k)(k, k) ̸= 0 sandwiched between two zero
modules.

Our proof also showed the following:

Corollary 15.37. Every regular local ring is a domain.
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Corollary 15.38. Every regular local ring (R,m, k) has pdimR(k) = dimR.

Now we can solve the localization problem very easily.

Exercise 63. If R is a regular local ring, then RP is a regular local ring for every prime P .

Remark 15.39. If we want to show that a particular ring (not necessarily local) is regular,
it is sufficient to show that Rm is a regular local ring for every maximal ideal m — this will
imply that RP is a localization of a regular local ring for every prime P .

Exercise 64. Show that every principal ideal domain is a regular ring.

We have shown that finitely generated graded modules over a polynomial ring k[x1, . . . , xd]
have finite projective dimension, but this is not quite enough to conclude that polynomial
rings are regular.

Theorem 15.40. Every polynomial ring R = k[x1, . . . , xd] over a field k is a regular ring.

Proof. It is sufficient to show that Rm is a regular local ring for every maximal ideal m.
We are going to show that every maximal ideal is generated by d elements, which implies
that mm is also generated by n elements. Since the height of every maximal ideal is d, by
Theorem 7.28, this will imply that Rm is a regular local ring.

When k is algebraically closed, the maximal ideals in R are precisely those of the form
(x1 − a1, . . . , xd − ad), which are all generated by d elements. For the general case, we use
induction on d, noting that d = 1 is trivial, since k[x] is a principal ideal domain. When d > 1,
we can do a change of variables such as in Lemma 7.24 and assume that m has a minimal
generator that is monic in xd. Let n := m∩k[x1, . . . , xd−1]. Then k[x1, . . . , xd−1]/n −→ R/m
is an integral extension, but since R/m is a field, so is k[x1, . . . , xd−1]/n, by Lemma 7.14.
Therefore, n is a maximal ideal in k[x1, . . . , xd−1], so by induction hypothesis it must be
generated by d− 1 elements. Now consider the image of m via the map

R // k[x1,...,xd−1]

n
[xn] ∼= R/nR

xi
� // xi,

which is now a maximal ideal in a polynomial ring over a field in one variable, which by the
case d = 1 must be generated by 1 element. Now n is generated by n−1 elements and m/nR
is generated by 1 element, so m is generated by n− 1 + 1 = n elements.

We have seen that regular rings are very nice. Modulo some technical conditions, it turns
out that every Noetherian local ring is a quotient of a regular ring. More precisely, every
complete local ring is a quotient of a regular local ring, although we have unfortunately not
discussed completeness. If a local ring R is not complete, we can always take its completion,
which is now a quotient of a regular local ring. This very important fact is the Cohen
Structure Theorem.2 When our local ring R contains a field k, the Cohen Structure Theorem
actually says that R is a quotient of kJx1, . . . , xdK for some d.

2In fact, this amazing theorem was I. S. Cohen’s PhD thesis!
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The nice things we proved about regular local rings have analogues in any regular ring,
not necessarily local. For example, when R is a regular ring of dimension d, then it is still
true that every finitely generated R-module has projective dimension at most d, even if R is
not local; if R is not regular, then it has finitely generated modules with infinite projective
dimension.

15.5 Depth

We now get back to regular sequences to talk about how long they can be.

Definition 15.41. Let I be an ideal in a ring R and M be an R-module. The I-depth of
M is the maximal length of a regular sequence on M consisting of elements in I, denoted
depthI(M). When (R,m) is a local ring, we write depth(M) for depthm(M), and call it the
depth of M .

While it is not yet clear that all maximal regular sequences on M inside an ideal I have
the same length, we already have an upper bound for depth.

Remark 15.42. If x1, . . . , xn is a regular sequence on R inside I, we saw in Theorem 15.29
that ht(x1, . . . , xn) = n, so depthI(R) ⩽ ht(I). In particular, depth(R) ⩽ dim(R).

We can construct maximal regular sequences explicitly.

Construction 15.43. Let R be a Noetherian ring, I be an ideal in R, and M ̸= 0 be a
finitely generated R-module. To construct a regular sequence on M inside I, we start by
finding a regular element on M inside I. Either I is contained in some associated prime of
M , in which case every element in I is a zerodivisor on M , or there exists an element x1 in
I not in any associated prime of M , by Prime Avoidance, Lemma 5.36. Such an element is
regular onM , since the union of the associated primes ofM is precisely the set of zerodiviors,
by Lemma 5.21.

Now we repeat the process: either I is contained in some associated prime of M/(x1)M ,
in which case there are no regular elements on M/(x1)M inside I, or we can find x2 ∈ I not
in any associated prime of M/(x1)M , which is necessarily regular on M/(x1)M . At each
step, (x1, . . . , xi)M ⊊ (x1, . . . , xi+1)M , and since M is Noetherian, the process must stop.

In fact, we get such an increasing sequence given any regular sequence on M inside of I,
so all such sequences are finite. We will now show that all maximal regular sequences on M
inside I have the same length, which proves that depthI(M) is finite. First, we need a few
lemmas.

Lemma 15.44. Let R be a Noetherian ring, I be an ideal in R, and M ̸= 0 be a finitely
generated R-module. There exists r ∈ I which is regular on M if and only if I ̸⊆ P for all
P ∈ Ass(M). In particular, if (R,m) is a Noetherian local ring, m ∈ Ass(M) if and only if
there are no regular elements on M .

Proof. If r ∈ I is regular on M , then r is not a zerodivisor on M , so r is not in the union
of the associated primes of M , by Lemma 5.21. As a consequence, I cannot be contained in
any associated prime of M .
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Conversely, recall that M has finitely many associated primes, by Corollary 5.30. If I is
not contained in any associated prime ofM , then by Prime Avoidance 5.36 it also cannot be
contained in the union of the associated primes of M . Recall Lemma 5.21, which says that
the union of the associated primes is the set of zero divisors. We conclude that I contains
some regular element on M .

The final statement now follows once we note that the fact that m is a maximal ideal
implies that m inAss(M) if and only if m is contained in some associated prime of M .

Lemma 15.45. Let R be a Noetherian ring and M and N be finitely generated R-modules.
If a ∈ annR(M), then aExtiR(M,N) = 0 for all i. Moreover, if b ∈ annR(N), then
bExtiR(M,N) = 0 for all i.

Proof. When i = 0, we want to show that a ∈ ann(HomR(M,N) and b ∈ ann(HomR(M,N).
Given any f ∈ HomR(M,N) and any m ∈M ,

af(m) = f(am) = f(0) = 0,

so af = 0. Moreover, b kills every element in N , so bf = 0. Now let P −→M be a projective
resolution on M , and N −→ E be an injective resolution of N . Then

ExtiR(M,N) = Hi
(
0 // HomR(P0, N) // HomR(P1, N) // HomR(P2, N) // · · ·

)
= Hi

(
0 // HomR(M,E0) // HomR(M,E1) // HomR(M,E2) // · · ·

)
,

so ExtiR(M,N) is a subquotient of both HomR(Pi, N) and HomR(M,Ei). We conclude that
a and b both kill ExtiR(M,N).

Theorem 15.46. Let R be a Noetherian ring, I be an ideal in R, and M ̸= 0 be a finitely
generated R-module with M ̸= IM . Then all maximal regular sequences on M inside I have
the same length.

Proof. Let x1, . . . , xn ∈ I and y1, . . . , yℓ ∈ I both be maximal regular sequences on M , and
assume n ⩽ ℓ.

When n = 0, every element in I is a zerodivisor on M , so ℓ = 0. When n = 1,
every element in I is a zerodivisor on M/(x1)M , so I ⊆ P for some P ∈ Ass(M/(x1)M).
In particular, there exists some m ∈ M , m /∈ (x1)M , such that I ⊆ ((x1)M :R m), so
Im ∈ (x1)M . In particular, y1m = x1a for some a ∈ M . If a ∈ (y1)M , then we would have
y1m = x1a ∈ (x1y1)M , and since y1 is regular on M , that would imply m ∈ (x1)M , which is
a contradiction. Thus a /∈ (y1)M . Moreover,

(x1)Ia = Ix1a = Iy1m = y1(Im) ⊆ (x1)(y1)M,

and since x1 is a regular element on M , we must have Ia ⊆ (y1)M . Therefore, a ∈ M is
an element that both satisfies a /∈ (y1)M and Ia ⊆ (y1)M , so every element in I kills a in
M/(y1)M , and is thus a zerodivisor on M/(y1)M . This proves that ℓ = 1.

We proceed by induction on n. Now assume that n > 1 and ℓ > n. In particular,
I contains a regular element on M/(x1, . . . , xi) for all i < n and a regular element on
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M/(y1, . . . , yj) for all j < ℓ, so by Prime Avoidance 5.36 we can pick c ∈ I that avoids both all
the (finitely many) associated primes of M/(x1, . . . , xi)M for all i < n and M/(y1, . . . , yj)M
for all j < ℓ. In particular, x1, . . . , xn−1, c and y1, . . . , yn, c are both regular sequences on
M . Now xn and c are both regular sequences on M/(x1, . . . , xn−1), so the case n = 1 says
x1, . . . , xn−1, c is also a maximal regular sequence onM . Now by Lemma 15.27, x1, . . . , c, xn−1

is also a regular sequence on M , since c is also regular on M/(x1, . . . , xn−2, and so on, until
we conclude that c, x1, . . . , xn−1 is a regular sequence on M . Similarly, c, y1, . . . , yn is a
regular sequence on M . Notice in fact that c, x1, . . . , xn−1 is maximal inside I, or else we
could increase its size, move c back to after xn−1, and obtain a contradiction. Therefore,
x1, . . . , xn−1 and c, y1, . . . , yn are both regular sequences on M/(c)M , and x1, . . . , xn−1 is
maximal. But by induction hypothesis, all maximal regular sequences on M/(c)M inside I
have the same length, which would say that the length of y1, . . . , yn, n, is at most n − 1.
This is a contradiction, and we conclude that ℓ = n.

It turns out that depth can be described in a purely homological way.

Theorem 15.47. Let R be a Noetherian ring and M a finitely generated R-module. Then

depthI(M) = min{i | ExtiR(R/I,M) ̸= 0}.

Proof. When depthI(M) = 0, there is no regular sequence on M inside I. By Lemma 15.44,
I ⊆ P for some P ∈ Ass(M). We have an inclusion R/P ↪→M , so consider the composition

R/I ↠ R/P ↪→M.

This is a nonzero map, so Ext0(R/I,M) = Hom(R/I,M) ̸= 0. On the other hand, if
HomR(R/I,M) = Ext0(R/I,M) ̸= 0, there exists a nonzero R-module homomorphism
R/I −→ M . But to choose an R-module homomorphism R/I −→ M is the same as
choosing an element in M that is killed by I, so I contains no nonzero divisors on M and
depthI(M) = 0.

We proceed by induction on depthI(M) = n, assuming we have proved the statement
whenever depthI(M) < n. Suppose that x1, . . . , xn is a maximal regular sequence on M
inside I. Then x2, . . . , xn is a maximal regular sequence on M/x1M , so by induction we
know n − 1 = min{i | ExtiR(R/I,M) ̸= 0}. Applying HomR(R/I,−) to the short exact
sequence

0 //M
·x1 //M //M/x1M // 0

we get a long exact sequence

· · · // Exti−1
R (R/I,M/x1M) // ExtiR(R/I,M)

x1 // ExtiR(R/I,M) // · · · .

We know that Extn−1
R (R/I,M/x1M) ̸= 0 and that ExtiR(R/I,M/x1M) = 0 for all i < n−1.

Therefore, whenever i < n− 1,

ExtiR(R/I,M)
x1 // ExtiR(R/I,M)

is an isomorphism. However, x1 ∈ I = ann(R/I), so ann(R/I) ⊆ ann(ExtiR(R/I,M)) by
Lemma 15.45. Therefore, ExtiR(R/I,M) = 0 for all i < n− 1. Moreover, multiplication by
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x1 is the zero map on ExtiR(R/I,M) for any i, also by Lemma 15.45. Finally, we have an
exact sequence

Extn−1
R (R/I,M)

x1 // Extn−1
R (R/I,M) // Extn−1

R (R/I,M/x1M) // · · · .

where the multiplication by x1 maps are 0, so our exact sequence is

0 // Extn−1
R (R/I,M) 0 // Extn−1

R (R/I,M) // Extn−1
R (R/I,M/x1M)︸ ︷︷ ︸

̸=0

// ExtnR(R/I,M) 0 // · · · .

In particular, Extn−1(R/I,M) = 0 and Extn(R/I,M) ̸= 0. We conclude that

depthI(M) = n = min{i | ExtiR(R/I,M) ̸= 0}.

For yet another homological characterization of depth, we turn to Koszul homology.

Theorem 15.48 (Depth sensitivity of the Koszul complex). Let R be a Noetherian ring and
M be finitely generated R-module. Given any x = x1, . . . , xn such that (x)M ̸=M ,

depth(x)(M) = max{r | Hi(x;M) = 0 for all i > n− r}.

So we can measure depthI(M) by looking at the first nonzero Koszul homology we see
when we start counting from the top.

K(x;M) 0 //M // · · · //M( n
n−r+1) ////M( n

n−r) // · · · //M // 0

H(x;M) 0 · · · 0 ̸= 0

Proof. We are going to show that if I = (x) contains a regular sequence y1, . . . , ym on M ,
then Hn−i+1(x;M) = 0 for all i = 1, . . . ,m, and Hn−m(x;M) ∼= ExtmR (R/I,M). This will
prove the theorem, since depth is the largest possible m we could take, and Theorem 15.47
says ExtdepthR (R/I,M) ̸= 0.

We proceed by induction on m. When m = 0, Proposition 15.15 c says that

Hn(x;M) ∼= (0 :M I) ∼= HomR(R/I,M),

and we are done. When m > 0, the short exact sequence

0 //M
y1
//M //M/(y1)M // 0

induces a long exact sequence in koszul homology (see Proposition 15.15 h)

· · · // Hi+1(x;M/(y1)M) // Hi(x;M)
y1
// Hi(x;M) // Hi(x;M/(y1)M) // · · · .

Now by Proposition 15.15 e, I kills Hi(x;M), so the multiplication by y1 map is zero in the
long exact sequence above, which must then break into short exact sequences

0 // Hi(x;M) // Hi(x;M/(y1)M) // Hi−1(x;M) // 0.
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We have an exact sequence y2, . . . , ym of m − 1 elements on M inside (x), so by induction
hypothesis

Hn−i+1(x;M/(y1)M) = 0 for all i = 1, . . . ,m− 1

and
Hn−m+1(x;M/(y1)M) ∼= Extm−1

R (R/I,M/y1M).

Therefore, for all i ⩽ m− 1,

0 // Hn−i+1(x;M) // Hn−i+1(x;M/(y1)M)︸ ︷︷ ︸
0

// Hn−i(x;M) // 0.

This implies Hn−i+1(x;M) = 0 for all i = 1, . . . ,m. Moreover, we have a short exact sequence

0 // Hn−m+1(x;M)︸ ︷︷ ︸
0

// Hn−m+1(x;M/(y1)M) // Hn−m(x;M) // 0.

so
Hn−m(x;M) ∼= Hn−m+1(x;M/(y1)M) ∼= Extm−1

R (R/I,M/y1M).

Finally, we claim that ExtmR (R/I,M) ∼= Extm−1
R (R/I,M/(y1)M). For that purpose, consider

the long exact sequence on ExtiR(R/I,−) induced by the short exact sequence

0 //M
y1
//M //M/(y1)M // 0,

which looks like

· · · // ExtiR(R/I,M)
y1
// ExtiR(R/I,M) // ExtiR(R/I,M/(y1)M) // · · · .

We do have a regular sequence on M of length m inside I, so depthI(M) ⩾ m. There-
fore, Extm−1

R (R/I,M) = 0 by Theorem 15.47. By Lemma 15.45, multiplication by y1 on
ExtiR(R/I,M) is the zero map, since y1 ∈ I, so we get an exact sequence

0 // Extm−1
R (R/I,M/(y1)M) // ExtmR (R/I,M) // 0.

Therefore,
ExtmR (R/I,M) ∼= Extm−1

R (R/I,M/(y1)M),

which finishes our proof.

Remark 15.49. If I = (x1, . . . , xn) and depthI(M) = n, then by Theorem 15.48 the Koszul
complex K(x;M) must be exact. This does not necessarily say that x is a regular sequence,
only that there exists some regular sequence on M of length n inside I. However, that
implication does hold in the local or graded setting, by Theorem 15.25.

We now have all the tools we need to prove a very useful formula relating depth and
projective dimension.

Theorem 15.50 (Auslander—Buchsbaum Formula). Let (R,m, k) be a Noetherian local
ring and M ̸= 0 a finitely generated R-module of finite projective dimension. Then

depth(M) + pdimR(M) = depth(R).
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Proof. Suppose depth(R) = 0. In that case, the claim is that pdimR(M) = depth(M) = 0.
First, note that the fact that depth(R) = 0 implies immediately that m ∈ Ass(R), by
Lemma 15.44, so m kills some nonzero r ∈ R. Consider a minimal free resolution for M , say

0 // Fn
φn
// Fn−1

φn−1
// · · · // F1

φ1
// F0

φ0
//M // 0.

Suppose n > 0, so that φn ̸= 0. By minimality, φn(Fn) ⊆ mFn−1, so φn(r, 0, · · · , 0) =
rφn(1, 0, · · · , 0) ∈ rm = 0, so φn is not injective. This is a contradiction, so we must have
n = 0, andM is free, sayM ∼= Rn. Therefore, pdimR(M) = 0 and depth(M) = depth(Rn) =
depth(R) = 0.

Now assume that depth(M) = 0. Set t := depth(R), and fix a maximal regular sequence
x1, . . . , xt ∈ m. By Corollary 15.23, pdimR(R/(x1, . . . , xt)) = t. Our goal is to show that that
n := pdimR(M) = depth(R) = t. Notice that TorRi (R/(x1, . . . , xt),M) can be computed via
minimal free resolutions for either M or R/(x1, . . . , xt), so it vanishes for i > min{t, n}. We
are going to show that both TorRt (R/(x1, . . . , xt),M) ̸= 0 and TorRn (R/(x1, . . . , xt),M) ̸= 0,
which proves that depth(R) = t = n = pdimR(M).

The Koszul complex is a minimal free resolution for R/(x1, . . . , xt), by Corollary 15.23,
so the last map in the minimal free resolution looks like

0 // R

(
x1 −x2 x3 · · · (−1)n+1xn

)T

// Rt

so applying −⊗RM gives

0 //M

(
x1 −x2 x3 · · · (−1)n+1xn

)T

//M t.

Therefore,

TorRt (R/(x1, . . . , xt),M) =
t⋂
i=1

ker(M
±xi−−→M).

Our assumption that depth(M) = 0 says that there are no regular elements on M , so by
Lemma 15.44, m ∈ Ass(M). Therefore, there exists a nonzero element m ∈ M such that
ann(m) = m ⊇ (x1, . . . , xt), so TorRt (R/(x1, . . . , xt),M) ̸= 0.

On the other hand, to compute TorRn (R/(x1, . . . , xt),M) we can take a minimal free
resolution of M , say

0 // Rβn
φn
// Rβn−1

φn−1
// · · · // Rβ1

φ1
// Rβ0

φ0
//M // 0,

and apply −⊗RM , so that TorRn (R/(x1, . . . , xt),M) is the kernel of

(R/(x1, . . . , xt))
βn // (R/(x1, . . . , xt))

βn−1 .

Our assumption that x1, . . . , xt is a maximal regular sequence on R implies that any other
element in R is a zerodivisor on R/(x1, . . . , xt), and depth(R/(x1, . . . , xt)) = 0. In particular,
m ∈ Ass(R/(x1, . . . , xt)), so there exists some r /∈ (x1, . . . , xt) such that mr ⊆ (x1, . . . , xt).
The map

(R/(x1, . . . , xt))
βn // (R/(x1, . . . , xt))

βn−1
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is given by multiplication by a matrix whose entries are all in m, so its kernel is nonzero,
meaning TorRn (R/(x1, . . . , xt),M) ̸= 0.

So we have shown the theorem holds in two situations: when depth(R) = 0 and when
depth(M) = 0. So now we assume that both t := depth(R) > 0 and n := depth(M) > 0,
and assume we have shown the theorem holds when depth(R) ⩽ t−1 and depth(M) ⩽ n−1.

By Prime Avoidance, Lemma 5.36, we can find r ∈ m that avoids both the associated
primes of M and R, so r is both regular on M and on R. In particular, pdimR(R/(x)) = 1,
by Corollary 15.23, so TorRi (R/(x),M) = 0 for all i ⩾ 2. Let

0 // Rβn
φn
// Rβn−1

φn−1
// · · · // Rβ1

φ1
// Rβ0

φ0
//M // 0

be a minimal free resolution for M . In particular, if we choose basis for each Rβi , the entries
in the matrices representing φi are all in m, by Lemma 12.6. Applying −⊗R R/(x), we get
a complex

0 // (R/(x))βn // (R/(x))βn−1 // · · · // (R/(x))β0 //M/xM // 0

which is exact at M ⊗R R/(x) ∼= M/xM , since tensor is right exact, and whose homology is
otherwise given by TorRi (R/(x),M). In particular, our complex is exact for all i ⩾ 2, since
we have seen that TorRi (R/(x),M) = 0 for all i ⩾ 2. The only remaining possibly interesting
homology is given by

TorR1 (R/(x),M) = H1(M ⊗ (0→ R
x−→ R→ 0)) = H1(0→M

x−→M → 0) = (0 :M x).

By assumption, x is regular onM , so TorR1 (R/(x),M) = (0 :M x) = 0. So the complex above
is exact, and thus a free resolution for M/xM over R/(x). In fact, the maps in this is free
resolution for M/xM were obtained by tensoring φ with R/(x), so we can obtain matrices
representing each map by taking the matrix representing φi and setting all the entries in (x)
equal to 0. In particular, all the entries are still in m/(x), and our resolution forM/xM over
R/(x) is minimal. This shows that pdimR/(x)(M/xM) = pdimR(M).

Now notice that we picked x to be regular onM , so that depth(M/xM) = depth(M)−1.
Similarly, x is regular on R, so depth(R/(x)) = depth(R) − 1. Using our assumption, we
conclude that

depth(M/x) + pdimR/(x)(M/xM) = depth(R/(x))

⇔ depth(M)− 1 + pdimR(M) = depth(R)− 1

⇔ depth(M) + pdimR(M) = depth(R).

This formula is very useful. For example, when doing explicit computations, it is often
easier to compute a minimal free resolution for M than to compute its depth. If we happen
to know depth(R), one can deduce depth(M) by computing pdimR(M).

Remark 15.51. One of the consequences of Theorem 15.50 is that if a finitely generated
R-module M has finite projective dimension, then pdimR(M) ⩽ depth(R) ⩽ dimR.

We close this section with an easy fact about depth.
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Lemma 15.52. Let (R,m) be a Noetherian local ring and M a finitely generated R-module.
Given any ideal I in R, depthI(M) = depth√

I(M).

Proof. On the one hand, I ⊆
√
I, so depthI(M) ⩽ depth√

I(M). On the other hand, if

x1, . . . , xn is a maximal regular sequence on M inside
√
I, then there exists a1, . . . , an > 0

such that xa11 , . . . , x
an
n ∈ I, but by Lemma 15.28 xa11 , . . . , x

an
n is a regular sequence on M .

15.6 Cohen-Macaulay rings

Life is really worth living in a Noetherian ring R when all the local rings have
the property that every system of parameters is an R-sequence. Such a ring is
called Cohen-Macaulay (C-M for short).

(Mel Hochster, page 887 of [Hoc78])

Cohen-Macaulay rings, named after Irvin Cohen and Francis Macaulay, two big influences
in the early days of commutative algebra, are by some measure the largest class of nice rings
commutative algebraists study. They are on the border of being just nice enough to make
life is easier, and just broad enough to contain many many interesting examples. One of the
main reference books in any commutative algebraist’s shelf is dedicated to Cohen-Macaulay
rings specifically [BH93]. In this section, we will see some of the reasons why life really is
worth living in a Cohen-Macaulay ring.

Given a local ring R,

depth(R) ⩽ dim(R) ⩽ embdim(R).

When the second inequality is an equality, we have a regular ring. When the first inequality
is an equality, our ring is Cohen-Macaulay.

Definition 15.53. A local Noetherian ring R is Cohen-Macaulay if depth(R) = dim(R).
More generally, anR-moduleM isCohen-Macaulay if depth(M) = dim(M). A Noetherian
ring R is if Rm is Cohen-Macaulay for every maximal ideal m.

Example 15.54.

a) Every regular ring is Cohen-Macaulay, since our homological characterization of regular
local rings, Theorem 15.36, says that the maximal ideal is generated by a regular sequence
of dimension many elements.

b) Every Artinian ring is Cohen-Macaulay, since dim(R) ⩾ depth(R), so dim(R) = 0 auto-
matically implies depth(R) = 0.

c) Every 1-dimensional domain is Cohen-Macaulay, since any nonzero nonunit is a regular
element.

d) The ring k[x]/(x2) is Cohen-Macaulay because it has dimension 0, but it not regular,
since 0-dimensional regular rings must be fields.
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e) The ring R = kJx, y, zK/(xy, xz) is not Cohen-Macaulay, because it is not equidimen-
sional, which as we will see is a property shared by all Cohen-Macaulay rings.

Many rings with nice singularities are Cohen-Macaulay. For example, Hochster and
Roberts famously showed [HR74] that rings of invariants of any finite group G over a field k
of characteristic not dividing |G| are Cohen-Macaulay. Their proof used prime characteristic
techniques, introducing what is now a very important class of characteristic p singularities,
and are essentially homological in nature.

Remark 15.55. Given a Noetherian local ring (R,m), we can decide whether R is Cohen-
Macaulay by computing dim(R) and depth(R). By Theorem 15.47, we can compute depth(R)
by finding the smallest i such that ExtiR(R/m, R) ̸= 0. On the other hand, if R can easily
be seen to be regular, then we can immediately conclude R is Cohen-Macaulay. The easiest
way to decide whether a given regular local ring is regular is by finding µ(m) and to compare
its size to dim(R).

To compute the depth of a finitely generated R-module M over a Cohen-Macaulay local
ring (R,m), we can start by computing a minimal free resolution of M . If pdimR(M) <∞,
then the Auslander–Buchsbaum formula 15.50 tells us that

depth(M) = depth(R)− pdimR(M) = dim(R)− pdimR(M).

If R is not Cohen-Macaulay, we need to also compute depth(R), which we can do for ex-
ample by finding the smallest i such that Exti−R(R/m, R) ̸= 0. If pdimR(M) = ∞, then
Theorem 15.50 does not apply, and we need to explicitly find depth(M), for example by
finding the smallest i such that ExtiR(R/m,M) ̸= 0.

Hochster’s quote above pointed us to an equivalent characterization of Cohen-Macaulayness,
for which we will need to recall the notion of a system of parameters.

Definition 15.56. A sequence of d elements x1, . . . , xd in a d-dimensional Noetherian local
ring (R,m) is a system of parameters or SOP if

√
(x1, . . . , xd) = m. If k is a field, a

sequence of d homogeneous elements x1, . . . , xd in a d-dimensional N-graded finitely generated
k-algebra R, with R0 = k, is a homogeneous system of parameters if

√
(x1, . . . , xd) = R+.

We say that elements x1, . . . , xt are parameters if they are part of a system of parame-
ters; this is a property of the set, not just the elements.

By Theorem 6.36, every local (or graded) ring admits a system of parameters, and these
can be useful in characterizing the dimension of a local Noetherian ring, or the height of a
prime in a Noetherian ring. Moreover, we can characterize Cohen-Macaulayness in terms of
sops.

Theorem 15.57. The following are equivalent for any Notherian local ring (R,m):

a) R is Cohen-Macaulay.

b) Some system of parameters in R is a regular sequence on R.

c) Every system of parameters in R is a regular sequence on R.



282

Proof. Clearly, c =⇒ b =⇒ a. Suppose R is Cohen-Macaulay and let x = x1, . . . , xd
be a system of parameters on R, meaning

√
(x) = m. By Lemma 15.52, depth(x)(R) =

depthm(R) = d. By Theorem 15.48, K(x) is exact, and by Theorem 15.25, this implies that
x is a regular sequence.

To prove some other nice properties of Cohen-Macaulay rings, we will need the following
technical looking result.

Theorem 15.58. Let (R,m) be a Noetherian local ring and M and N finitely generated
R-modules. Then ExtiR(M,N) = 0 for all i < depth(N)− dim(M).

Proof. First, we reduce to the case when M = R/P for some prime ideal P . To do that, fix
a prime filtration of M , meaning we get an ascending chain of submodules

0 =M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn =M

such that Mi/Mi−1
∼= R/Pi for some primes P . Remember that such a prime filtration

exists, by Theorem 5.28. First, we claim that we can reduce the problem to showing
ExtjR(R/Pi, N) = 0 for all j < depth(N)− dim(M) and all i.

Break this filtration into short exact sequences

0 //Mi−1
//Mi

// R/Pi // 0

and look at the long exact sequence we get when we apply HomR(−, N):

· · · // ExtjR(R/Pi, N) // ExtjR(Mi, N) // ExtjR(Mi−1, N) // · · · .

If ExtjR(R/Pi, N) = 0 for all i, then we must have ExtjR(Mi, N) = 0 for all i, and therefore
ExtjR(M,N) = 0.

So we have reduced the problem to showing that ExtjR(R/Pi, N) = 0 for all i and all
j < depth(N) − dim(M). Notice also that by the construction in Theorem 5.28, all the Pi
contain ann(M), so dim(R/Pi) ⩽ dim(M). Therefore, it is sufficient to show that if P is
prime, then ExtiR(R/P,N) = 0 for all i < depth(N)− dim(R/P ).

We proceed by induction on dim(R/P ). If dim(R/P ) = 0, then P = m, so by Theo-
rem 15.47 we have ExtiR(R/m, N) = 0 for all i < depth(N) = depth(N) − dim(R/P ). If
dim(R/P ) > 0, the P ̸= m, so pick x ∈ m but x /∈ P . The short exact sequence

0 // R/P
x // R/P // R/P + (x) // 0

gives rise to the long exact sequence

· · · // ExtiR(R/P + (x), N) // ExtiR(R/P,N) x // ExtiR(R/P,N) // ExtiR(R/P + (x), N) // · · · .

Since x /∈ P , we necessarily have dim(R/P + (x)) < dim(R/P ), so by induction hypothesis
we have ExtiR(R/P + (x), N) = 0 for all

i < depth(N)− dim(R/P + (x)) = depth(N)− dim(R/P ) + 1.
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Therefore, for all i < depth(N)− dim(R/P ),

ExtiR(R/P,N) x // ExtiR(R/P,N)

is an isomorphism. In particular, ExtiR(R/P,N) = x ·ExtiR(R/P,N), so ExtiR(R/P,N) = 0
by NAK 4.30, where we used that ExtiR(R/P,N) is finitely generated by Exercise 57.

It remains to show that ExtiR(R/P,N) = 0 when i < depth(N)− dim(R/P ).

Corollary 15.59. Let (R,m) be a Noetherian local ring and M be a finitely generated R-
module. For every associated prime of M , depth(M) ⩽ dim(R/P ).

Proof. By Theorem 15.58, ExtiR(R/P,M) = 0 for all i < depth(M) − dim(R/P ). But
every element in P is a zerodivisor on M , so depthP (M) = 0, and by Theorem 15.47,
Ext0R(R/P,M) ̸= 0. We conclude that depth(M) ⩽ dim(R/P ).

One of the nicest properties all Cohen-Macaulay rings have is called unmixedness.

Theorem 15.60 (Unmixedness theorem). Let R be a Noetherian local ring. If M is a
Cohen-Macaulay R-module, then

depth(M) = dim(R/p)

for every p ∈ Ass(M). In particular, if R is a Cohen-Macaulay ring, then R has no embedded
primes, and dim(R/p) = dim(R) for each p ∈ Min(R).

Proof. This follows from the inequality on depth and dimension of associated primes from
Corollary 15.59:

dim(M) = max{dim(R/p) | p ∈ Ass(M)} ⩾ min{dim(R/p) | p ∈ Ass(M)} ⩾ depth(M).

SinceM is Cohen-Macaulay, equality holds throughout, and that implies in fact that equality
holds for each dim(R/p) with p ∈ Ass(M).

The Cohen-Macaulay property localizes.

Theorem 15.61. Let (R,m) be a Cohen-Macaulay local ring and P be a prime ideal in R.
Then RP is a Cohen-Macaulay local ring.

Proof. We claim that there is a regular sequence contained in R of length equal to the height
of P . If P is minimal, there is nothing to show. If P is not minimal, it is not contained
in the union of the minimal primes, hence not in the union of the associated primes by
Theorem 15.60. Thus, there is a nonzerodivisor in P . We can mod out by this to get a
Cohen-Macaulay ring of lower dimension, and inductively, the claim follows. Now localizing
at P this stays a regular sequence that is a system of parameters for RP .

Theorem 15.62 (Dimension formula). Let R be a Cohen-Macaulay ring, and p ⊆ q be
primes. Then

ht(q)− ht(p) = dim(Rq/pRq).

In particular, if (R,m) is a Cohen-Macaulay local ring, then dim(R)−height(p) = dim(R/p).
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Proof. Cohen-Macaulayness localizes, by Theorem 15.61, so Rq is a Cohen-Macaulay local
ring of dimension ht(q). Pick h = ht(p) elements r1, . . . , rh ∈ p that form a regular sequence.
Now Rq/(r1, . . . , rh)Rq is Cohen-Macaulay, and dim(Rq/(r1, . . . , rh)Rq) = dim(Rq/pRq),
since r1, . . . , rh is a maximal regular sequence in p, so pRq ∈ Ass(Rq/(r1, . . . , rh)Rq). On
the other hand, dim(Rq/(r1, . . . , rh)Rq) = dim(Rq)− h. The equality follows.

Remark 15.63. If (R,m) is Cohen-Macaulay and x1, . . . , xa is a regular sequence on R, then
we claim that R/(x1, . . . , xa) is also Cohen-Macaulay. On the one hand, ht(x1, . . . , xa) = a by
Theorem 15.29. On the other hand, by Theorem 6.33 all the minimal primes of R/(x1, . . . , xa)
have height at most a, so we conclude that all the minimal primes of R/(x1, . . . , xa) have the
same height a. By Theorem 15.62, dim(R/(x1, . . . , xa)) = dim(R) − a. On the other hand,
going modulo each xi decreases the depth by 1, so depth(R/(x1, . . . , xa) = depth(R) − a =
dim(R)− a.

Lemma 15.64. Given a Cohen-Macaulay local ring (R,m) and a regular sequence x1, . . . , xn,
every associated prime of (x1, . . . , xn) must have height n.

Proof. First, note that dim(R/(x1, . . . , xn)) = dim(R) − n, by Remark 15.63, so x1, . . . , xn
form part of a system of parameters by Theorem 6.43. Let P be an associated prime
of (x1, . . . , xn). Then PP is an associated prime of (x1, . . . , xn)P , by Theorem 5.33, and
RP is Cohen-Macaulay by Theorem 15.61. The images of x1, . . . , xn can be extended to
a system of parameters, which by Theorem 15.57 must be a maximal regular sequence.
However, every element in PP is a zerodivisor on RP/(x1, . . . , xn)P , since PP is associated
to x1, . . . , xn, so x1, . . . , xn cannot be extended inside PP . Thus depth(RP/(x1, . . . , xn)P =
0. By Remark 15.63, RP/(x1, . . . , xn)P is Cohen-Macaulay, so it must have dimension 0.
Therefore, P is minimal over (x1, . . . , xn).

By Theorem 6.33, htP ⩽ n. By Theorem 15.29, ht(P ) ⩽ n, so ht(P ) = n.

Theorem 15.65. Let R be a Noetherian ring. The following are equivalent:

(a) R is Cohen-Macaulay.

(b) Every ideal I in R contains a regular sequence of length ht(I).

(c) Every maximal regular sequence inside I has length ht(I).

Proof. Notice that c) =⇒ b) is obvious, and b) =⇒ a) is clear once we take I to be equal to
each maximal ideal in R. To show a) =⇒ b), let x1, . . . , xn be a maximal regular sequence
inside I. The elements of I must all be zerodivisors on R/(x1, . . . , xn), by maximality, so by
Lemma 15.44 we must have I contained in some associated prime P of R/(x1, . . . , xn). By
15.64, P has height n, so ht(I) ⩽ ht(P ) = n. But I ⊇ (x1, . . . , xn) and ht(x1, . . . , xn) = n
by Theorem 15.29, so ht(I) = n.

Remark 15.66. Let I be an ideal in a Cohen-Macaulay ring R. If I is generated by a
regular sequence, then that regular sequence must have length ht(I), so I must be generated
by exactly ht(I) elements. If R is a local ring and µ(I) > ht(I), then I is not generated by
a regular sequence.
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15.7 A homological zoo of rings

We have seen two very important classes of rings that can be characterized homologically.

Regular rings. A Noetherian local ring (R,m) is regular if m is generated by a regular
sequence, or equivalently if every finitely generated R-module has finite projective dimension.

Cohen Macaulay rings. A Noetherian local ring (R,m) is Cohen-Macaulay if there is a
regular sequence on R of size dim(R), which we write more compactly by saying depth(m) =
dim(R).

These can be thought of as two ends of the spectrum of nice rings. There are two
other classes in between that we did not get to study, but that can also be characterized
homologically.

Gorenstein rings. A Noetherian local ring (R,m) is Gorenstein if it has finite injective
dimension as a module over itself. Gorenstein rings are always Cohen-Macaulay, and they
have even better homological properties than Cohen-Macaulay rings. Life is really worth
living in a Gorenstein ring, although they are not as broad of a class as Cohen-Macaulay
rings.

Complete intersection rings. A quotient of a regular ring by a regular sequence is
called a complete intersection. More generally, a Noetherian local ring (R,m) is a complete
intersection if its completion (another topic we didn’t discuss!) is a quotient of a regular ring
modulo a regular sequence. In particular, all hypersurfaces are complete intersections.

These classes are all contained in each other in a nice way.

Regular rings ⊊ Complete intersections ⊊ Gorenstein rings ⊊ Cohen-Macaulay rings

Many interesting classes that arise naturally in commutative algebra and algebraic geom-
etry are somewhere on this spectrum. Homological algebra tools such as the ones we studied
here are crucial to study them.
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Other topics in homological algebra

Here is a brief overview of some of the topics we could have covered if we had more time.

16.1 Spectral sequences

Roughly speaking, a spectral sequence is a device for computing homology iteratively, by
taking successive approximations. Spectral sequences were invented by Leray as a prisioner
of war during World War II, to compute the homology of a chain complex.

Definition 16.1. A homological spectral sequence in an abelian category A consists of
a sequence of bigraded objects Er

p,q, for r ⩾ 0, represented graphically as

Er
2,0 Er

2,1 Er
2,2

Er
1,0 E1,1 Er

1,2

Er
0,0 Er

0,1 Er
0,2

p
//

q OO

and differentials
dr : E

r
p,q −→ Er

p−r,q+r−1

such that drdr = 0, and for each r, isomorphisms Er+1 ∼= H(Er, dr), meaning

Er+1
p,q =

ker

(
Er
p,q

dr // Er
p−r,q+r−1

)
im

(
Er
p+r,q−r+1

dr // Er
p,q

)
for every p, q. For each fixed r, the collection of objects Er

p,q is called the rth page or sheet.

Remark 16.2. The differential in the rth page is a map of degree (−r, r − 1).
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�� �� ��

�� �� ��

�� �� �� p
//

q OO

0th page

oo oo oo

oo oo oo

oo oo oo

p
//

q OO

1st page

gg gg

gg gg

p
//

gg gg

q OO

2nd page

The main idea of spectral sequences is that in many general situations, there is a limit
E∞
p,q, a bigraded object with

E∞
p,q = lim

r→∞
Er
p,q

which has to be suitably interpreted. If that happens, we say that the spectral sequence
abuts to E∞

p,q, and write E∞
p,q =⇒ E∞

p,q. In many applications, the E∞-page computes some
particular homology. The simplest situation is when Er

p,q
∼= Er+1

p,q for all r ≫ 0. For example,
this happens if the objects E∗

p,q are zero when p < 0 or q < 0, in which case we say we have
a first quadrant spectral sequence.

To learn about spectral sequences, see [Wei94, Chapter 5], [Rot09, Chapter 10], or
Hatcher’s unpublished Spectral Sequence’s chapter for his algebraic topology book.

16.2 Derived categories

The derived category of R-module is, roughly speaking, the category of complexes of R-
modules up to quasi-isomorphism. More generally, we can construct a derived category of
any abelian category, which is an algebraic analogue of the homotopy category of topological
spaces. The derived category of any abelian category A is constructed in two steps:

• First, we construct a quotient K(A) of Ch(A) with the same objects as Ch(A), but
where homotopy equivalent maps get identified, so that the arrows in K(A) are equiv-
alence classes of homotopy equivalent maps of complexes.

• Then we localize K(A) by formally inverting all quasi-isomorphisms.

The resulting category is no longer abelian, but instead it has a triangulated structure.
Triangulated categories have exact triangles which in a way play the role of short exact
sequences. In particular, short exact sequences in the original category give rise to exact
triangles in the derived catefory D(A).

As an example, the derived category of R-mod, D(R), gives us access to a whole new
set of tools to study the ring R. It turns out that the triangulated structure of D(R) re-
flects algebraic properties of R and its modules, and there is a parallel between the abelian
structure of R-mod and the triangulated structure of D(R). For example, the Auslander—
Buchsbaum—Serre theorem 15.36, which gave us a homological characterization of regular-
ity, can be restated as a condition on the derived category D(R), which we think of as a
homotopical characterization of regular rings.

To learn about derived categories, see [Wei94, Chapter 10] or Krause’s lecture notes.

http://pi.math.cornell.edu/~hatcher/AT/ATch5.pdf
http://homepages.math.uic.edu/~bshipley/krause.chicago.pdf


Appendix A

Macaulay2

There are several computer algebra systems dedicated to algebraic geometry and commu-
tative algebra computations, such as Singular (more popular among algebraic geometers),
CoCoA (which is more popular with european commutative algebraists, having originated in
Genova, Italy), and Macaulay2. There are many computations you could run on any of these
systems (and others), but we will focus on Macaulay2 since it’s the most popular computer
algebra system among US based commutative algebraists.

Macaulay2, as the name suggests, is a successor of a previous computer algebra system
named Macaulay. Macaulay was first developed in 1983 by Dave Bayer and Mike Stillman,
and while some still use it today, the system has not been updated since its final release in
2000. In 1993, Daniel Grayson and Mike Stillman released the first version of Macaulay2,
and the current stable version if Macaulay2 1.16.

Macaulay2, or M2 for short, is an open-source project, with many contributors writing
packages that are then released with the newest Macaulay2 version. Journals like the Journal
of Software for Algebra and Geometry publish peer-refereed short articles that describe and
explain the functionality of new packages, with the package source code being peer reviewed
as well.

The National Science Foundation has funded Macaulay2 since 1992. Besides funding the
project through direct grants, the NSF has also funded several Macaulay2 workshops —
conferences where Macaulay2 package developers gather to work on new packages, and to
share updates to the Macaulay2 core code and recent packages.

A.1 Getting started

A Macaulay2 session often starts with defining some ambient ring we will be doing compu-
tations over. Common rings such as the rationals and the integers can be defined using the
commands QQ and ZZ; one can easily take quotients or build polynomial rings (in finitely
many variables) over these. For example,

i1 : R = ZZ/101[x,y]

o1 = R

288

https://www.singular.uni-kl.de
http://cocoa.dima.unige.it
https://faculty.math.illinois.edu/Macaulay2/


289

o1 : PolynomialRing

and

i1 : k = ZZ/101;

i2 : R = k[x,y];

both store the ring Z/101 as R, with the small difference that in the second example
Macaulay2 has named the coefficient field k. One quirk that might make a difference later
is that if we use the first option and later set k to be the field Z/101, our ring R is not a
polynomial ring over k. Also, in the second example we ended each line with a ;, which tells
Macaulay2 to run the command but not display the result of the computation — which is
in this case was simply an assignment, so the result is not relevant. Lines indicated with as
in, where n is some integer, are input lines, whereas lines with an on indicate output lines.

We can now do all sorts of computations over our ring R. We can define ideals in R, and
use them to either define a quotient ring S of R or an R-module M , as follows:

i3 : I = ideal(x^2,y^2,x*y)

2 2

o3 = ideal (x , y , x*y)

o3 : Ideal of R

i4 : M = R^1/I

o4 = cokernel | x2 y2 xy |

1

o4 : R-module, quotient of R

i5 : S = R/I

o5 = S

o5 : QuotientRing

It’s important to note that while R is a ring, R1 is the R-module R — this is a very
important difference for Macaulay2, since these two objects have different types. So S defined
above is a ring, while M is a module. Notice that Macaulay2 stored the module M as the
cokernel of the map

R3

[
x2 y2 xy

]
// R .

Note also that there is an alternative syntax to write our ideal I from above, as follows:



290

i15 : I = ideal"x2,xy,y2"

2 2

o15 = ideal (x , x*y, y )

o15 : Ideal of R

When you make a new definition in Macaulay2, you might want to pay attention to
what ring your new object is defined over. For example, now that we defined this ring S,
Macaulay2 has automatically taken S to be our current ambient ring, and any calculation
or definition we run next will be considered over S and not R. If you want to return to the
original ring R, you must first run the command use S.

If you want to work over a finitely generated algebra over one of the basic rings you
can define in Macaulay2, and your ring is not a quotient of a polynomial ring, you want to
rewrite this algebra as a quotient of a polynomial ring. For example, suppose you want to
work over the 2nd Veronese in 2 variables over our field k from before, meaning the algebra
k[x2, xy, y2]. We need 3 algebra generators, which we will call a, b, c, corresponding to x2,
xy, and y2:

i11 : U = k[a,b,c]

o11 = U

o11 : PolynomialRing

i12 : f = map(R,U,{x^2,x*y,y^2})

2 2

o12 = map(R,U,{x , x*y, y })

o12 : RingMap R <--- U

i13 : J = ker f

2

o13 = ideal(b - a*c)

o13 : Ideal of U

i14 : T = U/J

o14 = T

o14 : QuotientRing

Our ring T at the end is isomorphic to the 2nd Veronese of R, which is the ring we
wanted.
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A.2 Basic commands

Many Macaulay2 commands are easy to guess, and named exactly what you would expect
them to be named. If you are not sure how to use a certain command, you can run viewHelp

followed by the command you want to ask about; this will open an html file with the
documentation for the method you asked about. Often, googling “Macaulay2” followed by
descriptive words will easily land you on the documentation for whatever you are trying to
do.

Here are some basic commands you will likely use:

• ideal(f1, . . . , fn) will return the ideal generated by f1, . . . , fn. Here products should
be indicated by ∗, and powers with .̂ If you’d rather not use ̂ (this might be nice if
you have lots of powers), you can write ideal(f1, . . . , fn) instead.

• map(S,R, f1, . . . , fn) gives a ring map R→ S if R and S are rings, and R is a quotient
of k[x1, . . . , xn]. The resulting ring map will send xi 7→ fi. There are many variations
of map — for example, you can use it to define R-module homomorphisms — but you
should carefully input the information in the required format. Try viewHelp map in
Macaulay2 for more details

• ker(f) returns the kernel of the map f .

• I + J and I*J return the sum and product of the ideals I and J , respectively.

• A = matrix{{a1,1, . . . , a1,n}, . . . , {am,1, . . . , am,n}} returns the matrix

A =

a1,1 . . . a1,n
. . .

am,1 . . . am,n


A.3 Complexes in Macaulay2

There are two different ways to do computations involving complexes in Macaulay2: using
ChainComplexes, or the new (and still incomplete) Complexes package. To use Complexes,
you must first load the Complexes package, while the ChainComplexes methods are auto-
matically loaded with Macaulay2.

A.3.1 Chain Complexes

To create a new chain complex by hand, we start by setting up R-module maps.

i1 : R = QQ[a,b];

i2 : d1 = map(R^1, R^2, {{a,b}})

o2 = | a b |
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1 2

o2 : Matrix R <--- R

i3 : d2 = map(R^2, R^1, {{-b},{a}})

o3 = | -b |

| a |

2 1

o3 : Matrix R <--- R

Keep in mind that the syntax of map is a bit funny: we write map(target,source,matrix).
To make sure we set up the next map in a way that is composable with d1, we can use the
methods source and target:

i3 : d1 = map(source d0, R^1, {{-b},{a}})

o3 = | -b |

| a |

2 1

o3 : Matrix R <--- R

We can also double check our maps do indeed map a complex, by checking the composition
d1 ◦ d2:

i4 : d1 * d2 == 0

o4 = true

So now we are ready to set up our new chain complex.

i5 : C = new ChainComplex

o5 = 0

o5 : ChainComplex

i6 : C#0 = target d1

1

o6 = R

o6 : R-module, free

i7 : C#1 = target d2

2

o7 = R
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o7 : R-module, free

i8 : C#2 = source d2

1

o8 = R

o8 : R-module, free

Given a chain complex C, we can ask Macaulay2 what our complex is by simply running the
name of the complex:

i9 : C

1 2 1

o9 = R <-- R <-- R

0 1 2

o9 : ChainComplex

Or we can ask for a better visual description of the maps, using C.dd:

i10 : C.dd

1 2

o10 = 0 : R <----- R : 1

0

2 1

1 : R <----- R : 2

0

o10 : ChainComplexMap

We can also set up the same complex in a more compact way, by simply feeding the maps
we want in order. Macaulay2 will automatically place the first map with the target in
homological degree 0 and the source in degree 1.

11 : D = chainComplex(d1,d2)

1 2 1

o11 = R <-- R <-- R

0 1 2

o11 : ChainComplex
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Notice this is indeed the same complex.

i12 : D.dd

1 2

o12 = 0 : R <----------- R : 1

| a b |

2 1

1 : R <---------- R : 2

| -b |

| a |

o12 : ChainComplexMap

We can also ask Macaulay2 to compute the homology of our complex:

i13 : HH D

o13 = 0 : cokernel | a b |

1 : subquotient (| b |, | -b |)

| -a | | a |

2 : image 0

o13 : GradedModule

Or we could simply ask for the homology in a specific degree:

i14 : HH_0 D

o14 = cokernel | a b |

1

o14 : R-module, quotient of R

A.3.2 The Complexes package

To use this functionality, you must first load the Complexes package.

i15 : needsPackage "Complexes";

o15 = Complexes

o15 : Package

We can use our maps from above to set up a complex with the same maps. We feed a
list of the maps we want to use to the method complex.
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i16 : F = complex({d1,d2})

1 2 1

o16 = R <-- R <-- R

0 1 2

o16 : Complex

We cam read off the maps and the homology in our complex using the same commands as
we use with chainComplexes, although the information returned gets presented in a slightly
different fashion.

i17 : HH F

o17 = cokernel | a b | <-- subquotient (| b |, | -b |) <-- image 0

| -a | | a |

0 2

1

o17 : Complex

i18 : F.dd

1 2

o18 = 0 : R <----------- R : 1

| a b |

2 1

1 : R <---------- R : 2

| -b |

| a |

o18 : ComplexMap

If we want to set up our complex starting in a different homological degree, we can do the
following:

i19 : G = complex({d1,d2}, Base => 7)

1 2 1

o19 = R <-- R <-- R

7 8 9

o19 : Complex
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i20 : H = complex({d1,d2}, Base => -13)

1 2 1

o20 = R <-- R <-- R

-13 -12 -11

o20 : Complex

A.3.3 Maps of complexes

Suppose we are given two complexes C and D and a map of complexes f : C −→ D. The
routine map can be used to define f using chainComplexes: it receives the target D, the
source D, and a function f that returns fi when we compute f(i).

i1 : R = QQ[a,b];

i2 : c1 = map(R^0,R^1,0);

1

o2 : Matrix 0 <--- R

i3 : c2 = map(R^1, R^2, {{a,b}});

1 2

o3 : Matrix R <--- R

i4 : c3 = map(R^2, R^1, {{-b},{a}});

2 1

o4 : Matrix R <--- R

i5 : c4 = map(R^1, R^0, 0);

1

o5 : Matrix R <--- 0

i6 : C = chainComplex(c1,c2,c3,c4);

i7 :

d1 = map(R^0,R^1,0);

1

o7 : Matrix 0 <--- R
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i8 : d2 = id_(R^1);

1 1

o8 : Matrix R <--- R

i9 : d3 = map(R^1, R^0, 0);

1

o9 : Matrix R <--- 0

i10 : d4 = map(R^0, R^0, 0);

o10 : Matrix 0 <--- 0

i11 : D = chainComplex(d1,d2,d3,d4)

1 1

o11 = 0 <-- R <-- R <-- 0 <-- 0

0 1 2 3 4

o11 : ChainComplex

i12 :

f0 = map(R^0, R^0, 0);

o12 : Matrix 0 <--- 0

i13 : f1 = map(R^1, R^1, matrix{{0_R}});

1 1

o13 : Matrix R <--- R

i14 : f2 = map(R^2, R^1, {{b},{-a}});

2 1

o14 : Matrix R <--- R

i15 : f3 = map(R^1, R^0, 0);

1

o15 : Matrix R <--- 0

i16 : f4 = map(R^0, R^0, 0);
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o16 : Matrix 0 <--- 0

i17 : f = map(C,D,i -> if i==0 then f0 else(

if i==1 then f1 else (

if i==2 then f2 else (

if i == 3 then f3 else (

if i==4 then f4)))))

o17 = 0 : 0 <----- 0 : 0

0

1 1

1 : R <----- R : 1

0

2 1

2 : R <---------- R : 2

| b |

| -a |

1

3 : R <----- 0 : 3

0

4 : 0 <----- 0 : 4

0

o17 : ChainComplexMap

Here’s what we can do if we prefer to write a list with the maps in f:

i18 : f = map(C,D,i -> {f0,f1,f2,f3,f4}_i)

o18 = 0 : 0 <----- 0 : 0

0

1 1

1 : R <----- R : 1

0

2 1

2 : R <---------- R : 2

| b |

| -a |
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1

3 : R <----- 0 : 3

0

4 : 0 <----- 0 : 4

0

o18 : ChainComplexMap

If we prefer to do the same with the Complexes package, one advantage is that map does
receive (target, source, list of maps).

i42 : C = complex({c1,c2,c3,c4});

i43 : D = complex({d1,d2,d3,d4});

i44 : f = map(C,D,{f0,f1,f2,f3,f4})

2 1

o44 = 2 : R <---------- R : 2

| b |

| -a |

o44 : ComplexMap
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DC , 126
| r |, 23
coker f , 119
⊕, 211
I, 95

I
S
, 95

R, 18
p-primary ideal, 69
p(n), 75
pdimR(M), 257∏

iAi, 132√
I, 38∑
γ∈ΓAγ, 16

ara(I), 254
embdim(R), 91

B̂ij, 18
e(M), 109
e(R), 115
f ⊗ g, 158
hM(t), 105
hR(t), 105
k[X], 38

φS, 15
Čech complex, 255

0, 1, 4
1, 1, 4

abelian subcategory, 219
absolutely minimal prime, 92
abuts, 287
additive functor, 148
additive functor (general definition), 208
adjoint functors, 134
affine algebraic variety, 31
affine space, 30
algebra, 2
algebra-finite, 14
algebraic set, 31
algebraic variety, 31
algebraically independent, 14
annihilator, 50
arithmetic rank, 254
Artinian modules, 84
Artinian ring, 84

associated graded ring, 111
associated prime, 60
associated primes of an ideal, 60
Auslander—Buchsbaum formula, 277

Baer Criterion, 181
basis, 5
betti numbers, 203
boundaries, 118
boundaries (abelian category), 216
bounded complex, 118

category, 121
category of chain complexes, 137
catenary ring, 79
chain complex, 117
chain complex (abelian categories), 215
chain homotopy, 138, 218
chain map, 137
chain of primes, 78
characteristic of a ring, 47
classical adjoint, 18
coefficient field, 87
Cohen-Macaulay, 280
Cohen-Macaulay ring, 280
cohomology, 118
cokernel, 119, 213
cokernel of a map of complexes, 140
colon, 50
complete intersection, 89
complex, 117
complex (abelian categories), 215
complex of R-modules, 119
complex of complexes, 140
composition series, 81
cone, 242
connecting homomorphism, 141
contration, 28
contravariant functor, 123
coordinate ring, 38
coproduct, 133
covariant functor, 123
cycles, 118
cycles (abelian category, 216
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degree of a graded module
homomorphism, 26

degree of a homogeneous element, 23
degree preserving homomorphism, 26
degree-preserving homomorphism, 26
depth, 273
derived functors, 230, 231
determinantal trick, 19
differentials, 117
dimension of a module, 79
dimension of a ring, 78
direct limit of modules, 255
direct sum of complexes, 198
direct summand, 28
direct summand (modules), 176
divisible module, 183
domain, 3
double complex, 239
dual notions in category theory, 123

embedded prime, 67
embedding (category theory), 124
embedding dimension, 91
enough injectives, 224
enough projectives, 224
epi, 122
epimorphism, 122
equal characteristic p, 47
equal characteristic zero, 47
equation of integral dependence, 17
equidimensional ring, 79
equivalent composition series, 81
essential extension, 186
exact complex (abelian categories), 217
exact functor, 150, 151, 219, 220
exact sequence, 118
exact sequence of modules, 11
expansion of an ideal, 28
extended Rees algebra, 113
extension of M by N , 248
extension of scalars, 166

faithful functor, 124
fiber ring, 94
filtration, 63

fine grading, 24
finite length module, 81
finite type, 14
finitely generated algebra, 14
finitely generated module, 5
flat module, 189
forgetful functor, 124
free module, 5
free resolution, 196
full functor, 124
full subcategory, 125
fully faithful functor, 124
functor, 123
functor category, 126

Gaussian integers, 16
generates as an algebra, 13
generating set, 5
generators for an R-module, 5
Going down Theorem, 100
Going up Theorem, 99
graded components, 23
graded homomorphism, 26
graded module, 26
graded ring, 23
graded ring homomorphism, 26
group cohomology, 252
group homology, 252

height, 78
height of a prime, 78
height of an ideal, 78
Hilbert function, 105
Hilbert function for a local ring, 112
Hilbert polynomial, 109
Hilbert polynomial of a local ring, 115
Hilbert series, 105
Hilbert series for local rings, 112
Hom double complex, 240
Hom functors, 127
Hom-tensor adjunction, 165
homogeneous components, 23
homogeneous element, 23
homogeneous ideal, 25
homogeneous system of parameters, 92,

281
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homological degree, 117
homology, 118
homomorphism of R-modules, 4
homotopic, 139, 218
homotopy, 138, 218
homotopy equivalence, 139, 218
homotopy equivalent, 139, 218

ideal, 3
ideal generated by, 3
idempotent ideal, 76
image (category theory), 214
image of a map of complexes, 140
Incomparability, 98
initial object, 208
injective dimension, 257
injective hull, 188
injective module, 179
injective object, 224
injective resolution, 206
integral closure, 18, 20
integral closure of an ideal, 95
integral element, 17
integral over A, 17
integral over an ideal, 95
integrally closed, 18
invariant, 21
inverse arrow, 122
irreducible ideal, 72
irredundant primary decomposition, 71
isomorphism (category theory), 122
isomorphism of rings, 2

Jacobian, 15

kernel, 211
kernel of a map of complexes, 140
Koszul complex, 259, 260
Koszul homology, 261
Krull dimension, 78
Krull Intersection Theorem, 76
Krull’s Height Theorem, 89
Krull’s Principal Ideal Theorem, 87

left adjoint functor, 134
left derived functors, 230, 231

left exact functor, 150, 151, 219, 220
length of a chain of primes, 78
length of a module, 81
lifting, 169
linearly reductive group, 29
local cohomology, 253
local ring, 46
local ring of a point, 50
localization at a prime, 49
localization of a module, 50
localization of a ring, 48
locally small category, 121
long exact sequence in homology, 143, 223
Lying Over Theorem, 96

map of R-modules, 4
map of complexes, 137
map on Spec, 43
maximal spectrum, 42
minimal complex, 196
minimal free resolution, 197
minimal generating set, 54
minimal generators, 54
minimal number of generators, 54, 55
minimal prime, 40, 56
mixed characteristic (0, p), 47
module, 4
module-finite, 16
monic arrow, 122
mono, 122
monomorphism, 122
multiplicatively closed subset, 44
multiplicity, 109
multiplicity of a local ring, 115

nilpotent, 38
nilradical, 56
Noether normalization, 102
Noetherian module, 10
Noetherian ring, 8
nonzerodivisor, 48, 265
normal domain, 99
null-homotopic, 139, 218

opposite category, 123
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parameters, 92, 281
PID, 3
preadditive category, 208
presentation, 5
primary decomposition, 71
primary ideal, 69
Prime avoidance, 67
prime filtration, 63
prime ideal, 34
prime spectrum, 42
principal ideal, 3
principal ideal domain, 3
product, 132
product category, 133
product total complex, 240
projective dimension, 257
projective module, 169
projective object, 224
projective resolution, 195, 225

quasi-homogeneous polynomial, 25
quasi-isomorphism, 138
quasicompact, 41
quasilocal ring, 46
quasipolynomial, 110
quotient of complexes, 140
quotient of modules, 4

radical ideal, 38
radical of an ideal, 38
reduced ring, 38
Rees algebra, 96, 113
regular element, 265
regular local ring, 92, 268
regular ring, 268
relation, 5
relations in an algebra, 14
representable functor, 130
residue field, 35
restriction of scalars, 15, 167
right adjoint functor, 134
right derived functors, 230
right exact functor, 150, 151, 219, 220
ring, 1
ring homomorphism, 2

ring isomorphism, 2

saturated chain of primes, 78
shift, 62
short exact sequence, 11
short exact sequence of complexes, 140
simple module, 81
simple tensor, 156
small category, 121
Snake Lemma, 141, 223
SOP, 92, 281
spectral sequence, 286
spectrum, 42
split complex, 226
split exact complex, 226
split short exact sequence, 170, 225
splitting, 28
standard grading, 24
strict composition series, 81
subcomplex, 140
submodule, 4
subring, 2
support, 58
suspension, 242
symbolic power, 75
system of parameters, 92, 281
syzygy, 202

tensor product, 155
tensor product double complex, 240
tensor product of complexes, 240
tensor product of maps, 158
terminal object, 208
torsion, 191
total complex, 239
total ring of fractions, 49
trivial complex, 198

universal arrow, 131
universal element, 131
universal property, 131

variety, 31

weights, 24

Yoneda Lemma, 127
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Zariski topology, 41
zero arrow, 209
zero object, 208

zerodivisors, 60
Zorn’s Lemma, 35
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