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Setup

Throughout, all rings are commutative noetherian rings with 1 ̸= 0. We will be primarily
be concerned with two main settings:

local setting graded setting
(R,m, k) noetherian local ring R = k[x1, . . . , xd]/I

k[x1, . . . , xd] standard graded, k field, I homogeneous

M is a finitely generated R-module M is a finitely generated graded R-module
m the unique maximal ideal m = (x1, . . . , xd) unique homogeneous maximal ideal

In the graded settings, we will consider only homogeneous elements and graded modules.
In both of these settings, we can use NAK and all its consequences.
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1 Free resolutions and Betti numbers

Given an R-module M , how do we describe it? We need to know a set of generators and
the relations among those generators. Going further and asking for relations among the
relations (treating the relations as generators for the module of relations), and relations
among the relations among the relations, and so on, we construct a free resolution forM . Free
resolutions play a key role in many important constructions, and encode a lot of interesting
information about our module. For example, if the module came from some geometric
setting, geometric information about the module gets reflected in the free resolution.

Definition 1.1. Let M a module over a ring R. A free resolution of M is a complex of
free R-modules Fi

F = · · · // Fn
// · · · // F1

// F0
// 0

n 1 0

together with an isomorphism H0(F ) ∼= M , such that Hi(F ) = 0 for all i ̸= 0. We will abuse
notation and carelessly identify the resolution for M with the augmented resolution, which
is the exact sequence

· · · // Fn
// · · · // F1

// F0
//M // 0.

n 1 0

We can think of a free resolution of M as an approximation of M by free modules. Since
every module is a quotient of a free module, every module has a free resolution:

Construction 1.2 (Minimal free resolution). Let M be a finitely generated module over
R, where R is either local or graded as in our general setup. If M has β0 many minimal
generators, then we can write a surjective R-module homomorphism from Rβ0 to M , say

Rβ0
π0 // //M.

If π0 is an isomorphism, then M ∼= Rβ0 is a free module of rank β0. Otherwise, π0 has a
nonzero kernel ker(π0), which must also be a finitely generated module since R is noetherian.
If ker(π0) is minimally generated by β1 elements, then we repeat this process and construct
a surjective R-module map from Rβ1 to ker(π0), and compose it with the inclusion of ker(π0)
into Rβ0 :

Rβ1

%% %%

// Rβ0
π0 // //M.

ker(π0)
, �

99

The elements in ker(π0) are the relations on our chosen minimal generators for M : if M
is generated by m1, . . . ,mβ0 , we can take π0 to be the map sending each canonical basis
element ei in Rβ0 to mi, and an element (r1, . . . , rβ0) ∈ ker(π0) corresponds precisely to a
relation among the mi, meaning

r1m1 + · · ·+ rβ0mβ0 = 0.
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Such relations are called syzygies1 of M and the module ker(π0) is the first syzygy module
of M , which we will denote by Ω1(M).

Continuing this process, we can construct a free resolution for M :

· · · // Fn
πn // · · · π2 // F1

π1 // F0
π0 //M // 0.

At each step, we can choose Fi to have the minimal number of generators; in that case, we
say that F is a minimal free resolution for M .

One can show the following remarkable facts:

• Every free resolution of M has a minimal free resolution of M as a direct summand.

• Any two minimal free resolutions of M are isomorphic complexes, thus we can talk
about the minimal free resolution of M .

• As a consequence of the previous facts, the minimal free resolution of M must have
the shortest length of any resolution for M , and M has a finite resolution if and only
if the minimal free resolution of M is finite.

• A free resolution F for M with differential ∂ is a minimal free resolution for M if and
only if ∂(F ) ⊆ mF . Thus if we fix bases for all the free modules Fi, the resolution is
minimal if and only if all the entries in the matrices representing ∂ have all entries in
m.

Definition 1.3. Consider a minimal free resolution F of M , and consider the notation in
Construction 1.2. The ith syzygy module of M , denoted Ωi(M), is defined to be the
image of πi, or equivalently the kernel of πi−1.

Note that Ωi(M) is defined only up to isomorphism.

Definition 1.4. If a module M has a finite (minimal) free resolution, the length of the
minimal free resolution for M is the projective dimension of M , and we write it pdimM .
Below is a finite resolution of length p:

0 // Fp
// · · · // F1

// F0
//M // 0.

If the minimal free resolution of M is infinite, we say that pdimM = ∞.

Remark 1.5. Suppose that at some point when constructing a resolution following the
procedure we described in Construction 1.2, we obtain an injective map of free modules.
Then its kernel is trivial, so we obtain a finite free resolution.

Definition 1.6 (Betti numbers). Let F be the minimal free resolution of M . The ith Betti
number of M is

βi(M) := rank(Fi).

Remark 1.7. Note that β0(M) = µ(M) = rankk(M/mM).

1Fun fact: in astronomy, a syzygy is an alignment of three or more celestial objects.
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Exercise 1. Show that
βi(M) = dimk Tor

R
i (M,k) = dimk Ext

i
R(M,k).

Example 1.8. Let R = kJx, yK and M = R/(x2, xy). Let us write a minimal free resolution
for M . First, we note that M is cyclic, so we start with

R // R/(x2, xy) // 0.

In this case, the relations on the unique generator 1 in degree 0 are x2 · 1 = 0 and xy · 1 = 0,
so we proceed with

R2

[
x2 xy

]
// R // R/(x2, xy) // 0.

Now we need to find all relations among x2 and xy, meaning all choices of a, b such that
ax2 + bxy = 0. We note that x is a regular element on R, so ax2 = −bxy =⇒ ax = −by.
But x is regular modulo y, so a ∈ (y) and b ∈ (x).2 Thus

y · x2 +−x · xy = 0

is one of the relations we are looking for, and all other such relations are multiples of this
one. This shows that we can continue our resolution by taking

R

 y
−x


// R2

[
x2 xy

]
// R // R/(x2, xy) // 0.

Now note that R is a domain, so the leftmost map is in fact injective, and we are done. We
conclude that

0 // R

 y
−x


// R2

[
x2 xy

]
// R // R/(x2, xy) // 0

2 1 0

is a free resolution for R/(x2, xy). We also took as few generators at each step as possible,
so this is a minimal free resolution. We can check this more precisely by noting that all the
entries in our matrices are nonunits. In particular, we learn that pdim(R/(x2, xy)) = 2.

Definition 1.9. Let R be a domain with fraction field Q. The rank of a finitely generated
R-module M is defined as

rankM := dimQ(M ⊗R Q).

Exercise 2. Check that if M is a free R-module, then rankM is the free rank of M .

Exercise 3. Show that if M has finite projective dimension, then

pdim(M)∑
i=0

(−1)iβi(M) = rank(M).

2We will recall the definitions for regular elements and regular sequence very soon.
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Theorem 1.10 (Hilbert Syzygy Theorem). Let R = k[x1, . . . , xd] over a field k. Every
finitely generated graded R-module has finite projective dimension, and in fact pdim(M) ⩽ d.

In fact, in the local case, the fact that all finitely generated modules have finite projective
dimension characterizes regular rings. This characterization is the key ingredient to solve
the Localization Problem for regular rings.

Theorem 1.11 (Auslander–Buchsbaum [AB57], Serre [Ser56]). Let (R,m, k) be a noetherian
local ring. The following are equivalent:

1. The ring R is regular.

2. Every finitely generated R-module has finite projective dimension.

3. The residue field k has finite projective dimension.

Exercise 4 (The Localization Problem for Regular Rings). Let R be a regular local ring.
Show that for all prime ideals P , the localization RP is a regular local ring.

We will discuss singular rings and infinite resolutions later on. For now, let us stick to
the case of regular local rings or polynomial rings over a field.

One of our main motivating problems will be to try to understand the shape of minimal
free resolutions. As a starting point, let us classify all resolutions of modules with a small
number of generators. We begin with cyclic modules, meaning modules of the formM = R/I,
with I an ideal in R, and take I itself to have a small numbers of generators.

Example 1.12 (Ideals with 1 generator). Let R be a regular local ring of dimension d or a
polynomial ring R = k[x1, . . . , xd] over a field k. Since R is a domain, any 0 ̸= f ∈ R is a
regular element, thus

0 // R
f // R // R/(f) // 0

is a minimal free resolution for R/(f).

Note, however, that our assumptions matter:

Example 1.13. Let R = k[x]/(x3). The minimal free resolution for k ∼= R/(x) is

· · · // R
x // R

x2
// R

x // R // R/(x) // 0.

Example 1.14 (Ideals with 2 generators). Let R be a regular local ring of dimension d
or a polynomial ring R = k[x1, . . . , xd] over a field k. If I = (f, g) ⊆ (x1, . . . , xd) and
c = gcd(f, g), then the minimal free resolution of R/I has length two:

0 // R

 g/c
−f/c


// R2

[
f g

]
// R // R/I // 0.

When gcd(f, g) = 1, the resolution of R/(f, g) in Example 1.14 is the Koszul complex.
The Koszul complex is arguably the most important complex in commutative algebra (and
beyond). It appears everywhere, and it is a very powerful yet elementary tool any homological
algebraist needs in their toolbox. Every sequence of elements x1, . . . , xn in any ring R gives
rise to a Koszul complex.
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Construction 1.15 (The Koszul complex). The Koszul complex on one element x ∈ R
is the complex

kos(x) := 0 // R
x // R // 0.

1 0

More generally, given x1, . . . , xn ∈ R, the Koszul complex with respect to x1, . . . , xn is the
complex kos(x1, . . . , xn) defined inductively as

kos(x1, . . . , xn) := kos(x1, . . . , xn−1)⊗R kos(xn).

You will find different sign conventions for the Koszul complex in the literature, but at
the end of the day they all lead to isomorphic complexes.

Example 1.16. The Koszul complex on f, g ∈ R is given by

0

��

0

��
0 // R

−g //

f

��

R //

f

��

0

K•(f, g) = Totalization of = 0 // R
(−g

f ) // R2 (f g) // R // 0

0 // R g
//

��

R //

��

0

2

1 0 0

0

The Koszul complex has more structure than simply being a complex: it is an example of
a differentially graded algebra, or DG algebra for short, meaning it has an algebra structure
on it as well. We will discuss these in more detail soon; for now we will briefly describe how
to construct the Koszul complex in such a way, but emphasize that this is only the beginning
of a beautiful story.

In a rare moment of non-commutativity, we will need to consider exterior algebras.

Definition 1.17. The exterior algebra
∧
M on an R-module M is obtained by taking the

the free R-algebra on M , R ⊕M ⊕ (M ⊗M)⊕ (M ⊗M ⊗M)⊕ · · · , modulo the relations
x⊗ y = −y⊗x and x⊗x = 0 for all x, y ∈ M . We denote the product on

∧
M by a∧ b, and

see
∧

M as a graded algebra where the homogeneous elements in degree d are those in the
image of M⊗d. This is a skew commutative algebra, since for any homogeneous elements
a and b

a ∧ b = (−1)deg(a) deg(b)b ∧ a and a ∧ a = 0 whenever a has odd degree.

. We denote the set of all homogeneous elements of degree n by
∧nM . Note also that this

construction is functorial: a map M
f−→ N of R-modules induces a map

∧
M

∧f−−→
∧
N given

by m1 ∧ · · · ∧ms 7→ f(m1) ∧ · · · ∧ f(ms).

We will use this construction in the case of free modules. When M = Rn with basis
e1, . . . , en, then ∧sM ∼= R(ns) for all 1 ⩽ s ⩽ n, with basis ei1 ∧ · · · ∧ eis ranging over all
i1 < i2 < · · · < is.
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Definition 1.18 (The Koszul complex, again). Let x1, . . . , xn be elements in R. TheKoszul
complex on x1, . . . , xn is the complex

kos(x1, . . . , xn) := 0 //
∧n Rn //

∧n−1Rn // · · · //
∧1Rn // R // 0

with differential given by

d(ei1 ∧ · · · ∧ eis) =
∑
1⩽p⩽s

(−1)p−1xipei1 ∧ · · · ∧ êip ∧ · · · ∧ eis .

More generally, given an R-module M , the Koszul complex on M with respect to x1, . . . , xn

is kos(x1, . . . , xn;M) := kos(x1, . . . , xn)⊗R M .

Exercise 5. Show that d as defined above is indeed a differential, meaning d2 = 0.

Exercise 6. Write the Koszul complex on 3 elements f1, f2, f3.

The Koszul complex on f = f1, . . . , fn detects whether f is a regular sequence.

Definition 1.19 (Regular sequence). An nonunit f ∈ R is regular on an R-module M if
fm ̸= 0 for all nonzero m ∈ M . We say that f = f1, . . . , fn is a regular sequence on M if

• (f1, . . . , fn)M ̸= M .

• For each i, fi is a regular element on M/(f1, . . . , fi−1)M .

We say f = f1, . . . , fn ∈ m is a regular sequence if it is a regular sequence on R.

Theorem 1.20. A noetherian local ring (R,m, k) is regular if and only if m is generated by
a regular sequence.

Theorem 1.21. Let R be a local or graded ring, and let f1, . . . , fn ∈ R be (homogeneous)
nonunits. The following are equivalent:

1. The elements f1, . . . , fn form a regular sequence.

2. The Koszul complex is a resolution of R/(f1, . . . , fn).

3. The first koszul homology vanishes: H1(kos(f1, . . . , fn)) = 0.

As a consequence, we see that in our setting, f = f1, . . . , fn is a regular sequence if and
only any shuffling of the elements is also a regular sequence.

Corollary 1.22. Let f1, . . . , fc ∈ R be a regular sequence, and let I = (f1, . . . , fc). Then

βi(R/I) =

(
c

i

)
.

Definition 1.23. The grade of an ideal I in R, written grade I, is the largest length of a
regular sequence inside I. The depth of an R-module M , written depthM , is the largest
length of a sequence f1, . . . , fn ∈ m of elements that are regular on M .

The following well-known formula is quite useful:
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Theorem 1.24 (Auslander–Buchsbaum Formula). Let R be a local or graded ring (as in
our initial setting) and let M be a finitely generated (graded) R-module of finite projective
dimension. Then

pdimM + depthM = depthR.

Example 1.25. Let R = k[x, y, z] and M = R/(xy, xz, yz). The minimal free resolution for
M is

0 // R2


z 0
−y y
0 −x


// R3

(
xy xz yz

)
// R //M // 0.

This is not a Koszul complex, and neither are these the Betti numbers of a Koszul complex;
instead, the Betti numbers of M are

β0(M) = 1 β1(M) = 3 β2(M) = 2.

Of course this is because xy, xz, yz is not a regular sequence.

This is a special case of the Hilbert–Burch Theorem [Bur68], which tells us about the
shape of the minimal free resolution of cyclic modules of projective dimension 2.

The ideal in Example 1.25 is homogeneous, and thus we can in fact rethink our resolution
in a way that keeps track of the grading, and talk about graded Betti numbers of M .

Definition 1.26. Let R be a standard graded k-algebra with R0 = k and homogeneous
maximal ideal m = R+. Let M be a graded R-module with minimal graded free resolution
F . The (i, j)th Betti number of M , βij(M), counts the number of generators of Fi in degree
j. We often collect the Betti numbers of a module in its Betti table:

β(M) 0 1 2 · · ·
0 β00(M) β01(M) β02(M)
1 β11(M) β12(M) β13(M)
2 β22(M) β23(M)
...

. . .

By convention, the entry corresponding to (i, j) in the Betti table of M contains βi,i+j(M),
and not βij(M). This is how Macaulay2 displays Betti tables.

Example 1.27. From the minimal resolution in Example 1.25, we can read the graded Betti
numbers of M :

• β0(M) = 1, sinceM is cyclic, and the unique generator lives in degree 0, so β0,0(M) = 1.

• β1(M) = 3, and these three quadratic generators live in degree 2, so β12 = 3.

• β2(M) = 2, representing linear syzygies on quadrics, living in degree 1+2=3, so β23 = 2.
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To write a graded free resolution for M , we choose all maps to have degree 0, so that the
graded free modules in each degree are sums of copies of shifts of R. We write R(−d) for
the R-module R but with a new grading, where (R(−d))i := Ri−d. Here is the graded free
resolution of M :

0 // R(−3)2


z 0
−y y
0 −x


// R(−2)3

(
xy xz yz

)
// R //M // 0.

Notice that the graded shifts in lower homological degrees affect all the higher homological
degrees as well. For example, when we write the map in degree 2, we only need to shift the
degree of each generator by 1, but since our map now lands on R(−2)3, we have to bump up
degrees from 2 to 3, and write R(−3)2. The graded Betti number βij(M) of M counts the
number of copies of R(−j) in homological degree i in our resolution. So again we have

β00 = 1, β12 = 3, and β23 = 2.

We can collect the graded Betti numbers of M in its Betti table:

β(M) 0 1 2
0 1 − −
1 − 3 2

.

Example 1.28. Let k be a field, R = k[x, y], and consider the ideal

I = (x2, xy, y3)

which has two generators of degree 2 and one of degree 3, so there are graded Betti numbers
β12 and β13. The minimal free resolution for R/I is

0 //
R(−3)1⊕
R(−4)1


y 0
−x y2

0 −x


//
R(−2)2⊕
R(−3)1

(
x2 xy y3

)
// R // R/I.

Thus

β23(R/I) = 1
β24(R/I) = 1

β12(R/I) = 2
β13(R/I) = 1

and the Betti table of R/I is
β(M) 0 1 2

0 1 − −
1 − 2 1
2 − 1 1

.

.
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WhenR is a graded ring andM andN are gradedR-modules, we can compute ExtiR(M,N)
using a graded free resolution of M , and thus the Ext-modules inherit an R-graded structure.

Exercise 7. Let R be a standard graded finitely generated algebra over a field k = R0 and
let M be a graded R-module. Show that

βi,j(M) = dimk

(
TorRi (M,k)j

)
= dimk

(
ExtiR(M,k)−j

)
.

In fact, even if all we know is the Betti numbers of M , there is lots of information we
can extract about M . For more about the beautiful theory of free resolutions and syzygies,
see [Eis05]. For a detailed treatment of graded free resolutions, see [Pee11].

But back to our attempt at studying the resolutions of ideals with a small number of
generators. Unfortunately, even over a polynomial ring over a field, these can be arbitrarily
complicated. Even the resolutions of 3-generated ideals can be as long as possible:

Theorem 1.29 (Burch, 1968 [Bur68]). For every d ⩾ 2, there exists a three-generated ideal
I in R = k[x1, . . . , xd] such that pdim(R/I) = d.

In fact, every minimal free resolution is the tail of the minimal resolution of a 3-generated
ideal:

Theorem 1.30 (Bruns, 1976 [Bru76]). Let R = k[x1, . . . , xn] and

0 // Fn
// Fd−1

// · · · // F2
// F1

// F0
//M // 0

be a minimal free resolution of a finitely generated graded R-module M . Then there exists a
3-generated ideal I in R with minimal free resolution

0 // Fn
// · · · // F3

// F ′
2

// R3 // R // R/I // 0 .

Exercise 8. Show that β2(R/I) can be arbitrarily large for 3-generated ideals. More pre-
cisely, show that for all N ⩾ 1 there exists d and an ideal I = (f, g, h) in R = k[x1, . . . , xd]
such that β2(R/I) ⩾ N .

These results indicate that the question of how large the Betti numbers of an ideal can
be has a pretty devastating answer: as large as you want them to be. But the question of
how small Betti numbers can be is much more delicate.

Theorem 1.31 (Syzygy Theorem, Evans–Griffith, 1981 [EG81]). Let M be a finitely gener-
ated module of finite projective dimension over a noetherian local ring containing a field. If
Ωi(M) is not free, then

rank (Ωi(M)) ⩾ i.

Exercise 9. Let M be a finitely generated module over a noetherian local ring. Show that

βi(M) = rank (Ωi(M)) + rank (Ωi+1(M)) .



11

Exercise 10. Let M ̸= 0 be a finitely generated module over a noetherian local ring, and
let p = pdim(M) < ∞. Show that

βi(M) ⩾


2i+ 1 if i < p− 1

p if i = p− 1

1 if i = p.

However, βi(M) are conjectured to be substantially bigger. The following is a conjecture
of Buchsbaum and Eisenbud [BE77] from the late 1970s, asked independently by Horrocks
in a collection of problems compiled by Hartshorne [Har79, Problem 24]. The conjecture
predicts that the Koszul complex is the smallest free resolution possible. More precisely,
the conjecture says that given an ideal I, its resolution should be compared to the Koszul
complex on a maximal regular sequence inside I. Since our ring is Cohen-Macaulay, the
length of such a sequence is the same as the height of our ideal I. More generally, we want
to compare to a regular sequence on codim(M) many elements.

Definition 1.32. Let M be a finitely generated module over a noetherian ring. The codi-
mension of M is

codim(M) := dim(R)− dim(R/ ann(M)).

Remark 1.33. In our main setting, note that

dim(R/ ann(M)) = dimR− height ann(M)

so
codim(M) = height ann(M).

Conjecture 1.34 (BEH Conjecture). Let R be either a noetherian local ring or a standard
graded k-algebra over a field k = R0. Let M be a nonzero finitely generated (graded) R-
module of finite projective dimension and codimension c. Then for all i,

βi(M) ⩾

(
c

i

)
.

Remark 1.35. Note that
(
n
i

)
= 0 when i < 0 or i > n, so the conjecture is only meaningful

for i between 0 and c.

Here is a helpful strategy for thinking about this conjecture.

Remark 1.36. LetM be any finitely generatedR-module, and let P be any prime containing
ann(M), so that MP ̸= 0. Since localization is flat, localizing a minimal free resolution for M
gives us a free resolution for MP , though not necessarily minimal. Thus the Betti numbers
can only get smaller:

βR
i (M) ⩾ βRP

i (MP ).

We can reduce the BEH Conjecture to modules of finite length.

Definition 1.37. An R-module M has finite length if it has a finite filtration of the form

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M.

where each quotient Mi+1/Mi is simple.
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Remark 1.38. Over any noetherian ring, it is well-known that a finitely generated moduleM
has finite length if and only if dim(M) = 0. In our main setting, when R is a noetherian local
ring or a quotient of a standard graded polynomial ring by a homogeneous ideal, dim(M) = 0
if and only if the unique (homogeneous) maximal ideal m is a minimal prime of M . Note
that in this case, we necessarily have depth(M) = 0, and thus by the Auslander–Buchsbaum
Formula, the projective dimension of M is as large as possible:

pdim(M) = depth(R)− depth(M) = depth(R).

In fact, when R is a regular ring of dimension d, we get pdim(M) = d.

Lemma 1.39. The local ring version of the BEH Conjecture reduces to finite length mod-
ules. More precisely, if all finite length modules of finite projective dimension over a Cohen-
Macaulay local ring satisfy Conjecture 1.34, then Conjecture 1.34 holds for all finitely gen-
erated modules of finite projective dimension over a noetherian local ring.

Proof. Suppose that we have shown that all finite length modules over a Cohen-Macaulay
local ring satisfy Conjecture 1.34. Let M be an arbitrary finitely generated R-module, not
necessarily of finite length. Let c be the codimension of M . By Krull’s Height Theorem,
there must be a minimal prime P of M of height c. Therefore, in RP the maximal ideal PP

is a minimal prime of MP , and thus MP has finite length over RP . Moreover, RP is a regular
local ring by Exercise 4. Thus

codim(MP ) = height ann(MP ) = height(PP ) = c.

By Remark 1.36, we can compare the Betti numbers of M with the Betti numbers of
MP , which satisfy the conjecture:

βR
i (M) ⩾ βRP

i (MP ) ⩾

(
c

i

)
.

While the BEH Conjecture remains open, there is some evidence that it might hold. In
fact, sometimes one can increase the value c in the BEH Conjecture.

Exercise 11. Let I be a radical ideal in a regular ring, and set

c := max{heightP | P ∈ Min(I)}.

Show that for all i,

βi(R/I) ⩾

(
c

i

)
.

Theorem 1.40. The BEH Conjecture holds for all monomial ideals in a polynomial ring
R = k[x1, . . . , xd] over a field k.

Proof. Given any monomial ideal I, there is a process called polarization that allows us to
construct a squarefree monomial ideal J from I, which might live in a polynomial ring in a
larger number of variables. The polarization J of I has the same height and Betti numbers
as I, thus to prove the conjecture holds for all monomial ideals, it suffices to show that it
holds for all squarefree monomial ideals. But squarefree ideals are radical, so we are done
by Exercise 11.
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Suppose that the BEH Conjecture holds. Then for a module M of codimension c,

c∑
i=0

βi(M) ⩾
c∑

i=0

(
c

i

)
= 2c.

This is known as the Total Rank Conjecture, which was settled in 2018 by Walker [Wal17]
in characteristic not 2, and later by Walker and VandeBogert in characteristic 2 [VW25].

Theorem 1.41 (Walker, 2018 [Wal17], VandeBogert–Walker, 2025 [VW25]). If M ̸= 0 is a
finitely generated (graded) module of codimension c over R = k[x1, . . . , xn] or a regular local
ring R, then

c∑
i=0

βi(M) ⩾ 2c.

Moreover, if equality holds then M = R/I, where I is an ideal generated by a regular sequence
of length c.3

One may take this as evidence towards the BEH Conjecture. Nevertheless, it remains an
open question. One might even look for counterexamples. For example, as noted by Dugger
in [Dug00] it is not known whether there can be an ideal I with height 5 and 6 generators
in R = k[x1, . . . , xd] such that R/I has the following Betti numbers:

0 // R6 // R12 // R10 // R9 // R6 // R1 // R/I // 0.

One might also wonder if once I is not generated by a regular sequence, perhaps the
Betti numbers of I might be even larger than those in a Koszul complex on c generators. For
example, Adam Boocher has proposed that one might in general be able to do much better,
and obtain ∑

i

βi(M) ⩾ 2c + 2c−1.

Boocher proved so in work with collaborators [BW20, BS18] in a number of cases.
For more on the BEH Conjecture and other related open questions, and the state of the

art as of a few years ago, see [BG21].

While the general BEH conjecture remains open, it is settled in a number of cases. In
the next section, we will discuss the case that inspired Buchsbaum and Eisenbud’s original
conjecture: if the minimal free resolution of M has more structure – if it has the structure
of a DG algebra – then M satisfies the BEH Conjecture.

3Slogan: if it walks like the Koszul complex and it quacks like the Koszul complex, then it is the Koszul
complex.
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2 DG algebra resolutions

Some free resolutions come equipped with additional structure, which is often helpful even
if the resolution is not minimal.

Definition 2.1. Let R be a noetherian ring. A DG (differential graded) algebra over R is
a complex (A, ∂) of R-modules that has a graded commutative algebra structure which is
compatible with the differential, as follows:

1. The underlying graded object ⊕
i∈Z

Ai

is a graded commutative R-algebra. Thus A0 is a ring. Graded commutativity means that
for all homogeneous elements a ∈ Ai and b ∈ Aj,

ab = (−1)ijba and a2 = 0 whenever a has odd degree.

We write |a| = i to indicate that a ∈ Ai.

2. The differential ∂ satisfies the Leibniz rule: for all a and b homogeneous with |a| = i,

∂(ab) = ∂(a)b+ (−1)ia∂(b).

Therefore, the multiplication induces a map of complexes A⊗ A −→ A.

Remark 2.2. The condition a2 = 0 for a of odd degree is immediate in characteristic not
2, but in characteristic 2 it does not follow from the rest of the definition.

Definition 2.3. Let A be a DG algebra over R. A DG module over A is a complex M of
R-modules with the structure of a graded module over A, and such that for all a ∈ Ai and
all m ∈ Mj,

∂(am) = ∂(a)m+ (−1)ia∂(m).

A DG ideal of A is a DG submodule of A.

Given a DG algebra A, one can easily show that the cycles Z(A) form a DG subalgebra
of A and the boundaries B(A) form a DG ideal of Z(A).

Definition 2.4. A homomorphism of DG algebras between two DG R-algebras is a
map of complexes φ : A → B that is also a map of graded R-algebras. A homomorphism
of DG modules is a homomorphism of graded R-modules that is also a map of complexes.

Example 2.5 (The Koszul complex revisited). The canonical example of a DG algebra is
the Koszul complex. Indeed, given any commutative ring R and f = f1, . . . , fn ∈ R, the
Koszul complex E = kos(f) is already a graded commutative R-algebra, with the product

(a · ei1 ∧ · · · ∧ eis) · (b · ej1 ∧ · · · ∧ ejt) = (ab) · ei1 ∧ · · · ∧ eis ∧ ej1 ∧ · · · ∧ ejt .

The differential in Definition 1.18 is the unique differential with ∂(ei) = fi that satisfies the
Leibniz rule.

We will be particularly interested in free resolutions with a DG algebra structure.
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Remark 2.6. WhenM = R/I, its minimal free resolution F has F0 = R, so F could support
the structure of a DG algebra over R. In general, given such a bounded below complex of
free R-modules with F0 = R, the biggest challenge in giving it a DG algebra structure is
showing that one can construct a product rule that is associative.

Theorem 2.7 (Buchsbaum–Eisenbud, [BE77]). Let (R,m, k) be a noetherian local domain
and let I be an ideal of R of grade c. If there is a DG algebra structure on the minimal free
resolution of R/I, then

βi(R/I) ⩾

(
c

i

)
.

Proof. Let f1, . . . , fc be a maximal regular sequence inside I. Let E = kos(f1, . . . , fc) and
let F be the minimal resolution for R/I, which by assumption has a DG algebra structure.
First, we will show that there is an injective homomorphism of DG algebras φ : E −→ F .

Fix a1, . . . , an ∈ F1 such that ∂(ai) = fi. Consider the DG algebra map φ : E −→ F
induced by setting φ0 = idR and φ(ei) = ai. In general, given a scalar b ∈ R and i1 < · · · < id,
we must have

φ(b · ei1 ∧ · · · ∧ eid) = b · φ(ei1) · · ·φ(eid).
We claim that φ is injective. Suppose, by contradiction, that there is some nonzero element
in kerφ. Thus there must be some homogeneous element z in kerφ, say of degree s. Perhaps
after reordering f1, . . . , fc, we may assume that

z = b · e1 ∧ · · · ∧ es +
∑

w1⩽···⩽ws
ws⩾s+1

cw · ew1 ∧ · · · ∧ ews ∈ kerφ

for some b ∈ R and some cw ∈ R. Note that for all w above,

(cw · ew1 ∧ · · · ∧ ews) · (es+1 ∧ · · · ∧ ec) = 0.

Since kerφ is a DG ideal of E,

b · e1 ∧ · · · ∧ ec = (b · e1 ∧ · · · ∧ es) · (es+1 ∧ · · · ∧ ec) = z · (es+1 ∧ · · · ∧ ec) ∈ kerφ.

Note that Fc
∼= Rβc(R/I) and R is a domain, so if b ̸= 0, then

0 = φ(b · e1 ∧ · · · ∧ ec) = b · φ(e1 ∧ · · · ∧ ec) =⇒ φ(e1 ∧ · · · ∧ ec) = 0.

Since Ec
∼= R is generated by e1 ∧ · · · ∧ ec, we conclude that φc : Ec −→ Fc must be the zero

map. However, we claim that φc is nonzero, giving us a contradiction, which will prove the
claim that φ must be injective. To see that φc ̸= 0, first note that φ is a lift of the canonical
quotient map

R/(f1, . . . , fc)
π // R/I

to a map of complexes E −→ F , so we can use φ to compute ExtcR(π,R) via HomR(φc, R).
In Exercise 12, you will show that ExtcR(φ,R) ̸= 0, which shows that HomR(φc, R) ̸= 0, and
thus φc ̸= 0. This completes the proof that φ is injective.

Now that we have shown that φ is injective, the restrictions φi : Ei −→ Fi of φ to each
degree are injective homomorphisms between free modules. By Exercise 13,

rank(Fi) ⩾ rank(Ei) =

(
c

i

)
.
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As Avramov notes in [Avr81, Proposition 6.4.1], the proof of Theorem 2.7 only requires
the minimal free resolution ofM to admit a DG module structure over the Koszul complex E.

Exercise 12. Let I be a nonzero proper ideal in a noetherian domain R and let f1, . . . , fc
be a maximal regular sequence inside I. Consider the short exact sequence

0 // N // R/(f1, . . . , fc)
π // R/I // 0.

where π is the canonical quotient map.

(a) Show that Extc−1
R (N,R) = 0.

(b) Show that the induced map

π∗ = ExtcR(π,R) : ExtcR(R/I,R) −→ ExtcR(R/(f1, . . . , fc), R)

is nonzero.

Exercise 13. Let R be a noetherian local domain and consider an R-module homomorphism
g : Ra −→ Rb. Show that if g is injective, then a ⩽ b.

Example 2.8. Over any noetherian local ring R, the minimal resolution of any cyclic module
M = R/I of projective dimension 1 admits a natural DG algebra structure: the resolution
is of the form

0 // F1
// R // 0

and by degree reasons we must have F1 · F1 = 0. We can then take the products on F0 · F0,
F0 · F1, and F1 · F0 to be given by the R-module structure of F1.

Example 2.9. Suppose that R is any noetherian local ring and consider ideal I such that
M = R/I has projective dimension 2. The Hilbert–Burch theorem [Bur68] states that if
µ(I) = n, there exists an n× (n−1) matrix A with entries in R and a regular element a ∈ R
such that I = aJ , where J is generated by the n − 1 minors of A, and the minimal free
resolution of R/I is

0 // Rn−1 A // Rn // R // 0.

Set F1 = Rn and F2 = Rn−1. If there is a DG algebra structure on F , then F1 · F2 = 0,
F2 · F1 = 0, and F2 · F2 = 0. Take the products involving F0 to simply follow the R-module
structure of each Fi. Finally, we need to define products of elements of degree 1. More
precisely, given a basis e1, . . . , en of F1 such that ∂(ei) = fi, we need to define all products
of the form ei · ej with i < j. (Note that ei · ei = 0 for all i, and ej · ei = −ei · ej.) To do
that, fix a basis b1, . . . , bn−1 for F2. Write Aℓ

i,j for the matrix obtained from A by deleting
row ℓ and columns i and j.

Herzog [Her74] showed that there exists a unique DG algebra structure on A, given by

ei · ej := −a
n−1∑
ℓ=1

(−1)i+j+ℓ det
(
Aℓ

i,j

)
· bℓ.

One can even go further and show explicitly that any length 3 free resolution of a cyclic
module admits a DG algebra structure:
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Theorem 2.10 (Buchsbaum–Eisenbud, 1977 [BE77]). Let R be a domain. If pdim(R/I) ⩽ 3,
then the minimal free resolution of R/I admits a DG algebra structure.

In their original 1977 paper on the subject, Buchsbaum and Eisenbud [BE77] asked
whether the minimal free resolution of every cyclic module over a regular local ring admits a
DG algebra structure. But across the ocean in Europe, Avramov [Avr81] already knew that
the answer was no, building on an example of Khinich.4 In fact, Avramov gave obstructions
to the existence of a DG algebra structure on the minimal free resolution of a cyclic module.

Example 2.11. Let k be any field and R = k[x, y, z, w]. The minimal free resolution of

R/(x2, xy, yz, zw,w2)

does not admit a DG algebra structure.

The cyclic module in Example 2.11 has projective dimension 4, showing one cannot
extend Theorem 2.10 to longer resolutions unless we add conditions on R/I. Kustin and
Miller proved that if R/I is Gorenstein of projective dimension 4, then the minimal free
resolution of R/I admits a DG algebra structure [KM85].

Having a DG algebra resolution buys us a lot more than solving the BEH Conjecture.
Moreover, if we are willing to forgo minimality, then every cyclic module over a noetherian
local ring has a DG algebra resolution. The following construction is due to Tate [Tat57]:

Construction 2.12 (The Tate resolution). Let Q be any noetherian local ring and let
R = Q/I. We will construct a DG algebra resolution for R in steps, by successively adding
variables in each degree to kill homology in the degree below.

Step 0: Consider the complex with Q in degree 0. The homology of this complex is Q in
degree 0, while we would like it to be R.

Step 1: Fix a minimal generating set f1, . . . , fn for I and add variables x1, . . . , xn of
degree 1 so that ∂(xi) = fi. We write

Q[x1, . . . , xn | ∂(xi) = fi]

to represent the resulting complex, or Q[X1] with X1 = {x1, . . . , xn} for short. This gives us

n⊕
i=1

Q · xi
∂ // Q

1 0

just as we would normally start with when building a resolution for R over Q, but these
xi are elements in a DG algebra, so we need to consider their products as well, which live
in higher degrees. We take these to be exterior variables, so that the only relations among
them are the ones necessary to satisfy the definition of a DG algebra: we have

xixj = −xjxi and x2
i = 0.

4Remember, this was way before the internet!
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The differential on any other element of Q[X1] is now completely determined by linearity
and the Leibniz rule. In fact, Q[X1] is simply the Koszul complex on f1, . . . , fn:

0 // Q · x1 · · ·xn
// · · · //

⊕
i<j

Q · xixj
//

n⊕
i=1

Q · xi
∂ // Q.

So far, we have managed to fix the homology in degree 0 to be R. If H1(Q[X1]) = 0, then in
fact by Theorem 1.21 the koszul complex must be exact, and we have finished constructing
a resolution for R. Otherwise, we proceed to step 2.

Step 2: Fix cycles z1, . . . , zs ∈ Q[X1] of degree 1 such that their homology classes
[z1], . . . , [zs] minimally generate H1(Q[X1]), and add variables xn+1, . . . , xn+s of degree 2
to kill the homology of degree 1, meaning that we set

∂(xn+i) = zi.

We may take these variables of degree 2 to be of one of two kinds: polynomial variables or
divided power variables, with the latter being the choice in Tate’s original construction. Let
us first describe what happens when we take polynomial variables. In this case, there are
no additional relations except for the fact that any two variables of degree 2 commute with
each other and with all variables of degree 1. The differential of the resulting complex is
completely determined by Q-linearity and the Leibniz rule. Setting X2 = {xn1 , . . . , xn+s},
we have

H0(Q[X1, X2]) = R and H1(Q[X1, X2]) = 0.

We then repeat this process in every degree:

Step d: Given sets of variables X1, . . . , Xd−1 such that

H0(Q[X1, X2, . . . , Xd−1]) = R and Hi(Q[X1, X2, . . . , Xd−1]) = 0 for all i < d− 1,

we fix cycles u1, . . . , ut of degree d − 1 in Q[X1, X2, . . . , Xd−1] whose classes in homology
generate Hd−1(Q[X1, X2, . . . , Xd−1]), and add new variables v1, . . . , vt of degree d to kill the
homology in degree d− 1:

∂(vi) = ui.

We set Xd = {v1, . . . , vt} and proceed with Q[X1, X2, . . . , Xd]. Our new variables satisfy
only the relations they must:

• When d is odd, we take the vi to be exterior variables.

• When d is even, we take the vi to be polynomial variables (or divided power variables,
which we will describe below; we choose one or the other for all even degrees at once).

Finally, we set

X :=
⋃
i⩾1

Xi.

The resulting Q[X] is a free resolution of R with a DG algebra structure.
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Following the construction, every cyclic module over a noetherian local ring has a Tate
resolution.

Remark 2.13. We noted in the construction that when I is generated by a regular sequence,
we may stop at step 1, as the Koszul complex is a resolution for R/I. On the other hand, if
the minimal generators for I do not form a regular sequence, by Theorem 1.21 the Koszul
complex is not exact in degree 1, and thus we must add variables of degree 2.

Remark 2.14 (Divided power variables). The disadvantage of polynomial variables is only
visible in prime characteristic. Each time we add a new variable x of even degree, its ripple
effect is felt forever, as all the powers xn are nonzero. This is sometimes an advantage: by
the time we get to fixing the homology in some degree d−1, we might already have elements
of degree d, made out of products of variables of smaller degrees, that turn those cycles into
boundaries. But in prime characteristic p, we might have added new cycles as well: if x has
even degree, the Leibniz rule and a bit of induction give us

∂(xp) = ∂(x)xp−1 + x∂(xp−1) = p∂(x)xp−1 = 0.

To avoid this, in prime characteristic, rather than adding one variable x in even degree, we
add an infinite collection of variables x = x(1) and x(i) for all i ⩾ 1, satisfying the following
rules:

x(i)x(j) =

(
i+ j

i

)
x(i+j) and ∂(x(i+1)) = x(i)∂(x).

Note however that over a field of characteristic 0, this recipe coincides with adding polynomial
variables, as

x(i) =
1

i!
xi.

One sometimes writes S⟨x⟩ for the DG S-algebra obtained by adjoining the divided power
variable x to S, to distinguish it from S[x], obtained by adjoining the polynomial variable x.

Recall that by Cohen’s Structure Theorem [Coh46], every complete noetherian local ring
is a quotient of a regular ring.

Definition 2.15. Let R be a noetherian local ring. A minimal Cohen presentation for
R consists of a regular local ring (Q,m), an ideal I ⊆ m2, and an isomorphism R̂ ∼= Q/I,

where R̂ stands for the completion of R with respect to m.

The minimality condition in our definition of minimal Cohen presentation is the require-
ment that I ⊆ m2.

Exercise 14. Let Q be a regular local ring and f ∈ m. Show that Q/(f) is a regular ring
if and only if f /∈ m2.

Definition 2.16. A ring R is a complete intersection of codimension c if for a minimal
Cohen presentation R̂ ∼= Q/I for R, the ideal I is generated by a regular sequence of length c.
A hypersurface is a complete intersection of codimension 1, meaning there is some nonzero
f ∈ m2

Q such that R̂ ∼= Q/(f).
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One can show that these definitions are independent of the choice of minimal Cohen
presentation.

Definition 2.17. Let (R,m, k) be a noetherian local ring, and fix a minimal Cohen presen-

tation R̂ ∼= Q/I for R.

• A minimal model Q[X] for R is a DG algebra resolution for Q/I over Q, where we
adjoin exterior variables in odd degrees and polynomial variables in even degrees, and
take the smallest number possible of variables in each degree.

• An acyclic closure R⟨Y ⟩ for k is a DG algebra resolution for k over R, where we
adjoin exterior variables in odd degrees and divided power variables in even degrees,
and take the smallest number possible of variables in each degree.

One can show that as long as we add as few variables as possible in each degree, the
number of variables we add in each degree is independent of the choices made.

Remark 2.18. When R is a complete intersection, we have seen in Remark 2.13 that the
minimal model of R is just the Koszul complex on a minimal generating set for I, which is a
minimal free resolution for I. We also noted in Remark 2.13 that when R is not a complete
intersection, we must necessarily add variables of degree 2, and thus the minimal model of R
is necessarily an infinite resolution. Since Q is regular, then R has finite projective dimension
over Q, and thus a minimal model for R cannot be a minimal free resolution.

Example 2.19. Let R = Q be a regular local ring. The maximal ideal m of R is generated
by a regular sequence f , so the acyclic closure of k is simply the Koszul complex on f .

Exercise 15. Let Q = kJx, yK, I = (x2, xy), and R = Q/I.

a) Write the first 3 steps to construct a minimal model for R over Q.

b) Write the first 3 steps to construct an acyclic closure for k over R.

Theorem 2.20 (Gulliksen, 1968 [Gul68], Schoeller, [Sch67], 1967). Let (R,m, k) be a noethe-
rian local ring. An acyclic closure for k is a minimal free resolution for k.

Exercise 16. Let (R,m, k) be any noetherian local ring of dimension d. Show that

βi(k) ⩾

(
d

i

)
.

Just like the Betti numbers count the number of generators in each homological degree,
there is a DG analogue that counts the number of algebra generators we add in each degree.
These are especially important for the acyclic closure of the residue field, given Theorem 2.20.

Definition 2.21. Let (R,m, k) be a noetherian local ring and R⟨Y ⟩ be an acyclic closure of
k. The deviations of R count the number of variables in each degree:

εi(R) := |Yi|.
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Remark 2.22. Given the deviations of a local ring R, we can easily compute the Betti
numbers of k. Let us illustrate this by computing the first few. First, we know that β0(k) = 1.
Moreover, the minimal resolution for k is R⟨Y ⟩, which has the form

· · · //
⊕
y∈Y3

Ry ⊕
⊕
x∈Y1
y∈Y2

Rxy ⊕
⊕

x,y,z∈Y1
all distinct

Rxyz //
⊕
y∈Y2

Ry ⊕
⊕

x,y∈Y1
x ̸=y

Rxy //
⊕
y∈Y1

Ry // R.

Thus

β1(k) = ε1(R) β2(k) = ε2(R) +

(
ε1(R)

2

)
β3(k) = ε3(R) + ε2(R)ε1(R) +

(
ε1(R)

3

)
.

One could easily follow this strategy to find all Betti numbers of k. One noteworthy thing is
that in these formulas for βi(k) in terms of εj(R), all the coefficients on εj(R) are positive.

Theorem 2.23 (Avramov, 1984 [Avr84]). Let (R,m, k) be a noetherian local ring. Fix an
acyclic closure R⟨Y ⟩ for k and a minimal model Q[X] for R. Then for all i ⩾ 2,

εi(R) = |Yi| = |Xi−1|.

The deviations of R are closely related with the Poincaré series of k.

Definition 2.24. Let R be a noetherian local ring and M a finitely generated R-module.
The Poincaré series of M is the power series with integer coefficients given by

PR
M(t) :=

∞∑
d=0

βd(M) td.

Remark 2.25. When M = R/I is a cyclic R-module, then β0(R/I) = 1, and the Poincaré
series of R/I has the form

1 +
∞∑
i=1

bit
i.

Any power series of this form can be written uniquely as a (possibly infinite) product of the
form

1 +
∞∑
i=1

bit
i =

∞∏
i=1

(1 + t2i+1)e2i+1

∞∏
i=1

(1− t2i)e2i

that converges in the (t)-adic topology of ZJtK. This can be shown via a quick induction,
going modulo (tn) for each successive n to find en, which we leave as an exercise.

Now we claim that when we write the Poincaré series of the residue field k in this form,
say

PR
k (t) =

∞∏
i=1

(1 + t2i+1)e2i+1

∞∏
i=1

(1− t2i)e2i
,

these exponents en are precisely the deviations εn(R) of R.
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To see this, let R⟨Y ⟩ be an acyclic closure for k. By Theorem 2.20, this is a minimal free
resolution, so the differential in

k⟨Y ⟩ := R⟨Y ⟩ ⊗R k

vanishes. Note that
k⟨Y ⟩ =

⊗
y∈Y

k⟨y⟩.

Fix a particular variable y ∈ Y . If y has odd degree 2i − 1, then k⟨y⟩ has a copy of k in
degree 0 and another in degree 2i− 1, and nothing else, so

∞∑
n=0

rankk(k⟨y⟩n) · tn = 1 + t2i−1.

If y has even degree 2i, then k⟨y⟩ = k⟨y(i) | i ⩾ 1⟩ has one copy of k in every degree that is
a multiple of 2i, and

∞∑
n=0

rankk(k⟨y⟩n) · tn =
∞∑
ℓ=0

t(2i)ℓ =
1

1− t2i
.

To count the rank of k⟨Y ⟩ in degree n, we need only to count the number of monomials in
the variables of Y of total degree n. Thus

PR
k (t) =

∞∏
i=1

(1 + t2i+1)|Y2i+1|

∞∏
i=1

(1− t2i)|Y2i|
=

∞∏
i=1

(1 + t2i+1)ε2i+1(R)

∞∏
i=1

(1− t2i)ε2i(R)

.

Remark 2.26. Let (R,m, k) be a noetherian local ring and consider its completion R̂ (at
the maximal ideal m). Since completion is flat, we can take a minimal free resolution of k

over R and tensor it with R̂ over R to obtain a free resolution over R̂, which is still minimal.
Thus βR

i (k) = βR̂
i (k) for all i, which given the uniqueness of the product decomposition in

Remark 2.25 gives us that εi(R) = εi(R̂) for all i.

We can now think about deviations in two ways: via the acyclic closure of k or via the
minimal model of R.

Remark 2.27. Let us compute the first few deviations of a noetherian local ring (R,m, k).
By Remark 2.22,

ε1(R) = β1(k) = µ(m) = embdim(R).

By Theorem 2.23, if Q[X] is a minimal model for R with R̂ ∼= Q/I, then

ε2(R) = |X1| = µ(I).

Since Q[X1] is the Koszul complex on a minimal generating set f for I, the number of
variables in X2 is the minimal number of generators for the first Koszul homology on f .
Since the Koszul homology is independent of the choice of minimal generators for I, we
simply write this as H1(I). Thus

ε3(R) = µ(H1(I)).
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Lemma 2.28. Let (R,m, k) be a noetherian local ring. The following are equivalent:

1. R is regular.

2. εn(R) = 0 for all n ⩾ 2.

3. ε2(R) = 0.

Proof. If R is regular, the maximal ideal is generated by a regular sequence, and an acyclic
closure of k is just the Koszul complex on a minimal generating set, so there are no variables
of degree above 1 and εn(R) = 0 for all n ⩾ 2. This shows 1 ⇒ 2, and 2 ⇒ 3 is obvious.

If ε2(R) = 0, then the Koszul complex R⟨Y1⟩ on a minimal generating set for m has
H1(R⟨Y1⟩) = 0, so by Theorem 1.21 it must be exact. Thus m is generated by a regular

sequence, and R is regular. Alternatively, we can see that I = 0 by Remark 2.27, so R̂ ∼= Q
is a regular ring.

The following characterization of complete intersections puts together the work of several
people, showing various conditions are equivalent to being a complete intersection: Assmus
[Ass59] showed the equivalence with (3) and Gulliksen showed the equivalence with condi-
tions (4) [Gul71] and (5) [Gul80]. The last condition, due to Halperin [Hal87], is the most
amazing: as long as one deviation vanishes, then R must be a complete intersection. This
tells us that as long as R is not a complete intersection, then when constructing a minimal
model for R over Q or an acyclic closure for k over R, we must add new variables in every
degree.

Theorem 2.29 (Assmus, 1959 [Ass59], Gulliksen, 1971 [Gul71] and 1980 [Gul80], Halperin,
1987 [Hal87]). Let (R,m, k) be a noetherian local ring. The following are equivalent:

(1) R is a complete intersection.

(2) εn(R) = 0 for all n ⩾ 3.

(3) ε3(R) = 0.

(4) εn(R) = 0 for all n ≫ 0.

(5) ε2n(R) = 0 for all n ≫ 0.

(6) εn(R) = 0 for some n ⩾ 1.

We will use this characterization to prove that the complete intersection property, like
regularity, localizes. The first proof of the Localization Problem for complete intersections
is due to Avramov [Avr77] in 1977. We will give a different proof, due to Gulliksen in
1980, that uses the characterization of complete intersections from above to give yet another
equivalent definition of complete intersection.

Remark 2.30. When (R,m, k) is a complete local ring, the Localization Problem for com-
plete intersections is very easy to prove: it is simply the statement that if I is an ideal
generated by a regular sequence (in a regular ring Q), then so is IP for all primes P ⊇ I.
The real difficulty is in the case when R is not complete: given a prime ideal P in R and a
prime ideal Q of R̂ such that Q ∩ R = P , as noted above it is easy to show that if R̂ is a
quotient of a regular ring by a regular sequence then so is R̂Q, but we actually need to show

that R̂P is also a quotient of a regular ring by a regular sequence.
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To solve the Localization Problem, we will first prove yet another characterization of
complete intersections, using complexity.

Definition 2.31. We say that a finitely generated R-module M has finite complexity if
there is a polynomial f ∈ Z[t] such that

βi(M) ⩽ f(i)

for all i. If no such polynomial exists, we say M has infinite complexity.

We can even give a value to the complexity of a module.

Definition 2.32. Let M be a finitely generated R-module of finite complexity. If M has
finite projective dimension, we say M has complexity 0, and write cx(M) = 0. Otherwise, we
say M has complexity d, and write cx(M) = d, if d−1 is the smallest degree of a polynomial
f with βi(M) ⩽ f(i) for all i.

Remark 2.33. Some authors define the complexity of M to be the least integer d such that
βn(M) ⩽ C · nd−1 for some constant C and all n ≫ 0. This has the advantage that includes
complexity 0 as part of the definition. Also, note that this is equivalent to our definition, as
only the largest power of the polynomial really matters, and when cx(M) > 0 we can always
change the constant C so that the inequality applies to all (not just large) n.

Example 2.34. Complexity 1 means that M has infinite projective dimension but the Betti
numbers are bounded above by a constant. For example, over R = kJxK/(x2), the module k
has complexity 1, as βi(k) = 1 for all i.

Theorem 2.35 (Gulliksen, 1980 [Gul80]). Let (R,m, k) be a noetherian local ring, and let
x ∈ m be a regular element. Let M be any module over R/(x). Then M has finite complexity
over R if and only if M has finite complexity over R/(x).

Proof. Let π : R −→ R/(x) be the canonical projection. There is a well-known change of
rings long exact sequence

· · · // Tor
R/(x)
i−1 (M,k) // TorRi (M,k)

π∗ // Tor
R/(x)
i (M,k) // Tor

R/(x)
i−2 (M,k) // · · ·

The k-vector space dimensions of these Tor-modules are the Betti numbers of M over R and
R/(x), by Exercise 1.

Applying Exercise 17 below with TorRi (M,k) in the middle, we get

βR
i (M) ⩽ β

R/(x)
i (M) + β

R/(x)
i−1 (M).

If M has finite complexity over R/(x), say with the Betti numbers bounded above by a
polynomial f , then we get

βR
i (M) ⩽ f(i) + f(i− 1),

and setting g(i) := f(i) + f(i− 1) gives us a polynomial g of degree deg(f), so M has finite
complexity over R.
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Now suppose M has finite complexity over R, say with βi(M) ⩽ f(i) for all i, with f a

polynomial, and let us we apply Exercise 17 again, but this time with Tor
R/(x)
i (M,k) in the

middle:
β
R/(x)
i (M) ⩽ βR

i (M) + β
R/(x)
i−2 (M).

Repeating this on i− 2, and so on, we get

β
R/(x)
i (M) ⩽ βR

i (M) + βR
i−2(M) + βR

i−4(M) + · · · =
⌊ i
2
⌋∑

j=0

βR
i−2j(M) ⩽

⌊ i
2
⌋∑

j=0

f(i− 2j),

which is a polynomial in i. We conclude that M must also have finite complexity over
R/(x).

Exercise 17. Let k be a field and consider an exact sequence of k-vector spaces A // B // C.
Show that

dimk B ⩽ dimk A+ dimk C.

Notation 2.36. The symbol ⪰ used between two power series with integer coefficients
∞∑
i=0

ai ⪰
∞∑
i=0

bi

indicates a coefficientwise inequality, meaning that ai ⩾ bi for all i.

Theorem 2.37 (Gulliksen, 1980 [Gul80]). Let (R,m, k) be a noetherian local ring. The
following are equivalent:

(1) R is a complete intersection.

(2) Every finitely generated R-module has finite complexity.

(3) The residue field k has finite complexity.

Proof. First, note that for all finitely generated R-modules M , the Betti numbers of M and
M̂ = M ⊗R R̂ coincide: tensoring any minimal free resolution of M over R with R̂ gives a
minimal free resolution of M̂ over R̂. Thus if every R̂-module has finite complexity, then so
does every R-module.

Suppose R is a complete intersection, so that R̂ ∼= Q/I for some regular ring Q and ideal
I generated by a regular sequence f = f1, . . . , fn. Since Q is regular, every finitely generated

R̂-module has finite projective dimension over Q, and thus (finite) complexity zero over Q.

By applying Theorem 2.35 n times, we conclude that every finitely generated R̂-module has
finite complexity. As noted above, this shows that every R-module has finite complexity.
This shows (1) ⇒ (2), and (2) ⇒ (3) is trivial; we will now show (3) ⇒ (1).

Now suppose that k has finite complexity over R. Since βR
i (k) = βR̂

i (k), we may as well
assume that R is complete. Consider the Poincaré series of k, and to simplify notation let
us write εn := εn(R). By Remark 2.25,

PR
k (t) =

∞∏
i=1

(1 + t2i+1)ε2i+1

∞∏
i=1

(1− t2i)ε2i
.
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Suppose that there are least d + 1 distinct such factors (not counting multiplicities) in the
denominator; more precisely, assume that there exist distinct q1, . . . , qd+1 such that

ε2q1 ⩾ 1, · · · , ε2qd+1
⩾ 1.

For all integers a, b ⩾ 1,

1

1− ta
=

∞∑
i=0

tai ⪰
∞∑
i=0

tabi =
1

1− tab
.

Moreover, given two power series of the form

1 +
∞∑
i=1

ait
i

with nonnegative integer coefficients, their product is always coefficientwise bounded below
by 1; this holds even for an infinite product of such power series, as long as the product
converges. Thus setting

N := lcm (2q1, . . . , 2qd+1) .

we conclude that

PR
k (t) ⪰ 1

(1− t2q1) · · · (1− t2qd+1)
⪰ 1

(1− tN)d+1
=

∞∑
i=0

(
i+ d

i

)
tNi.

Suppose that g is a polynomial such that βi(M) ⩽ g(i) for all i. Then in particular,

g(Ni) ⩾ βNi(k) ⩾

(
i+ d

i

)
=

(i+ d) · · · (i+ 1)

d!
⩾

(Ni)d

Ndd!
.

Then g must be a polynomial of degree at least d, so cx(k) ⩾ d + 1. Since cx(k) < ∞,
we conclude that there can only be finitely many distinct factors in the denominator of
PR
k (t), meaning that ε2n(R) = 0 for all n ≫ 0. By Theorem 2.29, R must be a complete

intersection.

We can now use this characterization of complete intersections to give a proof of Avramov’s
result that complete intersections localize; this proof is due to Gulliksen [Gul80].

Exercise 18 (Localization Problem for complete intersections). Let R be a noetherian local
ring and P a prime ideal in R. Show that if R is a complete intersection, then so is RP .

Exercise 19. Show that if R is a complete intersection of codimension c, then every finitely
generated R-module has complexity at most c.

Whenever R is not a complete intersection, the resolutions of modules over R can be
wild; in particular, the resolution of k grows wildly. In the next section, we will study the
resolutions of modules over complete intersections a bit more closely.
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3 Resolutions over complete intersections

While resolutions of modules over complete intersections can be infinite, we can construct
them using a finite set of data.

Definition 3.1 (Systems of higher homotopies). Let (R,m, k) be a noetherian local ring
and let F be a free resolution for the finitely generated R-module M , not necessarily finite.
Let f ∈ annR(M). A system of higher homotopies for f on F is a collection of R-linear
maps σi of degree 2i− 1

σi : F• −→ F•+2i−1

satisfying the following conditions:

σ0 = ∂F σ1σ0 + σ0σ1 = f · idF

n∑
i=0

σiσn−i = 0 for all n ⩾ 2.

For example, here are depictions of σ0, σ1, and σ2:

· · · // F3
σ0 // F2

σ0 //

σ1~~

F1
σ0 //

σ1~~

F0

σ1~~

// 0

· · · // F3 σ0

// F2 σ0

// F1 σ0

// F0
// 0

· · · // F4
// F3

// F2
// F1

σ2

tt

// F0

σ2

tt· · · // F4
// F3

// F2
// F1

// F0

Remark 3.2 (Systems of higher homotopies exist). If fM = 0, then the map f · idF is a
lift of the zero map M −→ M to F . Since any two lifts of the same map on M to F must
be homotopic, we conclude that f · idF must be nullhomotopic. The condition

σ1σ0 + σ0σ1 = f · idF

says that σ1 is a nullhomotopy for f · idF . In particular, we can always choose such a map
σ1. Moreover, n∑

i=0

σiσn−i = 0 ⇐⇒ σn∂ + ∂σn = −
n−1∑
i=1

σiσn−i =: τn

says that σn is a nullhomotopy for τn. Given σ0, . . . , σn−1 satisfying our desired properties
with n ⩾ 2, note that

∂σi = τi − σi∂,

so

∂σiσn−i = τiσn−i − σi∂σn−i = τiσn−i − σi(τn−i − σn−i∂) = τiσn−i − σiτn−i + σiσn−i∂

and

∂τn = −
n−1∑
i=1

∂σiσn−i =
n−1∑
i=1

(σiτn−i − τiσn−i − σiσn−i∂) =
n−1∑
i=1

(σiτn−i − τiσn−i) + τn∂.

Since
n−1∑
i=1

(σiτn−i − τiσn−i) = −
n−1∑
i=1

n−i−1∑
j=1

σiσjσn−i−j +
n−1∑
i=1

n−i−1∑
j=1

σjσn−i−jσn−i = 0

we conclude that ∂τn = τn∂.
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Thus τn is a cycle in HomQ(F, F ), and it has degree 2n− 2 ⩾ 2. On the other hand, the

quasi-isomorphism F
∼=−−→ M induces a quasi-isomorphism HomQ(F, F )

∼=−−→ HomQ(F,M),
so τn corresponds to a cycle of degree 2n− 2 in HomQ(F,M). But F<0 = 0, so HomQ(F,M)
is concentrated in negative degrees, and thus τn must be a boundary in HomQ(F, F ). Thus
there is a nullhomotopy σn of degree 2n− 1 for τn.

Note, however, that there are many choices along the way, so a system of higher homo-
topies exists but is not unique.

Example 3.3. Let Q = kJx, yK and M = Q/(x2, xy), and note that x2 annihilates M . Let
us construct a system of higher homotopies for x2 on the minimal free resolution F for M
over Q we wrote in Example 1.8. First, we take σ0 to be the differential on F . Next, we
construct σ1, which has degree 1:

0 // Q

 y
−x


//

·x2

��

Q2

[
x2 xy

]
//

[
a b

]
��

·x2

��

Q

c
d


��

//

·x2

��

0

0 // Q  y
−x


// Q2 [

x2 xy
] // Q // 0

We must have cx2 + dxy = x2, so we can take c = 1 and d = 0. Moreover, looking at the
images of (1, 0) and (0, 1) in homological degree 1, we need

ay + x2 = x2 and − bx = x2,

so take a = 0 and b = −x, giving us the following σ1:

0 // Q

 y
−x


// Q2

[
x2 xy

]
//

[
0 −x

]
��

Q

1
0


��

// 0

0 // Q  y
−x


// Q2 [

x2 xy
] // Q // 0

Now σ2 would be of degree 3, but F only has length 2, so all the higher homotopies vanish.

Exercise 20. Find a system of higher homotopies for multiplication by xy on the minimal
free resolution F in Example 3.3.

We can use systems of higher homotopies to compute free resolutions for modules over
complete intersections.
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Theorem 3.4 (Shamash, 1969 [Sha69]). Let (Q,m, k) be a noetherian local ring, f ∈ m be
a regular element, and R = Q/(f). Let M be an R-module, and F be a free resolution for
M over Q. Let {σi} be a system of higher homotopies for f on F . Fix symbols x(i) for each
integer i, and set x(0) = 1 and x(i) = 0 whenever i < 0. The following is a free resolution for
M over R:

· · · //
⊕
i⩾0

Rx(i) ⊗Q Fn−2i
∂ //
⊕
i⩾0

Rx(i) ⊗Q Fn−1−2i

n n − 1

with differential

∂
(
x(i) ⊗ u

)
=

i∑
j=0

x(i−j) ⊗ σj(u).

This is known as the Shamash construction.

Exercise 21. Let R = kJx, yK/(x2). Use the Shamash construction to find a resolution for
M = R/(xy) over R.

Remark 3.5. Let Q be a regular local ring of dimension d and take any nonzero element
f ̸= 0. Let M be a finitely generated R-module, where R = Q/(f). Since R is regular,
pdimM ⩽ d. Let F be the minimal free resolution of M over Q:

0 // Fd
// · · · // F1

// F0
// 0.

Let us apply the Shamash construction to F . Note that in even degrees, we only use Fi with
i even, and in odd degrees with we will only use Fi with i odd. The resolution starts with

· · · //
Rx(0) ⊗Q F3

⊕
Rx(1) ⊗Q F1

//
Rx(0) ⊗Q F2

⊕
Rx(1) ⊗Q F0

// Rx(0) ⊗Q F1
∂ // Rx(0) ⊗Q F0

// 0

3 2 1 0

But in high enough degrees (meaning, above degree d), the resolution starts repeating itself.
Let us see this in the case when d = 2a is even:

· · · //

Rx(b+1) ⊗Q F2a

⊕
Rx(b+2) ⊗Q F2a−2

⊕
...
⊕

Rx(b+1+a) ⊗Q F0

//

Rx(b) ⊗Q F2a−1

⊕
Rx(b+1) ⊗Q F2a−3

⊕
...
⊕

Rx(a+b) ⊗Q F1

//

Rx(b) ⊗Q F2a

⊕
Rx(b+1) ⊗Q F2a−2

⊕
...
⊕

Rx(b+a) ⊗Q F0

// · · ·

2a + 2b + 2 2a + 2b + 1 2a + 2b

Note that for any b ⩾ 1 and 0 ⩽ i ⩽ a, and any u ∈ F2a−1−i,

∂(x(b+i) ⊗ u) =
b+i∑
j=0

x(b+i−j) ⊗ σj(u).
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Similarly, for any b ⩾ 1 and 0 ⩽ i ⩽ a, and any u ∈ F2a−i,

∂(x(b+i) ⊗ u) =
b+i∑
j=0

x(b+i−j) ⊗ σj(u).

A very similar calculation shows that when d = 2a + 1, the resolution becomes 2-periodic
above degree d.

Let us call the resolution we obtained via this process G. Now note that this is not
necessarily a minimal free resolution for M over R, but the minimal free resolution for
M does split off as a free summand. Since G is eventually 2-periodic, so is the minimal
resolution.

In fact, we can use this idea to determine finite projective dimension over a hypersurface.

Lemma 3.6. Let Q be a regular local ring and R = Q/(f) with f ̸= 0, and let M be a
finitely generated R-module. Let F be a free resolution of M over Q, and {σi} be a system
of higher homotopies for f on F . Consider the 2-periodic complexes

P := · · · //
⊕
i⩾0

F2i ⊗Q k
∂ //
⊕
i⩾0

F2i+1 ⊗Q k
∂ //
⊕
i⩾0

F2i ⊗Q k // · · ·

with
∂(u⊗ 1) =

∑
j

σj(u)⊗ 1

and

P ∗ := · · · //
⊕
i⩾0

HomQ(F2i, k)
∂ //
⊕
i⩾0

HomQ(F2i+1, k)
∂ //
⊕
i⩾0

HomQ(F2i, k) // · · ·

with

∂ = HomQ

(∑
j

σj, k

)
.

Then pdimR(M) < ∞ if and only if P is exact if and only if P ∗ is exact.

Proof. Let G be the resolution forM over R given by the Shamash construction we described
in Theorem 3.4. By Exercise 1,

βR
i (M) = dimk Tor

R
i (M,k),

so M has finite projective dimension if and only if TorRi (M,k) = 0 for i ≫ 0. Thus we need
only to consider the tail of the complex G⊗R k. We described the tail of G in Remark 3.5,
and it follows immediately from that description that the tail of G ⊗R k is the complex P
above. Similarly, Exercise 1 also says

βR
i (M) = dimk Ext

i
R(M,k),

and the tail of HomQ(G, k) is the complex P ∗ above.
Alternatively, note that P ∗ is the k-linear dual of P , so P is exact if and only if P ∗ is

exact.
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Remark 3.7. Fix any R-module N . Since the resolution of any finitely generated module
M over a hypersurface is eventually 2-periodic, for large enough values of i there are only
two modules Tori(M,N) and ExtiR(M,N): the even and odd ones. Indeed,

ExtiR(M,N) ∼= Exti+2
R (M,N) and TorRi (M,N) ∼= TorRi+2(M,N) for all i ≫ 0.

The proof of Lemma 3.6 says that the homology of the complex P computes the even and
odd stable Tor :

Heven(P ) = TorR2i(M,k) for i ≫ 0 and Hodd(P ) = TorR2i+1(M,k) for i ≫ 0.

Similarly, the complex P ∗ computes stable Ext :

Heven(P
∗) = Ext2iR(M,k) for i ≫ 0 and Hodd(P

∗) = Ext2i+1
R (M,k) for i ≫ 0.

Remark 3.8. Since Q is regular, we can always choose a finite resolution F or M when
constructing the complex P in Lemma 3.6. Suppose that F has length d. After fixing basis
for F1, . . . , Fd, our complex P looks like

· · · // Peven
A // Podd

B // Peven
A // · · · .

Since P is a complex,

rankA ⩽ rank kerB and rankB ⩽ rank kerA

and P is exact if and only if equality holds for both. Note however that by the Rank–Nulity
Theorem, we only need to check equality for one: if Podd has rank N , then

rankA = rank kerB ⇐⇒ N − rank kerA = N − rankB ⇐⇒ rankB = rank kerA.

These ideas were extended by Eisenbud to any complete intersection.

Definition 3.9 (System of higher homotopies: general definition). Let (R,m, k) be a noethe-
rian local ring and let F be a free resolution for the finitely generated R-module M , not
necessarily finite. Let f = f1, . . . , fn ∈ annR(M). Given an n-tuple ω = (ω1, . . . , ωn) ∈ Zn,
set |w| := ω1 + · · · + ωn. A system of higher homotopies for f on F is a collection of
R-linear maps

σω : F• −→ F•+2|ω|−1

where ω = (ω1, . . . , ωn) ∈ Zn with ωi ⩾ 0 for all i and such that σω has degree 2|w| − 1,
satisfying the following conditions:

σ0 = ∂F σeiσ0 + σ0σei = fi · idF

∑
u+v=ω

σuσv = 0 for all |ω| ⩾ 2.

Here 0 denotes the n-vector with all entries 0, and ei the vector with ith coordinate 1 and
all other coordinates 0.

Exercise 22. Let (R,m, k) be a noetherian local ring and let F be a free resolution for the
finitely generated R-module M , not necessarily finite. Let f = f1, . . . , fn ∈ annR(M). Show
that there exists a system of higher homotopies for f on F .



32

If {σω} is a system of higher homotopies for f on F , then the collection {σnei} is a system
of higher homotopies for fi on F . In fact, one can do more:

Exercise 23. Let (R,m, k) be a noetherian local ring and let F be a free resolution for
the finitely generated R-module M , not necessarily finite. Let {σω} is a system of higher
homotopies for f = f1, . . . , fn on F . Show that for all a1, . . . , an ∈ R not all zero, the maps

σi :=
∑
|ω|=i

aω1
1 · · · aωn

n σω

form a system of higher homotopies for a1f1 + · · ·+ anfn on F .

Remark 3.10. Note that following the system of higher homotopies for fa from Exercise 23,
the differential of the 2-periodic complex P from Lemma 3.6 becomes

∂(u⊗ 1) =
∑
ω

σω(u)⊗ aω1
1 · · · aωn

n .

Theorem 3.11 (Eisenbud, 1980 [Eis80]). Let Q be a regular local ring, f = f1, . . . , fc a
regular sequence on Q, and R = Q/(f). Let M be an R-module. Given a free resolution F
for M over Q and a system of higher homotopies {σω} for f on F , one can construct a free
resolution for M over R, as follows:

Consider symbols x
(i)
1 , . . . , x

(i)
c for all integers i and set x

(0)
j = 1 and x

(i)
j = 0 whenever

i < 0. The complex

· · · //
⊕

i1+···+in=d
d⩾0

Rx
(i1)
1 · · ·x(ic)

c ⊗Q Fn−2d
∂ //

⊕
i1+···+in=d

d⩾0

Rx
(i1)
1 · · ·x(ic)

c ⊗Q Fn−1−2i

n n − 1

with differential

∂
(
x
(i1)
1 · · ·x(ic)

c ⊗ u
)
=
∑
ω

x
(i1−ω1)
1 · · ·x(ic−ωc)

c ⊗ σω(u).

is a free resolution for M over R.

We end with a useful note relating systems of higher homotopies with DG algebras.

Exercise 24. Let Q be a regular local ring and R = Q/I with I minimally generated by
f = f1, . . . , fn. Let F be a free resolution of R over Q that has a structure of a DG algebra.
Fix e1, . . . , en ∈ F1 with ∂(ei) = fi. Show that we get a system of higher homotopies {σω}
for f on F by setting

σei(−) = ei · − and σω(u) = 0 for all |ω| ⩾ 2.
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4 Cohomological support varieties

Fix a noetherian local ring R. We will associate to each finitely generated R-module a variety,
called the cohomological support variety of R, that encodes homological information about
M . Cohomological support varieties were first defined and studied by Avramov in the 1980s,
inspired by work of Quillen [Qui71]. Definition 4.2 first appeared in full generality in work
of Jorgensen [Jor02], and the general theory was developed in work of Pollitz [Pol19, Pol21].

Remark 4.1. Let R be a noetherian local ring with minimal Cohen presentation R̂ ∼= Q/I
for some regular local ring (Q,m, k). Note that I/mI is a k-vector space of dimension
n = µ(I), which we will identify with An

k . A choice of coordinates for An
k corresponds to a

choice of basis for kn, and thus to a choice of minimal generating set f = f1, . . . , fn for I.
We will write [f ] := f +mI for the class of f ∈ I in I/mI.

Any R-module M is also a module over Q/(f) for any f ∈ I, since fM = 0.

Definition 4.2 (Cohomological support varieties). Let (R,m, k) be a noetherian local ring

and let M be a finitely generated R-module. Let R̂ ∼= Q/I be a minimal Cohen presentation.
The cohomological support variety of M is given by

VR(M) := {[f ] ∈ I/mI | [f ] = 0 or pdimQ/(f)(M̂) = ∞}.

It is not clear from the definition above that this is in fact a variety; we will prove this
later in Theorem 4.10. It is also not clear that this is well-defined, meaning that it does not
depend on the choice of representative f for [f ], nor that the definition does not depend on
the choice of minimal Cohen presentation, but we will skip such details.

One can extend the definition more generally to complexes; in fact, one can talk about
cohomological support varieties of elements of the bounded derived category of R. We will
however not discuss such level of generality in these lectures.

Remark 4.3. Suppose that [f ] and [g] are two points on the same line through the origin,
but not the origin, so we can assume that g = λf for some unit λ ∈ Q. Then (f) = (g), so
[f ] ∈ VR(M) if and only if [g] ∈ VR(M). Note moreover that [0] ∈ VR(M) by definition.
This shows that VR(M) is a union of lines through the origin. Adding to this the fact that
VR(M) is an affine variety, we conclude that it is in fact the affine cone of a projective
variety. However, there are advantages to considering VR(M) as an affine variety instead of
the appropriate projective version, which will unfortunately not be evident in these lectures.

Remark 4.4. Fix a minimal generating set f = f1, . . . , fn for I. For each a ∈ k, write ã for
a lift of a to Q. For each a ∈ An

k , let fa := ã1f1 + · · · + ãnfn, where ãi for a lift of ai to Q.
We can rewrite the definition of VR(M) as

VR(M) = {a ∈ An
k | a = 0 or pdimQ/(fa)(M̂) = ∞}.

Before we prove that VR(M) is in fact a variety, and talk about how to compute it, let
us look at some examples.
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Example 4.5. Let R be a noetherian local ring with minimal Cohen presentation R̂ ∼= Q/I,
where (Q,m, k) is a regular local ring and I ⊆ m2. Assume n := µ(I) ⩾ 1. For every minimal
generator f ∈ I∖mI, by Exercise 14 the ring Q/(f) is not regular, and thus pdimQ/(f) k = ∞
by Auslander–Buchsbaum–Serre (Theorem 1.11). We conclude that

VR(k) = An
k .

Definition 4.6. Let R be a noetherian local ring with minimal Cohen presentation R̂ ∼= Q/I,
where (Q,m, k) is a regular local ring and I ⊆ m2. Let n := µ(I). Whenever VR(M) = An

k ,
we say that M has full support.

Example 4.7. Suppose that R is a complete intersection. Any minimal generator f ∈ I∖mI
can be completed to a minimal generating set f = f, f2, . . . , fn for I, and f is necessarily a
regular sequence. In particular, the sequence f2, . . . , fn is regular on Q/(f), so when we view

R̂ as a module over Q/(f), the Koszul complex on f2, . . . , fn is a minimal free resolution for

R. In particular, pdimQ/(f) R̂ < ∞, and we conclude that VR(R) = {0}.

In fact, this characterizes complete intersections, though the converse is a deep theorem.

Theorem 4.8 (Pollitz, 2019 [Pol19]). A noetherian local ring R is a complete intersection
if and only if VR(R) = {0}.

Pollitz then used this characterization to answer a question of Dwyer, Greenlees, and
Iyengar about the structure of the derived category of a noetherian local ring [DGI06].
He also used this theorem to give a new conceptual proof of the Localization Problem for
complete intersections [Pol19].

We will now show that cohomological support varieties are indeed varieties. We will in
fact provide an algorithm for computing VR(M) for any R-module M . The theorem below
is [AB00, Theorem 3.2] when R is a complete intersection, but it holds in full generality.
First, some notation:

Definition 4.9. Let M be matrix with entries in a ring R. We write It(M) for the ideal of
R generated by all the t-minors of M .

Before we state the theorem, we record a useful fact:

Exercise 25. Let (Q,m) be a regular local ring, I ⊆ m a nonzero ideal of Q, R = Q/I, and
let M be a finitely generated R-module. Show that for any finite free resolution F for M
over Q, ∑

i⩾0

rankF2i =
∑
i⩾0

rankF2i+1.
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Theorem 4.10. Let R is be a noetherian local ring, and let R̂ ∼= Q/I be a minimal Cohen
presentation for R, meaning that (Q,m, k) is a regular local ring and I ⊆ m2. Suppose I
is minimally generated by f = f1, . . . , fn. For any R-module M , the cohomological support
VR(M) is indeed a variety. In fact we can describe this variety explicitly:

Fix a finite free resolution F for M̂ over Q with Fi = 0 for all i ⩾ 2d+ 1, and a system
of higher homotopies {σω} for f on F . Consider a polynomial ring S = k[χ1, . . . , χn] in

n variables. Fix bases for each F ∗
i := HomQ(Fi, k), and let σ

(i)
ω be the matrix representing

HomQ(σω, k) : HomQ(Fi, k) −→ HomQ(Fi+2|ω|−1, k) in the chosen bases. Finally, set

σj
i :=

∑
2|ω|−1=j−i

χω1
1 · · ·χωn

n σ(i)
ω

for all i = 0, . . . , 2d. Let N :=
d∑

i=0

rankF2i, and consider the following (2N)× (2N) matrix:

C =

F∗
0 F∗

1 F∗
2 · · · F∗

2d−1 F∗
2d

F∗
0 0 σ0

1 0 · · · 0 0

F∗
1 σ1

0 0 σ1
2 0 0

F∗
2 0 σ2

1 0 0 0

· · ·
...

. . .
...

...

F∗
2d−2 0 σ2d−2

1 0 · · · σ2d−2
2d−1 0

F∗
2d−1 σ2d−1

0 0 σ2d−1
2 · · · 0 σ2d−1

2d

F∗
2d 0 σ2d

1 0 · · · σ2d
2d−1 0

.

Then VR(M) is the variety defined by the vanishing of the ideal IN(C) of N-minors of C.

Proof. First, consider the following two matrices:

F∗
0 F∗

2 F∗
4 · · · F∗

2d

F∗
1 σ1

0 σ1
2 0 · · · 0

F∗
3 σ3

0 σ1
2 σ3

4 0

· · ·
...

. . .
...

F∗
2d−3 σ2d−3

0 σ2d−3
2 σ2d−3

4 · · · 0

F∗
2d−1 σ2d−1

0 σ2d−1
2 σ2d−3

4 · · · σ2d−1
2d

A(χ)

F∗
1 F∗

3 F∗
5 · · · F∗

2d−1

F∗
1 σ1

0 σ1
2 0 · · · 0

F∗
3 σ3

0 σ1
2 σ3

4 0

· · ·
...

. . .
...

F∗
2d−3 σ2d−3

0 σ2d−3
2 σ2d−3

4 · · · 0

F∗
2d−1 σ2d−1

0 σ2d−1
2 σ2d−3

4 · · · σ2d−1
2d

B(χ)

Fix 0 ̸= a ∈ An
k , and fa := ã1f1 + · · · ãnfn, where ãi is a lift of ai to Q. By Exercise 23,

the maps

σi :=
∑
|ω|=i

aω1
1 · · · aωn

n σω

are a system of higher homotopies for fa on F .
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Moreover, by Lemma 3.6, pdimQ/(fa)(M̂) < ∞ if and only if the 2-periodic complex

P∗
a := · · · //

⊕
i⩾0

HomQ(F2i, k)
∂ //
⊕
i⩾0

HomQ(F2i+1, k)
∂ //
⊕
i⩾0

HomQ(F2i, k) // · · ·

with differential

∂ = HomQ

(∑
ω

aω1
1 · · · aωn

n σω, k

)
is exact. Thus a ∈ VR(M) if and only if P∗

a is not exact. To simplify the notation, write

Peven
a :=

⊕
i⩾0

HomQ(F2i, k) and Podd
a :=

⊕
i⩾0

HomQ(F2i+1, k).

Note that P∗
a is in fact given by

P∗
a = · · · B(a) // Peven

a

A(a) // Podd
a

B(a) // Peven
a

A(a) // · · ·

where A(a) and B(a) are obtained by setting χi = ai in A(χ) and B(χ).
Now let us go back to the matrix C in the statement, and note that after reordering the

rows and columns

C =

[
0 B
A 0

]
.

Note moreover that

C2 =

[
BA 0
0 AB

]
= 0,

and thus nonexactness of P∗
a is equivalent to nonexactness of

· · · C(a) // Peven ⊕ Podd
C(a) // Peven ⊕ Podd

C(a) // Peven ⊕ Podd
C(a) // · · ·

or equivalently of the differential module determined by C(a).
Any matrix C of size (2N)×(2N) satisfying C2 = 0 has rank at mostN , and C determines

an exact complex precisely when it has rank N . Thus

a ∈ VR(M) ⇐⇒ P∗
a is not exact ⇐⇒ rankC(a) < N.

The space of such a is determined by the vanishing of the N ×N minors of C.

Remark 4.11. The proof of Theorem 4.10 gives us an alternative way to think of VR(M),
as the support of the 2-periodic complex corresponding to the matrices

F∗
0 F∗

2 F∗
4 · · · F∗

2d

F∗
1 σ1

0 σ1
2 0 · · · 0

F∗
3 σ3

0 σ1
2 σ3

4 0

· · ·
...

. . .
...

F∗
2d−3 σ2d−3

0 σ2d−3
2 σ2d−3

4 · · · 0

F∗
2d−1 σ2d−1

0 σ2d−1
2 σ2d−3

4 · · · σ2d−1
2d

A(χ)

F∗
1 F∗

3 F∗
5 · · · F∗

2d−1

F∗
1 σ1

0 σ1
2 0 · · · 0

F∗
3 σ3

0 σ1
2 σ3

4 0

· · ·
...

. . .
...

F∗
2d−3 σ2d−3

0 σ2d−3
2 σ2d−3

4 · · · 0

F∗
2d−1 σ2d−1

0 σ2d−1
2 σ2d−3

4 · · · σ2d−1
2d

B(χ)
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We now take Theorem 4.10 as a recipe for computing VR(M).

Example 4.12. Let Q = kJx, yK, I = (x2, xy), and R = Q/I, and let us find VR(R). From
Example 1.8, Example 3.3, and Exercise 20, we take

0 // Q

 y
−x


//

·x2

��

Q2

[
x2 xy

]
//

[
0 −x

]
��

·x2

��

Q

1
0


��

//

·x2

��

0

0 // Q // Q2 // Q // 0

σ(1,0)

0 // Q

 y
−x


//

·x2

��

Q2

[
x2 xy

]
//

[
x 0

]
��

·x2

��

Q

0
1


��

//

·x2

��

0

0 // Q // Q2 // Q // 0

σ(0,1)

Since our resolution has length 2, there are no other higher homotopies.
Now let us write the 2-periodic complex P we described in Theorem 4.10. Write e1, e2 for

the two basis elements in F1 with ∂(e1) = x2 and ∂(e2) = xy, and let v be the basis element
for F2, so that ∂(v) = ye1 − xe2. Note that when we tensor down to k, we keep only units.
In particular, since we picked F to be minimal, the differential will disappear, and only the
units in our homotopies will survive.

Using the notation of the proof of Theorem 4.10, we have Peven = k2 and Podd = k2, and
our two generic matrices are

e1 e2

1 0 0

v 0 0

1 v

e1 χ1 0

e2 χ2 0

In this case, it is clear that the complex is never exact, and thus VR(R) has full support.
Alternatively, one might write the matrix C from the statement of Theorem 4.10:

C =

1 e1 e2 v

1 0 0 0 0

e1 χ1 0 0 0

e2 χ2 0 0 0

v 0 0 0 0

and note that C has rank 1, so its 2 × 2 minors vanish. Thus VR(M) is the variety corre-
sponding to (0), and M has full support.

The following exercise will soon be helpful:

Exercise 26. Let (Q,m) be a regular local ring and F be a complex of finitely generated
free Q-modules, not necessarily bounded on either side. Show that F is exact if and only if
F ⊗Q Q/m is exact.

We will now describe cohomological support varieties over complete intersections in a
more compact format, which will in fact recover Avramov’s original definition:
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Remark 4.13. Let k be an algebraically closed field. Let R = Q/(f) where (Q,m, k) is a
regular local ring and f = f1, . . . , fc is a regular sequence. Consider the polynomial ring
S = k[χ1, . . . , χc], which we give the grading where each variable χi has degree −2.5 This
ring S is known as the ring of cohomological operators or ring of Eisenbud operators.
Let F be any finite free resolution of M over Q, and consider Eisenbud’s recipe for a free
resolution over R given in Theorem 3.11:

G = · · · //
⊕

i1+···+in=d
d⩾0

Rx
(i1)
1 · · ·x(ic)

c ⊗QFn−2d
∂ //

⊕
i1+···+in=d

d⩾0

Rx
(i1)
1 · · ·x(ic)

c ⊗QFn−1−2d
// · · ·

n n − 1

with differential

∂
(
x
(i1)
1 · · ·x(ic)

c ⊗ u
)
=
∑
ω

x
(i1−ω1)
1 · · ·x(ic−ωc)

c ⊗ σω(u).

Set x(d) = 0 for d < 0 and x(0) = 1, and define

χi · x(j1)
1 · · ·x(jc)

c := x
(j1)
1 · · ·x(ji−1)

i−1 x
(ji−1)
i x

(ji+1)
i+1 · · ·x(ic)

c .

One can easily check that the action of χi and χj commute with each other, and χi∂ = ∂χi,
so this gives G the structure of a graded module over S.

On the other hand, the homology of the complex HomR(G, k) computes

Ext∗R(M,k) =
⊕
i⩾0

ExtiR(M,k).

so we get an induced graded S-module structure on Ext∗R(M,k) with

χi : Ext
i
R(M,k) −→ Exti+2

R (M,k).

Note that the graded module underlying HomR(G, k) is a finitely generated free graded
S-module, and thus Ext∗R(M,k) is finitely generated over S.

The 2-periodic complex obtained from HomR(G, k) by taking the even and odd parts

· · · //
⊕
i⩾0

HomQ(F2i, k)⊗k S //
⊕
i⩾0

HomQ(F2i+1, k)⊗k S // · · ·

is a 2-periodic complex of free S-modules, and in fact it is precisely the complex determined
by the two matrices A(χ) and B(χ) from Theorem 4.10.

Moreover, the 2-periodic complex obtained from

HomR(G, k)⊗S S/(χ1 − a1, . . . , χc − ac)

is the 2-periodic complex P∗
a given by the matrices A(a) and B(a) obtained from A(χ) and

B(χ) by setting χi = ai, as in the proof of Theorem 4.10.

5As Avramov wisely pointed out in [Avr10], “This will not be surprising, once the χi’s reveal their
cohomological nature.”
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Thus VR(M) = {a ∈ Ac
k | HomR(G, k)⊗S S/(χ1 − a1, . . . , χc − ac) is not exact}.

Fix a ∈ Ac
k and let m = (χ1 − a1, . . . , χc − ac). Note that

HomR(G, k)⊗S S/m ∼= HomR(G, k)m ⊗Sm Sm/mm.

By Exercise 26,

HomR(G, k)⊗S S/m is exact ⇐⇒ HomR(G, k)m is exact.

Since HomR(G, k) computes Ext∗R(M,k), we conclude that

a /∈ VR(M) ⇐⇒ HomR(G, k)⊗S S/m is exact ⇐⇒ Ext∗R(M,k)m = 0.

Therefore,
a ∈ VR(M) ⇐⇒ (χ1 − a1, . . . , χc − ac) ∈ SuppS Ext

∗
R(M,k).

By Nullstellensatz, we conclude that√
annS Ext

∗
R(M,k) =

⋂
a∈VR(M)

(χ1 − a1, . . . , χc − ac).

Thus the radical ideal in k[χ1, . . . , χn] defining the variety VR(M) determines the support of
Ext∗R(M,k). This explains the words cohomological and support in the name cohomological
support varieties.

It is a well-known fact from dimension theory (see, for example, [Mat89, Theorem 13.4])
that the dimension of a finitely generated graded module is the rate at which the rank of
the graded pieces grow. We have shown that dimVR(M) is the dimension of the graded
S-module Ext∗R(M,k). Thus when R is a complete intersection (see [AB00])

cxR(M) = dimVR(M).

Avramov and Buchweitz used cohomological support varieties to show the following sur-
prising fact:

Theorem 4.14 (Avramov–Buchweitz, 2000 [AB00]). Let R be a local complete intersection,
and let M and N be finitely generated R-modules. Then

ExtiR(M,N) = 0 for all i ≫ 0 ⇐⇒ ExtiR(M,N) = 0 for all i ≫ 0.

Their proof amounts to showing that the condition

ExtiR(M,N) = 0 for all i ≫ 0

is equivalent to VR(M) ∩ VR(N) = {0}. The theorem then follows immediately.

Remark 4.15. More generally, when R is not a complete intersection, one can still recast
VR(M) as the support of a certain Ext-module; this is the definition most commonly used
by experts. Taking E to be the Koszul complex on a minimal generating set for I, where
R = Q/I and Q is a regular local ring, there is an action of the ring of cohomological
operators S = k[χ1, . . . , χn] on Ext∗E(M,k) making it a finitely generated S-module, and

VR(M) = SuppS Ext
∗
E(M,k).

Though in this generality, VR(M) no longer measures the complexity of M over R, but
rather its complexity over E.
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Problem 4.16. Which subvarieties V ⊆ An
k can be realized as the cohomological support

variety VR(M) = V for some R-module M?

One obvious requirement is that V needs to a conical variety, meaning it must be a
union of lines through the origin. When R is a complete intersection, there are no other
requirements. This was showed in an unpublished preprint of Avramov and Jorgensen, and
independently (and via different methods) by Bergh [Ber07]. Avramov and Iyengar later
gave a method for constructing modules with any prescribed support [AI07].

Theorem 4.17 (Bergh, 2007 [Ber07], Avramov–Jorgensen, Avramov–Iyengar, [AI07]). Let
Q be a regular local ring and I be an ideal in Q generated by a regular sequence of length n.
Any conical variety V ⊆ An

k can be realized as V = VR(M) for some R-module M .

In fact, Bergh proved that one can realize any variety with a maximal Cohen-Macaulay
module.

But when R is not a complete intersection, some varieties cannot be realized.

Definition 4.18. Let R be a noetherian local ring. The complete intersection defect of
R, written cid(R), is defined as

cid(R) := ε2(R)− ε1(R) + depth(R).

Exercise 27. Let R be a noetherian local ring and let R̂ ∼= Q/I be a minimal Cohen
presentation for R. Show that

cid(R) = µ(I)− height(I).

This explains the name: a ring R is a complete intersection if and only if cid(R) = 0,

and in general cid(R) measures how far the defining ideal I of R̂ is from being generated by
a regular sequence. The advantage of the first definition we gave is that it does not require
choosing a minimal Cohen presentation for R.

Theorem 4.19 (Briggs–G–Pollitz, 2024 [BGP24]). Let R be a Cohen-Macaulay local ring.
If R is not a complete intersection, then for every R-module M

dimVR(M) > cid(R).

Note that in particular, there are no modules with trivial support VR(M) = {0}, but
even more: there are no modules whose support is a line.

Theorem 4.20 (Briggs–G–Pollitz [BGP25]). Let R be a noetherian local ring with minimal

Cohen presentation R̂ ∼= Q/I, where I ⊆ m2. If I is generated a monomials on some regular
sequence x1, . . . , xd of R, and R is not a complete intersection, then for every R-module M

dim (VR(M)) ⩾ cid(R).

The question of whether this holds more generally for any noetherian local ring that is
not a complete intersection remains open.
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Example 4.21. Consider Q = kJx, y, z, wK, I = (x2, xy, yz, zw,w2), and R = Q/I. This
ring is not Cohen-Macaulay ring and it has complete intersection defect 2. Theorem 4.20 says
that dimVR(M) ⩾ 2 for all nonzero complexes M with finitely generated homology. One can
easily find M with dimVR(M) = 3, such as the cyclic module M = R/(y, z). Indeed, one
can compute directly, or apply [BGP22, Lemma 2.6], to see that the cohomological support
variety of M is a 3-dimensional hyperplane. We do not know if there is an R-complex with
finitely generated homology that has a 2-dimensional cohomological support variety.
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[BG21] Adam Boocher and Elóısa Grifo. Lower bounds on Betti numbers. In Commutative
algebra, pages 77–111. Springer, Cham, [2021] ©2021.

[BS18] Adam Boocher and James Seiner. Lower bounds for betti numbers of monomial
ideals. Journal of Algebra, 508:445–460, 2018.

[BW20] Adam Boocher and Derrick Wigglesworth. Large lower bounds for the betti numbers
of graded modules with low regularity. Collectanea Mathematica, pages 1–18, 2020.
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