
Symbolic powers
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Warning!

These notes are under construction; several other chapters are planned, but not ready yet,
and unfortunately this version is not typo-free. These started as the course notes for a topics
course on symbolic powers I taught in Spring 2022 at the University of Nebraska-Lincoln.
Please let me know if you find any typos or errors, no matter how small.

Assumptions

Throughout, all rings are commutative with identity. Moreover, we will almost always assume
our rings are Noetherian, so we settle on the convention that rings are Noetherian unless we
say otherwise.

We will assume the reader has some knowledge of elementary commutative algebra, as in
[AM69], [Mat80], [Mat89], [BH93], or [Eis95]. Any elementary commutative algebra details
or proofs we skip can be found in the references above.
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Chapter 1

Primary Decomposition

One of the first theorems one learns in abstract algebra is the Fundamental Theorem of
Arithmetic:

Theorem 1.1. Every integer can be written as a product of primes, which is unique up
to sign and the order of the factors. More precisely, for every n ∈ Z there exist primes
p1, . . . , pk ∈ Z and integers a1, . . . , ak > 0 such that

n = ± pa11 · · · pakk .

Under the philosophy that general rings are modeled after the integers, we might expect
such a theorem in any ring. But what would a general version of this theorem look like? A
first guess would perhaps be that every element in any reasonable ring should be a product
of irreducible elements, unique up to the order of the factors and up to multiplication by a
unit. But this fails easily.

Example 1.2. In Z[
√
−5],

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

are two different ways to write 6 as a product of irreducible elements: there is no way to
obtain 2 or 3 from 1 +

√
−5 or 1−

√
−5 by multiplying by a unit.

The problem here is that we are focusing on elements when we ought to focus on ideals.
Instead of writing elements as products of irreducibles, we will write ideals in terms of
primary ideals. We will see how to this will in particular fix the example above.

But before we discuss primary decomposition, we will need to recall some elementary
facts about minimal primes and associated primes; this chapter is meant as a summary of
things the reader is expected to have seen before. The details and proofs we skip can be
found in any standard introduction to commutative algebra, such as [Eis95], [AM69], or
[BH93].
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1.1 Minimal primes

Definition 1.3. Given a ring R, the set of prime ideals in R is denoted Spec(R), and called
the spectrum of R. Given an ideal I, the set of all primes that contain I is denoted V (I).

Definition 1.4. Let I be an ideal in a ring R. A minimal prime of I is a minimal element
(with respect to containment) in V (I). More precisely, P is a minimal prime of I if the
following hold:

• P is a prime ideal,

• P ⊇ I, and

• if Q is also a prime ideal and I ⊆ Q ⊆ P , then Q = P .

The set of minimal primes of I is denoted Min(I).

Note that the minimal primes of an ideal I are always incomparable: if P and Q are two
distinct minimal primes of I, then P ⊈ Q and Q ⊈ P .

Example 1.5. Let k be a field and R = k[x, y]. Every prime containing I = (x2, xy) must
contain x2, and thus x. On the other hand, (x) is a prime ideal containing I. Therefore, I
has a unique minimal prime, and Min(I) = {(x)}.

Remark 1.6. If p is prime, then Min(p) = {p}.

Minimal primes are closely associated to radicals.

Definition 1.7. The radical of an ideal I in a ring R is the ideal

√
I := {f ∈ R | fn ∈ I for some n}.

An ideal is a radical ideal if I =
√
I.

Macaulay2. Given an ideal I, radical I returns the radical of I.

Example 1.8. Prime ideals are radical.

Example 1.9. The ideal I = (x2, xy) in the ring R = k[x, y] from Example 1.5 is not radical,
since it contains x2 but not x.

Theorem 1.10. Let R be a ring, and I be an ideal. Then

√
I =

⋂
P∈V (I)

P =
⋂

P∈Min(I)

P.

Example 1.11. The radical of the ideal I = (x2, xy) in the ring R = k[x, y] from Example 1.5
is
√
I = (x). We saw before that Min(I) = {(x)}.

Example 1.12. In R = k[x, y, z], the ideal I = (xy, xz) = (x) ∩ (y, z) is radical, and its
minimal primes are (x) and (y, z).
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Over a noetherian ring, we can realize every radical ideal as the intersection of finitely
many primes.

Theorem 1.13. Over any noetherian ring, any ideal I has finitely many minimal primes,
and thus

√
I is a finite intersection of primes.

Macaulay2. The method minimalPrimes receives an ideal and returns a list of its minimal
primes.

Example 1.14. The nilpotent elements of a ring R are exactly the elements in the radical of
(0). By Theorem 1.10,

√
(0) is the intersection of the minimal primes of (0), or equivalently,

the intersection of the minimal elements among all the primes in R. The radical of (0) is
often called the nilradical of R, denoted N (R).

Example 1.15. Let k be a field. The nilradical of R = k[x, y]/(x2, xy) corresponds to the
radical of (x2, xy) in k[x, y], so it is the ideal (x)/(x2, xy).

Remark 1.16. Since I ⊆
√
I, any prime containing

√
I must also contain I. On the other

hand, if P is a prime containing I, and f ∈
√
I, then for some n we have fn ∈ I ⊆ P ,

and since P is prime we must have f ∈ P . This shows that V (I) = V (
√
I), and therefore

Min(I) = Min(
√
I).

Lemma 1.17. If Min(I) = {P1, . . . , Pn}, no Pi can be deleted in the intersection P1∩· · ·∩Pn.

Proof. Suppose that we can delete Pi, meaning that
n⋂

j=1

Pj =
⋂
j ̸=i

Pj.

Then

Pi ⊇
n⋂

j=1

Pj =
⋂
j ̸=i

Pj ⊇
∏
j ̸=i

Pj.

Since Pi is prime, this implies that Pi ⊇ Pj for some j ̸= i, but this contradicts the assumption
that the primes are incomparable.

Lemma 1.18. Let I be an ideal in R. If I = P1 ∩ · · · ∩ Pn where each Pi is prime and
Pi ̸⊆ Pj for each i ̸= j, then Min(I) = {P1, . . . , Pn}. Moreover, I must be radical.

Proof. If Q is a prime containing I, then Q ⊇ (P1∩· · ·∩Pn). We claim that Q must contain
one of the Pi. Indeed, if Q ̸⊇ Pi for all i, then there are elements fi ∈ Pi such that fi /∈ Q,
so their product satisfies f1 · · · fn ∈ (P1∩ · · · ∩Pn) but f1 · · · fn /∈ Q. This is a contradiction,
so indeed any prime containing I must contain some Pi. Therefore, any minimal prime of I
must be one of the Pi. Since we assumed that the Pi are incomparable, these are exactly all
the minimal primes of I.

By assumption, I coincides with the intersection of its minimal primes, and by Theo-
rem 1.10 this intersection is

√
I. Therefore, I =

√
I.

Remark 1.19. If I = P1 ∩ · · · ∩ Pn for some primes Pi, we can always delete unnecessary
components until no component can be deleted. Therefore, Min(I) ⊆ {P1, . . . , Pn}.

As a consequence of Lemma 1.17 and Lemma 1.18, if I is a radical ideal, there is a unique
way to write I as a finite intersection of incomparable prime ideals. Moreover, any ideal that
can be written as a finite intersection of prime ideals is radical.



5

1.2 Localization

Definition 1.20. A multiplicative closed setW in a ring R is a subsetW ⊆ R containing
1 and closed for products, meaning a, b ∈ W =⇒ ab ∈ W .

Given a multiplicative closed subset W , we can form a new ring, the localization of R
at W , which is a ring with elements

W−1R :=
{ r
w

∣∣∣ r ∈ R,w ∈ W
}
/ ∼

where ∼ is the equivalence relation

r

w
∼ r′

w′ if there exists u ∈ W : u(rw′ − r′w) = 0.

The operations are given by

r

v
+
s

w
=
rw + sv

vw
and

r

v

s

w
=

rs

vw
.

We write elements in W−1R in the form r
w
, though they are equivalence classes of such

expressions. The zero in W−1R is 0
1
and the identity is 1

1
. There is a canonical ring homo-

morphism

R //W−1R

r � // r
1

.

We can also localize modules. Given a module M , the localization of M at W is a
module over the ring W−1R, given by

W−1M :=
{m
w

∣∣∣ m ∈M,w ∈ W
}
/ ∼

where ∼ is the equivalence relation
m

w
∼ m′

w′ if u(mw′ − m′w) = 0 for some u ∈ W . The

operations are given by

m

v
+
n

w
=
mw + nv

vw
and

r

v

m

w
=
rm

vw
.

Remark 1.21. If α :M → N is an R-module homomorphism, then there is aW−1R-module
homomorphism W−1α : W−1M → W−1N given by the rule W−1α(m

w
) = α(m)

w
.

One thing to keep in mind is that things might unexpectedly become zero in a localization.
Moreover, if R is not a domain, the canonical map R → W−1R is not necessarily injective.

Example 1.22. Consider R = k[x, y]/(xy). The canonical maps R −→ R(x) and R −→ Ry

are not injective, since in both cases y is invertible in the localization, and thus

x 7→ x

1
=
xy

y
=

0

y
=

0

1
.
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Definition 1.23. The annihilator of an R-module M is the ideal

ann(M) := {r ∈ R | rm = 0 for all m ∈M}.

Given ideals I and J in R, the colon of I and J is the ideal

(J : I) := {r ∈ R | rI ⊆ J}.

More generally, if M and N are submodules of some R-module A, the colon of N and M is

(N :R M) := {r ∈ R | rM ⊆ N}.

The annihilator of M is an ideal in R, and ann(M) = (0 :R M). Moreover, any colon
(N :R M) is an ideal in R.

Macaulay2. The methods ann and annihilator are equivalent, and both receive a module
M or an element f in a module M and returns ann(M) or ann(f). Given two R-modules M
and N or two ideals I and J in R, M : N and I : J return the corresponding colon ideals.

Remark 1.24. Given ideals I and J in R, (I : J) = R if and only if J ⊆ I. Moreover, note
that we always have (I : J) ⊇ I.

Lemma 1.25. Given an R-module M ,

m

w
∈ W−1M is zero ⇐⇒ vm = 0 for some v ∈ W ⇐⇒ annR(m) ∩W ̸= ∅.

Proof. For the first equivalence, we use the equivalence relation defining W−1R to note that
m
w

= 0
1
in W−1M if and only if there exists some v ∈ W such that 0 = v(1m − 0w) = vm.

The second equivalence just comes from the definition of the annihilator.

Remark 1.26. As a corollary to Lemma 1.25, we obtain that ifW is a multiplicatively closed
set in R and W does not contain any zerodivisors, then the localization map R → W−1R is
injective, since no element in W can be in the annihilator of a nonzero element.

Notation 1.27. Let f : R → S be a ring homomorphism. Given an ideal I in R, the
expansion of I to S is the ideal of S generated by f(I), and we denote it by IS. Given an
ideal J of S, the contraction of J to R is the preimage of J via f , which we denote by J ∩R:

J ∩R := f−1(J) = {r ∈ R | f(r) ∈ J} .

There is much to say about expansion and contraction of ideals, the details of which can
be found in any standard commutative algebra reference such as [Mat89] or [AM69]. Later
on, it it will be helpful to know the following facts:

• For any ideals I in R and J in S, we have (IS ∩R)S = IS and (J ∩R)S ∩R = J ∩R.

• The contraction of a prime ideal is prime.

• The expansion of a prime ideal might fail to be prime.

• A prime ideal P in R is the contraction of a prime in S if and only if PS ∩R = P .
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We will see contractions of ideals most often when talking about localizations. Given a
multiplicatively closed set W in a ring R and an ideal I in W−1R, we write I ∩ R for the
contraction of I into R, which is the preimage of I in R via the canonical map R → W−1R.
More precisely,

I ∩R =
{
r ∈ R

∣∣∣ r
1
∈ I
}
.

Theorem 1.28. Let R be a ring and W be a multiplicatively closed set in R.

a) If I is an ideal in R, then W−1I ∩R = {r ∈ R | wr ∈ I for some w ∈ W}.

b) If J is an ideal in W−1R, then W−1(J ∩R) = J .

c) If P is a prime ideal and W ∩ P = ∅, then W−1P = P (W−1R) is prime.

d) The set of prime ideals in W−1R is in bijection with

{P ∈ Spec(R) | P ∩W = ∅}.

Theorem 1.29. Localization is exact: given a short exact sequence of R-modules

0 // A // B // C // 0

and a multiplicative set W , the sequence

0 //W−1A //W−1B //W−1C // 0

is also exact.

The most important multiplicatively closed sets we will do localization on are the com-
plements of prime ideals. As an immediate consequence of the definition of prime ideal, we
get that W = R \ P is a multiplicatively closed set.

Definition 1.30. Let R be a ring and P be a prime ideal in R. We write RP for the
localization (R \ P )−1R, and call it the localization of R at P . Given an ideal I in R, we
write IP instead of (R \P )−1I, the ideal in RP generated by all the images of elements in I.
This ideal IP is the same as IRP , the expansion of I to RP .

The ring RP is a local ring with unique maximal ideal PP . The proper ideals in RP are
of the form IP , where I ⊆ P is an ideal in R, and the primes in RP are precisely the ideals
of the form QP with Q ⊆ P prime.

We can also localize at the complement of a union of primes.

Remark 1.31. Let A be a finite set of prime ideals in a noetherian ring R, and consider
the set

W := {r ∈ R | r /∈
⋃
P∈A

P}.

If x, y ∈ W , then x, y /∈ P for any of the primes P ∈ A, and thus xy ∈ W . Moreover,
1 /∈ P for any P ∈ A, so 1 ∈ W . We conclude that W is a multiplicatively closed set. The
localization W−1R is now a semilocal ring, which means it has only finitely many maximal
ideals — the maximal elements in A.
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Definition 1.32. If M is an R-module, the support of M is

Supp(M) := {P ∈ Spec(R) | MP ̸= 0}.
Example 1.33. IfM = R/I, then Supp(M) = V (I). Indeed, MP is generated by the image
of 1, so MP = 0 iff the image of 1 is zero in the localization. But this happens if and only if

∃w /∈ P : w · 1 = 0 in R/I ⇔ ∃w /∈ P,w ∈ I ⇔ P ̸⊇ I.

Proposition 1.34. Given M a finitely generated R-module over a ring R,

Supp(M) = V (annR(M)).

In particular, Supp(R/I) = V (I).

Proof. Let M = Rmi + · · ·+Rmn. We have

annR(M) =
n⋂

i=1

annR(mi),

so

V (annR(M)) =
n⋃

i=1

V (annR(mi)).

Notice that we need finiteness here. Also, we claim that

Supp(M) =
n⋃

i=1

Supp(Rmi).

To show (⊇), notice that (Rmi)p ⊆Mp, so

p ∈ Supp(Rmi) =⇒ 0 ̸= (Rmi)p ⊆Mp =⇒ p ∈ Supp(M).

On the other hand, the images of m1, . . . ,mn in Mp generate Mp for each p, so p ∈
Supp(M) if and only if p ∈ Supp(Rmi) for some mi. Thus, we can reduce to the case of a
cyclic module Rm. Now m

1
= 0 in Mp if and only if (R∖ p)∩ annR(m) ̸= ∅, which happens

if and only if annR(m) ̸⊆ p.

The finitely generated hypothesis is necessary!

Example 1.35. Let k be a field, and R = k[x]. Take

M = Rx/R =
⊕
i>0

k · x−i.

With this k-vector space structure, the action is given by multiplication in the obvious way,
then killing any nonnegative degree terms.

Any element of M is killed by a large power of x, so W−1M = 0 whenever W is a
multiplicatively closed subset of R with W ∋ x. Therefore, if P ∈ Supp(M), then x ∈ P ,
and thus Supp(M) ⊆ {(x)}. The support of a nonzero module is nonempty, and thus
Supp(M) = {(x)}.

On the other hand, the annihilator of the class of x−n is xn, so

annR(M) ⊆
⋂
n⩾1

(xn) = 0.

In particular, V (annR(M)) = Spec(R), while Supp(M) = {(x)} ≠ Spec(R).
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1.3 Associated primes

Remark 1.36. Let R be a ring, I be an ideal in R, and M be an R-module. To give an
R-module homomorphism R →M is the same as choosing an element m of M (the image of
1 via our map) or equivalently, to choose a cyclic submodule ofM (the submodule generated
by m).

To give an R-module homomorphism R/I → M is the same as giving an R-module
homomorphism R −→ M whose image is killed by I. Thus giving an R-module homomor-
phism R/I −→M is to choose an element m ∈M that is killed by I, meaning I ⊆ ann(m).
The kernel of the map R → M given by 1 7→ m is precisely ann(m), so a well-defined map
R/I →M given by 1 7→ m is injective if and only if I = ann(m).

Definition 1.37. Let R be a ring, and M a module. We say that P ∈ Spec(R) is an
associated prime of M if P = annR(m) for some m ∈ M . Equivalently, P is associated
to M if there is an injective homomorphism R/P −→ M . We write AssR(M) for the set of
associated primes of M .

We will be primarily interested in the associated primes of R/I, where I is an ideal in R.
We will abuse notation and call these the associated primes of I, and even write AssR(I).

Example 1.38. Let k be a field and let R = kJx, yK. Consider ideal I = (x2, xy) and
the R-module M = R/I. The element x + I in M is killed by both x and y, and thus
(x, y) ⊆ ann(x + I). On the other hand, x + I ̸= 0, so ann(x + I) ̸= R. Since (x, y)
is the unique maximal ideal in R, we conclude that ann(x + I) = (x, y). In particular,
(x, y) ∈ Ass(M). Since M = R/I, this also says that (x, y) is an associated prime of I.

Lemma 1.39. Let R be a noetherian ring and M be an R-module. A prime P is associated
to M if and only if PP ∈ Ass(MP ).

Proof. By Theorem 1.29, localization is exact, so any inclusion R/P ⊆M gives an inclusion
RP/PP ⊆ MP . Conversely, let PP = ann(m

w
) for some m

w
∈ MP . Let P = (f1, . . . , fn). Since

fi
1

m
w
= 0

1
, there exists ui /∈ P such that uifim = 0. Then u = u1 · · ·un is not in P , since P is

prime, and ufim = 0 for all i. Since the fi generate P , we have P (um) = 0. On the other
hand, if r ∈ ann(um), then ru

1
∈ ann(m

w
) = PP . We conclude that ru ∈ PP ∩ R = P . Since

u /∈ P , we conclude that r ∈ P .

Lemma 1.40. If P is prime, then AssR(R/P ) = {P}.

Proof. An element r + P ∈ R/P is nonzero if and only if r /∈ P . Given any nonzero
r+P ∈ R/P we have annR(r+P ) = {s ∈ R | rs ∈ P} = P by definition of prime ideal.

In the next section we will see that there are many ideals that are not prime but have a
unique associated prime.

Definition 1.41. Let M be an R-module. An element r ∈ R is a zerodivisor on M if
rm = 0 for some nonzero m ∈M . We denote the set of zerodivisors of M by Z(M).

In what follows, we will prove some results about associated primes of graded modules
over graded rings, to which we will need the following lemma:
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Lemma 1.42. If R is a Z-graded ring, then any homogeneous ideal I with the property

for any homogeneous elements r, s ∈ R, rs ∈ I ⇒ r ∈ I or s ∈ I

is prime.

Proof. We need to show that this property implies that for any a, b ∈ R not necessarily
homogeneous, ab ∈ I implies a ∈ I or b ∈ I. We do this by induction on the number of
nonzero homogeneous components of a plus the number of nonzero homogeneous components
of b. This is not interesting if a = 0 or b = 0, so the base case is when this is two. In that
case, both a and b are homogeneous, so the hypothesis already gives us this case. For the
induction step, write a = a′+ am and b = b′+ bn, where am, bn are the nonzero homogeneous
components of a and b of largest degree, respectively. We have ab = (a′b′+amb

′+bna
′)+ambn,

where ambn is either the largest homogeneous component of ab or zero. Either way, ambn ∈ I,
so am ∈ I or bn ∈ I; without loss of generality, we can assume am ∈ I. Then ab = a′b+ amb,
and ab, amb ∈ I, so a′b ∈ I, and the total number of homogeneous pieces of a′b is smaller, so
by induction, either a′ ∈ I so that a ∈ I, or else b ∈ I.

Lemma 1.43. If R is noetherian, and M is an arbitrary R-module, then for any nonzero
m ∈M , annR(m) is contained in an associated prime of M . If R and M are graded and m
is a homogeneous element, then annR(m) is contained in a homogeneous prime.

Proof. The set of ideals S := {annR(m) | m ∈ M,m ̸= 0} is nonempty, and any element in
S is contained in a maximal element, by noetherianity. Note in fact that any element in S
must be contained in a maximal element of S. Let I = ann(m) be any maximal element, and
let rs ∈ I, s /∈ I. We always have ann(sm) ⊇ ann(m), and equality holds by the maximality
of ann(m) in S. Then r(sm) = (rs)m = 0, so r ∈ ann(sm) = ann(m) = I. We conclude
that I is prime, and therefore it is an associated prime of M .

The same argument above works if we take {annR(m) | m ∈ M,m ̸= 0 homogeneous},
using Lemma 1.42.

Theorem 1.44. If R is noetherian, and M is an arbitrary R-module, then

Ass(M) = ∅ ⇐⇒M = 0.

If R and M are Z-graded and M ̸= 0, then M has an associated prime that is homogeneous.

Proof. Even if R is not noetherian, M = 0 implies Ass(M) = ∅ by definition. So we focus
on the case when M ̸= 0. If M ̸= 0, then M contains a nonzero element m, and ann(m) is
contained in an associated prime of M , by Lemma 1.43. In particular, Ass(M) ̸= 0. In the
graded setting, Lemma 1.43 gives us a homogeneous associated prime.

Theorem 1.45. If R is noetherian, and M is an arbitrary R-module, then⋃
P∈Ass(M)

P = Z(M).
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Proof. If r ∈ Z(M), then by definition we have r ∈ ann(m) for some nonzero m ∈M . Since
ann(m) is contained in some associated prime ofM , by Lemma 1.43, then r is also contained
in some associated prime of M . On the other hand, if P is an associated prime of M , then
by definition all elements in P are zerodivisors on M .

For the graded case, replace the set of zerodivisors with the annihilator of all homoge-
neous elements. The annihilator of all homogeneous elements is homogeneous, since if m is
homogeneous, and fm = 0, writing f = fa1 + · · ·+ fab as a sum of homogeneous elements of
different degrees ai, then 0 = fm = fa1m+ · · ·+ fabm is a sum of homogeneous elements of
different degrees, so faim = 0 for each i.

Lemma 1.46. If
0 // L //M // N // 0

is an exact sequence of R-modules, then Ass(L) ⊆ Ass(M) ⊆ Ass(L) ∪ Ass(N).

Proof. If R/P includes in L, then composition with the inclusion L ↪→M gives an inclusion
R/P ↪→M . This shows that Ass(L) ⊆ Ass(M).

Now let P ∈ Ass(M), and let m ∈ M be such that P = ann(m). First, note that
P ⊆ ann(rm) for all r ∈ R.

Thinking of L as a submodule of M , suppose that there exists r /∈ P such that rm ∈ L.
Then

s(rm) = 0 ⇐⇒ (sr)m = 0 =⇒ sr ∈ P =⇒ s ∈ P.

So P = ann(rm), and thus P ∈ Ass(L).
If rm /∈ L for all r /∈ P , let n be the image of m in N . Thinking of N as M/L,

if rn = 0, then we must have rm ∈ L, and by assumption this implies r ∈ P . Since
P = ann(m) ⊆ ann(n), we conclude that P = ann(n). Therefore, P ∈ Ass(N).

Note that the inclusions in Lemma 1.46 are not necessarily equalities.

Example 1.47. IfM is a module with at least two associated primes, and P is an associated
prime of M , then

0 // R/P //M

is exact, but {P} = Ass(R/P ) ⊊ Ass(M).

Example 1.48. Let R = k[x], where k is a field, and consider the short exact sequence of
R-modules

0 // (x) // R // R/(x) // 0 .

Then one can check that:

• Ass(R/(x)) = Ass(k) = {(x)}.

• Ass(R) = Ass((x)) = {(0)}.

In particular, Ass(R) ⊊ Ass(R/(x)) ∪ Ass((x)).

Corollary 1.49. Let A and B be R-modules. Then Ass(A⊕B) = Ass(A) ∪ Ass(B).
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Proof. Apply Lemma 1.46 to the short exact sequence

0 // A // A⊕B // B // 0 .

This gives us Ass(A) ⊆ Ass(A⊕B) ⊆ Ass(A) ∪ Ass(B). Repeating with

0 // B // A⊕B // A // 0 ,

we conclude that Ass(B) ⊆ Ass(A⊕B). So we have shown both Ass(A) ⊆ Ass(A⊕B) and
Ass(B) ⊆ Ass(A⊕B), so Ass(A)∪Ass(B) ⊆ Ass(A⊕B). Since we have also already shown
Ass(A⊕B) ⊆ Ass(A) ∪ Ass(B), we must have Ass(A⊕B) = Ass(A) ∪ Ass(B).

Theorem 1.50. If R is a noetherian ring, and M is a finitely generated R-module, then
AssR(M) is finite. Moreover, if R and M are both graded, then AssR(M) is a finite set of
homogeneous primes.

To prove the finiteness of associated primes, one shows that every finitely generated
module over a noetherian ring has a finite prime filtration.

Definition 1.51. Let R and M be T -graded, and t ∈ T . The shift of M by t is the graded
R-moduleM(t) with graded piecesM(t)i :=Mt+i. This is isomorphic toM as an R-module,
when we forget about the graded structure.

Theorem 1.52. Let R be a noetherian ring, and M is a finitely generated module. There
exists a filtration of M

M =Mt ⊋Mt−1 ⊋Mt−2 ⊋ · · · ⊋M1 ⊋M0 = 0

such that Mi/Mi−1
∼= R/Pi for primes Pi ∈ Spec(R). This is a prime filtration of M .

If R and M are Z-graded, there exists a prime filtration of M where the quotients
Mi/Mi−1

∼= (R/Pi)(ti) are graded modules, the Pi are homogeneous primes, and ti ∈ Z.

Proof. If M ̸= 0, then M has at least one associated prime, by Theorem 1.45, so there is
an inclusion R/P1 ⊆ M . Let M1 be the image of this inclusion. If M/M1 ̸= 0, it has an
associated prime, so there is an M2 ⊆ M such that R/P2

∼= M2/M1 ⊆ M/M1. Continuing
this process, we get a strictly ascending chain of submodules of M where the successive
quotients are of the form R/Pi. If we do not haveMt =M for some t, then we get an infinite
strictly ascending chain of submodules of M , which contradicts that M is a noetherian
module.

In the graded case, if Pi is the annihilator of an element mi of degree ti, we have a
degree-preserving map (R/Pi)(ti) ∼= Rmi sending the class of 1 to mi.

Corollary 1.53. If R is a noetherian ring, and M is a finitely generated module, and

M =Mt ⊋Mt−1 ⊋Mt−2 ⊋ · · · ⊋M1 ⊋M0 = 0

is a prime filtration of M with Mi/Mi−1
∼= R/Pi, then

AssR(M) ⊆ {P1, . . . , Pt}.

Therefore, AssR(M) is finite. Moreover, if R and M are graded, then AssR(M) is a finite
set of homogeneous primes.
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Proof. For each i, we have a short exact sequence

0 //Mi−1
//Mi

//Mi/Mi−1
// 0 .

By Lemma 1.46, Ass(Mi) ⊆ Ass(Mi−1)∪Ass(Mi/Mi−1) = Ass(Mi−1)∪{Pi}. Inductively, we
have Ass(Mi) ⊆ {P1, . . . , Pi}, and AssR(M) = AssR(Mt) ⊆ {P1, . . . , Pt}. This immediately
implies that Ass(M) is finite. In the graded case, Theorem 1.52 gives us a filtration where
all the Pi are homogeneous primes, and those include all the associated primes.

In a noetherian ring, associated primes localize.

Theorem 1.54. Let R be a noetherian ring, W a multiplicative set, and M a module. Then

AssW−1R(W
−1M) = {W−1P | P ∈ AssR(M), P ∩W = ∅}.

Proof. Given P ∈ AssR(M) such that P ∩W = ∅, Theorem 1.28 says that W−1P is a prime
in W−1R. Since P ∈ Ass(M), we have an inclusion map R/P ⊆ M . Localization is exact,
by Theorem 1.29, so we get an inclusion W−1R/W−1P ∼= W−1(R/P ) ⊆ W−1M , which says
that W−1P is an associated prime of W−1M .

Now suppose that Q ∈ Spec(W−1R) is associated to W−1M . By Theorem 1.28, we know
this is of the form W−1P for some prime P in R such that P ∩W = ∅, so we just need to
prove that P ∈ Ass(M). Since R is noetherian, P is finitely generated, say P = (f1, . . . , fn)
in R, and so Q =

(
f1
1
, . . . , fn

1

)
.

By assumption, Q = ann(m
w
) for some m ∈ M , w ∈ W . Since w is a unit in W−1R, we

can also write Q = ann(m
1
). By definition, this means that for each i

fi
1

m

1
=

0

1
⇐⇒ uifim = 0 for some ui ∈ W.

Let u = u1 · · ·un ∈ W . Then ufim = 0 for all i, and thus Pum = 0. We claim that in
fact P = ann(um) in R. Given any v ∈ ann(um), we have u(vm) = v(um) = 0, and since
u ∈ W , this implies that vm

1
= 0. Therefore, v

1
∈ ann(m

1
) = W−1P , and vw ∈ P for some

w ∈ W . But P ∩W = ∅, and thus v ∈ P . Thus P ∈ Ass(M).

Theorem 1.55. Let R be noetherian and M be an arbitrary R-module.

Supp(M) =
⋃

P∈Ass(M)

V (P ).

Proof. Let P ∈ AssR(M), and fix m ∈ M such that P = annR(m). Let Q ∈ V (P ). By
Proposition 1.34, Q ∈ Supp(R/P ). Since 0 → R/P

m−→M is exact and localization is exact,
by Theorem 1.29, 0 → (R/P )Q → MQ is also exact. Since (R/P )Q ̸= 0, we must also have

MQ ̸= 0, and thus Q ∈ Supp(M). This shows Supp(M) ⊇
⋃

P∈Ass(M)

V (P ).

Now let Q be a prime ideal and suppose that

Q /∈
⋃

P∈Ass(M)

V (P ).

In particular, Q does not contain any associated prime of M . Then there is no associated
prime of M that does not intersect R ∖ Q, so by Theorem 1.54, AssRQ

(MQ) = ∅. By
Theorem 1.45, MQ = 0.
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Theorem 1.56. Let R be noetherian and M be an R-module. If M is a finitely generated
R-module, then Min(annR(M)) ⊆ AssR(M). In particular, Min(I) ⊆ AssR(R/I).

Proof. By Theorem 1.55,

V (annR(M)) = SuppR(M) =
⋃

P∈Ass(M)

V (P ),

so the minimal elements of both sets agree. In particular, the right hand side has the minimal
primes of annR(M) as minimal elements, and they must be associated primes of M , or else
this would contradict minimality.

So the minimal primes of a module M are all associated to M , and they are precisely
the minimal elements in the support of M .

Definition 1.57. If I is an ideal, then an associated prime of I that is not a minimal prime
of I is called an embedded prime of I.

Macaulay2. Given an R-module M , associatedPrimes M will return a list, the list of all
the primes in AssR(M). If I is an ideal in R, Macaulay2 follows the same convention we do:
associatedPrimes I will return Ass(I), the associated primes of the module R/I.

Example 1.58. Let’s get back to the ideal I = (x2, xy) in R = k[x, y] from Example 1.5.
We saw before that this ideal has only one minimal prime, (x). We claim it also has an
embedded prime: m = (x, y). Indeed, x + I is a nonzero element in R/I killed by m, and
since m is a maximal ideal and x+I ̸= 0, we must have ann(x+I) = m. We can also rewrite
all this as m = (I : x). This shows that indeed m is an associated prime of I.

We can use Macaulay2 to check that these are all the associated primes of I for some
choice of k.

i1 : R = QQ[x,y];

i2 : I = ideal"x2,xy";

i3 : associatedPrimes I

o3 = {ideal x, ideal (y, x)}

o3 : List

Lemma 1.59. Given an ideal I in a noetherian ring R, and let P be a prime ideal in R. If
M is a finitely generated R-module with I ⊆ ann(M), then

P ∈ AssR (M) if and only if P/I ∈ AssR/I (M) .

Proof. Since I ⊆ ann(M), M has a structure of an R/I-module that is compatible with its
R-module structure; these two structures are essentially the same.
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If P ∈ AssR (M), there exists m ∈M such that

P = annR(m) = {r ∈ R | rm = 0} .

Then
P/I = {r + I | rm = 0} = annR/I(m).

On the other hand, all primes in R/I are of the form P/I for some prime ideal P ⊇ I in R,
so if P/I = annR/I(m) for some m ∈M , then

P/I = {r + I | rm = 0} = {r + I | (r + I)m = 0} ,

and thus P ⊆ annR(m). Moreover, if r ∈ R satisfies rm = 0, then (r + I)m = rm = 0, so
r + I ∈ annR/I(m) = P/I. Since P ⊇ I, we conclude that r ∈ P .

Theorem 1.60. Let f : R → S be a ring homomorphism of noetherian rings and let M be
a finitely generated S-module. Then

AssR(M) = {P ∩R | P ∈ AssS(M)} .

Proof. First let’s reduce to the case when R ⊆ S is an inclusion of noetherian rings. Setting
I = ker f , we can factor f as follows:

R
f

//

!! !!

S.

R/I
. �

==

Given any S-module M , when we view it as an R-module via restriction of scalars we must
have I ⊆ ann(M), so M is an R/I-module with the exact same structure it has as an R-
module. By Lemma 1.59, a prime P in R is in AssR(M) if and only if P/I ∈ AssR/I(M).
Moreover, given any prime P in S, if its contraction to R or R/I is prime, and if Q is a
prime ideal in R such that Q/I = P ∩R/I, then Q = P ∩R. This shows that it is sufficient
to consider the case when f is injective.

Given an element m ∈M , an element r ∈ R acts on m by r ·m = f(r)m, so

r ∈ (0 :R m) ⇔ r ·m = 0 ⇔ f(r)m = 0 ⇔ f(r) ∈ (0 :S m).

Therefore, annR(m) = annS(m) ∩ R. In particular, if a prime P in S is associated to M ,
then P = annS(m) for some m, and P ∩ R = annR(m). Since the contraction of a prime is
prime, P ∩R ∈ AssR(M).

Now let Q ∈ AssR(M), and fix m ∈ M such that Q = annR(m). Then I := annS(m)
satisfies I ∩R = Q. We want to find a prime ideal P in S such that P ∩R = Q. First, note
that since I = annS(m), the map S →M determined by sending 1 to m has kernel I, so we
have an inclusion S/I ↪→M . By Lemma 1.46, AssS(S/I) ⊆ AssS(M). So if we find a prime
P ∈ AssS(S/I) with P ∩R = Q, such P will be an element of AssS(M), and we will be done.

Since I ∩ R = Q, we have an inclusion R/Q → S/I. Write R := R/Q and S := S/I.
Since R is a domain, the zero ideal J in R is prime. On the other hand, JS is the zero ideal
in S, so JS ∩R = J . Any prime ideal J satisfying JS ∩R = J is the contraction of a prime,
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so let P be a prime ideal in S whose image in S contracts to J = (0) in R. Lifting to R
and S, this prime ideal P in S must contract to Q. Moreover, we can take this P to be
minimal over I: if P is not minimal over I, then it contains a minimal prime P ′ of I, and
Q = P ∩R ⊇ P ′ ∩R ⊇ I ∩R = Q, so we can ultimately replace P with P ′.

We found a prime ideal P in S with P ∩ R = Q. By construction, this prime P is a
minimal prime of I, and thus by Theorem 1.56, P ∈ AssS(R/I) ⊆ AssS(M).

1.4 Primary Ideals

Definition 1.61. We say that an ideal I is primary if

xy ∈ I =⇒ x ∈ I or y ∈
√
I.

We say that an ideal I is P -primary if I is primary and
√
I = P .

Remark 1.62. Suppose that Q is primary and xy ∈
√
Q. Then xnyn ∈ Q for some n. If

y /∈
√
Q, then yn /∈

√
Q. Since Q is primary, we must have xn ∈ Q, so x ∈

√
Q. Therefore,

the radical of a primary ideal is always prime, so every primary ideal Q is
√
Q-primary.

Example 1.63.

a) Any prime ideal is primary.

b) If R is a UFD, we claim that a principal ideal is primary if and only if it is generated
by a power of an irreducible element. If f ∈ R is an irreducible element, then

xy ∈ (fn) ⇐⇒ fn|xy.

Since f is irreducible and every element in R can be written as a unique product of
irreducibles, if fn divides xy but fn does not divide x, then f must divide y. So

fn|x or f |y ⇐⇒ x ∈ (fn) or y ∈
√

(fn) = (f).

We conclude that (fn) is indeed primary. Conversely, if a is not a prime power, then
a = gh, for some g, h nonunits with no common factor, so we can take gh ∈ (a) but
g /∈ (a) and h /∈

√
(a). This shows that (a) is not primary.

c) As a particular case of the previous example, the nonzero primary ideals in Z are of
the form (pn) for some prime p and some n ⩾ 1. This example is a bit misleading, as it
suggests that primary ideals are the same as powers of primes. We will soon see that
it is not the case.

d) In R = k[x, y, z], the ideal I = (y2, yz, z2) is primary. Give R the grading with weights
|y| = |z| = 1, and |x| = 0. If g /∈

√
I = (y, z), then g has a degree zero term. If f /∈ I,

then f has a term of degree zero or one. The product fg has a term of degree zero or
one, so it is not in I.

If the radical of an ideal is prime, that does not imply that ideal is primary.
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Example 1.64. In R = k[x, y, z], the ideal Q = (x2, xy) is not primary, even though√
Q = (x) is prime. The offending product is xy: x /∈ Q and y /∈

√
Q.

Remark 1.65. One thing that can be confusing about primary ideals is that the definition
is not symmetric. For Q to be a primary ideal, given a product xy ∈ Q, the definition says
that if x /∈ Q, then y ∈

√
Q, and it also says that if y /∈ Q, then x ∈

√
Q. In Example 1.64,

we found that x /∈ Q and y /∈
√
Q, so Q is not primary. Notice that if we switch the roles of

x and y, we do have x ∈
√
Q, but that is not sufficient to make Q a primary ideal.

The definition of primary can be reinterpreted in many ways.

Proposition 1.66. If R is noetherian, the following are equivalent:

(1) Q is primary.

(2) Every zerodivisor in R/Q is nilpotent on R/Q.

(3) Ass(R/Q) is a singleton.

(4) Q has exactly one minimal prime, and no embedded primes.

(5)
√
Q = P is prime and for all r, w ∈ R with w /∈ P , rw ∈ Q implies r ∈ Q.

(6)
√
Q = P is prime, and QRP ∩R = Q.

Proof. (1) ⇐⇒ (2): y is a zerodivisor modulo Q if there is some x /∈ Q with xy ∈ Q; the
primary assumption translates to saying that a power of y is in Q.

(2) ⇐⇒ (3): On the one hand, (2) says that the set of zerodivisors on R/Q coincides
with the elements in the nilradical of R/Q. In general, the set of zerodivisors is the union of
all the associated primes, while the nilradical is the intersection of all the minimal primes.
Now notice that the associated primes of R/Q are the associated primes of the ideal Q, while
the minimal primes of R/Q are the minimal primes of Q. So we always have⋃

P∈Ass(Q)

P = Z(R/Q) ⊇ {r ∈ R | r +Q ∈ N (R/Q)} =
⋂

P∈Min(Q)

P =
⋂

P∈Ass(Q)

P.

The rest of the proof is elementary set theory: the intersection and union of a collection of
sets agree if and only if there is only one set. More precisely, we have equality above if and
only if there is only one associated prime.

(3) ⇐⇒ (4) is clear, since each statement is just a restatement of the other one.
(1) ⇐⇒ (5): Given the observation that the radical of a primary ideal is prime, this is

just a rewording of the definition.
(5) ⇐⇒ (6): This is immediate from the following characterization:

QRP ∩R =
{
r ∈ R | r

1
∈ QRP

}
=
{
r ∈ R | r

1
=
a

w
for some a ∈ Q,w /∈ P

}
The equality r

1
= a

w
is equivalent to u(wr− a) for some a ∈ Q and u,w /∈ P , so equivalently

s := uw ∈ W satisfies sr = ua ∈ Q. Therefore,

QRP ∩R = {r ∈ R | sr ∈ Q for some s /∈ P}
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If the radical of an ideal is maximal, that does imply the ideal is primary.

Remark 1.67. Let I be an ideal with
√
I = m a maximal ideal. If R is noetherian, then

AssR(R/I) is nonempty and contained in Supp(R/I) = V (I) = {m}, so AssR(R/I) = {m},
and hence I is primary.

Note that the assumption that m is maximal was necessary here. Indeed, having a prime
radical does not guarantee an ideal is primary, as we saw in Example 1.64. Moreover, even
the powers of a prime ideal may fail to be primary.

Example 1.68. Let R = k[x, y, z]/(xy − zn), where k is a field and n ⩾ 2 is an integer.
Consider the prime ideal P = (x, z) in R, and note that y /∈ P . We have xy = zn ∈ P n,
while x /∈ P n and y /∈

√
P n = P . Therefore, P n is not a primary ideal, even though its

radical is the prime P .

Lemma 1.69. Let P be a prime ideal in a noetherian ring R. If Q ⊆ P is a primary ideal,
then QP is a primary ideal in RP , even if Q is not P -primary.

Proof. Since Q ⊆ P and P is prime, we must have
√
Q ⊆ P , so QP = QRP and

√
QRP are

proper ideals of RP with
√
QRP prime. Since Ass(Q) = {

√
Q}, by Theorem 1.54 we have

Ass(QP ) = {
√
QRP}. By Proposition 1.66, QP is a primary ideal.

The contraction of primary ideals is always primary.

Lemma 1.70. Let f : R → S be a ring homomorphism. If Q is a primary ideal in S, then
Q ∩ R is a primary ideal in R. In particular, given any multiplicatively closed set W in R,
and a primary ideal Q in W−1R, Q ∩R is a primary ideal in R.

Proof. If xy ∈ Q ∩R and x /∈ Q ∩R, then f(x) /∈ Q. But f(x)f(y) = f(xy) ∈ Q, and since
Q is primary, so we must have f(yn) = f(y)n ∈ Q for some n. Therefore, yn ∈ Q ∩ R, and
Q ∩R is indeed primary.

Lemma 1.71. Let Q be a primary ideal in a noetherian ring R. If P is a prime ideal
containing Q, then QRP ∩R = Q.

Proof. By Lemma 1.69, QRP is a primary ideal in RP . By Lemma 1.70, QRP ∩ R is also
primary. We have

Q = QR√
Q ∩R =

{
r ∈ R | sr ∈ Q for some s /∈

√
Q
}
.

Since P is prime and P ⊇ Q, then P ⊇
√
Q. Therefore, the complement of

√
Q contains the

complement of P , and{
r ∈ R | sr ∈ Q for some s /∈

√
Q
}
⊇ {r ∈ R | sr ∈ Q for some s /∈ P} = QRP ∩R.

Therefore, Q ⊇ QRP ∩ R. But by elementary set theory, Q ⊆ QRP ∩ R, so we must have
Q = QRP ∩R.

The intersection of primary ideals is also primary.
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Lemma 1.72. If I1, . . . , It are ideals, then

Ass

(
R/

t⋂
j=1

Ij

)
⊆

t⋃
j=i

Ass(R/Ij).

In particular, a finite intersection of P -primary ideals is P -primary.

Proof. The map R → R/I1 ⊕ R/I2 given by r 7→ (r + I1, r + I2) has kernel I1 ∩ I2, so there
is an inclusion R/(I1 ∩ I2) ⊆ R/I1 ⊕R/I2. Hence, by Lemma 1.46 we have

Ass(R/(I1 ∩ I2)) ⊆ Ass(R/I1) ∪ Ass(R/I2).

For t ⩾ 3,

Ass

(
R/

t⋂
j=1

Ij

)
⊆

t⋃
j=i

Ass(R/Ij)

can be shown by an easy induction.
Now suppose all the Ij are P -primary. Then

Ass

(
R/

t⋂
j=1

Ij

)
⊆

t⋃
j=i

Ass(R/Ij) = {P}.

On the other hand,
⋂t

j=1 Ij ⊆ I1 ̸= R, so R/(
⋂t

j=1 Ij) ̸= 0. Thus Ass(R/(
⋂t

j=1 Ij)) is

nonempty, by Theorem 1.45, and therefore it must be the singleton {P}. Then
⋂t

j=1 Ij is
P -primary by the characterization of primary in Proposition 1.66 (3).

1.5 Primary decomposition

Definition 1.73 (Primary decomposition). A primary decomposition of an ideal I is an
expression of the form

I = Q1 ∩ · · · ∩Qt,

with each Qi primary. An irredundant primary decomposition of an ideal I is a primary

decomposition as above in which
√
Qi ̸=

√
Qj for i ̸= j, and Qi ̸⊇

⋂
j ̸=i

Qj for all i.

Remark 1.74. By Lemma 1.72, we can turn any primary decomposition into an irredundant
one by combining the terms with the same radical, then removing redundant terms.

Example 1.75 (Primary decomposition in Z). Given a decomposition of n ∈ Z as a product
of distinct primes, say n = pa11 · · · pakk , then the primary decomposition of the ideal (n) is
(n) = (pa11 ) ∩ · · · ∩ (pakk ). However, this example can be deceiving, in that it suggests that
primary ideals are just powers of primes; as we saw in Example 1.68, they are not!

The existence of primary decompositions was first shown by Emanuel Lasker (yes, the
chess champion!) for polynomial rings and power series rings in 1905 [Las05], and then
extended to noetherian rings (in the same paper where she introduced noetherian rings –
though not by that name) by Emmy Noether in 1921 [Noe21].
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Theorem 1.76 (Existence of primary decompositions). Every ideal in a noetherian ring has
a primary decomposition.

Proof. We will say that an ideal is irreducible if it cannot be written as a proper intersection
of larger ideals. If R is noetherian, we claim that any ideal of R can be expressed as a
finite intersection of irreducible ideals. If the set of ideals that are not a finite intersection
of irreducibles were nonempty, then by noetherianity there would be an ideal maximal with
the property of not being an intersection of irreducible ideals. Such a maximal element must
be an intersection of two larger ideals, each of which are finite intersections of irreducibles,
giving a contradiction.

Next, we claim that every irreducible ideal is primary. To prove the contrapositive,
suppose that Q is not primary, and take xy ∈ Q with x /∈ Q, y /∈

√
Q. The ascending chain

of ideals
(Q : y) ⊆ (Q : y2) ⊆ (Q : y3) ⊆ · · ·

stabilizes for some n, since R is moetherian. It will soon be helpful to realize that this means
that for any element f ∈ R, yn+1f ∈ Q =⇒ ynf ∈ Q. Using this, we will show that

(Q+ (yn)) ∩ (Q+ (x)) = Q,

proving that Q is not irreducible.
The containment Q ⊆ (Q+ (yn)) ∩ (Q+ (x)) is clear. On the other hand, if

a ∈ (Q+ (yn)) ∩ (Q+ (x)),

we can write a = q + byn for some q ∈ Q, and

a ∈ Q+ (x) =⇒ ay ∈ Q+ (xy) = Q.

So
byn+1 = ay − qy ∈ Q =⇒ b ∈ (Q : yn+1) = (Q : yn).

By definition, this means that byn ∈ Q, and thus a = q + byn ∈ Q. This shows that Q is
not irreducible, concluding the proof.

Primary decompositions, even irredundant ones, are not unique.

Example 1.77. Let R = k[x, y], where k is a field, and I = (x2, xy). We can write

I = (x) ∩ (x2, xy, y2) = (x) ∩ (x2, y).

The ideals (x2, xy, y2) and (x2, y) are primary, since each has radical m = (x, y), which is
maximal, and by Remark 1.67 any ideal whose radical is maximal must be primary. In fact,
our ideal I has infinitely many irredundant primary decompositions: given any n ⩾ 1,

I = (x) ∩ (x2, xy, yn)

is a irredundant primary decomposition. One thing all of these have in common is the
radicals of the primary components: they are always (x) and (x, y). Indeed, we saw in
Example 1.58 that these are the associated primes of I.



21

In the previous example, the fact that all our irredundant primary decompositions had
primary components always with the same radical was not an accident. Indeed, there are
some aspects of primary decompositions that are unique, and this is one of them.

Theorem 1.78 (First uniqueness theorem for primary decompositions). Suppose I is an
ideal in a noetherian ring R. Given any irredundant primary decomposition of I, say

I = Q1 ∩ · · · ∩Qt,

we have
{
√
Q1, . . . ,

√
Qt} = Ass(R/I).

In particular, this set is the same for all irredundant primary decompositions of I.

Proof. For any primary decomposition, irredundant or not, we have

Ass(I) ⊆
⋃
i

Ass(Qi) = {
√
Q1, . . . ,

√
Qt}

by Lemma 1.72. We just need to show that in an irredundant decomposition as above, every
Pj :=

√
Qj is indeed an associated prime of I.

So fix j, and let

Ij =
⋂
i ̸=j

Qi ⊇ I.

Since the decomposition is irredundant, the module Ij/I is nonzero, hence by Theorem 1.45
it has an associated prime, say a. Fix xj ∈ R such that a is the annihilator of xj in Ij/I.
Note that this means that xj ∈ Ij. Since

Qjxj ⊆ Qj ·
⋂
i ̸=j

Qi ⊆ Q1 ∩ · · · ∩Qn = I,

we conclude that Qj is contained in the annihilator of xj, meaning Qj ⊆ a. Since Pj is the
unique minimal prime of Qj and a is a prime containing Qj, we must have Pj ⊆ a. On the
other hand, if r ∈ a, we have rxj ∈ I ⊆ Qj, and since xj /∈ Qj, we must have r ∈

√
Qj = Pj

by the definition of primary ideal. Thus a ⊆ Pj, so we can now conclude that a = Pj. This
shows that Pj is an associated prime of R/I.

If we do not assume that R is noetherian, we may or may not have a primary decom-
position for a given ideal. It is true that if an ideal I in a general ring has a primary
decomposition, then the primes occurring are the same in any irredundant decomposition.
However, they are not the associated primes of I in general; rather, they are the primes that
occur as radicals of annihilators of elements.

There is also a partial uniqueness result for the actual primary ideals that occur in an
irredundant decomposition.
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Theorem 1.79 (Second uniqueness theorem for primary decompositions). If I is an ideal in
a noetherian ring R, then the minimal components in any irredundant primary decomposition
of I are unique. More precisely, if

I = Q1 ∩ · · · ∩Qt

is an irredundant primary decomposition, and
√
Qi ∈ Min(I), then Qi is given by the formula

Qi = IR√
Qi

∩R,

which does not depend on our choice of irredundant decomposition.

Proof. Let Q be a primary ideal, and let P be any prime. Using Lemma 1.69, we see that
the localization QP is either:

• the unit ideal, if Q ̸⊆ P , or

• a primary ideal, if Q ⊆ P .

This follows from Theorem 1.54, the fact that the associated primes of Q localize, since
Q ⊆ P implies

√
Q ⊆ P , and QP will still have a unique associated prime.

Finite intersections commute with localization, so for any prime P ,

IP = (Q1)P ∩ · · · ∩ (Qt)P

is a primary decomposition, although not necessarily irredundant. Fix a minimal prime
P = Pi of I, and let Q = Qi. When we localize at P , all the other components become
the unit ideal, since their radicals are not contained in P , and thus IP = QP . We can then
contract to R to get IP ∩R = (Qi)Pi

∩R = Qi, since Qi is Pi-primary and we can then apply
Proposition 1.66 (6).

We saw in Example 1.77 that the components associated to embedded primes are not
necessarily unique. One might be tempted to think that the formula above, IRP ∩ R, still
gives a P -primary component for I for any associated prime; unfortunately, that is always
false when P is embedded.

Remark 1.80. If P is an embedded prime of I, we claim that IRP ∩R is not primary. Let
P1, . . . , Pk be all the associated primes of I that are contained in P , and let Q1, . . . , Qk be
the Pi-primary components and Q be the P -primary component in an irredundant primary
decomposition of I. Since Qi ⊆ Pi ⊆ P , by Lemma 1.71 we have QiRP ∩ R = Qi. On the
other hand, if q is another primary component of I but with

√
q ⊈ P , then qRP = RP , and

qRP ∩R = R.
Finally, localization commutes with intersections, so we conclude that

IRP ∩R = (Q1RP ∩R) ∩ · · · ∩ (QkRP ∩R) = Q1 ∩ · · · ∩Qk.

This says IRP∩R collects all the primary components of I corresponding to primes contained
in P . If P is an embedded prime of I, there are at least two such components, and thus this
ideal is not primary.
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This does show, however, that if mAss(I) denotes the set of maximal elements in Ass(I),
then

I =
⋂

P∈Ass(I)

IRP ∩R =
⋂

P∈mAss(I)

IRP ∩R,

since each IRP ∩R is the intersection of all the primary components associated to elements
in Ass(I) that are contained in P .

Remark 1.81. Fix an ideal I and suppose that A is a finite set of primes that contains every
associated prime of I. By Remark 1.31, W = R \

⋃
P∈A P is a multiplicatively closed set, so

we can consider the localization ring W−1R. For each associated prime P of I, R \ P ⊇ W ,
so if

r ∈ W−1I ∩R =⇒ sr ∈ I for some s ∈ W =⇒ sr ∈ I for some s /∈ P =⇒ r ∈ IRP ∩R.

Therefore,

I ⊆ W−1I ∩R ⊆
⋂

P∈Ass(I)

IRP ∩R = I,

where the last equality was discussed in Remark 1.80. We conclude that W−1I ∩R = I.

It is relatively easy to give a primary decomposition for a radical ideal:

Example 1.82. If R is noetherian, and I is a radical ideal, then we have seen that I coincides
with the intersection of its minimal primes, say I = P1 ∩ · · · ∩ Pt. This is the only primary
decomposition of a radical ideal.

For a more concrete example, take the ideal I = (xy, xz, yz) in k[x, y, z]. This ideal
is radical, so we just need to find its minimal primes. And indeed, one can check that
(xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z).

Example 1.83. Let’s get back to our motivating example in Z[
√
−5], where some elements

can be written as products of irreducible elements in more than one way. For example, we
saw that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

In fact, (6) = (2) ∩ (3), but while (2) is primary, (3) is not. In fact, (3) has two distinct
minimal primes, and the following is a minimal primary decomposition for (6):

(6) = (2) ∩ (3, 1 +
√
−5) ∩ (3, 1−

√
−5).

1.6 Computing primary decompositions

Providing efficient algorithms for primary decomposition of an ideal [...] is [...]
still one of the big challenges for computational algebra and computational alge-
braic geometry.

(Decker, Greuel, and Pfister write in [DGP99])
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Computing primary decompositions is a computationally difficult problem. This is true
in a formal sense: even if one restricts to ideals monomial in a polynomial ring over a field,
the problem of finding a primary decompositions is NP-complete [HS02].

The method primaryDecomposition in Macaulay2 computes primary decompositions
using several strategies: there are special algorithms for monomial and binomial ideals,
which we will discuss later, an algorithm of Shimoyama and Yokoyama [SY96] for ideals in
polynomial rings, and an algorithm by Eisenbud, Huneke, and Vasconcelos [EHV92], and a
hybrid of the last two. The user can force Macaulay2 to choose a particular strategy using
the command Strategy. Here’s an example from the Macaulay2 documentation:

i2 : Q = QQ[a..d];

i3 : I = ideal(a^2*b,a*c^2,b*d,c*d^2);

o3 : Ideal of Q

i4 : primaryDecomposition(I, Strategy => Monomial)

2 2 2

o4 = {ideal (d, a), ideal (c, b), ideal (b, a, d ), ideal (d, c , a ),

------------------------------------------------------------------------

2 2

ideal (b, d , c )}

o4 : List

To compute a primary decomposition, we want to isolate the components with a partic-
ular radical, which can be done via saturations.

Definition 1.84. Let I and J be ideals in a ring R. The saturation of I with respect
to J is the ideal

(I : J∞) :=
⋃
n⩾1

(I : Jn) = {r ∈ R | rJn ⊆ I for some n} .

Given an element x ∈ R, we write (I : x∞) instead of (I : (x)∞). Some authors drop the
parenthesis altogether, and write simply I : J∞.

We leave the following basic properties of saturations as an exercise.

Exercise 1. Let I, J , and L be ideals in a noetherian ring R.

a) There exists n such that (I : J∞) = (I : Jn).

b) If Q is a P -primary ideal, then

(Q : J∞) =

{
Q if J ⊈ P
R if J ⊆ P

.
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c) (I ∩ J : L∞) = (I : L∞) ∩ (J : L∞).

d) Given a primary decomposition I = Q1 ∩ · · · ∩Qk,

(I : J∞) =
⋂

J⊈
√
Qi

Qi.

e) If Ass(I) = Min(I) = {P1, . . . , Pk}, then for each i there exists an element xi ∈ R such
that the Pi-primary component of I is given by (I : x∞i ).

Thus saturating with any ideal J is the same as deleting certain primary components.
Conversely, to delete certain primary components of I, we need only to find an ideal J that
is contained in the primes corresponding to all the components we want to delete, but not
in any of the primes corresponding to the components we want to keep. One thing to be
careful about is that such a J might not necessarily exist; but our main application of this
idea will be to compute symbolic powers of ideals, where we will want to delete embedded
components but keep minimal ones, and as we will soon see it is very easy to show that in
those circumstances such a J does exist.



Chapter 2

Symbolic powers

Given an ideal I, its nth power is the ideal

In := (f1 · · · fn | fi ∈ I).

By convention, we set I0 = R. While
√
In =

√
I and the minimal primes of In are the

same as the minimal primes of R, In might have new, exciting embedded primes. This is
the beginning of a beautiful friendship.

2.1 What are symbolic powers?

Definition 2.1. Let I be an ideal in a noetherian ring R and fix an integer n ⩾ 1. The nth
symbolic power of I is the ideal

I(n) :=
⋂

P∈Ass(I)

InRP ∩R.

Our main focus will be on symbolic powers of ideals I with no embedded primes. In that
case, Ass(I) = Min(I), and since Min(In) = Min(I), the nth symbolic power of I is the ideal

I(n) =
⋂

P∈Ass(I)

InRP ∩R =
⋂

P∈Min(I)

InRP ∩R =
⋂

P∈Min(In)

InRP ∩R.

For each minimal prime P of In, InRP ∩ R is the P -primary component of In. The nth
symbolic power of I is thus obtained by computing a primary decomposition for In, collecting
the minimal components, and discarding the embedded ones.

When I does have embedded primes, the two ideals⋂
P∈Ass(I)

InRP ∩R and
⋂

P∈Min(I)

InRP ∩R

are necessarily distinct. Both appear in the literature as definitions for symbolic powers, and
the ambiguity only arises when one considers ideals with embedded components. While we
will briefly discuss the advantages and disadvantages of each definition, our main focus will
be the situation where I has no embedded primes and there is no ambiguity to worry about.
In fact, even the study of symbolic powers of primes is interesting enough to keep us busy
all semester, and so focusing on ideals with no embedded primes is not a big concession.

26
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Lemma 2.2. Let P be a prime ideal in a noetherian ring R.

(1) P (n) = P nRP ∩R.

(2) P (n) = {r ∈ R | sr ∈ P n for some s /∈ P}.

(3) P (n) is the unique P -primary component in a primary decomposition of P n.

(4) P (n) is the smallest P -primary ideal containing P n.

Moreover, P n = P (n) if and only if P n is primary.

Proof. Prime ideals are primary, and Ass(P ) = {P}, so (1) is immediate. The characteriza-
tion in (2) follows from (1) and the definition of RP . Theorem 1.79 says that P nRP ∩ R is
the unique minimal (P -primary) component in a primary decomposition of P n, which is (3).

So P (n) is a P -primary ideal containing P n. To show it is the smallest such ideal,
consider any other P -primary ideal Q containing P n. Since images and preimages preserve
containments, P nRP ∩R ⊆ QRP ∩R. Since Q is P -primary, the characterization of primary
ideals in Proposition 1.66 says that QRP ∩R = Q. We conclude that

P (n) = P nRP ∩R ⊆ QRP ∩R = Q,

and P (n) is the smallest P -primary ideal containing P n, which is (4).
The final statement is now immediate from (4).

The symbolic powers of a prime ideal do not necessarily coincide with its powers.

Example 2.3. Fix n ⩾ 2. Let k be a field, R = k[x, y, z]/(xy− zn), and consider the prime
ideal P = (x, z) in R. While y /∈ P , xy = zn ∈ P n, so x ∈ P (n). Note moreover that x /∈ P n,
so P n ̸= P (n).

In fact, the symbolic powers of a prime ideal might not coincide with its powers even
over a polynomial ring.

Example 2.4. Fix a field k, and let R = k[x, y, z]. Consider the ideal P given by

P =

x3 − yz︸ ︷︷ ︸
f

, y2 − xz︸ ︷︷ ︸
g

, z2 − x2y︸ ︷︷ ︸
h

 .

We will show that the ring homomorphism

k[x,y,z]
P

π // k[t3, t4, t5]

(x, y, z) � // (t3, t4, t5)

is an isomorphism. First, note that it is immediately surjective by construction, so we just
need to prove it is injective. If we set deg(x) = 3, deg(y) = 4, deg(z) = 5, deg(t) = 1, π is a
graded homomorphism of graded rings, whose kernel is homogeneous. Since [k[t3, t4, t5]]n is
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a 1-dimensional vector space generated by tn for all n ⩾ 3 (and zero in degrees 1 and 2), it

suffices to show that dim([k[x,y,z]
P

]n) = 1 for all n ⩾ 3 (and zero in degrees 1 and 2).

Given any monomial in k[x,y,z]
P

, we can use the relations y2 − xz, z2 − x2y, and yz− x3 to
obtain an equivalent monomial where the sum of the y and z exponents is smaller until we
get a monomial of the form xa, xay, or xaz. If n = 1, 2, there is no such monomial; if n ⩾ 3,
there is exactly one, namely, 

xn/3 if n ≡ 0 mod 3

x(n−4)/3y if n ≡ 1 mod 3

x(n−5)/3y if n ≡ 2 mod 3

This shows that P is the kernel of the map

k[x, y, z] // k[t3, t4, t5]

(x, y, z) � // (t3, t4, t5)

.

Since k[t3, t4, t5] ⊆ k[t] is a domain, we conclude that P is a prime ideal. In fact, P is a
homogeneous ideal with the grading we considered above: our generators f , g, and h are
now homogeneous, with deg(f) = 9, deg(g) = 8, and deg(h) = 10. We claim that P (2) ̸= P 2.

Consider the homogeneous element f 2− gh ∈ (x), which has degree 18, and let q be such
that f 2−gh = qx. Since x /∈ P and xq = f 2−gh ∈ P 2, we conclude that q ∈ P (2). However,
since deg(x) = 3 and deg(f 2 − gh) = 18, q must be a homogeneous element of degree 15.
In contrast, the smallest degree of any element in P 2 is 2× 8 = 16, since P is generated by
elements of degree at least 8. Since q has degree 15 but every element in P 2 has degree 16
or more, we conclude that q /∈ P 2.

The symbolic powers of an ideal do sometimes coincide with its ordinary powers.

Lemma 2.5. Let k be a field and consider a polynomial ring R = k[x1, . . . , xd]. If I is an
ideal generated by some of the variables, then I(n) = In for all n ⩾ 1.

Proof. Since I is a prime ideal, we want to show that In is primary for all n. Without loss
of generality, assume I = (x1, . . . , xt) for some t ⩽ d. Give R the grading with weights
|x1| = · · · = |xt| = 1, and |xt+1| = · · · = |xd| = 0. With this grading, I is a homogeneous
ideal, and the nonzero homogeneous elements in I are precisely the homogeneous elements
of positive degree. Similarly, the nonzero homogeneous elements in In are the homogeneous
elements in R of degree at least n. If g /∈

√
In = I, then g has a term of degree zero. If

f /∈ In, then f has a term of degree strictly smaller than n. The product fg must then
have a term of degree strictly smaller than n, so it is not in In. We conclude that In is
primary.

Lemma 2.6. If m is a maximal ideal in a noetherian ring R, then mn = m(n) for all n.

Proof. We just need to show thatmn is primary. Butm is the only prime containingmn, so we
necessarily have Ass(mn) ⊆ {m}. By Theorem 1.45 ??, Ass(mn) ̸= ∅, so Ass(mn) = {m}.
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Now we are ready to discuss the general case. When I is an ideal with no embedded
primes, the symbolic powers of I are given by

I(n) =
⋂

P∈Ass(I)

InRP ∩R =
⋂

P∈Min(I)

InRP ∩R.

This is a primary decomposition of I(n): the associated primes of I(n) are precisely the
minimal primes of I, and for each P ∈ Min(I) the P -primary component of I(n) is given by
InRP ∩R.

Lemma 2.7. Let I be an ideal with no embedded primes in a noetherian ring R.

(1) In = I(n) if and only if In has no embedded primes.

(2) Ass(I(n)) = Ass(I) = Min(I) = Min(In).

Proof.

(1) Since
√
In =

√
I, the minimal primes of In coincide with those of I. Therefore, an

irredundant primary decomposition of In consists of

In = I(n) ∩Q1 ∩ · · · ∩Qk,

where Q1, . . . , Qk are primary components corresponding to embedded primes of In.
There are no such components precisely when In = I(n).

(2) Saying I has no embedded primes is the same as saying that Ass(I) = Min(I), and
Min(I) = Min(In) always holds. For each P ∈ Ass(I) = Min(I) = Min(In), InRP ∩R
is a P -primary ideal, so ⋂

P∈Ass(I)

InRP ∩R

is an intersection of primary ideals with distinct, incomparable radicals. This must then
be a primary decomposition of I(n), and the corresponding primes are the associated
primes of I(n).

We can write I(n) more directly as the elements that live in In up to multiplication by
an element not in any associated prime of I.

Remark 2.8. Let I be an ideal in a noetherian ring R. Setting

W := R \
⋃

P∈Ass(I)

P

we claim that

I(n) = W−1In ∩R = {r ∈ R | sr ∈ In for some s ∈ W}
= {r ∈ R | sr ∈ In for some s /∈ P for all P ∈ Ass(I)}

.
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If a ∈ I(n), then a ∈ InRP ∩ R for each P ∈ Min(I), so for each such P there exists an
element s /∈ P with sa ∈ In. Therefore, (In : a) is not contained in any P ∈ Ass(I). There
are finitely many such primes, by Corollary 1.53, so by Prime Avoidance

(In : a) ⊈
⋃

P∈Ass(I)

P.

Therefore, there exists s ∈ W such that sa ∈ In. Now assume s ∈ W and a ∈ R satisfy
sa ∈ In. For each P ∈ Ass(I), s /∈ P , so sa ∈ In gives a ∈ InRP ∩R. Therefore, a ∈ I(n).

Lemma 2.9. Let I be an ideal with no embedded primes in a noetherian ring R.

(1) For all n ⩾ 1, In ⊆ I(n).

(2) If I has no embedded primes, then I(1) = I.

(3) If R is a domain and I is a nonzero ideal, then Ia ⊆ I(b) implies a ⩾ b.

(4) If a ⩾ b, then I(a) ⊆ I(b).

(5) For all a, b ⩾ 1, I(a)I(b) ⊆ I(a+b).

Proof.

(1) This is a set-theoretic statement: any set is contained in the preimage of its own image
by any map. In particular, for all associated primes P of I, In ⊆ InRP ∩R.

(2) By Theorem 1.79, the minimal primary components of In are unique, and the compo-
nent associated to each P ∈ Min(In) = Min(I) = Ass(I) is given by IRP ∩ R. Since
all the associated primes of I are minimal,

I =
⋂

P∈Min(I)

(IRP ∩R) =
⋂

P∈Ass(I)

(IRP ∩R) = I(1).

(3) Suppose Ia ⊆ I(b), and let P be an associated prime of I. We have

(IP )
a = (Ia)P ⊆

(
I(b)
)
P
= (IP )

b.

Write J = IP , and note that J is contained in the unique maximal ideal of RP . If
a < b, it would follow that Ja = J b, which by NAK implies J = 0. Since R is a domain,
the localization map is injective, and thus J = 0 happens only if I = 0.

(4) Since a ⩾ b, Ia ⊆ Ib, so IaRP ⊆ IbRP for any prime ideal P . Since taking preimages
preserves inclusions, we conclude that IaRP ∩R ⊆ IbRP ∩R, and thus I(a) ⊆ I(b).

(5) Let P ∈ Ass(I) and let π be the canonical localization map R → RP . Given x ∈ I(a)

and y ∈ I(b), π(xy) = π(x)π(y) ∈ IaIbRP . Since I
aIb = Ia+b, we have π(xy) ∈ Ia+bRP ,

and xy ∈ Ia+bRP ∩ R. Since this holds for all P ∈ Ass(I), we conclude that xy ∈
I(a+b).
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Remark 2.10. Let I be a radical ideal with minimal primes P1, . . . , Ps, so I = P1∩· · ·∩Ps.
As we discussed in the proof of Theorem 1.79, IRPi

= PiRPi
. Since localization commutes

with powers, we conclude that InRPi
= P n

i RPi
, and thus

I(n) = P
(n)
1 ∩ · · · ∩ P (n)

s .

Example 2.11. Consider the radical ideal I = (xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z). As in
Remark 2.10, its symbolic powers are given by

I(n) = (x, y)(n) ∩ (x, z)(n) ∩ (y, z)(n),

which by Lemma 2.5 can be simplified to

I(n) = (x, y)n ∩ (x, z)n ∩ (y, z)n.

Now xyz ∈ I(2) but xyz /∈ I2, since I2 is generated by homogeneous elements of degree 4.

Just because I(n) = In for some n > 1, that does not mean that I(m) = Im for other
values of m. Here is an example by Susan Morey [Mor96, Example 4.5].

Example 2.12 (Morey). Let k be a field, R = k[x1, x2, x3, x4], and consider the matrix

M =



0 −x1 −x3 x2 −x1 x4 −x3
x1 0 −x3 x2 x1 −x4 −x1
x3 x3 0 0 −x3 x1 −x4
−x2 −x2 0 0 −x4 x2 0
x1 −x1 x3 x4 0 −x3 x1
−x4 x4 −x1 −x2 x3 0 −x2
x3 x1 x4 0 −x1 x2 0


.

This a skew-symmetric matrix, meaning that Mij = −Mji for all i, j. The even sized minors
of such a matrix turn out to be squares, so we can consider polynomials f such that f 2 is
an even-sized minor of M . The ideal generated by the 2t-sized minors of a skew-symmetric
matrix is called the ideal of 2t× 2t pfaffians of M .

The ideal I of 6× 6 pfaffians of M is an example of an ideal that satisfies I(2) = I2 but
I(3) ̸= I3, which one can check with Macaulay2. This example appears in [Mor96, Example
4.5], though it is in [Mor99] that she shows it has the desired properties.

We end this section with a discussion on the symbolic powers of a general ideal.

Discussion 2.13. Let I be any ideal, possibly with embedded primes. By definition, if
Q ⊆ P are primes containing I, then InRP ∩ R ⊆ InRQ ∩ R. Thus to compute I(n), it is
sufficient to consider the maximal primes in Ass(I), denoted mAss(I), and

I(n) =
⋂

P∈Ass(I)

InRP ∩R =
⋂

P∈mAss(I)

InRP ∩R.

Now fix P ∈ Ass(I) and let J = IRP ∩R. By Remark 1.80, J = IRP ∩P is the intersection
of all the primary components of I that are contained in P , which is by construction a
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primary decomposition of J . Therefore, Ass(J) = Ass(IRP ∩ R) = {Q ∈ Ass(I) | Q ⊆ P}.
In particular, JRP = IRP , and since powers commute with localization, JnRP = InRP for
all n. Therefore, J (n) = InRP ∩R, and

I(n) =
⋂

P∈mAss(I)

(IRP ∩R)(n).

In words, I(n) can be decomposed into the symbolic powers of the ideals obtained by collecting
all the primary components of In contained in each maximal associated prime of I; each one
of these is an ideal with only one maximal associated prime.

Now suppose that I is an ideal with a unique maximal associated prime, say P . An
element s is contained in some associated prime of I if and only if s ∈ P , so

I(n) = {r ∈ R | sr ∈ In for some s /∈
⋃

Q∈Ass(I)

Q} = {r ∈ R | sr ∈ In for some s /∈ P}.

Thus for a general ideal I,

I(n) =

r ∈ R | sr ∈ In for some s /∈
⋃

P∈mAss(I)

P

 .

2.2 Computing symbolic powers

From what we have seen so far, it appears that to compute the symbolic powers of a given
ideal we need only to find a primary decomposition of In, and then collect the appropriate
components. In practice, that would be a terrible idea: as we briefly discussed in the
previous chapter, computing primary decompositions is a computationally difficult problem,
and to add to that, the number of calculations involved in computing powers of ideals grows
very fast. One of the problems we will study is how to find effective and practical ways
to compute the symbolic powers of an ideal — and most importantly, to avoid computing
primary decompositions.

We saw in Exercise 1 that we can compute the minimal primary components of any ideal
via saturation, so we can now put the same trick to use to compute symbolic powers. More
interestingly, given an ideal I with no embedded primes, we can construct an ideal J such
that I(n) = (In : J∞) for all n. Saturations are computationally simple, so the difficult task
is only to find the appropriate ideal to saturate with.

To show that we can compute the symbolic powers of I by saturating with a fixed J , we
will use the beautiful and extraordinary fact that the there are only finitely many primes
that are associated to some power of I. This was shown by Ratliff in 1976 [Rat76]. In 1979,
Brodmann [Bro79] showed that more is true: when n is sufficiently large, Ass(In) does not
depend on n. Unfortunately, we will have to establish a bit more background before we can
prove this.
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Theorem 2.14 (Ratliff, 1976 [Rat76], Brodmann, 1979 [Bro79]). If I is an ideal in a noethe-
rian ring R, then Ass(In) stabilizes, meaning that there exists N such that Ass(In) is inde-
pendent of n ⩾ N . In particular, ⋃

n⩾1

Ass(In)

is finite.

Notation 2.15. We denote the set of all primes that are associated to some power of I by

A(I) :=
⋃
n⩾1

Ass(In).

This will allow us to show that to compute the symbolic powers of an ideal I, we can now
take saturations with respect to a fixed ideal; in fact, we can take saturations with respect
to a fixed principal ideal. To do that, however, we will need to use Prime Avoidance.

Exercise 2. Let I be an ideal with no embedded primes in a noetherian ring R. There
exists an ideal J , which we can take to be principal, such that I(n) = (In : J∞) for all n ⩾ 1.

Essentially, to solve this exercise we need to prove that there exists an ideal J such that

J ⊈ P for all P ∈ Ass(I) = Min(I) and J ⊆ P for every embedded prime P of In.

By Exercise 1, saturating with any such J will return the primary components of In associ-
ated to the primes in Ass(I), which is precisely I(n). Exercise 2 says that we can find such a
J that works for all n, and that we can even take J to be principal — more precisely, that
there exists an element t not in any minimal prime of I but in every embedded prime of
every power of I.

The hard part, of course, is constructing such an ideal J explicitly in a computationally
efficient way. As we will see in Section 3.8, this is easy to do if we know how to build an
ideal defining the non-complete intersection locus of R/I.

2.3 Homogeneous ideals

We have already seen a few examples of symbolic powers of homogeneous ideals where we
took advantage of being able to look at degrees of homogeneous elements. And indeed, the
symbolic powers of a homogeneous ideal are also homogeneous.

Theorem 2.16. Let R be a noetherian graded ring. If I is a homogeneous ideal, then its
symbolic powers I(n) are homogeneous for all n ⩾ 1.

Proof. By Exercise 2, there exists an element t not in any associated prime of I, but in every
prime P such that P ∈ Ass(In) for some n but P /∈ Ass(I), and we can compute I(n) by
taking I(n) = (In : t∞). By Theorem 1.50, the associated primes of In are all homogeneous
for all n, so we can choose such t to be homogeneous.

If f ∈ I(n), then for all m large enough, ftm ∈ In. Since I is homogeneous, so is In,
and thus every homogeneous component of ftm must be in In. Decompose f =

∑
i fi as a
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finite sum of homogenous elements of degree i. Since tm is homogeneous, the homogeneous
components of ftm are of the form fit

m, so each fit
m ∈ In. Therefore, fi ∈ I(n) for all i, and

thus I(n) is homogeneous.

We have seen several examples of homogeneous ideals whose symbolic powers do not
coincide with the powers because they have elements in wrong degrees. This is a very
common phenomenon. In the examples we saw before, we had elements of degrees that were
too small.

Definition 2.17. If I is a homogeneous ideal in an N-graded ring R, then

α(I) := min {deg(f) | 0 ̸= f ∈ I is a homogeneous element} .

So α(I) is the smallest degree of a homogeneous generator for I.

Example 2.18. Consider a 3× 3 matrix of variables,

X =

x1 x2 x3
x4 x5 x6
x7 x8 x9

 .

Given a field k, we write R = k[X] for the polynomial ring R = k[x1, . . . , x9], and It(X) for
the ideal in R generated by the t-minors of X. Let I = I2(X), which is a homogeneous ideal
generated in degree 2. It is a nontrivial fact (first proved by Hochster and Eagon [HE71])
that this ideal is in fact prime. We claim that I(2) ̸= I2, and once more we will use a degree
argument. To see this, consider the element det(X), which we can write for example using
cofactor expansion on the first row:

det(X) = x1

∣∣∣∣x5 x6
x8 x9

∣∣∣∣− x2

∣∣∣∣x4 x6
x7 x9

∣∣∣∣+ x3

∣∣∣∣x4 x5
x7 x8

∣∣∣∣ .
This is clearly an element in I, since we wrote it as a linear combination of elements in I.
On the other hand, this is not an element in I2, since it has degree 3 and α(I2) = 4. On the
other hand, with a few careful computations one can see that

x1 det(X) =

∣∣∣∣x1 x3
x7 x9

∣∣∣∣ ∣∣∣∣x1 x2
x4 x5

∣∣∣∣− ∣∣∣∣x1 x2
x7 x8

∣∣∣∣ ∣∣∣∣x1 x3
x4 x6

∣∣∣∣ ∈ I2,

and since x1 /∈ I, we conclude that det(X) ∈ I(2). So we have shown that I2 ̸= I(2).

In Example 2.18, Example 2.4 and Example 2.11, we found a homogeneous element in I(n)

of degree smaller than α(In). The existence of such elements is not necessary for In ̸= I(n).

Example 2.19. Let R = Q[x, y, z], and let P be the defining ideal of the curve parametrized
by (t9, t11, t14). Here are some Macaulay2 computations.

i1 : k = QQ;

i2 : a = 9; b = 11; c = 14;
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i6 : R = k[x,y,z, Degrees => {a,b,c}];

i7 : P = ker map(QQ[t],R,{t^a,t^b,t^c})

4 2 3 3 5 3 2

o7 = ideal (x - y z, x*y - z , y - x z )

o7 : Ideal of R

i8 : associatedPrimes(P^2)

4 2 3 3 5 3 2

o8 = {ideal (x - y z, x*y - z , y - x z ), ideal (x, y, z)}

o8 : List

i9 : symbolic2 = (select(primaryDecomposition(P^2), Q -> radical(Q) == P))_0

8 4 2 4 2 5 3 5 4 3 2 4 2 6 3 3 6

o9 = ideal (x - 2x y z + y z , x y - x*y z - x z + y z , x y - 2x*y z + z ,

---------------------------------------------------------------------------

8 7 3 3 2 2 5 4 5 7 7 2 3 2 3

y + x y*z - 3x y z + x z , x y - y z - x z + x y z )

o9 : Ideal of R

i10 : degrees symbolic2

o10 = {{72}, {78}, {84}, {88}, {91}}

o10 : List

i11 : degrees (P^2)

o11 = {{72}, {78}, {91}, {84}, {97}, {110}}

o11 : List

In line i8 we learned that P 2 has one embedded prime, the homogeneous maximal ideal.
This automatically tells us that P 2 ̸= P (2). We computed P (2) and called it symbolic2 by
simply taking a primary decomposition of P 2 and selecting the P -primary component. Since
both P 2 and P (2) are homogeneous ideals, we then asked Macaulay2 for the degrees of the
generators using the command degrees, and found two interesting things:

• α(P 2) = α(P (2)), despite the fact that P 2 ̸= P (2).

• P (2) has a minimal generator of degree 88, while P 2 does not.
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This makes us suspect that this generator of degree 88 is an element of P (2) that is not
in P 2. We can ask Macaulay2 to help us identify this generator of P (2) of degree 88:

i14 : select(flatten entries mingens (symbolic2), f -> degree(f) == {88})

8 7 3 3 2 2 5

o14 = {y + x y*z - 3x y z + x z }

o14 : List

We can do even better, and find all the generators of P (2) in our generating set that are not
in P 2.

i19 : select(flatten entries mingens (symbolic2), f -> f%(P^2) != 0)

8 7 3 3 2 2 5

o19 = {y + x y*z - 3x y z + x z }

o19 : List

i20 : f = oo_0

8 7 3 3 2 2 5

o20 = y + x y*z - 3x y z + x z

o20 : R

i21 : P^2 + ideal(f) == symbolic2

o21 = true

This last computation tells us that this element f = y8 + x7yz − 3x3y3z2 + x2z5 of degree
88 satisfies P (2) = P 2 + (f). We note that this behavior is in a way too nice: in general,
P (2)/P 2 might be generated by many elements, not just one.

2.4 Where are we going?

In order to understand symbolic powers better, we will need to first take a short detour
to develop a few more fundamental commutative algebra tools. Here are some of the main
questions that will motivate our study:

Computing symbolic powers

As we saw in the previous section, we need only to find an appropriate element x such that
I(n) = (In : J∞). We have discussed how to find this element in theory, but our description
appears to require knowledge of all the associated primes of all the powers of I. This is of
course unreasonable, and our goal is to find more effective ways to find such an x.

We will also discuss how to find symbolic powers via other methods for some special
classes of ideals. To do this, we will use all sorts of different tools. For example, we will
discuss how to apply combinatorics to study the symbolic powers of monomial ideals.
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Equality

Computing symbolic powers would be an easy problem if I(n) = In. So when does this hold?
What are some sufficient or necessary conditions for this to hold for some fixed n, or for all
n? Can we test the equality I(n) = In for all n by doing only finitely many tests?

Minimal degrees

When I is a homogeneous ideal, I(n) is also homogeneous, but its elements may have unex-
pected degrees. We have briefly discussed some of the behavior we may find, but we would
like to explore this further. Will keep a special eye towards lower bounds on α(I(n)), since
nα(I) = α(In) is the obvious upper bound.

Finite generation of symbolic Rees algebras

In Lemma 2.9 we showed that I(a)I(b) ⊆ I(a+b). So as we compute higher and higher symbolic
powers of I, we can think of all the elements in∑

a1+···+an−1=n

Ia1 · · ·
(
I(n−1)

)an−1 ⊆ I(n)

as expected, and any other element in I(n) as unexpected. Roughly speaking, we want to
understand whether we will see unexpected elements in I(n) for arbitrarily large n, or whether
there is a finite set of symbolic powers which describe all the remaining ones. We will make
this problem precise when we study the symbolic Rees algebra of I, which is a graded
algebra we construct from the symbolic powers of I. In a surprising twist, these algebras
will sometimes be NOT noetherian.

Comparing powers and symbolic powers of ideals

While the symbolic and ordinary powers of an ideal are not necessarily equal, they are
of course related. How different are In and I(n), really? And how can we formalize this
question? One way is of course by studying α(I(n)) and comparing it to α(In), but there
are other ways to formalize this comparison. One in particular we will discuss is known
as the Containment Problem, which is the question of when I(a) ⊆ Ib. Another way we
can formalize this question is to ask whether I(n+1) contains any minimal generator of I(n),
which is roughly speaking the content of an open problem known as the Eisenbud-Mazur
conjecture.

A geometric perspective

Over a polynomial ring over a perfect field, there is a geometric interpretation for the symbolic
powers of a radical ideal. We will discuss this, and take it in part as a motivation to study
symbolic powers.

But before we do any of this, it’s time for a short detour through some classical commu-
tative algebra topics that any algebraist should keep in their back pocket.
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Sharpening our tools

3.1 Dimension and height

Definition 3.1. A chain of prime ideals

p0 ⊊ p1 ⊊ · · · ⊊ pn

has length n. We say a chain of primes is saturated if for each i there is no prime q with
pi ⊊ q ⊊ pi+1. The Krull dimension of a ring R is the supremum of the lengths of chains
of primes in R, and we denote it by dim(R). The height of a prime p is the supremum of
the lengths of chains of primes in R that end in p, i.e., with p = pn above, and we denote it
by ht(p). The height of an ideal I is given by

ht(I) := inf {ht(p) | p ∈ Min(I)}

Macaulay2. We can compute the dimension of a ring using dim. To compute the height of
an ideal I, we use the method codim.

Definition 3.2. The dimension of an R-module M is defined as dim(R/ annR(M)).

Note that if M is finitely generated, dim(M) is the same as the supremum of the lengths
of chains of primes in SuppR(M).

Remark 3.3.

1) If I is an ideal, then dim(R/I) is the supremum of the lengths of chains of primes in R

q0 ⊊ q1 ⊊ · · · ⊊ qn

with each qi ∈ V (I).

2) If W is a multiplicative set, then dim(W−1R) ⩽ dim(R).

3) If p is prime, then dim(Rp) = ht(p).

4) If q ⊇ p are primes, then dim(Rq/pRq) is the supremum of the lengths of all chains of
primes in R of the form

p = a0 ⊊ a1 ⊊ · · · ⊊ an = q.

38
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5) dim(R) = sup{ht(m) | m ∈ mSpec(R)}.

6) dim(R) = sup{dim(R/p) | p ∈ Min(R)}.

7) If I is an ideal, dim(R/I) + ht(I) ⩽ dim(R).

8) The ideal (0) has height 0.

9) A prime ideal has height zero if and only if it is a minimal prime of R.

We will need a few theorems before we compute the height and dimension of many
examples, but we can handle a few basic cases.

Example 3.4.

a) The dimension of a field is zero.

b) A ring is zero-dimensional if and only if every minimal prime is maximal.

c) The ring of integers Z has dimension 1: there is one minimal prime (0) and every other
prime is maximal. More generally, any principal ideal domain has dimension 1.

d) In a UFD, we claim that I is a prime of height 1 if and only if I = (f) with f prime
element.

To see this, note that if I = (f) with f irreducible, and 0 ⊊ p ⊆ I, then p contains
some nonzero multiple of f , say afn with a and f coprime. Since a /∈ I, a /∈ p, so we
must have f ∈ p, so p = (f). Thus, I has height one. On the other hand, if I is a prime
of height one, we claim I contains an irreducible element. Indeed, I is nonzero, so it
contains some f ̸= 0, and primeness implies one of the prime factors of f is contained
in I. Thus, any nonzero prime contains a prime ideal of the form (f), so a height one
prime must be of this form.

e) If k is a field, then dim(k[x1, . . . , xd]) ⩾ d, since there is a saturated chain of primes
(0) ⊊ (x1) ⊊ (x1, x2) ⊊ · · · ⊊ (x1, . . . , xd).

Definition 3.5. A ring is catenary if for every pair of primes q ⊇ p in R, every saturated
chain of primes

p = P0 ⊊ P1 ⊊ · · · ⊊ Pn = q

has the same length. A ring is equidimensional if every maximal ideal has the same finite
height and dim(R/P ) is the same finite number for every minimal prime P .

Here are some examples of what can go wrong.

Example 3.6. We can find the minimal primes of the ring

R =
k[x, y, z]

(xy, xz)

by computing Min((xy, xz)) in k[x, y, z]. As we saw in Example 1.12, the primes (x) and
(y, z) are incomparable, and (x)∩(y, z) = (xy, xz), so Min(R) = {(x), (y, z)}. We claim that



40

the height of (x−1, y, z) in R is one: it contains the minimal prime (y, z), and any saturated
chain from (y, z) to (x− 1, y, z) corresponds to a saturated chain from (0) to (x− 1) in k[x],
which must have length 1 since this is a PID. The height of (x, y − 1, z) is at least 2, as
witnessed by the chain (x) ⊆ (x, y−1) ⊆ (x, y−1, z). So R is not equidimensional. One can
also show that the minimal primes of (xy, xz) in k[x, y, z] have different heights: the prime
(x) has height 1, which (y, z) has height at least 2, since (0) ⊊ (y) ⊊ (y, z). In fact, we will
soon see that any ideal generated by 2 elements must have height at most 2, and thus (y, z)
has height exactly 2.

While the previous example is not a domain, even domains may fail to be equidimensional.

Example 3.7. The ring Z(2)[x] is a domain that is not equidimensional. On the one hand,
the maximal ideal (2, x) has height at least two, which we see from the chain

(0) ⊊ (x) ⊆ (x, 2).

On the other hand, the ideal (2x−1) has height 1, and it is maximal since the quotient is Q.

Remark 3.8.

a) If R is a finite dimensional domain, and f ̸= 0, then dim(R/(f)) < dim(R).

b) If R is equidimensional, then dim(R/(f)) < dim(R) if and only if f /∈
⋃

p∈Min(R)

p.

c) In general, dim(R/(f)) < dim(R) if and only if f /∈
⋃

p∈Min(R)
dim(R/p)=dim(R)

p.

d) f /∈
⋃

p∈Min(R)

p if and only if dim(R/(p+ (f))) < dim(R/p) for all p ∈ Min(R).

Krull’s Height Theorem, which we will now prove, gives us the most elementary and
important connection between height and number of generators. This is also an excellent
example of a theorem in elementary commutative algebra that we can prove using symbolic
powers.

Theorem 3.9 (Krull’s Principal Ideal theorem). Let R be a Noetherian ring, and f ∈ R.
Then, every minimal prime of (f) has height at most one.

Note that this is stronger than the statement that the height of (f) is at most one: that
would only mean that some minimal prime of (f) has height at most one.

Proof. Suppose the theorem is false, so that there is some ring R, a prime p, and an element
f such that p is minimal over (f) and ht(p) > 1. If we localize at p and then mod out by
an appropriate minimal prime, we obtain a Noetherian local domain (R,m) of dimension at
least two in which m is the unique minimal prime of (f), so let’s work over that Noetherian
local domain (R,m). Note that R = R/(f) is zero-dimensional, since m is the only minimal
prime over (f). Back in R, let q be a prime strictly in between (0) and m, and notice that
we necessarily have f /∈ q.
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Consider the symbolic powers q(n) of q. We will show that these stabilize in R. Since
R = R/(f) is Artinian, the descending chain of ideals

qR ⊇ q(2)R ⊇ q(3)R ⊇ · · ·

stabilizes. We then have some n such that q(n)R = q(m)R for all m ⩾ n, and in particular,
q(n)R = q(n+1)R. Pulling back to R, we get q(n) ⊆ q(n+1) + (f). Then any element a ∈ q(n)

can be written as a = b + fr, where b ∈ q(n+1) ⊆ q(n) and r ∈ R. Notice that this implies
that fr ∈ q(n). Since f /∈ q, we must have r ∈ q(n). This yields q(n) = q(n+1) + fq(n). Thus,
q(n)/q(n+1) = f(q(n)/q(n+1)), so q(n)/q(n+1) = m(q(n)/q(n+1)). By NAK, q(n) = q(n+1) in R.
Similarly, we obtain q(n) = q(m) for all m ⩾ n.

Now, if a ∈ q is nonzero, we have an ∈ qn ⊆ q(n) = q(m) for all m, so⋂
m⩾1

q(m) =
⋂
m⩾n

q(m) = q(n).

Notice that qn ̸= 0 because R is a domain, and so q(n) ⊇ qn is also nonzero. So⋂
m⩾1

q(m) = q(n) ̸= 0.

On the other hand, q(m) = qmRq ∩R for all m, and⋂
m⩾1

q(m)Rq ⊆
⋂
m⩾1

qmRq =
⋂
m⩾1

(qRq)
m = 0

by Krull’s Intersection theorem. Since R is a domain, the contraction of (0) in Rq back in
R is (0). This is the contradiction we seek. So no such q exists, so that R has dimension 1,
and in the original ring, all the minimal primes over f must have height at most 1.

To generalize this to ideals generated by n elements, it is not so straightforward to run
an induction. We will need a lemma that allows us to control the chains of primes we get.

Lemma 3.10. Let R be Noetherian, p ⊊ q ⊊ a be primes, and f ∈ a. Then there is some q′

with p ⊊ q′ ⊊ a and f ∈ q′.

Proof. If f ∈ p, there is nothing to prove, since we can simply take q′ = q. Suppose f /∈ p.
After we quotient out by p and localize at a, we may assume that a is the maximal ideal.
We want to find a nonzero prime q′ ⊊ a. Our assumption implies that f ̸= 0, and then by
Theorem 3.9, minimal primes of (f) have height one, hence are not a nor p. We can take q′

to be one of the minimal primes of f .

Theorem 3.11 (Krull’s Height Theorem). Let R be a Noetherian ring. If I is an ideal
generated by n elements, then every minimal prime of I has height at most n.

Proof. By induction on n. The case n = 1 is the Principal Ideal Theorem.
Let I = (f1, . . . , fn) be an ideal, p a minimal prime of I, and p0 ⊊ p1 ⊊ · · · ⊊ ph = p

be a saturated chain of length h ending at p. If f1 ∈ p1, then we can apply the induction
hypothesis to the ring R = R/((f1) + p0) and the ideal (f2, . . . , fn)R. Then by induction
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hypothesis, the chain p1R ⊊ · · · ⊊ phR has length at most n− 1, so h− 1 ⩽ n− 1 and p has
height at most n.

If f1 /∈ p1, we use the previous lemma to replace our given chain with a chain of the same
length but such that f1 ∈ p1. To do this, note that f1 ∈ pi for some i; after all, f1 ∈ I ⊆ p.
So in the given chain, suppose that f1 ∈ pi+1 but f1 /∈ pi. If i > 0, apply the previous lemma
with a = pi+1, q = pi, and p = pi−1 to find qi such that f1 ∈ qi. Replace the chain with

p0 ⊊ p1 ⊊ · · · ⊊ pi−1 ⊊ qi ⊊ pi ⊊ · · · ⊊ ph = p.

Repeat until f1 ∈ p1.

The bound given by Krull’s Height Theorem is sharp:

Example 3.12. Any ideal generated by n variables in a polynomial ring has height n. The
ideal (u3 − xyz, x2 + 2xz − 6y5, vx+ 7vy) in k[u, v, w, x, y, z] has height 3.

Definition 3.13. An ideal of height n generated by n elements is a complete intersection.

Here are some other examples.

Example 3.14.

a) As we saw in Example 3.6, the ideal (xy, xz) in k[x, y, z] has minimal primes of heights
1 and 2. Its height is 1, though its minimal number of generators is 2.

b) It is possible to have associated primes of height greater than the number of generators.
For a cheap example, in R = k[x, y]/(x2, xy), the ideal generated by zero elements (the
zero ideal) has an associated prime of height two, namely (x, y).

c) The same phenomenon can happen even in a nice polynomial ring. For example,
consider the ideal I = (x3, y3, x2u + xyv + y2w) in R = k[u, v, w, x, y]. The element
x2y2 /∈ I has (u, v, w, x, y) = (I : x2y2), so I has an associated prime of height 5.

d) Noetherianity is necessary. Let R = k[x, xy, xy2, . . . ] ⊆ k[x, y]. For all a ⩾ 1, xya /∈
(x), since ya /∈ R, but (xya)2 = x · xy2a ∈ (x). Then (x) is not prime, and m =
(x, xy, xy2, . . . ) ⊆

√
(x). Since m is a maximal ideal, we have equality, so Min (x) =

{m}. However, p = (xy, xy2, xy3, . . . ) = (y)k[x, y] ∩ R is prime, and the chain (0) ⊊
p ⊊ m shows that ht(m) > 1.

Corollary 3.15. Let (R,m, k) be a Noetherian local ring. Then

dim(R) ⩽ µ(m).

In particular, a Noetherian local ring has finite dimension.

Proof. The dimension of a local ring is the height of its unique maximal ideal, so this is just
Krull’s Height Theorem applied to m. If R is noetherian, then µ(m) is finite, so dim(R) must
also be finite.
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Definition 3.16. The embedding dimension of a local ring (R,m) is the minimal number
of generators of m, µ(m). We write embdim(R) := µ(m) for the embedding dimension of R.

Macaulay2. The minimal number of generators of an ideal or module can be computed via
the method numgens. We can also find a particular minimal generating set with mingens.
Unfortunately, these computations are not reliable if the ideal is not homogeneous.

So Corollary 3.15 can be restated as dim(R) ⩽ embdim(R). Rings whose dimension and
embedding dimension agree are very nicely behaved.

Definition 3.17. A Noetherian local ring (R,m) is regular if dim(R) = embdim(R).

Corollary 3.18. Let k be a field. The power series ring R = kJx1, . . . , xdK is a regular local
ring. Then dim(R) = d and R is a regular local ring.

Proof. Let m = (x1, . . . , xd). The images of x1, . . . , xd in m/m2 are linearly independent, so
µ(m) = d. To show that R is regular, we need to show that dim(R) = d. The strict chain of
primes

(0) ⊊ (x1) ⊊ (x1, x2) ⊊ · · · ⊊ (x1, . . . , xd)

shows that dim(R) ⩾ d. By Corollary 3.15, dim(R) = d.

But before we can say more about regular rings, we will need to discuss regular sequences.
We record here a few results one would cover in a first course in commutative algebra that
we will not prove, but that we will want to use later.

Theorem 3.19. If a domain R is a finitely generated algebra over a field k, or a quotient of
a power series ring over a field, then all the maximal ideals of R have the same finite height.
Moreover, dim(k[x1, . . . , xd]) = d.

Theorem 3.20. Let R be a finitely generated algebra or a quotient of a power series ring
over a field.

1) R is catenary.

If additionally R is a domain, then

2) R is equidimensional, and

2) ht(I) = dim(R)− dim(R/I) for all ideals I.

Definition 3.21. Let K ⊆ L be an extension of fields. A transcendence basis for L over
K is a maximal algebraically independent subset of L. The transcendence degree of a
field extension L over K is the common size of any transcendence basis for the extension.

Definition 3.22. For a prime P in a ring R, we denote the residue field of RP by κ(P ).
Equivalently, κ(P ) is the field of fractions of R/P .

Theorem 3.23 (Dimension inequality). Let R ⊆ S be an inclusion of domains with R
noetherian. Let q ∈ Spec(S) and p = q ∩R ∈ Spec(R). Then

height(q) + trdeg(κ(q)/κ(p)) ⩽ height(p) + trdeg(frac(S)/frac(R)).
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3.2 The Koszul complex

The Koszul complex is arguably the most important complex in commutative algebra (and
beyond). It appears everywhere, and it is a very powerful yet elementary tool any homological
algebraist needs in their toolbox. Every sequence of elements x1, . . . , xn in any ring R gives
rise to a Koszul complex.

Definition 3.24. The tensor product of two complexes of R-modules C• and D• is the
complex C• ⊗R D• with

(C• ⊗R D•)n =
⊕
i+j=n

Ci ⊗R Dj,

and with differential δn defined on simple tensors x⊗ y ∈ Ci ⊗R Dj by

δn(x⊗ y) = δC•
i (x)⊗ y + (−1)ix⊗ δD•

i (y).

...

��

...

��

Ci+1 ⊗Dj+1

1⊗δD•
j+1

// Ci+1 ⊗Dj

1⊗δD•
j
//

δC•
i+1⊗1

��

Ci+1 ⊗Dj−1

1⊗δD•
j−1
//

δC•
i+1⊗1

��

Ci+1 ⊗Dj−2

Ci ⊗Dj+1
1⊗δD•

j+1

// Ci ⊗Dj
1⊗δD•

j

//

δC•
i ⊗1

��

Ci ⊗Dj−1
1⊗δD•

j−1

//

δC•
i ⊗1

��

Ci ⊗Dj−2

n+1

n Ci−1 ⊗R Dj

δC•
i−1⊗1

��

1⊗δD•
j
// Ci−1 ⊗R Dj−1

δC•
i−1⊗1

��

1⊗δD•
j−1
// Ci−1 ⊗R Dj−1

n-1

...
...

Definition 3.25. The Koszul complex on r ∈ R is the complex

K(r) := 0 // R r // R // 0.
0

More generally, the Koszul complex on the R-module M with respect to r ∈ R is

K(r;M) = K(r)⊗R M = 0 //M
r //M // 0.

Finally, given x1, . . . , xn ∈ R, the Koszul complex on M with respect to x1, . . . , xn is the
complex K(x1, . . . , xn) defined inductively as

K(x1, . . . , xn;M) = K(x1, . . . , xn−1;M)⊗R K(xn).
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You will find different sign conventions for the Koszul complex in the literature, but at
the end of the day they all lead to isomorphic complexes.

Example 3.26. The Koszul complex on f, g ∈ R is given by

0

��

0

��

0 // R
−g
//

f

��

R //

f

��

0

K•(f, g) = = 0 // R
(−g

f )
// R2 (f g)

// R // 0

0 // R g
//

��

R //

��

0

2

1 0 0

0

Example 3.27. K•(f, g, h) = 0 // R


f
−g
h


// R3


0 −h −g
−h 0 f
g f 0


// R3

(
f g h

)
// R // 0 .

Remark 3.28. Easy induction arguments show that when f = f1, . . . , fn:

• Ki(f) ∼= R(
n
i), with a basis naturally indexed by the subsets of I ⊆ [n] with i elements;

we write ReI for the corresponding free summand.

• The component of the map Ki(f) → Ki−1(f) from ReI → ReJ is zero if J ⊈ I, and is
±fi if I = J ∪ {i}.

Definition 3.29. If M is an R-module and f = f1, . . . , fn, then

K•(f ;M) := K•(f)⊗M and K•(f ;M) := HomR(K•(f),M).

Another easy induction shows that K•(f ;M) ∼= Kn−•(f ;M).

The Koszul complex has more structure than simply being a complex: it is an example of
a differentially graded algebra, or DG algebra for short, meaning it has an algebra structure
on it as well. We will briefly describe how to construct the Koszul complex in such a way,
but emphasize that this is only the beginning of a beautiful story about DG algebras.

In a rare moment on non-commutativity, we will need to consider exterior algebras. The
exterior algebra

∧
M on an R-module M is obtained by taking the the free R-algebra

R⊕M ⊕ (M ⊗M)⊕ (M ⊗M ⊗M)⊕· · · modulo the relations x⊗y = −y⊗x and x⊗x = 0
for all x, y ∈ N . We again denote the product on

∧
M by a ∧ b, and see

∧
M as a graded

algebra where the homogeneous elements in degree d are those in the image of N⊗n. This is
a skew commutative algebra, since

a ∧ b = (−1)deg(a) deg(b)b ∧ a
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for any homogeneous elements a and b. We denote the homogeneous elements of degree n by∧nM . Note also that this construction is functorial: a map M
f−→ N of R-modules induces

a map
∧
M

∧f−−→
∧
N given by m1 ∧ · · · ∧ms 7→ f(m1) ∧ · · · ∧ f(ms).

We will use this construction in the case of free modules. When M = Rn with basis
e1, . . . , en, ∧kM ∼= R(

n
k), with basis ei1 ∧ · · · ∧ eis ranging over i1 < i2 < · · · < is, s =

(
n
k

)
.

Definition 3.30. Let x1, . . . , xn be elements in R. The Koszul complex on x1, . . . , xn is
the complex

K(x1, . . . , xn) := 0 //
∧nRn //

∧n−1Rn // · · · //
∧1Rn // R // 0

with differential given by

d(ei1 ∧ · · · ∧ eis) =
∑
1⩽p⩽s

(−1)p+1xipei1 ∧ · · · ∧ êip ∧ · · · ∧ eis .

More generally, given an R-module M , the Koszul complex on M with respect to x1, . . . , xn
is K(x1, . . . , xn;M) := K(x1, . . . , xn)⊗R M .

Exercise 3. Show that d as defined above is indeed a differential, meaning d2 = 0.

Exercise 4. Check that our two definitions of the Koszul complex coincide.

Example 3.31. Let’s compute the Koszul complex on 2 elements x1, x2 via this second
definition. The complex looks like

K•(x1, x2) := 0 //
∧2R2 //

∧1R2 // R // 0 = 0 // R1 // R2 // R // 0 .

The differential in degree 1 is given by

d(e1) = x1 and d(e2) = x2

while the differential in degree 2 is

d(e1 ∧ e2) = x1e2 − x2e1,

so the Koszul complex is

K•(x1, x2) = 0 // R
(−x2

x1
)
// R2 (x1 x2)

// R // 0 .

Remark 3.32. The Koszul complex K(x;M) looks like

0 //M //Mn // · · · //Mn //M // 0

where the map in degree n is a column with entries ±xi, which after reordering looks like
x1
−x2
x3
...

(−1)n+1xn


and the map in degree 0 is (

x1 x2 x3 · · · xn
)
.
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The homology of the Koszul complex has nice properties.

Definition 3.33. Let M be an R-module and x1, . . . , xn ∈ R. The ith Koszul homology
module of M with respect to x1, . . . , xd is

Hi(x1, . . . , xd;M) := Hi(K(x1, . . . , xd;M)).

Example 3.34. In R = k[x, y],

H1(x, y;R) = homology of R

−y
x


// R2

x
y


// R = 0.

Example 3.35. In R = k[x, y, u, v]/(xu− yv),

H1(x, y;R) =

〈(−y
x

)
,
(

u
−v

)〉〈(−y
x

)〉 .

Note that

x

(
u

−v

)
=

(
xu

−xv

)
=

(
yv

−xv

)
= −v

(
−y
x

)
= 0 in H1(x, y;R).

Proposition 3.36. Let R be a ring, x = x1, . . . , xn ∈ R, and I = (x1, . . . , xn).

a) Hi(x;M) = 0 whenever i < 0 or i > n.

b) H0(x;M) =M/IM .

c) Hn(x;M) = (0 :M I) = annM(I).

d) Every Koszul homology module Hi(x;M) is killed by annR(M).

e) Every Koszul homology module Hi(x;M) is killed by I.

f) If M is a Noetherian R-module, so is Hi(x;M) for every i.

g) For every i, Hi(x;−) is a covariant additive functor R-mod −→ R-mod.

h) Every short exact sequence of R-modules

0 // A // B // C // 0

gives rise to a long exact sequence on Koszul homology,

· · · // H1(x;C) // H0(x;A) // H0(x;B) // H0(x;C) // 0.

Proof.

a) Immediate from the definition, since the Koszul complex is only nonzero in homological
degrees 0 through n.
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b) The comment above tells us that

Hn(x;M) = coker
(
x1 x2 x3 · · · xn

)
=M/IM.

c) The comment above tells us that

Hn(x;M) = ker(M

(
x1 −x2 x3 · · · (−1)n+1xn

)T

//M )

= {m ∈M | rx1 = rx2 = · · · = rxn = 0} = (0 :M I).

d) In each homological degree, the Koszul complex is simply a direct sum of copies of M .
So the modules in K(x;M) in each degree are themselves already killed by annI(M).

e) We are going to show something stronger: that for every a ∈ I, multiplication by
a on K(x;M) is nullhomotopic, which proves that a kills the homology of K(x;M).
It is in fact sufficient to show that multiplication by a is nullhomotopic on K(x),
since additive functors preserve the homotopy relation. To do this, we will explicitly
use the multiplicative structure of the Koszul complex, and think of our description
of the Koszul complex via exterior powers. Given a ∈ I = (x1, . . . , xn), write a =
a1x1 + · · · + anxn. Consider the map sa : K(x) −→ Σ−1K(x) given by multiplication
by a1e1 ∧ · · · ∧ anen, meaning

sa(ei1 ∧ · · · ∧ eit) =
n∑

j=1

ajej ∧ ei1 ∧ · · · ∧ eit .

Now we claim this map sa is a nullhomotopy for the map of complexes K(x) −→ K(x)
given by multiplication by a in every component. To check that, it is sufficient to check
that

sad (ei1 ∧ · · · ∧ eit) + dsa (ei1 ∧ · · · ∧ eit) = aei1 ∧ · · · ∧ eit .
We have

sad (ei1 ∧ · · · ∧ eit) = sa

(
t∑

k=1

(−1)k+1xkei1 ∧ · · · ∧ êjk ∧ · · · ∧ eit

)

=
n∑

j=1

t∑
k=1

(−1)k+1ajxkej ∧ ei1 ∧ · · · ∧ êjk ∧ · · · ∧ eit

and

dsa (ei1 ∧ · · · ∧ eit) = d

(
n∑

j=1

ajej ∧ ei1 ∧ · · · ∧ eit

)

=
n∑

j=1

t∑
k=1

(−1)k+2ajej ∧ ej1 ∧ · · · ∧ êik ∧ · · · ∧ eis +
n∑

j=1

ajxjei1 ∧ · · · ∧ eit

= −sad (ei1 ∧ · · · ∧ eit) +
n∑

j=1

ajxjei1 ∧ · · · ∧ eit
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and since
∑n

j=1 ajxj = a, we conclude that

(sad+ dsa) (ei1 ∧ · · · ∧ eit) = aei1 ∧ · · · ∧ eit .

f) If M is Noetherian, then so is Mk for any k, as well as any submodules of Mk and any
of their quotients. Each Hi(x;M) is a subquotient of a direct sum of copies of M , so
it must be Noetherian.

g) An R-module homomorphism M
f−→ N induces map K(f) : K(x;M) −→ K(x;N)

given by K(x)⊗ f , so Hi(x; f) = Hi(K(x)⊗ f).

h) In each homological degree, K(x) has a free module, so K(x) ⊗R − is exact. We
conclude that

0 // K(x)⊗R A // K(x)⊗R B // K(x)⊗R C // 0

is a short exact sequence of complexes, and the long exact sequence we want is precisely
resulting the long exact sequence in homology.

Remark 3.37. If C• is a complex, there exists a short exact sequence of complexes

0 // C• // C• ⊗K•(f) // C•(−1) // 0 given by

0 // Cn

1
0


// Cn ⊕ C ′

n−1

(
0 (−1)n−1

)
// C ′

n−1
// 0

where C ′
i
∼= Ci, and the ′ indicates that this is the copy tensored with K1(f). Indeed, these

are clearly exact, and we only need to check that these give maps of complexes; i.e., that the
maps above commute with the differentials. An element ν ∈ Cn maps to (ν, 0) in Cn⊕C ′

n−1,
which maps to (δ(ν), 0) by the differential on C• ⊗K•(f), so the map C• → C• ⊗K•(f) is a
map of complexes. Likewise, an element (ν, µ) in Cn⊕C ′

n−1 maps to an element with second
component δ(µ) by the differential on C• ⊗ K•(f), so the map C• ⊗ K•(f) → C•(−1) is a
map of complexes as well.

The corresponding long exact sequence in homology is

· · · // Hn(C•) // Hn(C• ⊗K•(f)) // Hn(C
′
•(−1))

∼=

δ // · · ·

Hn−1(C•)

.

We claim that the connecting homomorphism δ is the map given by multiplication by
±f , depending on the degree. Indeed, for [η] ∈ Hi(C

′
•), one has that

(0, [η]) ∈ Hi(C• ⊗K•(f)) 7→ [±η] ∈ Hi(C
′
•).

The sign is coming from the map C• ⊗ K•(f) → X•(−1); we will ignore the sign in the
remainder of this note, noting that the sign will follow through in each step and lead to either
multiplication by f or −f . Applying the differential to [η] ∈ Hi(C

′
•) yields ([fη], [δ(g)]) =

([fη], 0) ∈ Hi−1(C• ⊗K•(f)), and [fη] ∈ Hi−1(C•) 7→ ([fη], 0) ∈ Hi−1(C• ⊗K•(f)).
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Thus, the long exact sequence breaks into short exact sequences

0 // Hn(C•)
f Hn(C•)

// Hn(C• ⊗K•(f)) // annHn−1(C•)(f) // 0 .

In particular, if x, y is a sequence of elements of R, and M is an R-module, then

0 // Hn(x;M)
yHn(x;M)

// Hn(x, y;M) // annHn−1(x)(y) // 0

3.3 Regular sequences

Definition 3.38. Let R be a ring and M be an R-module. An element r ∈ R is regular
(or a nonzerodivisor) on an R-module M if

rm = 0 =⇒ m = 0

for any m ∈ M . More generally, a sequence of elements x1, . . . , xn is a regular sequence
on M if

• (x1, . . . , xn)M ̸=M , and

• for each i, xi is regular on M/(x1, . . . , xi−1)M .

Remark 3.39. Requiring that xi is regular on M/(x1, . . . , xi−1)M is equivalent to asking
that ((x1, . . . , xi−1)M :M xi) = (x1, . . . , xi−1)M .

Example 3.40.

a) Consider the polynomial ring R = k[x1, . . . , xn] in n variables over a field k. The
variables x1, . . . , xn for a regular sequence on R.

b) Let k be a field and R = k[x, y, z]. The sequence xy, xz is not regular on R, since xz
kills y on R/(xy).

The order we write the elements in is important.

Example 3.41. Let k be a filed and R = k[x, y, z]. The sequence x, (x − 1)y, (x − 1)z is
regular, while (x− 1)y, (x− 1)z, x is not.

Remark 3.42. An element r is regular on M if and only if H1(K(r;M)) = 0. Indeed,

H1(K(r;M)) = ker(M r //M ) = (0 :M r),

and by definition, r is regular on M if and only if (0 :M r) = 0.

The Koszul complex on a regular sequence is exact in all positive degrees.

Theorem 3.43. If x = x1, . . . , xn ∈ R is a regular sequence on the R-module M , then
Hi(x;M) = 0 for all i > 0.
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Proof. We proceed by induction on the length of the sequence, noting that the case n = 1
is Remark 3.42. Now suppose that Hj(x1, . . . , xi;M) = 0 for all j > 0. The long exact
sequence

· · · // Hn(x1, . . . , xi+1;M) // Hn−1(x1, . . . , xi;M)
xi+1

// Hn−1(x1, . . . , xi;M) // · · ·

we discussed in Remark 3.37 forces Hj(x1, . . . , xi+1;M) = 0 for all j > 1. Moreover, Re-
mark 3.37 also gave us the short exact sequence

0 // H1(x1,...,xi;M)
xi+1·H1(x1,...,xi;M)

// H1(x1, . . . , xi+1;M) // annH0(x1,...,xi;M)(xi+1) // 0.

Since xi+1 is regular on M/(x1, . . . , xi)M = H0(x1, . . . , xi;M), annH0(x1,...,xi;M)(xi+1) = 0.
Moreover, H1(x1, . . . , xi;M) = 0 by hypothesis. Therefore, the short exact sequence above
gives us H1(x1, . . . , xi+1;M) = 0.

It is natural to ask if Theorem 3.43 has a converse; over a nice enough ring, the answer
is yes: the vanishing of Koszul homology does characterize regular sequences.

Theorem 3.44. Let (R,m, k) is either a Noetherian local ring or an N-graded algebra over
a field k with R0 = k and homogeneous maximal ideal m = R+. Let M ̸= 0 be a finitely
generated R-module, and consider x = x1, . . . , xn ∈ m. In the graded case, we assume thatM
is graded and x1, . . . , xn are all homogeneous. If Hi(x;M) = 0 for all i ⩾ 1, then x1, . . . , xn
is a regular sequence on R.

Proof. We proceed by induction on n, noting that the case n = 1 is simply Remark 3.42.
Now let n > 1 and suppose that the statement holds for all sequences of n− 1 elements. By
Remark 3.37, we have short exact sequences

0 // Hi(x1,...,xn−1;M)
xn·Hi(x1,...,xn;M)

// Hi(x1, . . . , xn;M) // annHi−1(x1,...,xn−1;M)(xn) // 0,

and since the middle term is 0 for all i ⩾ 1, we conclude that

• Hi(x1,...,xn−1;M)
xn·Hi(x1,...,xn;M)

= 0 for all i ⩾ 1, and

• annH0(x1,...,xn−1;M)(xn) = 0, so xn is regular on H0(x1, . . . , xn−1;M) =M/(x1, . . . , xn−1)M .

By Proposition 3.36, Hi(x1, . . . , xn−1;M) is a finitely generated R-module for all i. Since
xn ∈ m and xn Hi(x1, . . . , xn−1;M) = Hi(x1, . . . , xn−1;M), NAK (or Proposition B.11 in the
graded case) implies that Hi(x1, . . . , xn−1;M) = 0 for all i ⩾ 1. By induction hypothesis,
x1, . . . , xn−1 is a regular sequence. We conclude that x1, . . . , xn is a regular sequence.

A corollary of Theorem 3.44 is that in a regular ring, the order of the elements in a
regular sequence does not matter.

Corollary 3.45. Let (R,m, k) is either a noetherian local ring or a finitely generated N-
graded algebra over a field k with R0 = k and homogeneous maximal ideal m = R+. Let M
be a finitely generated R-module, and consider x = x1, . . . , xn ∈ m. In the graded case, we
assume that M is graded and x1, . . . , xn are all homogeneous. If the sequence x is regular on
M , then so is any of its permutations.
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Proof. If x1, . . . , xn is a regular sequence, then Hi(x1, . . . , xn;M) = 0 for all i > 0, by
Proposition 3.36. The Koszul homology on x agrees with the Koszul homology on any
permutation of x, which must then also vanish. By Theorem 3.44, any permutation of x is
a regular sequence.

In fact, we can extend this to any ring and any module under a reasonable assumption.

Lemma 3.46. Let R be a ring and M an R-module. If x, y is a regular sequence on M and
y is regular on M , then y, x is a regular sequence on M .

Proof. Suppose that xm = yn for some m,n ∈M . Since x, y is a regular sequence onM and
yn ∈ (x)M , we must have n ∈ (x)M , so there exists some w ∈ M such that n = xw. But
then xm = yn = xyw. Since x is regular on M , we conclude that m = yw, so m ∈ (y)M . In
particular, this shows that x is regular on M/(y)M .

Lemma 3.47. Let (R,m, k) is either a Noetherian local ring or an N-graded algebra over
a field k with R0 = k and homogeneous maximal ideal m = R+. Let M ̸= 0 be a finitely
generated R-module, and consider x = x1, . . . , xn ∈ m. In the graded case, we assume that
M is graded and x1, . . . , xn are all homogeneous.

If x1, . . . , xn is a regular sequence on M , then so is xa11 , . . . , x
an
n for any integers ai > 0.

Proof. By Corollary 3.45, we are allowed to permute the elements in our sequence. Let’s
use this fact to reduce our proof to the case n = 1. If the case n = 1 holds, since xn is a
regular sequence on M/(x1, . . . , xn−1) we can now say xann is regular on M/(x1, . . . , xn−1).
Therefore, x1, . . . , xn−1, x

an
n is regular on M . Now switch the order and repeat the argument

with each xi, until we conclude that xa11 , . . . , x
an
n is also regular on M .

Finally, we give a proof when n = 1. Now if x is a regular element on M , if xa ̸= 0, then
xam = 0 =⇒ xxa−1m = 0, and since x is regular we must have xa−1m = 0. Repeating this
a− 1 times, we conclude that xm = 0, and m = 0.

There is a connection between regular sequences and height.

Theorem 3.48. If x1, . . . , xn is a regular sequence on R, then ht(x1, . . . , xn) = n.

Proof. We use induction on n. When n = 1, x1 is regular if and only if x1 is not in the set of
zero divisors of R. By Theorem 1.45, this means x1 is not in any associated prime of R, and
in particular, x1 is not in any of the minimal primes of R. Therefore, any prime containing
x1 must have height at least 1. By Theorem 3.11, ht(x1) ⩽ 1, so ht(x1) = 1. When n > 1,
xn is regular on R/(x1, . . . , xn−1), so by case n = 1, (x1, . . . , xn)/(x1, . . . , xn−1) has height 1
on R/(x1, . . . , xn−1). By induction hypothesis, ht(x1, . . . , xn−1) = n − 1. We conclude that
ht(x1, . . . , xn) = n.

We now record some useful facts about regular sequences we will need when we get back
to talking about symbolic powers.

Lemma 3.49. Let x1, . . . , xt be a regular sequence on R. If r1, . . . , rt ∈ R are such that
r1x1 + · · ·+ rtxt = 0, then r1, . . . , rt ∈ (x1, . . . , xt).
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Proof. We will do induction on t. When t = 1, x1 is a regular element on R, so r1x1 = 0
implies r1 = 0 ∈ (x1).

Now suppose the claim holds for all regular sequences of length t− 1 for some t− 1 ⩾ 1.
Since xt is regular on R/(x1, . . . , xt−1), the fact that rtxt = −(r1x1 + · · · + rt−1xt−1) ∈
(x1, . . . , xt−1) implies that rt ∈ (x1, . . . , xt−1). Rewriting rt = s1x1 + · · · + st−1xt−1, our
assumption is that

0 = r1x1 + · · ·+ rtxt = (r1 + s1xt)x1 + · · · (rt−1 + st−1xt)xt−1.

By induction hypothesis, we must have r1+ s1xt, . . . , rt−1+ st−1xt ∈ (x1, . . . , xt−1), and thus
r1, . . . , rt−1 ∈ (x1, . . . , xt).

Theorem 3.50. Let R be a ring and consider I = (a1, . . . , at), where a1, . . . , at is a regular
sequence on R. Given a homogeneous polynomial F ∈ R[x1, . . . , xt] of degree n ⩾ 1, if
F (a1, . . . , at) ∈ In+1, then the coefficients of F must all be in I.

Proof. Fix nonnegative integers c1, . . . , ct with c1 + · · ·+ ct = n, and let u be the coefficient
of F in xc11 · · ·xctt . Since F is homogeneous, all the remaining monomials in F have a factor
of at least one of the terms xc1+1

1 , . . . , xct+1
t . So we can write

F (a1, . . . , at) = uac11 · · · actt +
t∑

j=1

a
cj+1
j vj

for some vj ∈ R. The ideal In+1 is generated by all ad11 · · · adtt with d1 + · · ·+ dt = n+1. For
each of these generators, we must have di ⩾ ci + 1 for some i, since c1 + · · · + ct = n, and
thus In+1 ⊆

(
ac1+1
1 , . . . , act+1

t

)
. Since F (a1, . . . , at) ∈ In+1, we can now find bj ∈ R such that

uac11 · · · actt =
t∑

j=1

a
cj+1
j bj.

We will show that this implies that u ∈ I, and since we chose c1, . . . , ct to be arbitrary, we
will then be able to conclude that all the coefficients of F are in I. To do that, we will
do induction on the number of nonzero cj. If all the cj are 0, then the assumption is that
u =

∑t
j=1 ajbj, so u ∈ I = (a1, . . . , at). For the induction step, set

y :=
∏
j ̸=i

a
cj
j .

Now the equality for uac11 · · · actt above can be rewritten as∑
j ̸=i

a
cj+1
j bj − acii (uy − aibi) = 0.

By Lemma 3.47, ac1+1
1 , . . . , a

ci−1+1
i−1 , acii , a

ci+1+1
i+1 , . . . , act+1

t is also a regular sequence, so∑
j ̸=i

a
cj+1
j bj − acii (uy − aibi)
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is a linear combination of the elements in a regular sequence. By Lemma 3.49, all the
coefficients must be in the ideal generated by this regular sequence. Therefore,

uy − aibi ∈ (acii ) +
(
a
cj+1
j | j ̸= i

)
=⇒ uy ∈ (ai) +

(
a
cj+1
j | j ̸= i

)
.

Now
uy = u

∏
j ̸=i

a
cj
j = uac11 · · · aci−1

i−1 a
0
i a

ci+1

i+1 · · · actt = b′ia
0+1
i +

∑
j ̸=i

dja
cj+1
j

has one fewer nonzero exponent than our original uac11 · · · actt , and it is of the form

uy = uad11 · · · · · · adtt =
t∑

j=1

eja
dj+1
j

with di = 0 and dj = cj for j ̸= i, and some ej ∈ R. Therefore, the induction hypothesis
applies, and thus u ∈ (a1, . . . , at).

3.4 Free resolutions

Definition 3.51. Let M be an R-module. A free resolution is a complex

F• = · · · // Fn
// · · · // F1

// F0
// 0

n 1 0

where all the Fi are free R-modules, H0(F ) =M , and Hi(F ) = 0 for all i ̸= 0. We may also
write a free resolution for M as an exact sequence free modules Fi of the form

· · · // Fn
// · · · // F1

// F0
//M // 0

n 1 0

.

You will find both these definitions in the literature, often indicating the second option
as an abuse of notation. We will be a bit sloppy and consider both equivalently, since at the
end of the day they contain the same information.

Theorem 3.52. Every R-module has a free resolution.

Proof. Let M be an R-module. We are going to construct a free resolution quite explicitly.
The first step is to find a free module surjecting onto M , which we can do by taking a free
module on any set of generators for M . Now consider the kernel of that projection, say

0 // K0
i0 // P0

π0 //M // 0.

Set ∂0 := π0. There exists a free module P1 surjecting onto K0. Now the map ∂1 = i0π1
satisfies im ∂1 = K0 = ker ∂0.

0

!!

0

K0

i0
==

  

P1

π1

>>

∂1
// P0

∂0 //M.
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Now the process continues analougously. We find a free module P2 surjecting ontoK1 := ker ∂1,
and set

0

!!

0

K0

==

i0

  

P2

π2
  

∂2 // P1

π1

>>

∂1
// P0

∂0 //M.

K1

!!

i1

>>

0

==

0.

At each stage, πi : Pi −→ Ki−1 is a surjective map, Ki := ker ∂i, ii is the inclusion of the
kernel of ∂i into Pi, and we get short exact sequences

0 // Kn+1
in+1

// Pn+1
πn+1

// Kn
// 0.

In fact, im(in+1) = ker ∂n+1 = ker(inπn+1) = ker πn+1. We can continue this process indef-
initely for as long as Pn ̸= 0, and the resulting sequence will be a projective resolution for
M .

We can think of a free resolution

· · · // F2
// F1

// F0
//M

as giving a detailed description of our module M . The first free module, F0, gives us
generators for M . The second free module, F1, gives us generators for all the relations
among our generators for M . The next module describes the relations among the relations
among our generators. And so on.

Definition 3.53. Let (R,m, k) is either a noetherian local ring or a finitely generated N-
graded algebra over a field k with R0 = k and homogeneous maximal ideal m = R+. Let
M be a finitely generated R-module, which we assume to be graded in the case when R is
graded. The projective dimension of M is

pdimR(M) := inf
{
c | 0 // Pc

// · · · // P0
// 0 is a free resolution for M

}
.

The projective dimension of a finitely generated module can be infinite.

Example 3.54. Let k be a field and R = k[x]/(x2), which is a local ring with maximal ideal
m = (x). The residue field k = R/m has infinite projective dimension:

· · · // R
x // R

x // R
x // R // k // 0.

So even cyclic modules can have infinite projective dimension.
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When (R,m) is either a local ring or an N-graded graded k-algebra with R0 = k and
homogeneous maximal ideal m = R+, we can talk about minimal free resolutions. To
construct a minimal free resolution of M , we simply take as few generators as possible in
each step. This is equivalent to having a minimal complex F , meaning that the differential
∂ satisfies im(∂F ) ⊆ mF . If we find basis for each free module Fi, and write the differentials
as matrices in those basis, the entries in every differential matrix are all in m. Ultimately,
we can talk about the minimal free resolution of M , since all minimal free resolutions are
isomorphic. While we will not discuss the details here, here are some examples.

Definition 3.55. Let (R,m) be either a local ring or an N-graded graded k-algebra with
R0 = k and homogeneous maximal ideal m = R+. Let F be a minimal free resolution for
the finitely generated (graded) R-module M . The ith betti number of M is

βi(M) := rank Fi = µ(Fi).

In the graded case, the (i, j)th betti number of M , βij(M), counts the number of generators
of Fi in degree j. We often collect the betti numbers of a module in its betti table:

β(M) 0 1 2 · · ·
0 β00(M) β11(M) β22(M)
1 β01(M) β12(M) β23(M)
2 β02(M) β13(M)
...

. . .

By convention, the entry corresponding to (i, j) in the betti table of M contains βi,i+j(M),
and not βij(M). This is how Macaulay2 displays betti tables as well, using the command
betti.

Example 3.56. Suppose that R = k[x, y, z] and that M = R/(xy, xz, yz) corresponds to
the variety defining the union of the three coordinate lines in A3

k. This variety has dimension
1 and degree 3. The minimal free resolution for M is

0 // R2


z 0
−y y
0 −x


// R3

(
xy xz yz

)
// R //M.

From this minimal resolution, we can read the betti numbers of M :

• β0(M) = 1, since M is a cyclic module;

• β1(M) = 3, and these three quadratic generators live in degree 2;

• β2(M) = 2, and these represent linear syzygies on quadrics, and thus live in degree 3.

Here is the graded free resolution of M :

0 // R(−3)2


z 0
−y y
0 −x


// R(−2)3

(
xy xz yz

)
// R //M.
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Notice that the graded shifts in lower homological degrees affect all the higher homological
degrees as well. For example, when we write the map in degree 2, we only need to shift the
degree of each generator by 1, but since our map now lands on R(−2)3, we have to bump up
degrees from 2 to 3, and write R(−3)2. The graded betti number βij(M) of M counts the
number of copies of R(−j) in homological degree i in our resolution. So we have

β00 = 1, β12 = 3, and β23 = 2.

We can collect the graded betti numbers of M in what is called a betti table:

β(M) 0 1 2
0 1 − −
1 − 3 2

.

Example 3.57. Let k be a field, R = k[x, y], and consider the ideal

I = (x2, xy, y3)

which has two generators of degree 2 and one of degree 3, so there are graded betti numbers
β12 and β13. The minimal free resolution for R/I is

0 //

R(−3)1⊕
R(−4)1


y 0
−x y2

0 −x


//

R(−2)2⊕
R(−3)1

(
x2 xy y3

)
// R // R/I.

β23(R/I) = 1
β24(R/I) = 1

β12(R/I) = 2
β13(R/I) = 1

So the betti table of R/I is
β(M) 0 1 2

0 1 − −
1 − 2 1
2 − 1 1

These invariants can give us some information about Ext and Tor, and vice-versa.

Remark 3.58. If pdimR(M) = n is finite, then we can take a free resolution of M with
length n to compute TorRi (M,−), and thus TorRi (M,−) = 0 for all i > n. For the same
reason, ExtiR(M,−) = 0 for all i > n.

Remark 3.59. Let (R,m, k) be either a local ring or an N-graded k-algebra, where k is a
field, with R0 = k and homogeneous maximal ideal m = R+, and M a finitely generated
(graded) R-module. The homomorphisms of R-modules R −→ R are precisely the multi-
plication maps by each fixed r ∈ R. The map (r · −) ⊗R k is simply multiplication by the

image of r in k = R/m on k. More generally, a homomorphism of R-modules Rn f−→ Rm can
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be represented by an m × n matrix A with entries in R after we fix bases for Rn and Rm,
and the matrix representing f ⊗R k in the corresponding bases for km and kn is the matrix
obtained from A by considering the images of the entries in k.

Given any g ∈ HomR(R, k), the composition of f with multiplication by r is the map
g(r ·−) = rg(−). So HomR(r ·−, k) is multiplication by the image of r in k. More generally,

if A is an m × n matrix representing Rn f−→ Rm, the map HomR(f, k) is represented in the
corresponding bases for kn and km by the transpose of A, where the entries are now replaced
by their images in k = R/m.

Theorem 3.60. Let (R,m, k) be either a Noetherian local ring or an N-graded k-algebra,
where k is a field, with R0 = k and homogeneous maximal ideal m = R+, and M a finitely
generated (graded) R-module. Then

βi(M) = dimk(Tor
R
i (M,k)) = dimk(Ext

i
R(M,k)).

Proof. Let F be a minimal free resolution for M . The module in degree i in the complex
F ⊗R k is

Fi ⊗R k = Rβi(M) ⊗R k = kβi(M).

Minimal free resolutions are minimal complexes, so im(∂F ) ⊆ mF , and thus ∂ ⊗R k = 0. So

F ⊗R k = · · · // kβi(M) // kβi−1(M) // · · · // kβ1(M) // kβ0 // 0.

Therefore,
TorRi (M,k) = Hi(F ⊗R k) = kβi(M).

The module in degree i in the complex HomR(F, k) is

HomR(Fi, k) = HomR(R
βi(M), k) = kβi(M).

Following the discussion in Remark 3.59, the fact that ∂(F ) ⊆ mF implies HomR(∂
F , k) = 0.

Therefore,

HomR(F, k) = 0 // kβ0(M) 0 // kβ1(M) // · · · // kβi(M) // · · ·

so
ExtiR(M,k) = Hi(HomR(F, k)) = kβi(M).

Corollary 3.61. Let (R,m, k) be either a local ring or an N-graded k-algebra, where k is
a field, with R0 = k and homogeneous maximal ideal m = R+. For every finitely generated
(graded) R-module M , pdimR(M) ⩽ pdimR(k).

Proof. When i > pdimR(k), Tor
R
i (M,k) = 0, so βi(M) = 0 by Theorem 3.60.

Remark 3.62. Also as a consequence of Theorem 3.60, we learn that

pdimR(M) = sup{i | βi(M) ̸= 0} = sup{i | ExtiR(M,k) ̸= 0} = sup{i | ToriR(M,k) ̸= 0}.

We can extend this to graded betti numbers once we realize that Tor and Ext of graded
modules can also be given graded structures.
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Exercise 5. Let (R,m, k) be an N-graded k-algebra, where k is a field, with R0 = k and
homogeneous maximal ideal m = R+, and M a finitely generated graded R-module. Fix a
graded minimal free resolution F of M . Then

βi,j(M) = number of copies of R(−j) in Fi = dimk(Tor
R
i (M,k)j) = dimk(Ext

i
R(M,k)j).

If only we had an explicit minimal free resolution of k, maybe we could use it to say
something about the minimal free resolutions of other finitely generated R-modules. With
that goal in mind, we return to regular sequences.

Corollary 3.63. If x1, . . . xn is a regular sequence on R, then the Koszul complex on
x1, . . . , xn is a free resolution for R/(x1, . . . , xn). Moreover, if (R,m, k) is either a local ring
or an N-graded algebra over a field k with R0 = k and homogeneous maximal ideal m = R+,
then the Koszul complex K•(x1, . . . , xn) is a minimal free resolution for R/(x1, . . . , xn).

Proof. By Theorem 3.43, the Koszul complex P = K•(x1, . . . , xn) has Hi(P ) = 0 for all
i > 0. This is a complex of free modules, and thus a free resolution of H0(P ), which by
Proposition 3.36 is R/(x1, . . . , xn).

Theorem 3.64 (Hilbert Syzygy Theorem). Every finitely generated graded module M over
a polynomial ring R = k[x1, . . . , xn] over a field k has finite projective dimension. In fact,
pdim(M) ⩽ n.

Proof. By Corollary 3.63, the Koszul complex on the regular sequence x1, . . . , xd is a minimal
free resolution for k = R/(x1, . . . , xn), so pdimR k = n. But βi(M) = dimk Tor

i
R(M,k) by

Theorem 3.60, and since TorRi (M,k) = 0 for all i > n = pdimR(k), pdimR(M) ⩽ n.

3.5 Regular rings

Regular rings are the nicest possible kinds of rings. A regular local ring (R,m, k) is a
finite dimensional Noetherian ring of dimension d whose maximal ideal m is generated by d
elements. When we discussed height and dimension, we saw that this is in fact the smallest
possible value for the minimal number of generators of m; in general, µ(m) ⩾ d. We are
now ready to give a completely homological characterization of regular local rings. This
characterization, first proved by Auslander and Buchsbaum and independently by Serre,
solved a famous open problem called the Localization Problem.

Problem 3.65 (Localization Problem). If R is a regular local ring, must RP be regular for
every prime P in R?

This is asking if being regular is a local property. A positive answer allows for a simple
global definition of regularity:

Definition 3.66. A ring R is regular if RP is a regular local ring for all prime ideals P .

Before we can get to this famous homological characterization of regular local rings, and
the solution to the localization problem, we will need to sharpen our tools a bit.
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Theorem 3.67 (Serre). Let (R,m, k) be a Noetherian local ring. Moreover, if µ(m) = s,
then

dimk(Tor
R
i (k, k)) ⩾

(
s

i

)
.

Replacing k by M in the previous result leads to a famous open question.

Conjecture 3.68 (Buchsbaum—Eisenbud, Horrocks). Let (R,m, k) be a Noetherian local
ring of dimension d and M a finitely generated Artinian R-module of finite projective di-
mension. Then

βi(M) = dimk(Tor
R
i (M,k)) ⩾

(
d

i

)
.

While this remains an open question, there is much evidence to support it. For example,
the conjecture predicts that ∑

i

βi(M) ⩾
∑
i

(
d

i

)
= 2d.

This is known as the Total Rank Conjecture, and it was recently shown by Walker in almost
all cases.

Theorem 3.69 (Walker, 2017). Let (R,m, k) be a Noetherian local ring of dimension d and
characteristic not 2, M ̸= 0 a finitely generated R-module of finite projective dimension, and
c = ht(ann(M)). Then ∑

i

βi(M) ⩾ 2c.

The famous homological characterization of regular rings that solved the localization
problem is the following:

Theorem 3.70 (Auslander–Buchsbaum, Serre). Let (R,m, k) be a Noetherian local ring of
dimension d. The following are equivalent:

a) The residue field k has finite projective dimension.

b) Every finitely generated R-module has finite projective dimension.

c) The maximal ideal m is generated by a regular sequence.

d) The maximal ideal m is generated by d elements.

Proof. The implication b) =⇒ a) is obvious: just take M = k. The proof of a) =⇒ b) is
essentially the same as Hilbert’s Syzygy Theorem: βi(M) = dimk Tor

k
i (M,k) for all i, and

Torki (M,k) = 0 for all i > pdimR(k).
If m is generated by a regular sequence, then the Koszul complex on that regular sequence

is a minimal free resolution of k, by Corollary 3.63, so k has projective dimension d. This is
c) =⇒ a).
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Let’s now show that d) =⇒ c). Set m = (x1, . . . , xd). In fact, we will show something
stronger: that (0), (x1), (x1, x2), . . . , (x1, . . . , xd) are distinct prime ideals in R. Notice in
particular that this implies that x1, . . . , xd form a regular sequence.

If d = 0, then m = ({}) = (0), and there is nothing to prove. We proceed by induction
on d, assuming that d > 0 and that we have shown that whenever m is generated by d − 1
elements, x1, . . . , xd−1, the ideals (0), (x1), (x1, x2), . . . , (x1, . . . , xd−1) are distinct prime ideals
in R.

When d > 0, m is not a minimal prime. By Prime Avoidance,

m ̸⊆
⋃

P∈Min(R)

P,

and using Theorem B.3 we can find an element

y1 = x1 + r2x2 + · · ·+ rdxd /∈
⋃

P∈Min(R)

P.

Now we can replace x1 by y1, since m = (y1, x2, . . . , xd), so we can assume that x1 is not in any
minimal prime. By Krull’s Height Theorem 3.11, ht(x1) ⩽ 1, so dim(R/(x1)) = ht(m/(x1)) ⩾
d − 1. By construction, m/(x1) is generated by d − 1 elements, so again by Krull’s Height
Theorem, dim(R/(x1)) = ht(m/(x1)) ⩽ d − 1. We conclude that dim(R/(x1)) = d − 1.
By induction hypothesis, (x1)/(x1), . . . , (x1, . . . , xd)/(x1) are distinct prime ideals in R/(x1).
Therefore, (x1), (x1, x2), . . . , (x1, . . . , xd) are distinct prime ideals in R.

Now we claim that R is a domain, which will show that (0) ⊊ (x1) is also a prime ideal.
First, note that x1 is not contained in any minimal prime, but (x1) is a prime ideal, so there
exists some minimal prime P ⊊ (x1). Given any y ∈ P ⊆ (x1), we can write y = rx1 for
some r. By constrution, x1 /∈ P , so we must have r ∈ P . But we just showed that every
element in P is of the form rx1, so P = x1P . By NAK, P = (0). We conclude that R is a
domain, and this finishes the proof of d) =⇒ c).

Finally, all that’s left to show is a) =⇒ d). We claim that pdimR(k) < ∞ implies
pdimR(k) ⩽ dim(R) = d. If the claim holds, then Theorem 3.67 and Theorem 3.60 say that

βi(k) = dimk(Tor
R
i (k, k)) ⩾

(
µ(m)

i

)
for all i. Since βi(k) = 0 for all i > pdimR(k), we must have

µ(m) ⩽ pdimR(k) ⩽ dim(R) = d.

But ht(m) = dim(R) = d, so by Theorem 3.11, µ(m) ⩾ d. We conclude that m is generated
by exactly d elements, which is precisely d). So all we have left to do is to prove the claim
that pdimR(k) <∞ implies pdimR(k) ⩽ dim(R) = d.

By contradiction, suppose pdimR(k) > d but pdimR(k) <∞. Choose a maximal regular
sequence y1, . . . , yt ∈ m. By Theorem 3.48, t ⩽ d.

Since our regular sequence y1, . . . , yt was chosen to be maximal inside m, every element
in m is a zerodivisor on R/(y1, . . . , yt), or else we could increase our regular sequence. So
m is contained in the union of the zerodivisors on R/(y1, . . . , yt), which by Theorem 1.45 is
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the same as the union of the associated primes of R/(y1, . . . , yt). By Prime Avoidance, m
must be contained in some associated prime of R/(y1, . . . , yt). But m is maximal, so m is an
associated prime of R/(y1, . . . , yt). Equivalently, k = R/m embeds into R/(y1, . . . , yt). This
gives us some short exact sequence

0 // k // R/(y1, . . . , yt) //M // 0.

The corresponding long exact sequence for Tor is

· · · // TorRi+1(M,k) // TorRi (k, k) // TorRi (R/(y1, . . . , yt), k) // · · · .

We know t = pdimR(R/(y1, . . . , yt)), by Corollary 3.63, so TorRi (R/(y1, . . . , yt), k) = 0 for
i > t. But t ⩽ d < pdimR(k), so in particular TorRi (R/(y1, . . . , yt), k) = 0 for i = pdimR(k).

Moreover, Corollary 3.61 says that pdimR(M) ⩽ pdimR(k) for any finitely generated
R-module M , so in particular TorRi+1(M,k) = 0 for i = pdimR(k). But this is impossible:
our long exact sequence would then have TorRpdimR(k)(k, k) ̸= 0 sandwiched between two zero
modules.

Our proof also showed the following:

Corollary 3.71. Every regular local ring is a domain.

Corollary 3.72. Every regular local ring (R,m, k) has pdimR(k) = dimR.

Now we can solve the localization problem very easily.

Exercise 6. If R is a regular local ring, then RP is a regular local ring for every prime P .

Remark 3.73. If we want to show that a particular ring (not necessarily local) is regular,
it is sufficient to show that Rm is a regular local ring for every maximal ideal m — this will
imply that RP is a localization of a regular local ring for every prime P .

Exercise 7. Show that every principal ideal domain is a regular ring.

We have shown that finitely generated graded modules over a polynomial ring k[x1, . . . , xd]
have finite projective dimension, but this is not quite enough to conclude that polynomial
rings are regular.

Theorem 3.74. Every polynomial ring R = k[x1, . . . , xd] over a field k is a regular ring.

We have seen that regular rings are very nice. Modulo some technical conditions, it turns
out that every noetherian local ring is a quotient of a regular ring. More precisely, every
complete local ring is a quotient of a regular local ring. If a local ring R is not complete, we
can always take its completion, which is now a quotient of a regular local ring. This very
important fact is the Cohen Structure Theorem.1 When our local ring R contains a field k,
the Cohen Structure Theorem actually says that R is a quotient of kJx1, . . . , xdK for some d.

The nice things we proved about regular local rings have analogues in any regular ring,
not necessarily local. For example, when R is a regular ring of dimension d, then it is still
true that every finitely generated R-module has projective dimension at most d, even if R is
not local; if R is not regular, then it has finitely generated modules with infinite projective
dimension.

1In fact, this amazing theorem was I. S. Cohen’s PhD thesis!
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3.6 Depth

We now get back to regular sequences to talk about their length.

Definition 3.75. Let I be an ideal in a ring R and M be an R-module. The I-depth of
M is the maximal length of a regular sequence on M consisting of elements in I, denoted
depthI(M). When (R,m) is a local ring, we write depth(M) for depthm(M), and call it the
depth of M .

While it is not yet clear that all maximal regular sequences on M inside an ideal I have
the same length, we already have an upper bound for depth.

Remark 3.76. If x1, . . . , xn is a regular sequence on R inside I, we saw in Theorem 3.48
that ht(x1, . . . , xn) = n, so depthI(R) ⩽ ht(I). In particular, depth(R) ⩽ dim(R).

We can construct maximal regular sequences explicitly.

Construction 3.77. Let R be a Noetherian ring, I be an ideal in R, andM ̸= 0 be a finitely
generated R-module. To construct a regular sequence on M inside I, we start by finding
a regular element on M inside I. Either I is contained in some associated prime of M , in
which case every element in I is a zerodivisor on M , or there exists an element x1 in I not
in any associated prime of M , by Prime Avoidance. Such an element is regular on M , since
the union of the associated primes of M is precisely the set of zerodiviors, by Theorem 1.45.

Now we repeat the process: either I is contained in some associated prime of M/(x1)M ,
in which case there are no regular elements on M/(x1)M inside I, or we can find x2 ∈ I not
in any associated prime of M/(x1)M , which is necessarily regular on M/(x1)M . At each
step, (x1, . . . , xi)M ⊊ (x1, . . . , xi+1)M , and since M is Noetherian, the process must stop.

In fact, we get such an increasing sequence given any regular sequence on M inside of I,
so all such sequences are finite. We will now show that all maximal regular sequences on M
inside I have the same length, which proves that depthI(M) is finite. First, we need a few
lemmas.

Lemma 3.78. Let R be a Noetherian ring, I be an ideal in R, and M ̸= 0 be a finitely
generated R-module. There exists r ∈ I which is regular on M if and only if I ̸⊆ P for all
P ∈ Ass(M). In particular, if (R,m) is a noetherian local ring, m ∈ Ass(M) if and only if
there are no regular elements on M .

Proof. If r ∈ I is regular on M , then r is not a zerodivisor on M , so r is not in the union of
the associated primes of M , by Theorem 1.45. As a consequence, I cannot be contained in
any associated prime of M .

Conversely, recall that M has finitely many associated primes, by Corollary 1.53. If I is
not contained in any associated prime of M , then by Prime Avoidance B.1 it also cannot be
contained in the union of the associated primes of M . Recall Theorem 1.45, which says that
the union of the associated primes is the set of zero divisors. We conclude that I contains
some regular element on M .

The final statement now follows once we note that the fact that m is a maximal ideal
implies that m inAss(M) if and only if m is contained in some associated prime of M .
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Lemma 3.79. Let R be a noetherian ring and M and N be finitely generated R-modules.
If a ∈ annR(M), then aExtiR(M,N) = 0 for all i. Moreover, if b ∈ annR(N), then
bExtiR(M,N) = 0 for all i.

Proof. When i = 0, we want to show that a ∈ ann(HomR(M,N) and b ∈ ann(HomR(M,N)).
Given any f ∈ HomR(M,N) and any m ∈M ,

af(m) = f(am) = f(0) = 0,

so af = 0. Moreover, b kills every element in N , so bf = 0. Now let P −→M be a projective
resolution on M , and N −→ E be an injective resolution of N . Then

ExtiR(M,N) = Hi
(
0 // HomR(P0, N) // HomR(P1, N) // HomR(P2, N) // · · ·

)
= Hi

(
0 // HomR(M,E0) // HomR(M,E1) // HomR(M,E2) // · · ·

)
,

so ExtiR(M,N) is a subquotient of both HomR(Pi, N) and HomR(M,Ei). We conclude that
a and b both kill ExtiR(M,N).

Theorem 3.80. Let R be a Noetherian ring, I be an ideal in R, and M ̸= 0 be a finitely
generated R-module with M ̸= IM . Then all maximal regular sequences on M inside I have
the same length.

Proof. Let x1, . . . , xn ∈ I and y1, . . . , yℓ ∈ I both be maximal regular sequences on M , and
assume n ⩽ ℓ.

When n = 0, every element in I is a zerodivisor on M , so ℓ = 0. When n = 1,
every element in I is a zerodivisor on M/(x1)M , so I ⊆ P for some P ∈ Ass(M/(x1)M).
In particular, there exists some m ∈ M , m /∈ (x1)M , such that I ⊆ ((x1)M :R m), so
Im ∈ (x1)M . In particular, y1m = x1a for some a ∈ M . If a ∈ (y1)M , then we would have
y1m = x1a ∈ (x1y1)M , and since y1 is regular on M , that would imply m ∈ (x1)M , which is
a contradiction. Thus a /∈ (y1)M . Moreover,

(x1)Ia = Ix1a = Iy1m = y1(Im) ⊆ (x1)(y1)M,

and since x1 is a regular element on M , we must have Ia ⊆ (y1)M . Therefore, a ∈ M is
an element that both satisfies a /∈ (y1)M and Ia ⊆ (y1)M , so every element in I kills a in
M/(y1)M , and is thus a zerodivisor on M/(y1)M . This proves that ℓ = 1.

We proceed by induction on n. Now assume that n > 1 and ℓ > n. In particular,
I contains a regular element on M/(x1, . . . , xi) for all i < n and a regular element on
M/(y1, . . . , yj) for all j < ℓ, so by Prime Avoidance we can pick c ∈ I that avoids both all
the (finitely many) associated primes of M/(x1, . . . , xi)M for all i < n and M/(y1, . . . , yj)M
for all j < ℓ. In particular, x1, . . . , xn−1, c and y1, . . . , yn, c are both regular sequences on
M . Now xn and c are both regular sequences on M/(x1, . . . , xn−1), so the case n = 1 says
x1, . . . , xn−1, c is also a maximal regular sequence onM . Now by Lemma 3.46, x1, . . . , c, xn−1

is also a regular sequence on M , since c is also regular on M/(x1, . . . , xn−2, and so on, until
we conclude that c, x1, . . . , xn−1 is a regular sequence on M . Similarly, c, y1, . . . , yn is a
regular sequence on M . Notice in fact that c, x1, . . . , xn−1 is maximal inside I, or else we
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could increase its size, move c back to after xn−1, and obtain a contradiction. Therefore,
x1, . . . , xn−1 and c, y1, . . . , yn are both regular sequences on M/(c)M , and x1, . . . , xn−1 is
maximal. But by induction hypothesis, all maximal regular sequences on M/(c)M inside I
have the same length, which would say that the length of y1, . . . , yn, n, is at most n − 1.
This is a contradiction, and we conclude that ℓ = n.

It turns out that depth can be described in a purely homological way.

Theorem 3.81. Let R be a Noetherian ring and M a finitely generated R-module. Then

depthI(M) = min{i | ExtiR(R/I,M) ̸= 0}.

Proof. When depthI(M) = 0, there is no regular sequence on M inside I. By Lemma 3.78,
I ⊆ P for some P ∈ Ass(M). We have an inclusion R/P ↪→M , so consider the composition

R/I ↠ R/P ↪→M.

This is a nonzero map, so Ext0(R/I,M) = Hom(R/I,M) ̸= 0. On the other hand, if
HomR(R/I,M) = Ext0(R/I,M) ̸= 0, there exists a nonzero R-module homomorphism
R/I −→ M . But to choose an R-module homomorphism R/I −→ M is the same as
choosing an element in M that is killed by I, so I contains no nonzero divisors on M and
depthI(M) = 0.

We proceed by induction on depthI(M) = n, assuming we have proved the statement
whenever depthI(M) < n. Suppose that x1, . . . , xn is a maximal regular sequence on M
inside I. Then x2, . . . , xn is a maximal regular sequence on M/x1M , so by induction we
know n−1 = min{i | ExtiR(R/I,M/x1M) ̸= 0}. Applying HomR(R/I,−) to the short exact
sequence

0 //M
·x1 //M //M/x1M // 0

we get a long exact sequence

· · · // Exti−1
R (R/I,M/x1M) // ExtiR(R/I,M)

x1 // ExtiR(R/I,M) // · · · .

We know that Extn−1
R (R/I,M/x1M) ̸= 0 and that ExtiR(R/I,M/x1M) = 0 for all i < n−1.

Therefore, whenever i < n− 1,

ExtiR(R/I,M)
x1 // ExtiR(R/I,M)

is an isomorphism. However, x1 ∈ I = ann(R/I), so ann(R/I) ⊆ ann(ExtiR(R/I,M)) by
Lemma 3.79. Therefore, ExtiR(R/I,M) = 0 for all i < n−1. Moreover, multiplication by x1
is the zero map on ExtiR(R/I,M) for any i, also by Lemma 3.79. Finally, we have an exact
sequence

Extn−1
R (R/I,M)

x1 // Extn−1
R (R/I,M) // Extn−1

R (R/I,M/x1M) // · · · .

where the multiplication by x1 maps are 0, so our exact sequence is

0 // Extn−1
R (R/I,M) 0 // Extn−1

R (R/I,M) // Extn−1
R (R/I,M/x1M)︸ ︷︷ ︸

̸=0

// ExtnR(R/I,M) 0 // · · · .
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In particular, Extn−1(R/I,M) = 0 and Extn(R/I,M) ̸= 0. We conclude that

depthI(M) = n = min{i | ExtiR(R/I,M) ̸= 0}.

For yet another homological characterization of depth, we turn to Koszul homology.

Theorem 3.82 (Depth sensitivity of the Koszul complex). Let R be a Noetherian ring and
M be finitely generated R-module. Given any x = x1, . . . , xn such that (x)M ̸=M ,

depth(x)(M) = max{r | Hi(x;M) = 0 for all i > n− r}.

So we can measure depthI(M) by looking at the first nonzero Koszul homology we see
when we start counting from the top.

K(x;M) 0 //M // · · · //M( n
n−r+1) ////M( n

n−r) // · · · //M // 0

H(x;M) 0 · · · 0 ̸= 0

Proof. We are going to show that if I = (x) contains a regular sequence y1, . . . , ym on M ,
then Hn−i+1(x;M) = 0 for all i = 1, . . . ,m, and Hn−m(x;M) ∼= ExtmR (R/I,M). This will
prove the theorem, since depth is the largest possible m we could take, and Theorem 3.81
says ExtdepthR (R/I,M) ̸= 0.

We proceed by induction on m. When m = 0, Proposition 3.36 c) says that

Hn(x;M) ∼= (0 :M I) ∼= HomR(R/I,M),

and we are done. When m > 0, the short exact sequence

0 //M
y1
//M //M/(y1)M // 0

induces a long exact sequence in koszul homology (see Proposition 3.36 h))

· · · // Hi+1(x;M/(y1)M) // Hi(x;M)
y1
// Hi(x;M) // Hi(x;M/(y1)M) // · · · .

Now by Proposition 3.36 e), I kills Hi(x;M), so the multiplication by y1 map is zero in the
long exact sequence above, which must then break into short exact sequences

0 // Hi(x;M) // Hi(x;M/(y1)M) // Hi−1(x;M) // 0.

We have an exact sequence y2, . . . , ym of m − 1 elements on M inside (x), so by induction
hypothesis

Hn−i+1(x;M/(y1)M) = 0 for all i = 1, . . . ,m− 1

and
Hn−m+1(x;M/(y1)M) ∼= Extm−1

R (R/I,M/y1M).

Therefore, for all i ⩽ m− 1,

0 // Hn−i+1(x;M) // Hn−i+1(x;M/(y1)M)︸ ︷︷ ︸
0

// Hn−i(x;M) // 0.
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This implies Hn−i+1(x;M) = 0 for all i = 1, . . . ,m. Moreover, we have a short exact sequence

0 // Hn−m+1(x;M)︸ ︷︷ ︸
0

// Hn−m+1(x;M/(y1)M) // Hn−m(x;M) // 0.

so
Hn−m(x;M) ∼= Hn−m+1(x;M/(y1)M) ∼= Extm−1

R (R/I,M/y1M).

Finally, we claim that ExtmR (R/I,M) ∼= Extm−1
R (R/I,M/(y1)M). For that purpose, consider

the long exact sequence on ExtiR(R/I,−) induced by the short exact sequence

0 //M
y1
//M //M/(y1)M // 0,

which looks like

· · · // ExtiR(R/I,M)
y1
// ExtiR(R/I,M) // ExtiR(R/I,M/(y1)M) // · · · .

We do have a regular sequence on M of length m inside I, so depthI(M) ⩾ m. There-
fore, Extm−1

R (R/I,M) = 0 by Theorem 3.81. By Lemma 3.79, multiplication by y1 on
ExtiR(R/I,M) is the zero map, since y1 ∈ I, so we get an exact sequence

0 // Extm−1
R (R/I,M/(y1)M) // ExtmR (R/I,M) // 0.

Therefore,
ExtmR (R/I,M) ∼= Extm−1

R (R/I,M/(y1)M),

which finishes our proof.

Remark 3.83. If I = (x1, . . . , xn) and depthI(M) = n, then by Theorem 3.82 the Koszul
complex K(x;M) must be exact. This does not necessarily say that x is a regular sequence,
only that there exists some regular sequence on M of length n inside I. However, that
implication does hold in the local or graded setting, by Theorem 3.44.

We now have all the tools we need to prove a very useful formula relating depth and
projective dimension.

Theorem 3.84 (Auslander—Buchsbaum Formula). Let (R,m, k) be a Noetherian local ring
and M ̸= 0 a finitely generated R-module of finite projective dimension. Then

depth(M) + pdimR(M) = depth(R).

Proof. Suppose depth(R) = 0. In that case, the claim is that pdimR(M) = depth(M) = 0.
First, note that the fact that depth(R) = 0 implies immediately that m ∈ Ass(R), by
Lemma 3.78, so m kills some nonzero r ∈ R. Consider a minimal free resolution for M , say

0 // Fn
φn
// Fn−1

φn−1
// · · · // F1

φ1
// F0

φ0
//M // 0.

Suppose n > 0, so that φn ̸= 0. By minimality, φn(Fn) ⊆ mFn−1, so φn(r, 0, · · · , 0) =
rφn(1, 0, · · · , 0) ∈ rm = 0, so φn is not injective. This is a contradiction, so we must have
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n = 0, andM is free, sayM ∼= Rn. Therefore, pdimR(M) = 0 and depth(M) = depth(Rn) =
depth(R) = 0.

Now assume that depth(M) = 0. Set t := depth(R), and fix a maximal regular sequence
x1, . . . , xt ∈ m. By Corollary 3.63, pdimR(R/(x1, . . . , xt)) = t. Our goal is to show that that
n := pdimR(M) = depth(R) = t. Notice that TorRi (R/(x1, . . . , xt),M) can be computed via
minimal free resolutions for either M or R/(x1, . . . , xt), so it vanishes for i > min{t, n}. We
are going to show that both TorRt (R/(x1, . . . , xt),M) ̸= 0 and TorRn (R/(x1, . . . , xt),M) ̸= 0,
which proves that depth(R) = t = n = pdimR(M).

The Koszul complex is a minimal free resolution for R/(x1, . . . , xt), by Corollary 3.63, so
the last map in the minimal free resolution looks like

0 // R

(
x1 −x2 x3 · · · (−1)n+1xn

)T

// Rt

so applying −⊗R M gives

0 //M

(
x1 −x2 x3 · · · (−1)n+1xn

)T

//M t.

Therefore,

TorRt (R/(x1, . . . , xt),M) =
t⋂

i=1

ker(M
±xi−−→M).

Our assumption that depth(M) = 0 says that there are no regular elements on M , so by
Lemma 3.78, m ∈ Ass(M). Therefore, there exists a nonzero element m ∈ M such that
ann(m) = m ⊇ (x1, . . . , xt), so TorRt (R/(x1, . . . , xt),M) ̸= 0.

On the other hand, to compute TorRn (R/(x1, . . . , xt),M) we can take a minimal free
resolution of M , say

0 // Rβn
φn
// Rβn−1

φn−1
// · · · // Rβ1

φ1
// Rβ0

φ0
//M // 0,

and apply −⊗R M , so that TorRn (R/(x1, . . . , xt),M) is the kernel of

(R/(x1, . . . , xt))
βn // (R/(x1, . . . , xt))

βn−1 .

Our assumption that x1, . . . , xt is a maximal regular sequence on R implies that any other
element in R is a zerodivisor on R/(x1, . . . , xt), and depth(R/(x1, . . . , xt)) = 0. In particular,
m ∈ Ass(R/(x1, . . . , xt)), so there exists some r /∈ (x1, . . . , xt) such that mr ⊆ (x1, . . . , xt).
The map

(R/(x1, . . . , xt))
βn // (R/(x1, . . . , xt))

βn−1

is given by multiplication by a matrix whose entries are all in m, so its kernel is nonzero,
meaning TorRn (R/(x1, . . . , xt),M) ̸= 0.

So we have shown the theorem holds in two situations: when depth(R) = 0 and when
depth(M) = 0. So now we assume that both t := depth(R) > 0 and n := depth(M) > 0,
and assume we have shown the theorem holds when depth(R) ⩽ t−1 and depth(M) ⩽ n−1.
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By Prime Avoidance, Theorem B.1, we can find r ∈ m that avoids both the associated
primes of M and R, so r is both regular on M and on R. In particular, pdimR(R/(x)) = 1,
by Corollary 3.63, so TorRi (R/(x),M) = 0 for all i ⩾ 2. Let

0 // Rβn
φn
// Rβn−1

φn−1
// · · · // Rβ1

φ1
// Rβ0

φ0
//M // 0

be a minimal free resolution for M . In particular, if we choose basis for each Rβi , the entries
in the matrices representing φi are all in m. Applying −⊗R R/(x), we get a complex

0 // (R/(x))βn // (R/(x))βn−1 // · · · // (R/(x))β0 //M/xM // 0

which is exact at M ⊗R R/(x) ∼= M/xM , since tensor is right exact, and whose homology is
otherwise given by TorRi (R/(x),M). In particular, our complex is exact for all i ⩾ 2, since
we have seen that TorRi (R/(x),M) = 0 for all i ⩾ 2. The only remaining possibly interesting
homology is given by

TorR1 (R/(x),M) = H1(M ⊗ (0 → R
x−→ R → 0)) = H1(0 →M

x−→M → 0) = (0 :M x).

By assumption, x is regular onM , so TorR1 (R/(x),M) = (0 :M x) = 0. So the complex above
is exact, and thus a free resolution for M/xM over R/(x). In fact, the maps in this is free
resolution for M/xM were obtained by tensoring φ with R/(x), so we can obtain matrices
representing each map by taking the matrix representing φi and setting all the entries in (x)
equal to 0. In particular, all the entries are still in m/(x), and our resolution forM/xM over
R/(x) is minimal. This shows that pdimR/(x)(M/xM) = pdimR(M).

Now notice that we picked x to be regular onM , so that depth(M/xM) = depth(M)−1.
Similarly, x is regular on R, so depth(R/(x)) = depth(R) − 1. Using our assumption, we
conclude that

depth(M/x) + pdimR/(x)(M/xM) = depth(R/(x))

⇔ depth(M)− 1 + pdimR(M) = depth(R)− 1

⇔ depth(M) + pdimR(M) = depth(R).

This formula is very useful. For example, when doing explicit computations, it is often
easier to compute a minimal free resolution for M than to compute its depth. If we happen
to know depth(R), one can deduce depth(M) by computing pdimR(M).

Remark 3.85. One of the consequences of Theorem 3.84 is that if a finitely generated
R-module M has finite projective dimension, then pdimR(M) ⩽ depth(R) ⩽ dimR.

We close this section with an easy fact about depth.

Lemma 3.86. Let (R,m) be a Noetherian local ring and M a finitely generated R-module.
Given any ideal I in R, depthI(M) = depth√

I(M).

Proof. On the one hand, I ⊆
√
I, so depthI(M) ⩽ depth√

I(M). On the other hand, if

x1, . . . , xn is a maximal regular sequence on M inside
√
I, then there exists a1, . . . , an > 0

such that xa11 , . . . , x
an
n ∈ I, but by Lemma 3.47 xa11 , . . . , x

an
n is a regular sequence on M .
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3.7 Cohen-Macaulay rings

Life is really worth living in a Noetherian ring R when all the local rings have
the property that every system of parameters is an R-sequence. Such a ring is
called Cohen-Macaulay (C-M for short).

(Mel Hochster, page 887 of [Hoc78])

Cohen-Macaulay rings, named after Irvin Cohen and Francis Macaulay, two big influences
in the early days of commutative algebra, are by some measure the largest class of nice rings
commutative algebraists study. They are on the border of being just nice enough to make
life is easier, and just broad enough to contain many interesting examples. One of the main
reference books in any commutative algebraist’s shelf is dedicated to Cohen-Macaulay rings
specifically [BH93]. In this section, we will see some of the reasons why life really is worth
living in a Cohen-Macaulay ring.

Given a local ring R,

depth(R) ⩽ dim(R) ⩽ embdim(R).

When the second inequality is an equality, we have a regular ring. When the first inequality
is an equality, our ring is Cohen-Macaulay.

Definition 3.87. A Noetherian local ring R is Cohen-Macaulay if depth(R) = dim(R).
More generally, anR-moduleM isCohen-Macaulay if depth(M) = dim(M). A Noetherian
ring R is Cohen-Macaulay if Rm is Cohen-Macaulay for every maximal ideal m.

Example 3.88.

a) Every regular ring is Cohen-Macaulay, since our homological characterization of reg-
ular local rings, Theorem 3.70, says that the maximal ideal is generated by a regular
sequence of dimension many elements.

b) Every Artinian ring is Cohen-Macaulay: since we always have dim(R) ⩾ depth(R),
having dim(R) = 0 automatically implies depth(R) = 0.

c) Every 1-dimensional domain is Cohen-Macaulay, since any nonzero nonunit is a regular
element.

d) The ring k[x]/(x2) is Cohen-Macaulay because it has dimension 0, but it is not regular,
since 0-dimensional regular rings must be fields; in fact, the embedding dimension of
k[x]/(x2) is 1.

e) We claim that the local ring R = kJx, y, zK/(xy, xz) is not Cohen-Macaulay. First, we
compute its dimension: since (x) is the unique minimal prime over (xy, xz) in kJx, y, zK,
by Theorem 3.20 we have dim(R) = dim(kJx, y, zK)− ht(xy, xz) = 3− 1 = 2. So for R
to be Cohen-Macaulay, we must be able to find a regular sequence of length 2 in R. To
find one regular element, we need to find an element in R that is not a unit and not in
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any associated prime of R: the associated primes of (xy, xz) in kJx, y, zK are (x) and
(y, z), so we can take for example x − y. Now R/(x − y) ∼= kJx, zK/(x2, xz), and the
unique maximal ideal (x, y, z) of R is associated to R/(x− y): it is the annihilator of
x, since x2 = 0, xz = 0, and yx = x2 = 0. As we saw in Lemma 3.78, this means that
there are no elements on R that are regular on R/(x − y), so we conclude that x − y
is a maximal regular sequence on R, and depth(R) = 1. Since R is 2-dimensional, R
is not Cohen-Macaulay.

We could have concluded this ring is not Cohen-Macaulay by noting that it is not
equidimensional, which as we will see is a property shared by all Cohen-Macaulay
rings.

Many rings with nice singularities are Cohen-Macaulay. For example, Hochster and
Roberts famously showed [HR74] that the ring of invariants of any finite group G over a field
k of characteristic not dividing |G| is Cohen-Macaulay. Their proof used prime characteristic
techniques, introducing what is now a very important class of characteristic p singularities,
and are essentially homological in nature.

Remark 3.89. Given a Noetherian local ring (R,m), we can decide whether R is Cohen-
Macaulay by computing dim(R) and depth(R). By Theorem 3.81, we can compute depth(R)
by finding the smallest i such that ExtiR(R/m, R) ̸= 0. On the other hand, if R can easily
be seen to be regular, then we can immediately conclude R is Cohen-Macaulay. The easiest
way to decide whether a given regular local ring is regular is by finding µ(m) and to compare
its size to dim(R).

To compute the depth of a finitely generated R-module M over a Cohen-Macaulay local
ring (R,m), we can start by computing a minimal free resolution of M . If pdimR(M) <∞,
then the Auslander–Buchsbaum formula tells us that

depth(M) = depth(R)− pdimR(M) = dim(R)− pdimR(M).

If R is not Cohen-Macaulay, we need to also compute depth(R), which we can do for example
by finding the smallest i such that ExtiR(R/m, R) ̸= 0, or by explicitly constructing a maximal
regular sequence as in Construction 3.77. If pdimR(M) = ∞, then Theorem 3.84 does not
apply, and we need to explicitly find depth(M), for example by finding the smallest i such
that ExtiR(R/m,M) ̸= 0, or by explicitly constructing a maximal regular sequence as in
Construction 3.77.

Hochster’s quote in the beginning of this section pointed us to an equivalent character-
ization of Cohen-Macaulayness, for which we will need to recall the notion of a system of
parameters.

Definition 3.90. A sequence of d elements x1, . . . , xd in a d-dimensional noetherian local
ring (R,m) is a system of parameters or SOP if

√
(x1, . . . , xd) = m. If k is a field, a

sequence of d homogeneous elements x1, . . . , xd in a d-dimensional N-graded finitely generated
k-algebra R, with R0 = k, is a homogeneous system of parameters if

√
(x1, . . . , xd) = R+.

We say that elements x1, . . . , xt are parameters if they are part of a system of parame-
ters; this is a property of the set, not just the elements.
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Lemma 3.91. Let R be a Noetherian ring, and I be an ideal. Let f1, . . . , ft ∈ I, and
Ji = (f1, . . . , fi) for each i. Suppose that for each i,

fi /∈
⋃

a∈Min(Ji−1)
a/∈V (I)

a.

Then any minimal prime of Ji either contains I or has height i.

Proof. We use induction on i. For i = 0, J0 = (0), and every minimal prime has height
zero. Suppose know the statement holds for i = m, and consider a minimal prime q of Jm+1.
Since Jm ⊆ Jm+1, q must contain some minimal prime of Jm, say p. If p ⊇ I, then q ⊇ I.
If q does not contain I, then neither does p. On the one hand, fm+1 ∈ Jm+1 ⊆ q. On the
other hand, since p ∈ Min(Jm) and p /∈ V (I), our assumption implies that fm+1 /∈ p. In
particular, p ⊊ q. By the induction hypothesys, p has height m, and thus the height of q is
at least m + 1. But Jm+1 is generated by m + 1 elements, so by the Krull Height Theorem
3.11, the height of q is then exactly m+ 1.

Theorem 3.92. Let R be a Noetherian ring of dimension d.

a) If p is a prime of height h, then there are h elements f1, . . . , fh ∈ p such that p is a
minimal prime of (f1, . . . , fh).

b) Suppose that R is either a local ring or an N-graded ring with R0 a field. Let I is an
ideal in R, homogeneous in the graded case. There are d elements, which can be chosen
to be homogeneous in the graded case, say f1, . . . , fd ∈ I, such that

√
I =

√
(f1, . . . , fd).

Proof. We will use the notation from the previous lemma.

a) If p is a minimal prime in R, then p is minimal over the ideal generated by 0 elements,
(0). Otherwise, we will use the recipe from the lemma above with I = p. First, we need
to show that we can choose h elements satisfying the hypotheses. So we will show that
starting from J0 = (0), we can find elements f1, . . . , fh ∈ p such that Ji = (f1, . . . , fi)

p ̸⊆
⋃

a∈Min(Ji)
a/∈V (I)

a

for i = 0, . . . , h− 1. As long as the set on the right is nonempty,

(f1, . . . , fi) ⊆
⋃

a∈Min(Ji)
a/∈V (I)

a,

so the previous statement allows us to choose fi+1 as in the Lemma. So fix any i ⩽ h−1,
and suppose we have constructed Ji. The Krull Height Theorem 3.11 implies that all
the elements in Min(Ji) have height strictly less than h. Since p has height h, that
implies that the sets Min(Ji) and V (p) are disjoint. So we want to show that

p ̸⊆
⋃

a∈Min(f1,...,fi)
a/∈V (I)

a =
⋃

a∈Min(f1,...,fi)

a
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This is immediate by prime avoidance B.1, again because p is not contained in a mini-
mal prime of (f1, . . . , fi). Thus, we can choose (f1, . . . , fh) ⊆ p as in the lemma, and by
the lemma its minimal primes either have height h or contain p. Since (f1, . . . , fh) ⊆ p,
some minimal prime q of Jh is contained in p. We know that this q either contains p,
and hence is p, or else is contained in and has the same height as p, so again must be
equal to p. Therefore, p is a minimal prime of (f1, . . . , fh).

b) We again run the same argument, using homogeneous prime avoidance in the graded
case. The point is that the only (homogeneous, in the graded case) ideal of height d
already contains I.

By Theorem 3.92, every local (or graded) ring admits a system of parameters, and these
can be useful in characterizing the dimension of a local Noetherian ring, or the height of a
prime in a Noetherian ring. Moreover, we can characterize Cohen-Macaulayness in terms of
sops.

Theorem 3.93. The following are equivalent for any Notherian local ring (R,m):

a) R is Cohen-Macaulay.

b) Some system of parameters in R is a regular sequence on R.

c) Every system of parameters in R is a regular sequence on R.

Proof. Clearly, c) ⇒ b) ⇒ a). Suppose R is Cohen-Macaulay and let x = x1, . . . , xd be a sys-
tem of parameters on R, meaning

√
(x) = m. By Lemma 3.86, depth(x)(R) = depthm(R) =

d. By Theorem 3.82, K(x) is exact, and by Theorem 3.44, this implies that x is a regular
sequence.

To prove some other nice properties of Cohen-Macaulay rings, we will need the following
technical looking result.

Theorem 3.94. Let (R,m) be a Noetherian local ring and M and N finitely generated
R-modules. Then ExtiR(M,N) = 0 for all i < depth(N)− dim(M).

Proof. First, we reduce to the case when M = R/P for some prime ideal P . To do that, fix
a prime filtration of M ; such a filtration is well-known to exist. More precisely, this is an
ascending chain of submodules

0 =M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn =M

such that Mi/Mi−1
∼= R/Pi for some primes P . First, we claim that we can reduce the

problem to showing ExtjR(R/Pi, N) = 0 for all j < depth(N)− dim(M) and all i.
Break this filtration into short exact sequences

0 //Mi−1
//Mi

// R/Pi
// 0

and look at the long exact sequence we get when we apply HomR(−, N):

· · · // ExtjR(R/Pi, N) // ExtjR(Mi, N) // ExtjR(Mi−1, N) // · · · .
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If ExtjR(R/Pi, N) = 0 for all i, then we must have ExtjR(Mi, N) = 0 for all i, and therefore
ExtjR(M,N) = 0.

So we have reduced the problem to showing that ExtjR(R/Pi, N) = 0 for all i and all
j < depth(N)−dim(M). Notice also that by the construction of the prime filtration, all the
Pi contain ann(M), so dim(R/Pi) ⩽ dim(M). Therefore, it is sufficient to show that if P is
prime, then ExtiR(R/P,N) = 0 for all i < depth(N)− dim(R/P ).

We proceed by induction on dim(R/P ). If dim(R/P ) = 0, then P = m, so by Theo-
rem 3.81 we have ExtiR(R/m, N) = 0 for all i < depth(N) = depth(N) − dim(R/P ). If
dim(R/P ) > 0, the P ̸= m, so pick x ∈ m but x /∈ P . The short exact sequence

0 // R/P x // R/P // R/P + (x) // 0

gives rise to the long exact sequence

· · · // ExtiR(R/P + (x), N) // ExtiR(R/P,N) x // ExtiR(R/P,N) // ExtiR(R/P + (x), N) // · · · .

Since x /∈ P , we necessarily have dim(R/P + (x)) < dim(R/P ), so by induction hypothesis
we have ExtiR(R/P + (x), N) = 0 for all

i < depth(N)− dim(R/P + (x)) = depth(N)− dim(R/P ) + 1.

Therefore, for all i < depth(N)− dim(R/P ),

ExtiR(R/P,N) x // ExtiR(R/P,N)

is an isomorphism. In particular, ExtiR(R/P,N) = x ·ExtiR(R/P,N), so ExtiR(R/P,N) = 0
by NAK, where we used that ExtiR(R/P,N) is finitely generated.

It remains to show that ExtiR(R/P,N) = 0 when i < depth(N)− dim(R/P ).

Corollary 3.95. Let (R,m) be a Noetherian local ring and M be a finitely generated R-
module. For every associated prime of M , depth(M) ⩽ dim(R/P ).

Proof. By Theorem 3.94, ExtiR(R/P,M) = 0 for all i < depth(M) − dim(R/P ). But
every element in P is a zerodivisor on M , so depthP (M) = 0, and by Theorem 3.81,
Ext0R(R/P,M) ̸= 0. We conclude that depth(M) ⩽ dim(R/P ).

One of the nicest properties all Cohen-Macaulay rings have is called unmixedness.

Theorem 3.96 (Unmixedness theorem). Let R be a Noetherian local ring. If M is a Cohen-
Macaulay R-module, then

depth(M) = dim(R/p)

for every p ∈ Ass(M). In particular, if R is a Cohen-Macaulay ring, then R has no embedded
primes, and dim(R/p) = dim(R) for each p ∈ Min(R).

Proof. This follows from the inequality on depth and dimension of associated primes from
Corollary 3.95:

dim(M) = max{dim(R/p) | p ∈ Ass(M)} ⩾ min{dim(R/p) | p ∈ Ass(M)} ⩾ depth(M).

SinceM is Cohen-Macaulay, equality holds throughout, and that implies in fact that equality
holds for each dim(R/p) with p ∈ Ass(M).
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The Cohen-Macaulay property localizes.

Theorem 3.97. Let (R,m) be a Cohen-Macaulay local ring and P be a prime ideal in R.
Then RP is a Cohen-Macaulay local ring.

Proof. We claim that there is a regular sequence contained in R of length equal to the height
of P . If P is minimal, there is nothing to show. If P is not minimal, it is not contained
in the union of the minimal primes, hence not in the union of the associated primes of R
by Theorem 3.96. Thus, there is a nonzerodivisor in P . We can mod out by this to get a
Cohen-Macaulay ring of lower dimension, and inductively, the claim follows. Now localizing
at P this stays a regular sequence that is a system of parameters for RP .

Theorem 3.98 (Dimension formula). Let R be a Cohen-Macaulay ring, and p ⊆ q be primes.
Then

ht(q)− ht(p) = dim(Rq/pRq).

In particular, if (R,m) is a Cohen-Macaulay local ring, then dim(R)−height(p) = dim(R/p).

Proof. Cohen-Macaulayness localizes, by Theorem 3.97, so Rq is a Cohen-Macaulay local ring
of dimension ht(q). Pick h = ht(p) elements r1, . . . , rh ∈ p that form a regular sequence. Now
Rq/(r1, . . . , rh)Rq is Cohen-Macaulay, and dim(Rq/(r1, . . . , rh)Rq) = dim(Rq/pRq), since
r1, . . . , rh is a maximal regular sequence in p, so pRq ∈ Ass(Rq/(r1, . . . , rh)Rq). On the
other hand, dim(Rq/(r1, . . . , rh)Rq) = dim(Rq)− h. The equality follows.

Remark 3.99. If (R,m) is Cohen-Macaulay and x1, . . . , xa is a regular sequence on R, then
we claim that R/(x1, . . . , xa) is also Cohen-Macaulay. On the one hand, ht(x1, . . . , xa) = a by
Theorem 3.48. On the other hand, by Theorem 3.11 all the minimal primes of R/(x1, . . . , xa)
have height at most a, so we conclude that all the minimal primes of R/(x1, . . . , xa) have the
same height a. By Theorem 3.98, dim(R/(x1, . . . , xa)) = dim(R) − a. On the other hand,
going modulo each xi decreases the depth by 1, so depth(R/(x1, . . . , xa) = depth(R) − a =
dim(R)− a.

To help characterize systems of parameters, we we will use the following definition:

Definition 3.100. Let R be a Noetherian ring. A prime p of R is absolutely minimal if
dim(R) = dim(R/p).

An absolutely minimal prime is minimal, since dim(R) ⩾ dim(R/p) + height(p).

Theorem 3.101. Let (R,m) be a Noetherian local ring, and x1, . . . , xt ∈ m.

1) dim(R/(x1, . . . , xt)) ⩾ dim(R)− t.

2) x1, . . . , xt are parameters if and only if dim(R/(x1, . . . , xt)) = dim(R)− t.

3) x1, . . . , xt are parameters if and only if x1 is not in any absolutely minimal prime of R
and xi is not contained in any absolutely minimal prime of R/(x1, . . . , xi−1) for each
i = 2, . . . , t.

Proof.
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1) If dim(R/(x1, . . . , xt)) = s, then take a system of parameters y1, . . . , ys forR/(x1, . . . , xt),
and pull back to R to get x1, . . . , xt, y

′
1, . . . , y

′
s in R such that the quotient of R modulo

the ideal generated by these elements has dimension zero. By Krull’s Height Theorem,
we get that t+ s ⩾ dim(R).

2) Let d = dim(R). Suppose first that dim(R/(x1, . . . , xt)) = d − t. Then, there is a
SOP y1, . . . , yd−t for R/(x1, . . . , xt); lift back to R to get a sequence of d elements
x1, . . . , xt, y1, . . . , yd−t that generate an m-primary ideal. This is a SOP, so x1, . . . , xt
are parameters.

On the other hand, if x1, . . . , xt, are parameters, extend to a SOP x1, . . . , xd. If I is the
image of (xt+1, . . . , xd) in R

′ = R/(x1, . . . , xt), we have R
′/I is zero-dimensional, hence

has finite length, so AssR′(R′/I) = {m}, and I is m-primary in R′. Thus, dim(R′) is
equal to the height of I, which is then ⩽ d−t by Krull height. That is, dim(R′) ⩽ d−t,
and using the first statement, we have equality.

3) This follows from the previous statement and the observation that dim(S/(f)) ≨
dim(S) if and only if f is not in any absolutely minimal prime of S.

Lemma 3.102. Given a Cohen-Macaulay ring R and a regular sequence x1, . . . , xn, every
associated prime of (x1, . . . , xn) must have height n.

Proof. We can reduce to the local case, since associated primes localize, x1

1
, . . . , xn

1
must also

be regular on RP for each P ∈ Ass(x1, . . . , xn), and ht(P ) = ht(PP ).
Now note that dim(R/(x1, . . . , xn)) = dim(R) − n, by Remark 3.99, so x1, . . . , xn form

part of a system of parameters by Theorem 3.101. Let P be an associated prime of
(x1, . . . , xn). Then PP is an associated prime of (x1, . . . , xn)P , by Theorem 1.54, and RP

is Cohen-Macaulay by Theorem 3.97. The images of x1, . . . , xn can be extended to a system
of parameters, which by Theorem 3.93 must be a maximal regular sequence. However, every
element in PP is a zerodivisor on RP/(x1, . . . , xn)P , since PP is associated to x1, . . . , xn,
so x1, . . . , xn cannot be extended inside PP . Thus depth(RP/(x1, . . . , xn)P ) = 0. By Re-
mark 3.99, RP/(x1, . . . , xn)P is Cohen-Macaulay, so it must have dimension 0. Therefore, P
is minimal over (x1, . . . , xn).

By Theorem 3.11, htP ⩽ n. By Theorem 3.48, ht(P ) ⩽ n, so ht(P ) = n.

Theorem 3.103. Let R be a Noetherian ring. The following are equivalent:

1) R is Cohen-Macaulay.

2) Every ideal I in R contains a regular sequence of length ht(I).

3) Every maximal regular sequence inside I has length ht(I).

Proof. Notice that 3) ⇒ 2) is obvious, and 2) ⇒ 1) is clear once we take I to be equal to
each maximal ideal in R. To show 1) ⇒ 2), let x1, . . . , xn be a maximal regular sequence
inside I. The elements of I must all be zerodivisors on R/(x1, . . . , xn), by maximality, so
by Lemma 3.78 we must have I contained in some associated prime P of R/(x1, . . . , xn).
By Lemma 3.102, P has height n, so ht(I) ⩽ ht(P ) = n. But I ⊇ (x1, . . . , xn) and
ht(x1, . . . , xn) = n by Theorem 3.48, so ht(I) = n.
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Remark 3.104. Let I be an ideal in a Cohen-Macaulay ring R. If I is generated by a
regular sequence, then that regular sequence must have length ht(I), so I must be generated
by exactly ht(I) elements. If R is a local ring and µ(I) > ht(I), then I is not generated by
a regular sequence.

The most important classes of rings we will consider are

Regular rings ⊆ complete intersections ⊆ Cohen-Macaulay rings.

We will unfortunately not have a chance to discuss Gorenstein rings, which are a special
subclass of Cohen-Macaulay rings that contain all complete intersections.

3.8 A few direct applications to symbolic powers

We now collect some immediate applications of the tools we developed in the remainder of
the chapter to associated primes and symbolic powers.

Theorem 3.105. Let I be an ideal in a noetherian ring R. A prime P is associated to I
if and only if depth(RP/IP ) = 0. In particular, if (R,m) is a local ring, then m ∈ Ass(I) if
and only if depth(R/I) = 0.

Proof. By Lemma 1.39, P ∈ Ass(I) if and only if PP ∈ AssRP
(IP ). This means we can reduce

to the local case, and that it is enough to show that in a local ring (R,m), m ∈ Ass(I) if
and only if depth(R/I) = 0. If m is associated to I, then every element in m is a zerodivisor
on R/I, so there are no regular elements on R/I, and depth(R/I) = 0. If depth(R/I) = 0,
then every element in m must be a zerodivisor on R/I, so m is contained in the zerodivisors
of R/I. By Theorem 1.45, this means that

m ⊆
⋃

P∈Ass(I)

P.

By Corollary 1.53, this is a union of finitely many primes, so by Prime Avoidance m must
be contained in some associated prime of I. But m is already maximal, so m is an associated
prime of I.

Lemma 3.106. Let (R,m) be a local ring or an N-graded algebra over a field k with R0
∼= k.

Given an ideal I in R, which is homogeneous in the graded setting, if all the associated
primes of I have height dim(R)− 1 then

I(n) = In if and only if depth(R/In) > 0

for all n ⩾ 1.

For example, this applies if I is a prime of height dim(R)− 1.

Proof. In the graded case, recall that all the associated primes of I must be homogeneous,
by Theorem 1.50. Since all the associated primes of I have height dim(R)− 1, m is the only
possible embedded prime of In for any n. By Theorem 3.105, m is associated to I if and
only if depth(R/In) = 0.
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And finally, here is a large class of ideals I satisfying I(n) = In for all n.

Theorem 3.107. Let R be a noetherian ring and consider an ideal I. If I is generated by
a regular sequence, then Ass(In) = Ass(I) for all n ⩾ 1, and thus I(n) = In.

Proof. We will construct a descending chain of ideals

I = I0 ⊇ I1 ⊇ I2 ⊇ · · ·

containing all the powers of I and such that

In/In+1
∼= R/I

for all n. Given this sequence, the quotient maps

R/In+1 ↠ R/In

all have kernel R/I, giving us short exact sequences

0 // R/I // R/In+1
// R/In // 0 .

By Lemma 1.46,
Ass(I) ⊆ Ass(In+1) ⊆ Ass(I) ∪ Ass(In).

When n = 0, In = I, so

Ass(I) ⊆ Ass(I1) ⊆ Ass(I) ∪ Ass(I) =⇒ Ass(I1) = Ass(I).

Proceeding inductively, this shows that Ass(In) = Ass(I) for all n. In particular, all the
powers In satisfy Ass(In) = Ass(I).

So all that remains is to show the key technical point of the proof: the construction of
the promised sequence. Let I = (f1, . . . , ft), where f1, . . . , ft is a regular sequence. First,
for each n we fix an order for the generators fa1

1 · · · fat
t of In; for example, consider the

lexicographical order

fn,0 = fn
1 , fn,1 = fn−1

1 f2, · · · , fn,t−1 = fn−1
1 ft, fn,t = fn−2

1 f 2
2 , · · · , fn,(n+t−1

t−1 ) = fn
t .

For each n ⩾ 0 and 0 ⩽ m ⩽
(
n+t−1
t−1

)
, set

In,m := In+1 + (fn,k | 0 ⩽ k ⩽ m) .

By construction, I0,0 = I, In,m ⊆ In,m+1, and

In,(n+t−1
t−1 ) = In+1 + In = In = In−1,0.

So these give us a descending chain of ideals

I = I0,0 = I1,t ⊇ I1,t−1 ⊇ · · · ⊇ I1,0 = I2 = I2,(n+1
t−1)

⊇ · · · .
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If we can show that all the successive quotients are isomorphic to R/I, this chain of ideals
will have all the promised features. To do that, it’s sufficient to show that for all n ⩾ 1 and
0 ⩽ m <

(
n+t−1
t−1

)
,

In,m+1/In,m ∼= R/I.

By construction, the quotient In,m+1/In,m is a cyclic module, so

In,m+1/In,m ∼= R/(In,m : In,m+1).

So all that remains to be shown is that (In,m : In,m+1) = I. One containment is immediate
from the construction: since In,m+1 ⊆ In+1 + In, then

I · In,m+1 ⊆ I(In+1 + In) ⊆ In+2 + In+1 ⊆ In+1 ⊆ In,m.

Now suppose that g ∈ R satisfies gIn,m+1 ⊆ In,m. This is equivalent to the statement that

gfn,m+1 ⊆ In,m = In+1 + (fn,k | 0 ⩽ k ⩽ m) .

Therefore, there exist r0, . . . , rm ∈ R such that

gfn,m+1 + r0fn,0 + · · ·+ rmfn,m ∈ In+1.

The elements fn,0, . . . , fn,m+1 are distinct monomials in f1, . . . , ft of degree n, so

gfn,m+1 + r0fn,0 + · · ·+ rmfn,m = F (f1, . . . , ft)

for some homogeneous polynomial of degree n. By Theorem 3.50, the coefficients of F must
be in I, so in particular g ∈ I. Since we took g to be any element in (In,m : In,m+1), we
conclude that (In,m : In,m+1) = I.

Remark 3.108. What we showed in Theorem 3.107 is that Ass(In) = Ass(I) for all n ⩾ 1
whenever I is generated by a regular sequence. With our definition of symbolic powers,
this gives the equality In = I(n). Notice, however, that if we choose the other definition of
symbolic powers — meaning, by taking InRP ∩ R with P ranging over Min(I) instead of
Ass(I) — we only obtain In = I(n) in Cohen-Macaulay rings, since all complete intersections
are unmixed in a Cohen-Macaulay ring. If R is not Cohen-Macaulay, we can still say that
In = I(n) whenever I is a complete intersection with no embedded primes.

In Exercise 2, we saw that computing symbolic powers is simply taking saturations with
a fixed ideal J – any J that is not contained in any minimal prime of I but that is contained
in every embedded prime of In will do the job. Theorem 3.107 gives us a strategy for finding
such a J .

Exercise 8. Let I be an ideal with no embedded primes in a Cohen-Macaulay ring R.
Suppose that J is an ideal such that

V (J) = {P ∈ Spec(R) | IP is not generated by a regular sequence},

and that IP is generated by a regular sequence for every P ∈ Min(I). Then I(n) = (I : J∞).
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Definition 3.109 (Jacobian ideal). Let k be a field and R = k[x1, . . . , xn]/I, where the
ideal I = (f1, . . . , fr) has pure height h. The Jacobian matrix of R is the matrix given by

∂f1
∂x1

· · · ∂f1
∂xn

. . .
∂fr
∂x1

· · · ∂fr
∂xn

 .

The jacobian ideal of R is the ideal generated by the h-minors of the Jacobian matrix.

Turns out the Jacobian ideal is indeed well-defined – meaning, our definition does not
depend on the choice of presentation for R – and that it determines the nonsmooth locus of
R. For proofs of these well-known facts, see Section 16.6 of Eisenbud’s Commutative Algebra
with a view towards algebraic geometry [Eis95].

Theorem 3.110 (Jacobian criterion). Let R = k[x1, . . . , xn]/I with k a perfect field, and
assume that I has pure height h. The Jacobian ideal J defines the nonsmooth locus of R: a
prime P in k[x1, . . . , xn] contains J if and only if RP is not a regular ring.

Exercise 9. Let I be a radical ideal in R = k[x1, . . . , xd] of pure height, where k is a perfect
field, and let J be the Jacobian ideal of I. Prove that I(n) = (In : J∞) for all n ⩾ 1.



Chapter 4

A geometric perspective

The symbolic powers of a radical ideal in k[x1, . . . , xd] have a geometric meaning. To explain
that meaning, we will start with a brief recap of affine and projective varieties. For a nice
and thorough computationally minded introduction to affine and projective varieties, see
[CLO92].

4.1 Affine varieties

Definition 4.1. Given a field k, the affine d-space over k, denoted Ad
k, is given by

Ad
k := {(a1, . . . , ad) | ai ∈ k}.

For a subset T of k[x1, . . . , xd], we define V(T ) ⊆ Ad
k to be the set of common zeros or the

zero set of the polynomials (equations) in T :

V(T ) = {(a1, . . . , ad) ∈ Ad
k | f(a1, . . . , ad) = 0 for all f ∈ T}.

Whenever we want to emphasize the role of k, we will write this as Vk(T ).
A subset of Ad

k of the form V(T ) for some subset T is called an algebraic subset of Ad
k,

or an affine algebraic variety. So a variety in Ad
k is the set of common solutions of some

(possibly infinite) collection of polynomial equations. A variety is irreducible if it cannot
be written as the union of two proper subvarieties.

Note that some authors use the word variety to refer only to irreducible algebraic sets;
it is always wise to check what definition of variety is being considered. Note also that the
definitions given here are only completely standard when k is algebraically closed.

Example 4.2. Here are some simple examples of algebraic varieties:

a) For any field k and elements a1, . . . , ad ∈ k, we have

V(x1 − a1, . . . , xd − ad) = {(a1, . . . , ad)}.

So, all one element subsets of Ad
k are varieties.

b) For k = R, VR(x
2 + y2 + 1) = ∅. Note that VC(x

2 + y2 + 1) ̸= ∅.

81
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We can consider the equations that a subset of affine space satisfies.

Definition 4.3. Given any subset X of Ad
k for a field k, define

I(X) = {g(x1, . . . , xd) ∈ k[x1, . . . , xd] | g(a1, . . . , ad) = 0 for all (a1, . . . , ad) ∈ X}.

Exercise 10. I(X) is an ideal in k[x1, . . . , xd] for any X ⊆ Ad
k.

Remark 4.4. If I is an ideal in k[x1, . . . , xd], I(V(I)) ⊇ I, but we do not necessarily have
equality. For example, when I = (x2) in k[x], V(I) = {0}, and thus I(V(I)) = (x).

Example 4.5. The twisted cubic (affine) curve is the curve C parametrized by (t, t2, t3),
meaning it is the image of the map

R // R3.

t � // (t, t2, t3)

Consider the ideal I = (x2 − y, x3 − z). It is clear that C ⊆ V(I). On the other hand, given
a point (a, b, c) ∈ A3

R in V(I), it must satisfy b = a2 and c = a3, so (a, b, c) = (a, a2, a3) ∈ C.
Therefore, C is a variety. To find I(C), we can get help from Macaulay2:

i1 : k = RR;

i2 : R = k[x,y,z];

i3 : f = map(k[t],R,{t,t^2,t^3});

i4 : ker f

2 2

o4 = ideal (y - x*z, x*y - z, x - y)

o4 : Ideal of R

In our computation above, f sets x = t, y = t2, and z = t3, and its kernel consists
precisely of the polynomials that vanish at every point of this form. We conclude that
I(C) = (y − x2, xz − y2, z − xy). Note that computations over the reals in Macaulay2 are
experimental, and yet we obtain the correct answer; we can also run the same computation
over k = Q.

Exercise 11. Here are some properties of the functions V and I:

a) For any field, we have V(0) = An
k and V(1) = ∅.

b) I(∅) = (1) = k[x1, . . . , xd] (the improper ideal).

c) I(Ad
k) = (0) if and only if k is infinite.

d) If I ⊆ J ⊆ k[x1, . . . , xd] then V(I) ⊇ V(J).
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e) If S ⊆ T are subsets of An
k then I(S) ⊇ I(T ).

f) If I = (T ) is the ideal generated by the elements of T ⊆ k[x1, . . . , xd], then V(T ) =
V(I).

So we will talk about the solution set of an ideal, rather than of an arbitrary set. Hilbert’s
Basis Theorem implies that every ideal in k[x1, . . . , xd] is finitely generated, so any system
of equations in k[x1, . . . , xd] can be replaced with a system of finitely many equations.

Example 4.6. Let

X =

[
x1 x2 x3
y1 y2 y3

]
be a 2× 3 matrix of variables — we usually call these generic matrices — and let

R = k[X] = k

[
x1 x2 x3
y1 y2 y3

]
.

Let ∆1,∆2,∆3 the 2×2-minors of X. Consider the ideal I = (∆1,∆2,∆3). Thinking of these
generators as equations, a solution to the system corresponds to a choice of 2 × 3 matrix
whose 2 × 2 minors all vanish — that is, a matrix of rank at most one. So V(I) is the set
of rank at most one matrices. Note that I ⊆ (x1, x2, x3) =: J , and V(J) is the set of 2 × 3
matrices with top row zero. The containment V(J) ⊆ V(I) we obtain from I ⊆ J translates
to the fact that a 2× 3 matrix with a zero row has rank at most 1.

Finally, the union and intersection of varieties is also a variety.

Exercise 12. Suppose that I and J are ideals in k[x1, . . . , xd].

a) V(I) ∩ V(J) = V(I + J).

b) V(I) ∪ V(J) = V(I ∩ J) = V(IJ).

However, note that in general IJ ̸= I ∩ J .

Remark 4.7. We noted in Example 4.2 that a point is a variety. By Exercise 12, the finite
union of varieties is a variety, so we conclude that any finite set of points is a variety.

Theorem 4.8 (Weak Nullstellensatz). Let k be an algebraically closed field. If I is a proper
ideal in R = k[x1, . . . , xd], then Vk(I) ̸= ∅.

Theorem 4.9 (Strong Nullstellensatz). Let k be an algebraically closed field, and consider
a polynomial ring R = k[x1, . . . , xd]. Let I ⊆ R be an ideal. The polynomial f vanishes on
Vk(I) if and only if fn ∈ I for some n. Therefore, I(V(I)) =

√
I.

This gives us a bijection between radical ideals and varieties. Given a variety V , I(V ) is
the unique radical ideal that determines V .

Definition 4.10. Given a variety X ⊆ Ad
k, the coordinate ring of X is the ring

k[X] := k[x1, . . . , xd]/I(X).



84

Theorem 4.11. Given an an algebraically closed field k, I and V induce order-reversing
bijections

in K[x1, . . . , xn] in An
K

{radical ideals}
I

// {varieties}
Voo

{prime ideals}
I

// {irreducible varieties}
Voo

{maximal ideals}
I

// {points}.
Voo

In particular, given ideals I and J , we have V(I) = V(J) if and only if
√
I =

√
J . Likewise,

for any variety X over an algebraically closed field, we have order-reversing bijections

in k[X] in X

{radical ideals} // {subvarieties}oo

{prime ideals} // {irreducible subvarieties}oo

{maximal ideals} // {points}.oo

Theorem 4.12. A variety V ⊆ Ad
k is irreducible if and only if I(V ) is a prime ideal.

Example 4.13. In Example 2.4, we showed that the kernel of the map

C[x, y, z] // C[t3, t4, t5]
(x, y, z) � // (t3, t4, t5)

is the ideal
P =

(
x3 − yz, y2 − xz, z2 − x2y

)
.

As a consequence, the set of points

X =
{
(t3, t4, t5) ∈ A3

C | t ∈ C
}

satisfies I(X) = P . In fact, we claim that for k = R or C, the set

X = {(t3, t4, t5) | t ∈ k}

is an algebraic variety, though again it needs justification. Consider Y = V(y3−x4, z3−x5);

clearly, X ⊆ Y . Over R, for (a, b, c) ∈ Y , take t = 3
√
a; then a = t3, b3 = a4 means b = 3

√
a
4
,

so b = t4, and similarly c = t5, so X = Y . We were using uniqueness of cube roots in this
argument though, so we need to reconsider over C. Indeed, if ω is a cube root of unity,
then (1, 1, ω) ∈ Y ∖X, so we need to do better. Let’s try Z = V(y3 − x4, z3 − x5, z4 − y5).
Again, X ⊆ Z. Say that (a, b, c) ∈ A3

C is in Z, and let s be a cube root of a. Then
b3 = a4 = (s4)3 implies that b = ω′s4 for some cube root of unity ω′ (maybe 1, maybe
not). Similarly c3 = a5 = (s5)3 implies that c = ω′′s5 for some cube root of unity ω′′

(maybe 1, maybe ω′, maybe not). So at least (a, b, c) = (s3, ω′s4, ω′′s5). Let t = ω′s. Then
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(s3, ω′s4, ω′′s5) = (t3, t4, ωs5), where ω = (ω′)2ω′′ is again some cube root of unity. The
equation b5 = c4 shows that t20 = ω4t20. If t ̸= 0, this shows ω = 1, so (a, b, c) = (t3, t4, t5);
if t = 0, then (a, b, c) = (0, 0, 0) = (03, 04, 05). Thus, X = Z.

We have shown in particular that

X = {(t3, t4, t5) | t ∈ C}
is a variety, and that I(X) = P . As we already saw in Example 2.4, P is a prime ideal, since
C[x, y, z]/P ∼= C[t3, t4, t5] ⊆ C[t] is a domain. Since P is prime, by Theorem 4.12 the variety
X is irreducible.

Every radical ideal can be written as the intersection of its finitely many minimal primes,
so in particular we can write I uniquely as

I = P1 ∩ · · · ∩ Pn

where each Pi is a prime ideal and Pi ⊈ Pj for each i ̸= j. In fact, as we discussed in Re-
mark 1.19, this is the unique way to write I as an intersection of finitely many incomparable
primes. Translating this into the world of varieties, we obtain the following:

Theorem 4.14. Every affine variety V ⊆ Ad
k can be written uniquely as a finite union of

irreducible affine varieties V = V1 ∪ · · · ∪ Vn with Vi ⊈ Vj for each i ̸= j,s.

In summary, over an algebraically closed field, we have the following dictionary between
algebra and geometry:

Algebra oo // Geometry

radical ideals oo // varieties

prime ideals oo // irreducible varieties

maximal ideals oo // points

(x1 − a1, . . . , xd − ad)
oo // point {(a1, . . . , ad)}

(0) oo // variety Ad

k[x1, . . . , xd]
oo // variety ∅

smaller ideals oo // larger varieties

larger ideals oo // smaller varieties

sum of ideals oo // intersection of varieties

intersection of ideals oo // union of varieties

I = P1 ∩ · · · ∩ Pk

unique decomposition into
incomparable primes

oo //

V = V1 ∪ · · · ∪ Vk
unique decomposition into
irreducible components
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4.2 Projective varieties

Definition 4.15. Given a field k and d ⩾ 0, consider the equivalence relation ∼ on kd+1

given by

(a0, . . . , ad) ∼ (b0, . . . , bd) if there exists some 0 ̸= λ ∈ k such that bi = λai for every i.

The projective d-space over k, denoted Pd
k, is given by

Pd
k :=

kd+1 \ {0}
∼

.

The class of (a0, . . . , ad) in Pd
k is denoted (a0 : · · · : ad), and we call it a point in Pd.

Notice each point in Pd
k can be represented by many different tuples in kd+1; given a point

P in Pd
k, any (a0, . . . , ad) ∈ kd+1 (which we can also think of as a point in Ad+1

k ) such that
P = (a0 : · · · : ad) is a set of homogeneous coordinates for P .

Remark 4.16. There is a one to one correspondence between Pd
k and the set of lines through

the origin in kn+1.

Remark 4.17. Here is a typical trick one uses often. Given a point P = (a0 : · · · : ad), we
know that at least one of the coordinates ai must be nonzero, so

P = (a0 : · · · : ad) =
(
a0
ai

: · · · : ai
ai

: · · · : ad
ai

)
=

(
a0
ai

: · · · : 1 : · · · : ad
ai

)
.

Therefore, we can always assume that P = (b0 : · · · : bi−1 : 1 : bi+1 : · · · : bd).

Lemma 4.18. Let k be a field and f ∈ k[x0, . . . , xd] be a homogeneous polynomial. Given
any nonzero (a0, . . . , ad) ∈ kd+1, if f(a0, . . . , ad) = 0 then f(λa0, . . . , λad) = 0 for all nonzero
λ ∈ k. In particular, the set

V (f) =
{
p ∈ Pd

k | f(p) = 0
}

is a well-defined subset of Pd
k.

Proof. If f is homogeneous of degree d = n, we can write f as

f =
∑

b0+···+bd=n

cbx
b0
0 · · ·xbdd

for some cb ∈ k. Then

f(λa0, . . . , λad) =
∑

b0+···+bd=n

cb(λa0)
b0 · · · (λad)bd =

∑
b0+···+bd=n

cbλ
nab00 · · · abdd = λnf(a0, . . . , ad)

so f(a0, . . . , ad) = 0 if and only if f(λa0, . . . , λad) = 0 for all λ.

In contrast, if f is not homogeneous, then the equation f(p) = 0 does not make sense in
Pd
k.



87

Definition 4.19. Let f1, . . . , fn be homogeneous polynomials in R = k[x0, . . . , xd], where k
is a field. The projective variety defined by f1, . . . , fn is

V(f1, . . . , fn) := {a ∈ Pn
k | fi(a) = 0 for all 1 ⩽ i ⩽ n} .

A projective variety is any subset V ⊆ Pd
k which can be realized as V = V (f1, . . . , fn) for

some f1, . . . , fn.

Notation 4.20. If I is a homogeneous ideal in R, we set

V(I) :=
{
p ∈ Pd

k | f(p) = 0 for all f ∈ I
}
.

We will use the same notation for affine and projective varieties, hoping the distinction
is clear from context.

Remark 4.21. Whenever I is a homogeneous ideal in R, I is generated by homogeneous
elements, say f1, . . . , fn. We claim that V (I) = V (f1, . . . , fn). On the one hand, if p ∈ V (I)
then in particular fi(p) = 0 for all i, so p ∈ V (f1, . . . , fn). On the other hand, any element
f ∈ I is of the form f = g1f1 + · · ·+ gnfn, so if p ∈ V (f1, . . . , fn) then

f(p) = g1(p)f1(p)︸ ︷︷ ︸
0

+ · · ·+ gn(p)fn(p)︸ ︷︷ ︸
0

= 0.

Therefore, V (I) is a projective variety.

Definition 4.22. Given a projective variety V ⊆ Pd
k,

I(V ) := {f ∈ k[x0, . . . , xd] | f(p) = 0 for all p ∈ V } .

Exercise 13. Let V be a projective variety in Pd
k. If k is infinite, then I(V ) is a homogeneous

ideal.

Remark 4.23. When k is finite, there are certain polynomials that are in I(V ) for every
variety V . Over Fp, Fermat’s Little Theorem implies that xp0 − x0, . . . , x

p
d − xd vanish at

every point in Pd
Fp
, but these are not homogeneous polynomials.

Exercise 14.

a) If I ⊆ J ⊆ k[x0, . . . , xd] are homogeneous ideals then V(I) ⊇ V(J).

b) If S ⊆ T are subsets of Pd
k then I(S) ⊇ I(T ).

Exercise 15. If I is a homogeneous ideal, then
√
I is also homogeneous.

Remark 4.24. A homogeneous ideal I in R = k[x0, . . . , xd] gives us the projective variety
V = V(I) ⊆ Pd

k, but it also determines the affine variety

A =
{
a ∈ Ad+1

k | f(a) = 0 for all f ∈ I
}
⊆ Ad+1

k .

If we think of each point in V as corresponding to a line through the origin in affine space,
then A is the union of those lines; notice that A includes the origin. In particular, for every
point a = (a0 : · · · : ad) ∈ V , whatever the choice of homogeneous coordinates a0, . . . , ad, we
always have (a0, . . . , ad) ∈ A. This affine variety A is the affine cone of V .
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Since a lot of the theory of projective varieties appears to be parallel to the theory of
affine varieties, we might be expecting a projective version of Nullstellensatz. However, the
details are a bit more complicated.

Remark 4.25. Not all homogeneous proper ideals in k[x0, . . . , xd] give rise to nonempty pro-
jective varieties. For example, the homogeneous maximal ideal (x0, . . . , xd) in k[x0, . . . , xd]
determines an empty variety in Pd

k. Why? One simple way to explain this is to note that
the affine variety V(x0, . . . , xd) is the origin.

Since (x0, . . . , xd) is essentially irrelevant from the perspective of projective varieties, we
call it the irrelevant (maximal) ideal of k[x0, . . . , xd].

Theorem 4.26 (Projective Weak Nullstellensatz). Let k be an algebraically closed field and
let I be a homogeneous ideal in R = k[x0, . . . , xd]. Let m denote the irrelevant maximal ideal
of R. The variety V(I) is empty if and only if (I : m∞) = R.

Proof. As described in Remark 4.24, we will consider two varieties: the projective variety
V = V(I) ⊆ Pd

k and its affine cone, the affine variety

A =
{
a ∈ Ad+1

k | f(a) = 0 for all f ∈ I
}
⊆ Ad+1

k .

Since 0 does not determine a point in projective space, V is empty if and only if A ⊆ {0}.
In affine space, we know that A = {0} if and only if

√
I = m, and in that case (I : m∞) = R

by Exercise 1. Similarly, A is empty if and only if I = R, and in that case (I : m∞) = R
is immediate. Conversely, by Exercise 1 the saturation (I : m∞) returns the intersection of
primary components of I whose radicals do not contain m. If (I : m∞) = R, then all the
associated primes of I contain m, so either I = R or

√
I = m. In both these cases, A ⊆ {0}

and V is empty.

As in the affine setting, a projective variety is irreducible if it cannot be decomposed as
a finite union of proper subvarieties.

Exercise 16. A projective variety V ⊆ Pd
k is irreducible if and only if I(V ) is a homogeneous

prime ideal.

Remark 4.27. Let m be the irrelevant ideal in R = k[x0, . . . , xd], where k is an algebraically
closed field. If P ̸= m is a homogeneous prime ideal, then by Exercise 1 we know that
(P : m∞) = P , since P has no m-primary components, so by Theorem 4.26 the variety V(P )
is nonempty. Therefore, we have a bijective correspondence between homogeneous prime
ideals P ̸= m and nonempty irreducible projective varieties.

Theorem 4.28 (Projective Strong Nullstellensatz). Let k be an algebraically closed field and
let I be a homogeneous ideal in R = k[x0, . . . , xd]. If V = V(I) is a nonempty projective
variety, then

I(V(I)) =
√
I.

Proof. We will again consider projective variety V = V(I) ⊆ Pd
k and its affine cone

A =
{
a ∈ Ad+1

k | f(a) = 0 for all f ∈ I
}
⊆ Ad+1

k .
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First, we claim that I(A) = I(V ). For each point P ∈ V , any choice of homogeneous
coordinates (a0 : · · · : ad) for P must satisfy (a0, . . . , ad) ∈ A. Therefore, if f ∈ I(A) then
f(a0, . . . , ad) = 0 for all homogeneous coordinates (a0, . . . , ad) for P , and thus f(P ) = 0.
This shows that I(A) ⊆ I(V ). Conversely, let f ∈ I(V ). Any nonzero point in A gives
homogeneous coordinates for some P ∈ V , and since f vanishes at V , we conclude that
f vanishes at every nonzero point in A. To show that f(0) = 0, notice that f(0) = f0 is
the homogeneous piece of f of degree 0. Since I(V ) is a homogeneous ideal and f ∈ I(V ),
f0 ∈ I(V ). Now f0 is a constant and V is nonempty, so we must have f0 = 0. Therefore,
f(0) = f0 = 0.

We have shown that I(A) = I(V ). By Theorem 4.9, I(A) =
√
I. Therefore,

I(V(I)) = I(V ) = I(A) =
√
I.

In summary, over an algebraically closed field, we have the following dictionary:

Algebra
of k[x0, . . . , xd]

oo //
Geometry

of Pd
k

radical homogeneous ideals
properly contained in (x0, . . . , xd)

oo // nonempty projective
varieties

homogeneous prime ideals
P ̸= (x0, . . . , xd)

oo // irreducible nonempty
projective varieties

(aixj − ajxi | i, j) oo // point {(a0 : · · · : ad)}

(0) oo // variety Pd

sum of ideals oo // intersection of varieties

intersection of ideals oo // union of varieties

We close this section with a comment about finite sets of points in projective space.

Remark 4.29. In the affine setting, the ideal corresponding to the point (a1, . . . , ad) is
(x1 − a1, . . . , xd − ad). In projective space, the ideal corresponding P = (a0 : · · · : ad) is

I(P ) = (aixj − ajxi | 0 ⩽ i ⩽ j ⩽ d).

A point is of course irreducible, so I(P ) is a homogeneous prime ideal by Exercise 16. While
in the affine setting the ideal of a point is maximal, in the projective setting we now have a
prime ideal with ht(I(P )) = d.

As described in Remark 4.17, we can assume that ai = 1 for some i. We claim that the
set of d elements

{xj − ajxi | j ̸= i}
generate I(P ). And indeed, for each j, k ̸= i,

akxj − ajxk = ak(xj − ajxi)− aj(xk − akxi).
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Since I(P ) has height d and we have shown it is generated by d elements, we conclude that
I(P ) is generated by a regular sequence. In fact, the d elements we gave above form a regular
sequence: the elements xj − ajxi with j ̸= i each involve a different variable that does not
appear in the remaining ones, so they are algebraically independent, and thus form a regular
sequence.

The expression ideal of points is often used to refer to the radical ideal I(V ) corresponding
to a finite set of points V ⊆ Pn. Given {P1, . . . , Pn} ⊆ Pd, the corresponding ideal of points
is the ideal

I =
n⋂

i=1

I(Pi)

of all polynomials that vanish at all the points P1, . . . , Pn.

Remark 4.30. Let X = {P1, . . . , Ps} be a finite set of points in Pd
k, where k is any field.

The ideal I = I(X) can be written as

I = I(X) =
s⋂

i=1

I(Pi).

By Remark 4.29, each I(Pi) is a prime ideal of height d. Therefore, the I(Pi) are the minimal
primes of I, so

I(n) =
s⋂

i=1

I(Pi)
(n).

Also by Remark 4.29, each I(Pi) is generated by a regular sequence, so by Theorem 3.107
we know that I(Pi)

(n) = I(Pi)
n. We conclude that

I(n) =
s⋂

i=1

I(Pi)
n.

We can interpret this as saying that the symbolic powers of an ideal of points is the set
of polynomials that vanish to order n at each point. Since a polynomial in R = k[x0, . . . , xd]
determines a hypersurface in Pd, we can think of the nth symbolic power of an ideal of points
as corresponding to all the hypersurfaces that pass through our given points with multiplicity
n.

Example 4.31. Consider the points {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)} ⊆ P2, which
correspond to the homogeneous radical ideal

I = (x, y) ∩ (y, z) ∩ (x, z) = (xy, xz, yz)

in R = k[x, y, z]. The polynomials that vanish to order 2 at these points are

I(2) = (x, y)2 ∩ (y, z)2 ∩ (x, z)2,

which in particular contain xyz /∈ I2.

In the next section, we will show a much more general version of this: that in general, if
k is an algebraically closed field and I is a radical ideal in k[x1, . . . , xd], then I

(n) is the set
of polynomials that vanish to order n along the variety determined by I.
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4.3 Zariski–Nagata

The affine Nullstellensatz tells us that over an algebraically closed field k, a radical ideal I in
R = k[x1, . . . , xd] is the set of polynomials that vanish at every point in V(I), and that the
polynomials that vanish at the point (a1, . . . , ad) are those in the ideal (x1−a1, . . . , xd−ad).
Therefore, every radical ideal I satisfies

I =
⋂

a∈V(I)

(x1 − a1, . . . , xd − ad).

Moreover, Nullstellensatz tells us that all the maximal ideals m in R correspond to a point
in Ad, and so they are all of this form, and that I ⊆ m if and only if the point V(m) is in
V(I). Therefore, every radical ideal I satisfies

I =
⋂
m⊇I

m maximal

m.

The fact that this holds for all radical ideals I says that R = k[x1, . . . , xd] is a Jacobson
ring. It turns out that all polynomial rings over a field are Jacobson rings, even if the field
is not algebraically closed.

Theorem 4.32. Let R be a finitely generated k-algebra over any field k. If I is a radical
ideal in R, then

I =
⋂
m⊇I

m maximal

m.

Proof. The containment

I ⊆
⋂
m⊇I

m maximal

m

is obvious. For the other containment, we need to show that for any f /∈ I we can find a
maximal ideal m containing I such that f /∈ m. In order to do that, fix f ∈ I. In the ring
(R/I)f , we claim that 1 ̸= 0. Indeed, 1 = 0 would say that fn + I = 0 for some n, or
equivalently that fn ∈ I, but I is radical and f /∈ I, so no such n exists. Therefore, (R/I)f
is a nonzero ring, and thus it has a maximal ideal J . Let m be an ideal in R whose image in
(R/I)f is our chosen maximal ideal; we can obtain m by considering the ideal J ∩ (R/I) in
R/I, which must necessarily be of the form m/I for some ideal m in I. Since the contraction
of a prime is a prime, and the primes in R/I are of the form P/I with P prime in R, our
chosen ideal m must be prime. By construction, m contains I and m/I becomes a maximal
ideal when localizing at f , which means that f /∈ m. We will show that m is a maximal
ideal, which will finish the proof.

First, note that m ̸= R, so m does not contain any element of k. Therefore, the quotient
map R → R/m induces an inclusion k ⊆ R/m by restriction. Let’s write S = (R/I)f , and
recall that J = (m/I)f . Now consider the localization map

R/m ∼=
R/I

m/I
−→

(
R/I

m/I

)
f

∼=
(R/I)f
(m/I)f

= S/J.
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Since m is prime, R/m is a domain. Therefore, the localization at f is injective. We now
have inclusions

k ⊆ R/m ⊆ S/J.

Notice that S/J ∼= (R/m)f ∼= R/m[s]/(sf−1) is algebra-finite over R/m. Since R is a finitely
generated k-algebra, then the field extension k ⊆ S/J is algebra-finite. By Zariski’s Lemma,
which is the key ingredient in proving Nullstellensatz, the field extension k ⊆ R/m ⊆ S/J
must be module-finite. Therefore, the extension of domains k ⊆ R/m must also be module-
finite, and thus integral, by Theorem B.19. By Lemma B.20, R/m must be a field, so m is
a maximal ideal.

The Zariski–Nagata theorem is a higher order version of this result, which roughly speak-
ing says that the symbolic powers of a radical ideal are the sets of polynomials that vanish
up to order n on the corresponding variety. There are actually a few different results known
as Zariski–Nagata; the first one is a theorem of Nagata’s [Nag62]. To prove this theorem,
we will need a few fundamental facts about Hilbert-Samuel multiplicity.

Definition 4.33. Let (R,m) be a noetherian local ring with dimension d. Let λ(M) denote
the length of the module M . The Hilbert-Samuel multiplicity of R is

e(R) := lim
n→∞

d!λ(R/mn)

nd
.

The Hilbert-Samuel multiplicity is an important invariant which detects and measures
singularities. The defining limit exists, and can also be described in terms of the Hilbert
function of m: the Hilbert function is eventually a polynomial, and e(R) is essentially the
coefficient of the highest order term in that polynomial (after some appropriate rescaling).
We will need a few facts about e(R), which we will not prove for now:

• If (R,m) is a regular local ring and f ∈ m, then e(R/f) = ord(f) := max{t | f ∈ mt}.

• Under mild assumptions, e(R) ⩾ e(RP ).

Using these two facts, we can now prove Nagata’s version [Nag62] of the Zariski–Nagata
theorem:

Theorem 4.34 (Local Zariski–Nagata). Let (R,m) be a regular local ring. For every prime
ideal P and every n ⩾ 1,

P (n) ⊆ mn.

Proof. Fix a prime ideal P and an element f ∈ m. First, note that RP is also regular, and
that f ∈ P (t) if and only if f

1
∈ P tRP , so by the properties above,

max{t | f ∈ P (t)} = max{t | f
1
∈ P tRP} = e((R/f)P ) ⩽ e(R/f) = max{t | f ∈ mt}.

So if f ∈ P (n), then we must have f ∈ mn, showing that P (n) ⊆ mn.

The assumption that R is regular is necessary: we cannot extend this result to any
noetherian local ring.
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Example 4.35. As in Example 1.64, when R = kJx, y, zK/(xy − zc) and c ⩾ 2, the prime
P = (x, z) satisfies x ∈ P (c), so in particular P (c) ⊈ mc. One can show that P (cn) = (xn), so
in fact P (cn) ⊆ mn for all n ⩾ 1.

This is a more general phenomenon.

Theorem 4.36 (Huneke–Katz–Validashti, 2009 [HKV09]). Let (R,m) be a complete local
domain. There exists a constant c such that for all primes P and all n ⩾ 1,

P (cn) ⊆ mn.

Finding effective bounds for this constant c is a difficult problem, and in general it is wide
open; such bounds are known in the graded setting when k is a field [DDSG+18, Theorem
3.27] or a DVR with uniformizer p ∈ Z [SGJ21] and R = k[f1, . . . , fn] ⊆ k[x1, . . . , xd]
generated by homogeneous elements fi and such that the inclusion of R into k[x1, . . . , xd]
splits. In that case, one can take c = max{deg(fi)}.

The theorem most commonly known as Zariski–Nagata is a result about polynomial rings,
which we will prove via yet another version of the theorem, in terms of differential operators.

Definition 4.37 (Differential operators). Given a finitely generated k-algebra R, the k-linear
differential operators on R of order n, Dn

R ⊆ Homk(R,R), are defined as follows:

• The differential operators of order zero are the k-linear maps which are also R-linear:

D0
R|k := HomR(R,R) ∼= R.

• We say that δ ∈ Homk(R,R) is an operator of order up to n, meaning δ ∈ Dn
R, if

[δ, r] = δr − rδ

is an operator of order up to n− 1 for all r ∈ D0
R.

The ring of k-linear differential operators is the subring of Homk(R,R) defined by

DR|k :=
⋃
n∈N

Dn
R|k.

In particular, the multiplication on DR|k just composition.

If R or k are clear from the context, we may drop one of the subscripts, or both. Notice
that DR|k is almost always a noncommutative ring!

Example 4.38. Let k be a field and R = k[x1, . . . , xd] or R = kJx1, . . . , xdK. When k is a
field of characteristic 0,

Dn
R =

⊕
α1+...+αd⩽n

R · ∂
α1

∂xα1
1

· · · ∂
αd

∂xαd
d

and DR|k = R

〈
∂

∂x1
, . . . ,

∂

∂xd

〉
.
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When k has prime characteristic p, things are a little more complicated; notice that over
R = k[x], ∂p

∂xp (x
n) = 0 for any n, but there are indeed nonzero differential operators of order

p. To give a correct description of our differential operators on R = k[x1, . . . , xd] over any
field k of any characteristic, we consider

Dα :=
1

α1!

∂α1

∂xα1
1

· · · 1

αd!

∂αd

∂xαd
d

, where Dα(x
β) =

{ (
β
α

)
xβ−α if αi ⩾ βi for all i

0 otherwise.

and now we have
Dn

R =
⊕

α1+···+αd⩽n

Dα.

For example, when R = F3[x], D3(x
5) =

(
5
3

)
x5−3; since

(
5
3

)
= 5!

3!2!
= 5·4

2
= 10, and 10 = 1 in

F3, this means that D3(x
5) = x2. On the other hand, notice that ∂3

∂x3 (x
5) = 5 · 4 · 3 · x2 = 0.

Definition 4.39. Let R be a finitely generated k-algebra, I an ideal of R, and n be a positive
integer. The nth k-linear differential power of I is given by

I⟨n⟩ = {f ∈ R | δ(f) ∈ I for all δ ∈ Dn−1
R }.

Exercise 17. Let {Iα}α∈A be an indexed family of ideals. For every n ⩾ 0 we have

⋂
α∈A

I⟨n⟩α =

(⋂
α∈A

Iα

)⟨n⟩

.

We will also use the fact that containments are local.

Exercise 18. (Containments are local statements) Given ideals I and J in a noetherian ring
R, the following are equivalent:

(a) I ⊆ J ;

(b) IP ⊆ JP for all primes P ∈ Supp(R/J);

(c) IP ⊆ JP for all primes P ∈ Ass(R/J).

We note that in what follows and up to Lemma 4.43, k can be any ring.

Remark 4.40. Since Dn−1
R ⊆ Dn

R, it follows that I
⟨n+1⟩ ⊆ I⟨n⟩. Moreover, given any ideals

I ⊆ J , we have I⟨n⟩ ⊆ J ⟨n⟩ for every n ⩾ 1.

Lemma 4.41. Let R be a finitely generated k-algebra, I be an ideal of R, and n be a positive
integer. The set I⟨n⟩ is an ideal.

Proof. Every f ∈ Homk(R,R) must satisfy f(0) = 0, and since DR|k ⊆ Homk(R,R), we
conclude that DR|k · 0 = 0. In particular, 0 ∈ I⟨n⟩ for all ideals I and all n.

If f, g ∈ I⟨n⟩ then f + g ∈ I⟨n⟩, since for any δ ∈ Dn−1
R ,

δ(f + g) = δ(f)︸︷︷︸
∈I

+ δ(g)︸︷︷︸
∈I

∈ I.



95

Now we need to show that rf ∈ I⟨n⟩ for any r ∈ R and f ∈ I⟨n⟩. For any δ ∈ Dn−1, note
that f ∈ I⟨n⟩ ⊆ I⟨n−1⟩, [δ, r] ∈ Dn−2, and δ(f) ∈ I, so

δ(rf) = [δ, r]︸︷︷︸
∈Dn−2

( f︸︷︷︸
∈I⟨n−1⟩

)

︸ ︷︷ ︸
∈I

+ rδ(f)︸︷︷︸
∈I

∈ I.

We conclude that δ(rf) ∈ I. Hence, rf ∈ I⟨n⟩.

Lemma 4.42. Let R be a finitely generated k-algebra. If P is a prime ideal, then P ⟨n⟩ is
P -primary for all n ⩾ 1.

Proof. We use induction on n. The base case is clear: P ⟨1⟩ = P is clearly P -primary.
Now suppose that P ⟨n⟩ is P -primary. To show that P ⟨n+1⟩ is also P -primary, we need to

show that whenever r ̸∈ P and f ∈ P are such that rf ∈ P ⟨n+1⟩, we must have f ∈ P ⟨n+1⟩.
Given δ ∈ Dn,

δ(rf) = [δ, r](f) + rδ(f) ∈ P.

Since rf ∈ P ⟨n+1⟩ ⊆ P ⟨n⟩, we have that f ∈ P ⟨n⟩ by the induction hypothesis. Then,
[δ, r](f) ∈ P , because [δ, r] ∈ Dn−1. We conclude that rδ(f) = δ(rf) − [δ, r](f) ∈ P. Then,
rδ(f) ∈ P , and so, δ(f) ∈ P , because P is a prime ideal and r ̸∈ P. Hence, f ∈ P ⟨n+1⟩.

Lemma 4.43. Let R be a finitely generated k-algebra, I be an ideal of R, and n ⩾ 1. Then
In ⊆ I⟨n⟩.

Proof. Induction on n. The base case is straightforward: I = I⟨1⟩ because D0 = R.
Suppose that In ⊆ I⟨n⟩. Notice that In is generated by the elements of the form fg where

f ∈ I, g ∈ In. In order to show that In+1 ⊆ I⟨n+1⟩, it is enough to show that fg ∈ I⟨n+1⟩ for
any such f and g.

To do that, we consider any δ ∈ Dn, and we will show that δ(fg) ∈ I. And in fact, since
by induction hypothesis g ∈ In ⊆ I⟨n⟩, then

δ(fg) = [δ, f ]︸︷︷︸
∈Dn−1

( g︸︷︷︸
∈I⟨n⟩

)

︸ ︷︷ ︸
∈I

+ f
∈I
δ(g) ∈ I.

Notice here we used the fact that δf = [δ, f ] + fδ. We conclude that In+1 ⊆ I⟨n+1⟩.

Exercise 19. Show that if I is any ideal in a ring R, then In ⊆ (I t)⟨n−t+1⟩ for all t ⩽ n.

Lemma 4.44. For any radical ideal I and prime ideal P in a k-algebra R, (IP )
⟨n⟩ =

(
I⟨n⟩
)
P
.

A lot more is true: taking differential powers commutes with localization at any mul-
tiplicative set W [BJNB19, Lemma 3.9]. The main technical point is that any k-linear
differential operator of order n on R can be extended to a k-linear differential operator of
order n on RP , and that every k-linear differential operator on RP can be obtained from
a differential operator on R. We skip the proof to avoid a lengthier discussion on these
technical details, but it can be found in [BJNB19, Lemma 3.9].
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Remark 4.45. Let k be a field, R = k[x1, . . . , xd] or R = kJx1, . . . , xdK, andm = (x1, . . . , xd).
In this case,

Dn
R = R

〈
1

α1!

∂α1

∂xα1
1

· · · 1

αd!

∂αd

∂xαd
d

∣∣∣∣ α1 + . . .+ αd ⩽ n

〉
.

If f /∈ mn, then f has a monomial of the form xα1
1 · · ·xαd

d with nonzero coefficient λ ∈ k for
some α1 + · · · + αd < n. Fix such a monomial with α1 + · · · + αd minimal. Applying the
differential operator

Dα :=
1

α1!

∂α1

∂xα1
1

· · · 1

αd!

∂αd

∂xαd
d

maps λxα1
1 · · ·xαd

d to the nonzero element λ ∈ k. Moreover, we claim that any other monomial
appearing in f is mapped either to a nonconstant monomial or to zero. Given a monomial
m = xb11 · · ·xbdd , we have

Dα(m) =

(
b1
α1

)
· · ·
(
bd
αd

)
xb1−α1
1 · · ·xbd−αd

d .

If all bi ⩾ αi, then necessarily we must have bi > αi for some i, and thus Dα(m) is a nonzero
monomial. For the remaining monomials m appearing in f with a nonzero coefficient, we
must have b1 + · · ·+ bd = α1 + · · ·+αd, since we chose α minimally, and thus necessarily we
have bi < αi for some i. Therefore, Dα(m) = 0.

Therefore, this shows that

Dα(f) = λ+ terms in m,

and since λ ̸= 0, we conclude that Dα(f) /∈ m. Therefore, f ̸∈ m⟨n⟩. This shows that
m⟨n⟩ ⊆ mn. Since mn ⊆ m⟨n⟩ by Lemma 4.43, we conclude that m⟨n⟩ = mn.

There is a more technical version of this idea that proves that if we assume that k is
perfect, and m is any maximal ideal in R a regular algebra essentially of finite type over k,
then we still have mn = m⟨n⟩. This technical point, however, is difficult – this is the subtle
part of the proof. For a complete proof, see [DSGJ20, Theorem 3.6]. We will outline some
of the main ideas below.

Definition 4.46. A field k of prime characteristic p is perfect if every element of k is a pth
power. More generally, a field k is perfect if k has characteristic 0 or k is a perfect field of
characteristic p.

Example 4.47.

1) Every finite field is perfect, thanks to Fermat’s Little Theorem.

2) If k is an algebraically closed field of characteristic p, then xp − a has a root for every
a ∈ k, which means that k is perfect. Therefore, every algebraically closed field is
perfect.

3) For an example of an imperfect field, take Fp(t), where t does not have a pth root.
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The main technical ingredient we need is the following, which appears as Lemma 2.3 in
[DSGJ20]:

Lemma 4.48 (Theorem 16.11.2 of [Gro67]). Let R = A[x1, . . . , xd], where:

• A is a perfect field and π = 0, or

• A = Z and π = p is a prime integer.

Let Q ∋ π be a prime ideal in R, and let S = RQ and m = QS. Let y1, . . . , ys ∈ S be minimal
generators for m modulo π. There exists a family of differential operators {Dα}α∈Ns such
that

Dα(y
β) =

(
β

α

)
yβ−α and Dα ∈ D

|α|
S|A.

In particular,

Dα(y
α) = 1 and Dα(y

β) = 0 if β ̸= α and |β| ⩽ |α|.

This lemma allows us to adapt the idea in Remark 4.45 to show a more general statement.

Theorem 4.49. Let S = A[x1, . . . , xd], where A is either a perfect field of A = Z. If (R,m)
is a localization of S at a prime ideal, then mn = m⟨n⟩ for all n ⩾ 1.

Proof. By Lemma 4.43, mn ⊆ m⟨n⟩ for all n, so it is sufficient to show that m⟨n⟩ ⊆ mn. Let
Dα be A-linear differential operators on R as in Lemma 4.48. Given f /∈ mn, we will show
that f /∈ m⟨n⟩. Let t be such that f ∈ mt but f /∈ mt+1. Notice that t < n by assumption.
So there is some some α with |α| = t such that f has a nonzero term in yα, so we can write
f as

f = uyα +
∑
|βi|=t
βi ̸=α

uiy
βi + g

for some u, ui /∈ m and g ∈ mt+1. Since u /∈ m, then it is a unit, so after multiplying by its
inverse we can assume that u = 1. Now

Dα(f) = 1 +
∑
|βi|=t
βi ̸=α

Dα(uiy
βi) +Dα(g).

Since g ∈ mt+1 ⊆ m⟨t+1⟩ and Dα ∈ D
|α|
R|A = Dt

R|A, we conclude that Dα(g) ∈ m. Moreover,

Dα(uiy
βi) = [Dα, ui](y

βi) + uiDα(y
βi).

SinceDα ∈ D
|α|
R|A, then by definition we have [Dα, ui] ∈ D

|α|−1
R|A = Dt−1

R|A. Since y
βi ∈ mt ⊆ m⟨t⟩,

we conclude that
[Dα, ui](y

βi) ∈ m.

Finally, since |α| = |βi| but α ̸= βi, we have Dα(y
βi) = 0. Therefore,

Dα(f) = 1 +
∑
|βi|=t
βi ̸=α

Dα(uiy
βi) +Dα(g) =⇒ Dα(f)− 1 ∈ m.

In particular, Dα(f) /∈ m, and thus f /∈ m⟨n⟩.
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As a sort of converse to Theorem 4.49, the condition that the differential powers of max-
imal ideals coincide with the powers characterizes regularity, as shown by Brenner, Jeffries,
and Núnez Betancourt [BJNB19, Theorem 10.2].

We are finally ready to show a differential power version of the Zariski-Nagata Theorem.
The proof in the case of perfect fields can be found in [DDSG+18, Proposition 2.14]; the
mixed characteristic result is [DSGJ20, Theorem 3.6].

Theorem 4.50 (Differential version of Zariski–Nagata, see [DDSG+18]). Let A be either a
perfect field or Z, R = A[x1, . . . , xd], and let Q be a prime ideal with Q ∩ A = (0). For all
n ⩾ 1,

Q(n) = Q⟨n⟩.

Proof. The key facts are:

1) Q⟨n⟩ is a Q-primary ideal. (Lemma 4.41 and Proposition 4.42)

2) Qn ⊆ Q⟨n⟩. (Lemma 4.43)

3)
(
Q⟨n⟩)

Q
= (QQ)

⟨n⟩. (Lemma 4.44)

Together, 1) and 2) imply Q(n) ⊆ Q⟨n⟩, since Q(n) is the smallest Q-primary ideal contain-
ing Qn. To show P ⟨n⟩ ⊆ Q(n), we only need to show the containment holds after localizing
at Q, which is the only associated prime of Q(n), by Exercise 18. But 3) says differential
powers commute with localization, and after localization Q becomes the maximal ideal; so
Theorem 4.49 completes the proof that Q⟨n⟩ ⊆ Q(n) for a prime ideal Q.

Notice that when A is a perfect field, the assumption that Q∩A = (0) is trivially satisfied.

Corollary 4.51. Let R = k[x1, . . . , xd], where k is a perfect field, and let I be a radical ideal.
For all n ⩾ 1,

I(n) = I⟨n⟩.

Proof. We can write I as the intersection of finitely many primes, say

I = P1 ∩ · · · ∩ Pr,

and by Theorem 4.50 we have

I(n) = P
(n)
1 ∩ · · · ∩ P (n)

r = P
⟨n⟩
1 ∩ · · · ∩ P ⟨n⟩

r = (P1 ∩ · · · ∩ Pr)
⟨n⟩ = I⟨n⟩.

In Theorem 4.50, we cannot replace k[x1, . . . , xd] with any finitely generated k-algebra.

Example 4.52. Let k be any field, R = k[x, y, z]/(xy − z2), m = (x, y, z), and P = (x, z).
By Example 1.64, x ∈ P (2), so P (2) ⊈ m2. On the other hand, it follows immediately from
the definition that P ⟨2⟩ ⊆ m⟨2⟩. Thus x ∈ P (2) ⊆ P ⟨2⟩ ⊆ m⟨2⟩, but since m is maximal,
m2 = m(2), so we can conclude that m⟨2⟩ ̸= m(2).

We also cannot substitute k by any field.
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Example 4.53. Let k = Fp(t), with p prime, and consider the ring R = k[x] and the prime
ideal P = (xp−t). As we described in Example 4.38, D1

R|k = R⊕R ∂
∂x
, and ∂

∂x
(xp−t) = 0 ∈ P .

Therefore, P ⟨2⟩ = P . On the other hand, P is a principal ideal in a domain, so its symbolic
powers are the powers; in particular, P (2) = P 2 ̸= P ⟨2⟩.

Theorem 4.54 (Zariski–Nagata Theorem for polynomial rings [Zar49]). Let k be a perfect
field and R = k[x1, . . . , xd]. For any radical ideal I, we have

I(n) =
⋂
m⊇I

m∈mSpec(R)

mn.

Proof. On the one hand,

I(n) ⊆ I⟨n⟩ ⊆ m⟨n⟩ = mn.

4.42 4.40 4.45

For the converse, take f ∈ mn for all the maximal ideals m ⊇ I. For each maximal ideal
m containing I, we have f ∈ m⟨n⟩ by Remark 4.45, so for every ∂ ∈ Dn−1, ∂(f) ∈ m. But by
Theorem 4.32, every radical ideal in R is an intersection of maximal ideals:

I =
⋂
m⊇I

m∈ maximal ideal

m.

Thus ∂(f) ∈ I for every ∂ ∈ Dn−1, so f ∈ I⟨n⟩. By Theorem 4.50, I⟨n⟩ = I(n).

Over C or any perfect field, the polynomials in mn are those that vanish to order n at the
point corresponding to m. So Zariski–Nagata says that I(n) is the set of polynomials that
vanish to order n along the variety V(I).

While our proof of Theorem 4.54 really requires that k be a perfect field, since it uses
the differential operators version of Zariski-Nagata, we note that this holds for any general
field, as shown by Eisenbud and Hochster in 1979 [EH79]. A proof of the general case can
also be found in [DDSG+18, Theorem 2.12].

We can also give such an interpretation to the symbolic powers of ideals corresponding
to finite sets of points in projective space. We have seen that the polynomials that vanish
to order n on a finite set of points X in Pd are precisely the polynomials in I(X)(n). More
generally, this also holds for any projective variety.

Theorem 4.55. Let k be an algebraically closed field, and let X ⊆ Pd
k be a nonempty

projective variety with corresponding ideal I = I(X) ⊆ k[x1, . . . , xd]. For all n ⩾ 1,

I(n) =
⋂
P∈X

I(P )n.

Proof. Let C be the cone of X, meaning that C is the union of the lines through the origin
of Ad+1

k that correspond to points in X. First, we claim that

N := {m ∈ mSpec(R) | m ⊇ I} = {m ∈ mSpec(R) | m ⊇ I(P ) for some P ∈ X}.
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Since k is algebraically closed, the affine Nullstellensatz tells us that the maximal ideals
containing I are precisely the maximal ideals corresponding to points in C. For each P ∈ X,
consider the cone of P in Ad+1

k , meaning the line L through the origin of Ad+1
k that corresponds

to P . Since k is algebraically closed, a maximal ideal m contains I(P ) if and only if m
corresponds to a point on the line L. Since C is the union of all such lines, this proves our
claim.

By Theorem 4.32,

I(P ) =
⋂

m∈mSpec(R)
m⊇I(P )

m, so
⋂
P∈X

I(P ) =
⋂
m∈N

m.

Also by Theorem 4.32,

I =
⋂

m∈mSpec(R)
m⊇I

m =
⋂
m∈N

m, so I =
⋂
P∈X

I(P ).

Now fix n ⩾ 1. By Theorem 4.54,

I(n) =
⋂
m∈N

mn,

and for each P ∈ X,

I(P )(n) =
⋂

m∈mSpec(R)
m⊇I(P )

mn.

By Remark 4.30, I(P )(n) = I(P )n. By definition of N ,⋂
P∈X

I(P )n =
⋂
P∈X

I(P )(n) =
⋂
m∈N

mn.

We conclude that
I(n) =

⋂
P∈X

I(P )n.

There are several extensions of Zariski–Nagata. In 1979, Eisenbud and Hochster [EH79]
gave a more general version of Theorem 4.54, as we mentioned above. As for the differential
operators version of the theorem, Yairon Cid Ruiz [CR21] recently gave a more general
version of the theorem for finitely generated k-algebras, which uses differential operators
that are k-linear maps from R to R/P .

In the next section, we will discuss a version of the differential version of Zariski–Nagata
when we replace k by Z or a DVR. We already started the ground work for this: we proved
a differential version of Zariski-Nagata for prime ideals in Z[x1, . . . , xd] that do not contain
any prime integer. And in that situation, the proof was essentially the same as the proof
over a perfect field. But for other primes, we will see that that proof really doesn’t work –
and in fact, that we need a different kind of differential powers to make things work.
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4.4 Mixed characteristic

As for the differential operators description of symbolic powers, if we replace k by Z or some
other ring of mixed characteristic, this description no longer holds; roughly speaking, the
differential operators cannot see what happens in the arithmetic direction.

Example 4.56. In R = Z[x], the symbolic powers of the maximal ideal m = (2, x) coincide
with its powers, so 2 /∈ mn for any n > 1. However, any differential operator ∂ ∈ Dn

R|Z of any

order is Z-linear, so ∂(2) = 2 · ∂(1) ∈ m. Therefore, 2 ∈ m⟨n⟩ for all n, and thus m(n) ̸= m⟨n⟩.

Recall that we showed in Theorem 4.50 that for prime ideals that do not contain any prime
integer, the usual description of symbolic powers as differential powers, using only differential
operators, still holds [DSGJ20, Theorem 3.9]. So we focus on the more interesting case of
prime ideals that do contain prime integers.

To describe symbolic powers in mixed characteristic, we need to consider differential
operators together with p-derivations, a tool from arithmetic geometry introduced indepen-
dently in [Joy85] and [Bui95]; for a thorough development of the theory of p-derivations, see
[Bui05].

Definition 4.57 (p-derivation). Fix a prime p ∈ Z, and let S be a ring on which p is a
nonzerodivisor. A set-theoretic map δ : R → R is a p-derivation if ϕp(x) := xp + pδ(x) is a
ring homomorphism. Equivalently, δ is a p-derivation if δ(1) = 0 and δ satisfies the following
identities for all x, y ∈ R:

1) δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y),

2) δ(x+ y) = δ(x) + δ(y) + Cp(x, y)

where Cp(X, Y ) = Xp+Y p−(X+Y )p

p
∈ Z[X, Y ]. If δ is a p-derivation, we set δa to be the a-fold

self-composition of δ; in particular, δ0 is the identity.

These p-derivations are very nonintuitive maps; for example, they are not even additive!

Example 4.58. Let R = Z and fix a prime p. To give a p-derivation is the same as finding
a lift Φ of the Frobenius map on R/p to R: the p-derivation δ satisfies Φ(n) = np + pδ(n).
But the Frobenius map on Z/p is the identity, by Fermat’s Little Theorem, so a p-derivation
δp must satisfy np+pδp(n) = n. Again by Fermat’s Little Theorem xp−x is always divisible
by p for any integer x, so δp(n) =

n−np

p
. In particular, there is a unique p-derivation on Z.

Example 4.59. If S is a ring with a p-derivation δ, then R = S[x] also has p-derivations:
we can extend δ to R by setting δ(x) to be any element in S, and this always determines a
unique p-derivation on S for each choice of δ(x).

For the special case of R = Z[x1, . . . , xd], the map

f(x1, . . . , xd)
Φ−→ f(xp1, . . . , x

p
d)

is a ring homomorphism, and it is easy to show that it Φ(f) ≡ fp (mod p). Thus this is a
lift of Frobenius, and so

δ(f) =
Φ(f)− fp

p
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is a p-derivation on R. In fact, this is the p-derivation that corresponds to setting δ(xi) = 0
for all i.

However, not all rings have p-derivations.

Exercise 20. Fix a prime p ∈ Z. Show that Z[x]/(p− x2) does not admit any p-derivation.

Lemma 4.60. Let R be a ring with a p-derivation δ. For any prime ideal Q ∋ p, there exists
a p-derivation on RQ induced by δ.

Proof. First, note that for any t ∈ R is such that Φ(t) ∈ Q, we always have

Φ(t)− tp ∈ (p) ⊆ Q,

Thus Φ induces a map ΦQ : RQ → RQ given by

ΦQ

(a
b

)
=

Φ(a)

Φ(b)
.

It is sufficient to check that ΦQ is a lift of Frobenius on RQ. Given any a
b
∈ RQ,

Φ
(a
b

)
− ap

bp
=

Φ(a)bp − Φ(b)ap

bpΦ(b)
=
bp(Φ(a)− ap)− ap(Φ(b)− bp)

bpΦ(b)
.

The numerator is in (p), while the denominator is not.

A p-derivation lowers p-adic order.

Exercise 21. Let R be a ring with a p-derivation. Show that for all n ⩾ a ⩾ 1, we have

δa(pn) ≡ pn−a (mod p)n−a+1.

Roughly speaking, a p-derivation and its powers will play the role of differential operators
in the arithmetic direction. With that goal in mind, we define mixed differential powers:

Definition 4.61. Let R be a ring with a p-derivation δ, and let I be an ideal in R. The
nth mixed differential power of I is given by

I⟨n⟩mix := {f ∈ R | δa ◦ ∂(f) ∈ I for all a+ b < n, ∂ ∈ Db
R|A}.

Moreover,
I⟨n⟩p := {f ∈ R | δa(f) ∈ I for all a < n}.

If ∂ is a differential operator of order b, we think of the composition δa ◦ ∂ as a mixed
differential operator of order a+ b. One may also consider a sort of differential power where
we only consider p-derivations.

Our definitions of I⟨n⟩mix and I⟨n⟩p both depend on the choice of p-derivation δ. However,
we will later show that I⟨n⟩p does not actually depend on δ when I is a prime ideal containing
p in R = Z[x1, . . . , xd]. Strangely enough, to prove this we will first need to proof a version
of Zariski-Nagata for these mixed differential powers.
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Remark 4.62.

1) By definition, I⟨1⟩p = I.

2) For all n ⩾ 1, I⟨n⟩p ⊇ I⟨n+1⟩p .

3) Note that

I⟨n⟩mix =
⋂

a+b⩽n+1
a,b⩾1

(I⟨a⟩p)⟨b⟩ = I⟨n⟩p ∩ (I⟨n−1⟩p)⟨2⟩ ∩ · · · ∩ I⟨n⟩.

Lemma 4.63. Let R be a ring with a p-derivation δ.

1) I⟨n⟩p is an ideal.

2) If p ∈ I, then I⟨a⟩pI⟨b⟩p ⊆ I⟨a+b⟩p for all a, b ⩾ 1.

3) If p ∈ I, then In ⊆ I⟨n⟩p for all n ⩾ 1.

4) If p ∈ I and I is Q-primary, then I⟨n⟩p is Q-primary.

Remark 4.64. By Lemma 4.63, if Q ∋ p is a prime ideal, then Q⟨n⟩p is a primary ideal
containing Qn, and thus by Lemma 2.9 we must have Q(n) ⊆ Q⟨n⟩p .

Corollary 4.65. Let R be a ring with a p-derivation δ. If p ∈ Q is prime ideal, then Q⟨n⟩mix

is a Q-primary ideal and
Q(n) ⊆ Q⟨n⟩mix .

Proof. By Lemma 4.42, Q⟨b⟩ is Q-primary for all b. By Lemma 4.63, (Q⟨b⟩)⟨a⟩p is a Q-
primary ideal for all a. Thus by Remark 4.62, Q⟨n⟩mix is a Q-primary ideal. By Lemma 4.43
and Lemma 4.63, both Q⟨b⟩ and Q⟨a⟩p contain the corresponding powers of Q, so Q⟨n⟩mix

contains Qn. Since Q(n) is the smallest Q-primary ideal containing Qn, we conclude that
Q(n) ⊆ Q⟨n⟩mix .

Lemma 4.66. Let R = Z[x1, . . . , xd] and p a prime integer. For all primes Q containing p,

(Q⟨n⟩p)RQ = (QRQ)
⟨n⟩p .

Proof. It suffices to check that

r

1
∈ (Q⟨n⟩p)RQ if and only if

r

1
∈ (QRQ)

⟨n⟩p .

If r ∈ Q⟨n⟩p , then δa(r) ∈ Q for all a < n, and thus

δaQ

(r
1

)
=
δa(r)

1
∈ QRQ,

so r
1
∈ (QRQ)

⟨n⟩p . Conversely, if r
1
∈ (QRQ)

⟨n⟩p , then for all a < n we have

δa(r)

1
= δaQ

(r
1

)
∈ QRQ,

so there exists some s /∈ Q such that sδa(r) ∈ Q. But Q is prime and s /∈ Q, so δa(r) ∈ Q
and r ∈ Q⟨n⟩p .
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Theorem 4.67. Let R = Z[x1, . . . , xd] and p a prime integer. For every prime Q ∋ p,

(Q⟨n⟩mix)RQ = (QRQ)
⟨n⟩mix .

Proof. By Lemma 4.66, (Q⟨a⟩p)RQ = (QRQ)
⟨a⟩p for all a. Now taking differential powers

always commutes with localization, by [BJNB19, Lemma 3.9], so combining this with Re-
mark 4.62 gives the result.

Theorem 4.68 (De Stefani – Grifo – Jeffries, 2020 [DSGJ20]). Let p be a prime. Let
R = Z[x1, . . . , xd], and let Q be a prime ideal of R that contains the prime integer p. Then
Q(n) = Q⟨n⟩mix for all n ⩾ 1. More precisely,

Q(n) = {f ∈ R | (δs ◦ ∂)(f) ∈ I for all ∂ ∈ Dt
R|A with s+ t ⩽ n− 1}.

Proof. By Corollary 4.65, we always have Q(n) ⊆ Q⟨n⟩mix . To show Q⟨n⟩mix ⊆ Q(n), it is
sufficient to show this holds after localizing at the associated primes of Q(n), by Exercise 18,
and Ass(Q(n)) = {Q}. It suffices to show that

Q⟨n⟩mixRQ ⊆ (RQ)
n,

since by Theorem 4.67 we have

Q⟨n⟩mixRQ = (QRQ)
⟨n⟩mix ⊆ Q(n)RQ = (RQ)

n.

To simplify the notation, let S = RQ and m = QRQ, and let m = (p, y1, . . . , ys) be a minimal
generating set. Let f /∈ mn, and let t be such that f ∈ mt but f /∈ mt+1. Note that necessarily
t < n. Assume, by contradiction, that f ∈ m⟨n⟩mix . We can write f as

f = upayα +
∑

bi+|βi|=a+|α|
(bi,βi )̸=(a,α)

uip
biyβi + g,

where u and ui are all units, a + |α| = t, and g ∈ mt+1. Without loss of generality, we can
assume that a ⩽ min{bi}. Perhaps after multiplying by u−1, we can also assume that u = 1.
Note also that a+ |α| = t < n.

By Lemma 4.48, we can construct a family of differential operators Dγ such that

Dγ(y
w) =

(
w

γ

)
yw−γ and Dγ ∈ D

|γ|
S|A.

Applying Dα to f , we get

Dα(f) = pa +
∑

bi+|βi|=t
(bi,βi )̸=(a,α)

pbiDα

(
uiy

βi
)
+Dα(g).

Notice that Dα is Z-linear, which is why Dα(p
ayα) = paDα(y

α) = pa.

Since g ∈ mt+1 and Dα ∈ D
|α|
S|A = Dt−a

S|A, by Exercise 19

g ∈ mt+1 ⊆
(
ma+1

)⟨(t+1)−(a+1)+1⟩
=
(
ma+1

)⟨t−a+1⟩
.
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Therefore, Dα(g) ∈ ma+1 ⊆ m⟨a+1⟩p .
We claim that the remaining terms in Dα(f)− pa are also in m⟨a+1⟩p . For each |βi| = |α|,

Dα(uiy
βi) = [Dα, ui](y

βi) + uiDα(y
βi)︸ ︷︷ ︸

0

= [Dα, ui](y
βi).

Now [Dα, ui] ∈ D
|α|−1
S|A = D

|βi|−1
S|A , and thus [Dα, ui](y

βi) ∈ m. Thus

pbiDα

(
uiy

βi
)
∈ pbim ⊆ mbi+1 ⊆ m⟨bi+1⟩p .

By Lemma 4.63, mbi+1 ⊆ m⟨bi+1⟩p . Since bi ⩾ 1, we conclude that

pbiDα

(
uiy

βi
)
∈ m⟨a+1⟩p .

Thus, this shows that
Dα(f)− pa ∈ m⟨a+1⟩p .

On the other hand, since f ∈ m⟨n⟩mix and |α|+ a = t ⩽ n− 1, we have

δa ◦Dα(f) ∈ m.

Therefore, Dα(f) ∈ m⟨a+1⟩p . But we have already shown that Dα(f) − pa is in the ideal
m⟨a+1⟩p , and thus pa ∈ m⟨a+1⟩p . But by Exercise 21, pa ≡ 1 (mod p), so δa(pa) /∈ m. This is
a contradiction, and thus we conclude that such f does not exist, and m⟨n⟩mix ⊆ m(n).

The result in [DSGJ20] is more general. Besides the case when A = Z, we can take A to
be any DVR with uniformizer p. The general conditions call for R to be an essentially smooth
A-algebra that has a p-derivation δ and Q a prime ideal of R that contains p. Moreover,
it is sufficient to assume that the field extension A/pA ⊆ RQ/QRQ is separable, which is
automatic if A/pA is a perfect field.

Corollary 4.69. Let p be a prime. Let R = Z[x1, . . . , xd], and let Q be a prime ideal of R
that contains the prime integer p. Then Q⟨n⟩mix does not depend on the choice of p-derivation.

Proof. By Theorem 4.68, Q⟨n⟩mix = Q(n), and the latter clearly does not depend on the choice
of p-derivation.

Example 4.70. The maximal ideal m = (2, x) in R = Z[x] contains the prime 2, so to
describe its symbolic powers we need to consider a 2-derivation. The map δ2 : R → R

δ2(f(x)) =
f(x2)− f(x)2

2

is a 2-derivation on R. By Theorem 4.68, the symbolic powers of m = (2, x) are given by

m(n) =

{
f ∈ Z[x] | δa2

(
∂bf

∂xb

)
∈ (2, x), for a+ b ⩽ n− 1

}
.

In particular, we can now see that 2 /∈ m(2), since

δ2(2) =
2− 22

2
= −1 /∈ m,

while as we saw in Example 4.56 there are no Z-linear differential operators ∂ of order up to
1 (or even any order!) satisfying ∂(2) /∈ m.
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Theorem 4.71. Let p be a prime. Let R = Z[x1, . . . , xd], and let Q be a prime ideal of R
that contains the prime integer p. Then

Q(n) =
⋂
m⊇Q

m∈mSpec(R)

mn.

Proof. By Theorem 4.68, it is sufficient to show that

Q⟨n⟩mix =
⋂
m⊇Q

m∈mSpec(R)

mn.

First, notice that any maximal ideal containing Q also contains p. Notice that R/(p) is
algebra-finite over Z/(p), so by Theorem 4.32 we have

Q =
⋂
m⊇Q

m∈mSpec(R)

m

modulo p, but since all the ideals involved contain p, we conclude that this holds in R.
Taking mixed differential powers preserves containments, so for any maximal idealm ⊇ Q,

we always have Q⟨n⟩mix ⊆ m⟨n⟩mix . Since p ∈ Q ⊆ m, Theorem 4.68 also applies to m, and
thus mn = m(n) = m⟨n⟩mix . Therefore, Q⟨n⟩mix ⊆ mn for all n.

Conversely, if

f ∈
⋂
m⊇Q

m∈mSpec(R)

mn =
⋂
m⊇Q

m∈mSpec(R)

m⟨n⟩mix ,

then given a p-derivation δ, any a+b < n, and any differential operator ∂ ∈ Db
R|A, δ

a◦∂(f) ∈
m for all maximal ideals m ⊇ Q. Therefore,

δa ◦ ∂(f) ∈
⋂
m⊇Q

m∈mSpec(R)

m = Q,

and thus f ∈ Q⟨n⟩mix = Q(n).



Chapter 5

Monomial ideals

Throuhgout this chapter, we fix a field k and focus on the ring R = k[x1, . . . , xd]. We will
briefly discuss some of the nice properties of monomial ideals and how they stand at the
heart of the connection between combinatorics and commutative algebra. Most importantly,
we will discuss how to compute their symbolic powers, which will allow us to prove other
nice results about monomial ideals in the later chapters.

This chapter is not intended as an exhaustive discussion of the symbolic powers of mono-
mial ideals. The book [HH11] discusses monomial ideals in detail, the paper [FMS14] gives an
overview of the Stanley-Reisner correspondence in commutative algebra, the paper [Tuy13]
gives a gentle introduction to edge ideals, and the paper [CEHH16] discusses the symbolic
powers of monomial ideals.

5.1 A short introduction to monomial ideals

Definition 5.1. Let k be a field and let R = k[x1, . . . , xn]. A monomial in R is any element
of the form xa11 · · ·xann . We will sometimes write xa to refer to the monomial xa11 · · ·xann . An
ideal I in R is a monomial ideal if it is generated by monomials.

Proofs of the following elementary facts can be found in [HH11]:

• The set of monomials in a monomial ideal I forms a k-basis for I.

• To check if a given polynomial f is in I, we need only to check if each monomial
appearing in f is in I.

• The residue classes in R/I of the monomials that are not in I form a k-basis for R/I.

• Each monomial ideal has a unique set of minimal monomial generators.

• If f is a monomial and I is a monomial ideal with minimal monomial generating set
{g1, . . . , gn}, f ∈ I if and only if gi|f for some i.

• The sum, product, intersection, radical, colon, and saturation of monomial ideals is a
monomial ideal.
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Notation 5.2. Given a monomial ideal I, we write G(I) for the minimal generating set for
I consisting of monomials, which is unique.

Definition 5.3. A monomial xa in R = k[x1, . . . , xd] is squarefree if ai ⩽ 1 for all i. A
monomial ideal I is a squarefree monomial ideal if it is generated by squarefree mono-
mials.

Example 5.4. The monomial ideal I = (x2, xy) is not squarefree, since x2 is not a squarefree
monomial while (xy, xz) is a squarefree monomial ideal.

Notation 5.5. Given a monomial f = xa, we will write
√
f for the monomial

√
f = xb

given by

bi =

{
1 if ai ⩾ 1
0 if ai = 0

So
√
f is essentially the squarefree part of f ;

√
f is what we obtain from f when we lower

all the nonzero powers to 1.

Example 5.6. In k[x, y, z],
√
x7y2 = xy.

Lemma 5.7. Let I be a monomial ideal in R = k[x1, . . . , xk]. Then

√
I =

(√
f | f ∈ I is a monomial

)
.

In particular, I is a radical ideal if and only if I is squarefree.

Proof. Since both ideals are monomial, it is sufficient to show that the monomials in both
ideals coincide.

For each monomial f = xa ∈ I, set n = max
i
ai; then f |(

√
f)n, so

√
f ∈

√
I. On the

other hand, if f is a monomial with fn ∈ I for some n, then there exists a monomial g ∈ I
such that g|fn, and thus every variable appearing in g appears in f , so

√
g|f .

Notice that as an immediate consequence, if I has minimal monomial generating set
G(I) = (g1, . . . , gn), then √

I = (
√
g1, . . . ,

√
gn) .

Notation 5.8. Given two monomials xa and xb, we set

lcm(xa, xb) := xc with ci := max{ai, bi} and gcd(xa, xb) := xd with di := min{ai, bi}.

Lemma 5.9. Given monomial ideals I and J be monomial ideals in R = k[x1, . . . , xd],

I ∩ J = (lcm(f, g) | f ∈ G(I) and g ∈ G(J)) .

Proof. On the one hand, lcm(f, g) ∈ I ∩ J because it is both a multiple of f ∈ I and g ∈ J .
On the other hand, if h ∈ I ∩ J is a monomial, then h must be a multiple of some f ∈ G(I)
and some g ∈ G(J), and thus lcm(f, g)|h. This shows that

{lcm(f, g) | f ∈ G(I) and g ∈ G(J)}

is a generating set for I ∩ J .
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Lemma 5.10. Given monomial ideals I and J in R = k[x1, . . . , xd],

(I : J) =
⋂

f∈G(J)

(I : f).

Moreover,

(I : f) =

(
g

gcd(f, g)
| g ∈ G(I)

)
.

Proof. The first claim holds for any two ideals I and J , where G(J) takes the role of some
generating set for J . Let G(J) = {f1, . . . , fn}. By definition, (I : J) ⊆ (I : fi) for each i.
On the other hand, if gfi ∈ I for every i, then gJ ∈ I. This shows the first claim.

Now fix f . For any g ∈ G(I), f
gcd(f,g)

is a monomial in R, so

f
g

gcd(f, g)
=

f

gcd(f, g)
g ∈ I.

Therefore, g
gcd(f,g)

∈ (I : f). Now for any monomial h ∈ (I : f), the monomial fh ∈ I must

be divisible by some g ∈ G(I). But then g
gcd(g,f)

divides h, as desired.

5.2 Primary decomposition of monomial ideals

Lemma 5.11. A monomial ideal I is prime if and only if it is generated by variables.

Proof. Any monomial ideal I generated by variables is prime since the quotient of R/I is the
polynomial ring in the other variables. On the other hand, if x is a variable and xf ∈ G(I)
for some monomial f ̸= 1, then x is not in I, and thus I is not prime.

Lemma 5.12. The ideal I = (x
ai1
i1
, . . . , x

ain
in

) with aij ⩾ 1 for all j is (xi1 , . . . , xin)-primary.

Proof. Every prime containing I must contain xij for each j, and thus it must contain the
prime ideal (xi1 , . . . , xin). On the other hand, the prime ideal (xi1 , . . . , xin) contains I. It
follows that (xi1 , . . . , xin) is the unique minimal prime of I.

Now suppose P is an embedded prime of I. Then P = (I : g) for some g /∈ I, and
P contains some polynomial f /∈ (xi1 , . . . , xin). After subtracting elements in P , we may
assume that none of the monomials appearing in f contain the variables xij . But then f is
a regular element on R/I, and since fg ∈ I this means that g ∈ I, which is a contradiction.
We conclude that P = (xi1 , . . . , xin) is the only associated prime of I, and thus I is primary
to (xi1 , . . . , xin).

Theorem 5.13. Every monomial ideal I in R = k[x1, . . . , xd] can be decomposed as an
intersection of ideals of the form (x

ai1
i1
, . . . , x

ain
in

). Moreover, any decomposition in ideals of
this form where no component can be deleted is unique.

Proof. Let G(I) = {f1, . . . , fn}. If all of the fi are of the form xaii , we are done, so suppose
not. Then we can write f1 in the form f1 = gh, where g and h are coprime monomials, mean-
ing they contains disjoint sets of variables. We claim that I = (g, f2, . . . , fn)∩ (h, f2, . . . , fn).
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The containment I ⊆ (g, f2, . . . , fn) ∩ (h, f2, . . . , fn) is obvious, since f1 = gh ∈ (g) ∩ (h)
and f2, . . . , fn ∈ (g, f2, . . . , fn) ∩ (h, f2, . . . , fn). On the other hand, consider a monomial
u ∈ (g, f2, . . . , fn)∩ (h, f2, . . . , fn). If u is a multiple of some fi, then u ∈ I and we are done.
If not, then u must be a multiple of both g and h, and hence of f1 = gh, since g and h were
chosen to be coprime. In either case, u ∈ I.

Now we keep proceeding in this way. Whenever we have a component that is not gener-
ated by powers of primes, we decompose it as above, and keep repeating the process until
each component is generated by powers of variables. This process must stop, since there
are finitely many variables and in each step we are decomposing a product of at least two
variables in two coprime components.

Given such a decomposition, we can turn it into an irredundant decomposition by first
deleting components which contain others, and then intersecting components with the same
radical. By Lemma 5.12, two components of this form have the same radical if they are of

the form (x
ai1
i1
, . . . , x

ain
in

) and (x
bi1
i1
, . . . , x

bin
in

) for some aij , bij ⩾ 1.
It remains to show that this decomposition is unique. Consider two such decompositions

I = Q1 ∩ · · · ∩ Qr = Q′
1 ∩ · · · ∩ Q′

s. Fix i, and suppose that Qi = (xa11 , . . . , x
ak
k ), perhaps

after changing the names of the variables. If Q′
j ⊈ Qi for all j, then for each j we can find

x
bj
ℓj
∈ Q′

j with x
bj
ℓj
/∈ Qi. Notice that this implies that either ℓj > k or bj < aℓj . Now consider

f := lcm
(
xb1ℓ1 , . . . , x

bs
ℓs

)
∈ Q′

1 ∩ · · · ∩Q′
s = I ⊆ Qi.

But this would mean that xaii divides f for some i, which is a contradiction.
Therefore, there exists j such that Q′

j ⊆ Qi. Applying the argument in reverse, we
conclude that there exists l such that Ql ⊆ Q′

j, and thus Ql ⊆ Qi. But both decompositions
were irredundant, so Ql = Q′

j = Qi.

Definition 5.14. Given a monomial ideal I, its unique decomposition in ideals generated
by pure powers of variables is called the standard primary decomposition of I.

Remark 5.15. Notice that we are not saying that monomial ideals have a unique primary
decomposition; only that the decomposition in primary ideals of the form (x

ai1
i1
, . . . , x

ain
in

)
are unique. In fact, in Example 1.77 we showed that (x2, xy) has infinitely many primary
decompositions.

In fact, the standard primary decomposition of a monomial ideal might not be an ir-
redundant primary decomposition. The primary monomial ideal (x2, xy, y2) has standard
primary decomposition (x2, xy, y2) = (x2, y) ∩ (x, y2).

Theorem 5.13 says in particular that every monomial ideal has a primary decomposition
into monomial ideals. Since symbolic powers are obtained by collecting certain primary
components of In, we conclude that the symbolic powers of a monomial ideal are monomial.

Corollary 5.16. The symbolic powers of a monomial ideal are monomial ideals.

Corollary 5.17. The associated primes of a monomial ideal are generated by variables.

Proof. By Theorem 5.13, every monomial ideal can be decomposed as an intersection of
ideals of the form (x

ai1
i1
, . . . , x

ain
in

), which are primary by Lemma 5.12. Also by Lemma 5.12,
the radicals of these primary ideals are all generated by variables. By Theorem 1.78, these
monomial primes coincide with the set of associated primes of our given monomial ideal.
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Corollary 5.18. An ideal in R = k[x1, . . . , xd] is a squarefree monomial ideal if and only if
it is a finite intersection of ideals generated by variables.

Proof. A squarefree monomial ideal is radical, by Lemma 5.7, and thus it must coincide with
the intersection of its minimal primes, which by Corollary 5.17 are generated by variables.
On the other hand, finite intersections of monomial ideals are monomial, any ideal generated
by variables is prime, and any finite intersection of primes is radical, by Lemma 1.18.

Remark 5.19. The proof of Theorem 5.13 also shows that the variables appearing as gener-
ators of the associated primes of I must all be variables appearing in the minimal generators
of I, and that every such variable appears as a generator of at least one of the associated
primes.

Finally, we can now say something more concrete about the symbolic powers of monomial
ideals.

Corollary 5.20. Let I = P1 ∩ · · · ∩ Pk be a squarefree monomial ideal with minimal primes
P1, . . . , Pj. Then for all n ⩾ 1,

I(n) =
k⋂

i=1

P n
i .

Proof. Since I is radical and the Pi are its minimal primes, I(n) = P
(n)
1 ∩ · · · ∩ P (n)

k . Since

each Pi is generated by variables, P
(n)
i = P n

i by Lemma 2.5.

5.3 The Stanley-Reisner correspondence

Definition 5.21. A simplicial complex ∆ on [n] := {1, . . . , n} is a collection of subsets
of [n] such that if F ∈ ∆ and F ′ ⊆ F , then F ′ ∈ ∆.1

An element F ∈ ∆ is called a face of ∆. A facet of ∆ is a face that is maximal with
respect to inclusion. The set of facets of ∆ is denoted F(∆). A nonface of ∆ is a subset F
of [n] such that F /∈ ∆; the set of minimal nonfaces of ∆ is denoted N (∆).

Note that the facets F(∆) of ∆ determine ∆ completely: by definition, if F ∈ F(∆),
then any F ′ ⊆ F must be a face of ∆, and every face of ∆ is necessarily contained in some
facet. Similarly, the set N (∆) of minimal nonfaces of ∆ also determines ∆ completely.

Definition 5.22. Given a simplicial complex ∆ on [n] and field k, set R = k[x1, . . . , xn].
Given a subset F ⊆ [n], xF :=

∏
i∈F xi is the squarefree monomial corresponding to F in R.

The Stanley-Reisner ideal of ∆ is the ideal of R given by

I∆ :=

(∏
i∈F

xi | F ∈ N (∆)

)
.

The Stanley-Reisner ring of ∆ is the ring k[∆] = R/I∆.

1Some authors also require that {i} ∈ ∆ for all i ∈ [n].
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Lemma 5.23. The monomials of the form xa11 · · · xann with {i ∈ [n] | ai ̸= 0} ∈ ∆ are a
k-basis for k[∆].

Proof. First, note that by construction, ∆ is a squarefree monomial ideal, and thus radical,
by Lemma 5.7. Given a monomial f = xa11 · · ·xann , if {i ∈ [n] | ai ̸= 0} /∈ ∆ then the
monomial

√
f is in I∆ by definition. Therefore, by Lemma 5.7, f ∈

√
I∆ = I∆, so f + I∆

is zero in k[∆]. On the other hand, if f = xa11 · · ·xann ∈ I∆, then
√
f ∈

√
I∆ = I∆ as well.

Therefore,
√
f must be a multiple of one of the generators of I∆, which is equivalently to

saying that there is a subset of {i ∈ [n] | ai ̸= 0} in N (∆). Since ∆ is a simplicial complex,
{i ∈ [n] | ai ̸= 0} /∈ ∆. This shows that a monomial f = xa11 · · ·xann is in I∆ if and only if
{i ∈ [n] | ai ̸= 0} /∈ ∆. The monomials not in I∆ form a k-basis for k[∆].

Lemma 5.24. Let ∆ be a simplicial complex in [n]. The set of minimal nonfaces of ∆
corresponds to a minimal generating set for I∆.

Proof. If F ⊆ F ′, then xF |xF ′ , so the monomials corresponding to minimal nonfaces generate
I∆. On the other hand, two minimal nonfaces of ∆ are necessarily incomparable, and thus
the corresponding squarefree monomials do not divide each other. A monomial is in a given
monomial ideal if and only if it is divisible by one of the generators, so we conclude that the
minimal nonfaces form a minimal generating set for I∆.

By construction, each simplicial complex gives rise to a squarefree monomial ideal I∆.
On the other hand, every squarefree monomial ideal is the Stanley-Reisner ideal of some
simplicial complex, and this correspondence is bijective.

Theorem 5.25 (Stanley-Reisner correspondence). Let n ⩾ 1 and k be a field. There is a
bijective correspondence between simplicial complexes on [n] and squarefree monomial ideals
in k[x1, . . . , xn] given by ∆ 7→ I∆.

Proof. Given a squarefree monomial ideal I in k[x1, . . . , xn], set

∆I := {{i1, . . . , ij} | xi1 · · · xij /∈ I}.

Suppose that F = {i1, . . . , ij} ∈ ∆, and consider any subset F ′ = {i1, . . . , it} of F . By
definition, xF /∈ I, but since xF ′ divides xF , we must have xF ′ /∈ I, and thus F ′ ∈ ∆. This
shows that ∆ is a simplicial complex.

It follows immediately from the definition that ∆I∆ = ∆ for any simplicial complex ∆
and that I∆I

= I for any squarefree monomial ideal.

This correspondence is very rich, and hides a dictionary between combinatorial properties
of the simplicial complex and algebraic properties of its Stanley-Reisner ring. For example,
we can find a primary decomposition for any squarefree monomial ideal via its corresponding
simplicial complex. This is best described via the Alexander dual of ∆.

Definition 5.26. Let ∆ be a simplicial complex on [n]. The Alexander dual ∆∨ of ∆ is
the simplicial complex

∆∨ := {[n]\F | F /∈ ∆}.

The Alexander dual I∨ of I is the Stanley-Reisner ideal of ∆∨
I .
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Lemma 5.27. Given any simplicial complex ∆ on [n], ∆∨ is a simplicial complex, and
(∆∨)∨ = ∆.

Proof. If F ∈ ∆∨ and F ′ ⊆ F , then [n]\F /∈ ∆. Since [n]\F ⊆ [n]\F ′ and ∆ is a simplicial
complex, [n]\F ′ /∈ ∆, so F ′ ∈ ∆∨. Now the equality (∆∨)∨ = ∆ is immediate from the
definition.

Each generator xi1 · · ·xij of I∆∨ corresponds to a minimal prime (xi1 , . . . , xij) of I∆.

Lemma 5.28. Let ∆ be a simplicial complex on [n]. Then

I∆∨ =
(
x[n]\F | F ∈ F(∆)

)
Proof. The minimal monomial generators of ∆∨ are the squarefree monomials that corre-
spond to minimal nonfaces of ∆∨. A given F ⊆ [n] is a nonface of ∆∨ if and only if [n]\F
is a face of ∆. Moreover, such an F is a minimal nonface of ∆∨ if and only if no F ′ ⊆ [n]
which properly contains [n]\F is a face of ∆, so F must be a facet of ∆.

In particular, note that F(∆∨) = {[n] \ F | F ∈ N (∆)}.
Theorem 5.29. Let ∆ be a simplicial complex on [n]. The standard decomposition of I∆,
which in this case is the unique irredundant primary decomposition of I∆, is given by

I∆ =
⋂

F∈F(∆)

(xi | i ∈ [n]\F ) .

Therefore, if the Alexander dual of the squarefree monomial ideal I has minimal generators

I∨ = (xi,1 · · · xi,si | 1 ⩽ i ⩽ t) ,

then the unique irredundant decomposition of I is

I =
t⋂

i=1

(xi,1, . . . , xi,si) .

Proof. Fix any monomial f = xa11 · · · xann . If f ∈ I∆, then by Lemma 5.23 we know that
{i ∈ [n] | ai ̸= 0} /∈ ∆, and thus no facet of ∆ contains {i ∈ [n] | ai ̸= 0}. Therefore, for
every facet F ∈ F(∆),

{i ∈ [n] | ai ̸= 0} ∩ ([n]\F ) ̸= ∅,
and thus

f ∈ (xi | i ∈ [n]\F ) .
We conclude that

I∆ ⊆
⋂

F∈F(∆)

(xi | i ∈ [n]\F ) .

On the other hand, if f /∈ I∆, then again by Lemma 5.23 we have {i ∈ [n] | ai ̸= 0} ∈ ∆.
Thus there is a facet F ∈ F(∆) that contains {i ∈ [n] | ai ̸= 0}, so that

f /∈ (xi | i ∈ [n]\F )

for that facet F , so

f /∈
⋂

F∈F(∆)

(xi | i ∈ [n]\F ) .
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Example 5.30. Consider the squarefree monomial ideal I = (xy, xz) in k[x, y, z]. By
Theorem 5.29, the Alexander dual of I is I∨ = (x, y)∩ (x, z) = (x, yz). By Lemma 5.27, I is
the Alexander dual of I∨, so applying Theorem 5.29 again gives us the primary decomposition
I = (x) ∩ (y, z).

Macaulay2. In Macaulay2, we can compute the Alexander dual of a squarefree monomial
ideal I via the command dual. This command receives inputs of type monomialIdeal, which
means that it is not sufficient to set up an ideal that is generated by monomials, you must
set it up to be something of the right type by using the command monomialIdeal.

Example 5.31. The picture below represents the simplicial complex ∆ on [5] with facets

F(∆) = {{1, 2}, {1, 3}, {2, 3, 4}, {4, 5}}.

The shaded region indicates that {2, 3, 4} ∈ ∆. The minimal nonfaces of ∆ are

N (∆) = {{1, 4}, {1, 5}, {2, 5}, {3, 5}, {1, 2, 3}}.

The corresponding Stanley-Reisner ideal is

I∆ = (x1x4, x1x5, x2x5, x3x5, x1x2x3) = (x1, x5) ∩ (x1, x2, x3) ∩ (x2, x4, x5) ∩ (x3, x4, x5),

and its Alexander dual is

I∆∨ = (x1x5, x1x2x3, x2x4x5, x3x4x5) .

Notice in particular that I∆ and I∆′ can have minimal generators in common.

Example 5.32. The picture below represents the simplicial complex ∆ on [5] with facets

F(∆) = {{1, 2, 4}, {1, 2, 5}, {2, 3}, {3, 4}}.

The minimal nonfaces of ∆ are

N (∆) = {{1, 3}, {3, 5}, {4, 5}, {2, 3, 4}}.

The corresponding Stanley-Reisner ideal is

I∆ = (x3, x4) ∩ (x3, x5) ∩ (x1, x4, x5) ∩ (x1, x2, x5).

and its Alexander dual is

I∆∨ = (x3x4, x3x5, x1x4x5, x1x2x5).
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5.4 Edge ideals

Definition 5.33. Let G be a finite simple graph with n vertices V (G) = {1, . . . , n} and
with edges E(G). Let R = k[x1, . . . , xn], where k is a field. The edge ideal of G is the ideal

I(G) := (xixj | {i, j} ∈ E(G)) .

The cover ideal of G is the Alexander dual of I(G),

J(G) :=
⋂

{i,j}∈E(G)

(xi, xj).

The edge ideal of a finite simple graph is a squarefree monomial ideal, and thus the
Stanley-Reisner ideal of some simplicial complex. To describe that complex, we need the
independent sets of G.

Definition 5.34. Let G be a finite simple graph. A subset W ⊆ V (G) of the vertices of G
is called independent if no edge of G has both of its endpoints in W .

The edge ideal of G coincides with the Stanley-Reisner ideal of the simplicial complex

∆(G) := {W ⊆ [n] | W is an independent set}.

Once again, there is a bijection between finite simple graphs and all quadratic squarefree
monomial ideals, and there are many theorems relating the algebra of I(G) and the com-
binatorics of G. For example, we can now describe the standard primary decomposition of
I(G) from the combinatorics of G.

Definition 5.35. Let G be a finite simple graph. A set of vertices W ⊆ V (G) is a vertex
cover for G if for every edge e ∈ E(G), W contains at least one of the vertices in e. We say
W is a minimal vertex cover of G if W is a vertex cover that is minimal with respect to
containment.

Theorem 5.36. Let G be a finite simple graph. Then

J(G) = (xW | W ⊆ V (G) is a minimal vertex cover of G) .

Proof. Let W be a minimal vertex cover of G, and let

xW :=
∏
i∈W

xi.

Given any edge {i, j} of I(G), W must contain at least one of i or j, so xW ∈ (xi, xj).
Therefore,

xW ∈
⋂

{i,j}∈E(G)

(xi, xj) = J(G).

Conversely, consider a minimal monomial generator m of J(G), say m = xi1 · · ·xir , and set

W := {i1, . . . , ir}.
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For each edge {j, k} ∈ E(G), we must have xj|m or xk|m, since m ∈ J(G), so either j ∈ W
or k ∈ W . Therefore, W is a vertex cover of G. Now if W ′ is a minimal vertex cover
contained in W , we still have xW ′ |xW = m, and thus

m ∈ (xW | W ⊆ V (G) is a minimal vertex cover of G) .

Corollary 5.37. Let W1, . . . ,Wt be minimal vertex covers of G. Then

I(G) =
t⋂

i=1

(xj | j ∈ Wi)

is the unique irredundant primary decomposition of I(G).

Proof. This is an immediate consequence of Theorem 5.29 and Theorem 5.36, noting that

{xW | W ⊆ V (G) is a minimal vertex cover of G}

is necessarily a minimal generating set for J(G), given that all the minimal vertex covers are
incomparable.

Example 5.38. The edge ideal I(G) of the 5-cycle graph

has irredundant primary decomposition

I(G) = (x1, x3, x4) ∩ (x1, x3, x5) ∩ (x2, x4, x5) ∩ (x2, x3, x5) ∩ (x1, x2, x4).

5.5 Symbolic powers of monomial ideals

When I is a radical monomial ideal, we have discussed how to compute its symbolic powers:
we first decompose I as a finite intersection of monomial primes I = P1 ∩ · · · ∩ Pk — which
are generated by variables — using the methods discussed in the previous sections, and then

I(n) = P n
1 ∩ · · · ∩ P n

k .

While our main interest is in radical ideals, let us briefly discuss how to compute symbolic
powers of general monomial ideals. A lot more about symbolic powers of monomial ideals
can be found in the survey [CEHH16].

Suppose that I is any monomial ideal, and let P1, . . . , Pk be the maximal associated
primes of I. For each of these primes Pi, we compute the intersection Qi of the primary
components of I associated to primes with contained in Pi. Each of these separate primary
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components is not unique, but the intersection of all the components contained in Pi is
indeed unique, and equal to IRPi

∩ R. If we are given the standard primary decomposition
of I, where all the components are of the form (xa1i1 , . . . , x

as
is
), to compute Qi we need only to

collect the components involving only the variables that generate Pi. Now I = Q1 ∩ · · · ∩Qk

is an intersection of monomial ideals with only one maximal associated prime.
As we discussed in Discussion 2.13, I(n) = Q

(n)
1 ∩ · · · ∩ Q

(n)
k . We claim that I(n) =

Qn
1 ∩ · · · ∩Qn

k , which follows from the following lemma.

Lemma 5.39. If I is a monomial ideal with only one maximal associated prime, then
I(n) = In.

Proof. Let R = k[x1, . . . , xd] be our polynomial ring. Without loss of generality, assume that
P = (x1, . . . , xs) is the unique maximal associated prime of I. Note that every associated
prime of I is generated by a subset of the variables x1, . . . , xs. In particular, this holds for
the minimal primes of I, and thus the generators of

√
I involve only the variables x1, . . . , xs.

Given the description of
√
I from Lemma 5.7, we conclude that the generators of I involve

only the variables x1, . . . , xs.
We want to show that I(n) = In. Since In ⊆ I(n) are both monomial ideals, it is sufficient

to show that every monomial f ∈ I(n) is in In. As discussed in Discussion 2.13, there exists
s /∈ P such that sf ∈ In. Since In is a monomial ideal, every nonzero monomial term in sf
must be in In; since at least one of the monomials appearing in s must be outside of P , we
can in fact find a monomial g /∈ P such that gf ∈ In. Since g /∈ P , none of the variables
x1, . . . , xs can divide g, and thus g must be of the form g = x

as+1

s+1 · · ·xann . On the other hand,
In is generated by monomials that involve only the variables x1, . . . , xs, so we conclude that
f ∈ In.

Powers and intersections of monomial ideals are monomial, and thus this also shows that
the symbolic powers of a monomial ideal are monomial.

Example 5.40. Consider the monomial ideal I = (xy, y2w, x2z, x3). Its standard primary
decomposition is

I = (x2, y) ∩ (x, y2) ∩ (x3, y, z) ∩ (x,w).

Notice that this is not an irredundant primary decomposition, as the first two components
are both (x, y)-primary. There are two maximal associated primes: (x, y, z) and (x,w). The
intersection of the components contained in (x, y, z) is (y2, xy, x2z, x3), while the intersection
of the components contained in (x,w) is simply (x,w). Thus

I = (y2, xy, x2z, x3) ∩ (x,w),

and for all n ⩾ 1
I(n) = (y2, xy, x2z, x3)n ∩ (x,w)n.



Chapter 6

Rees algebras

Rather than studying each (symbolic) power at a time, it is sometimes convenient to study
them all at once. The Rees algebra of an ideal I is obtained by essentially packaging together
all the powers of I and constructing a graded algebra. In this chapter we will introduce Rees
algebras and other related concepts, with an eye towards applications to symbolic powers.

6.1 Rees algebras

Definition 6.1. Let I be an ideal in a ring R. The Rees algebra of I is the graded ring

R(I) :=
⊕
n

Intn = R[It] ⊆ R[t].

The grading is given by setting deg t = 1 and deg r = 0 for all r ∈ R.

Here the variable t serves the purpose of keeping track of degrees. As an R module, the
Rees algebra of I is isomorphic to ⊕

n

In,

but t helps help us distinguish an element f ∈ I(n) in the piece of degree n from the element
f ∈ I(n) ⊆ I in the piece of degree 0.

Remark 6.2. If R is a noetherian ring, then I is a finitely generated ideal, so consider a
finite generating set I = (f1, . . . , fn). Then R(I) = R[f1t, . . . , fnt] is a finitely generated
R-algebra. Therefore, if R is noetherian then R[It] is noetherian.

The key technical point that allows us to construct a graded ring from the powers of I is
the fact that they form a graded family of ideals.

Definition 6.3. Let I = {In}n⩾0 be a family of ideals in a ring R. We say that I forms a
graded family of ideals if I0 = R and

InIm ⊆ In+m for all m,n.

If I is a graded family of ideals and In ⊇ In+1 for all n, we say that I is a filtration.
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Example 6.4. The powers of any ideal form a graded family, since indeed InIm ⊆ In+m.

Definition 6.5. Let I = {In}n⩾0 be a graded family of ideals. The Rees algebra of I is
the N-graded ring

R(I) :=
⊕
n⩾0

Int
n ⊆ R[t].

The grading is given by setting deg t = 1 and deg r = 0 for all r ∈ R.

Example 6.6. We showed in Lemma 2.9 that the symbolic powers of an ideal form a graded
family. The corresponding Rees algebra is called the symbolic Rees algebra, which we
will discuss in detail later.

Sometimes it is convenient to extend the Rees algebra of an ideal, and form what is called
the extended Rees algebra of I. In fact, some authors call the extended Rees algebra the
Rees algebra of I.

Definition 6.7. The extended Rees algebra of an ideal I is the Z-graded ring

R[It, t−1] = · · · ⊕Rt−2 ⊕Rt−1 ⊕R⊕ It⊕ I2t2 ⊕ · · · ⊆ R[t, t−1].

Again, the grading is given by setting deg t = 1 and deg r = 0 for all r ∈ R. This may also
be written as ⊕

n∈Z

Intn,

where the convention is that In = R for all n ⩽ 0.

Note that as long as I is a proper ideal, t /∈ R[It, t−1] since 1 /∈ I, so t−1 is not a unit in
the extended Rees algebra, even though it looks like one.

Remark 6.8. If R is a noetherian ring, then I is a finitely generated ideal, so consider
a finite generating set I = (f1, . . . , fn). Now R[It, t−1] = R[f1t, . . . , fnt, t

−1] is a finitely
generated R-algebra. Therefore, if R is noetherian then R[It, t−1] is noetherian.

Remark 6.9. Let I and J be ideals in a ring R. Then

J ⊆ JR[It] ∩R ⊆ JR[It, t−1] ∩R ⊆ JR[t, t−1] ∩R,

and since
JR[t, t−1] =

⊕
n∈Z

Jtn,

the piece of degree 0 in JR[t, t−1] is J , so JR[t, t−1] ∩ R = J . We conclude that all the
containments above must actually be equalities:

J = JR[It] ∩R = JR[It, t−1] ∩R.

Therefore, every ideal in R is contracted from an ideal in R[It] and from an ideal in R[t, t−1],
and every prime ideal in R is contracted from a prime ideal in R[It].
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We can now compute the dimension of the Rees algebra of an ideal.

Lemma 6.10. Let R be a Noetherian ring, and I an ideal in R.

1) The minimal primes of R[It, t−1] are exactly the primes of the form pR[t, t−1]∩R[It, t−1]
for p ∈ Min(R).

2) The minimal primes of R[It] are exactly the primes of the form pR[t, t−1] ∩ R[It] for
p ∈ Min(R).

Proof. Let (0) = q1∩· · ·∩qt be a minimal primary decomposition of (0) in R, and pi =
√
qi.

One can check (exercise!) that qiR[t] is primary with radical piR[t]. Then the same is true
in R[t, t−1], by localizing at {1, t, t2, . . .} and using Theorem 1.54. By Lemma 1.70, the
contraction of a primary ideal is primary. Contracting to R[It, t−1] or R[It], we get primary
ideals that intersect to (0); none is contained in the intersection of the others, since this is
the case after contracting to R, and likewise the radicals are distinct since they contract to
different primes in R.

Therefore, setting q′i = qiR[t, t
−1] ∩ R[It, t−1], q′1 ∩ · · · ∩ q′t is a minimal primary de-

composition of (0) in R[It, t−1], and thus the minimal primes in R[It, t−1] are precisely
piR[t, t

−1] ∩ R[It, t−1]. Repeating the argument with R[It] gives us that the the minimal
primes in R[It] are precisely piR[t, t

−1] ∩R[It] for each i.

Theorem 6.11. Let R be a finite dimensional noetherian ring, and I be an ideal of R. Then

dim(R[It]) =

{
dim(R) + 1 if I ⊈ P for some prime P with dim(R/P ) = dim(R)
dim(R) otherwise.

Proof. By Lemma 6.10, the minimal primes in R[It] are of the form PR[t, t−1] ∩R[It] with
P a minimal prime of R. So

dim(R[It]) = max

{
dim

(
R[It]

PR[t, t−1] ∩R[It]

)
| P ∈ Min(R)

}
.

Now notice that
R[It]

PR[t, t−1] ∩R[It]
∼=
R

P

[
I + P

P
t

]
,

the Rees algebra of the image of I in R/P . Therefore,

dim(R[It]) = max

{
dim

(
R

P

[
I + P

P
t

])
| P ∈ Min(R)

}
.

By quotienting by each minimal prime of R, we can now reduce the problem to the case
when R is a domain. For a domain R, we want to show that

dim(R[It]) =

{
dim(R) + 1 if I ̸= 0
dim(R) if I = 0.

When I = 0, R[It] ∼= R, so of course that dim(R[It]) = dim(R).
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By the Dimension Inequality, every prime ideal P in R[It] satisfies ht(P ) ⩽ ht(P ∩R)+1,
so dim(R[It]) ⩽ dim(R) + 1.

Now consider the ideal P = ItR[It]. Since R[It]/P ∼= R and R is a domain, P is prime.
Moreover, every nonzero homogeneous element in P has positive degree, so P ∩ R = 0.
Finally, note that R[It] ⊆ R[t] is also a domain, and P ̸= 0 since P ⊇ It, so we conclude
that ht(P ) > 0. Therefore,

dim(R[It]) ⩾ dim(R[It]/P ) + ht(P ) = dim(R) + ht(P ) ⩾ dim(R) + 1,

and we conclude that dim(R[It]) = dim(R) + 1.

Definition 6.12. The associated graded ring of an ideal I in a ring R is the ring

grI(R) :=
⊕
n⩾0

In/In+1

with nth graded piece In/In+1 and multiplication

(a+ In+1)(b+ Im+1) = ab+ Im+n+1 for a ∈ In, b ∈ Im.

If (R,m) is local, then gr(R) := grm(R) will be called the associated graded ring of R.

The associated graded ring of a graded family of ideals is defined in the obvious way.

Remark 6.13. The associated graded ring of I is also isomorphic to

R[It]

IR[It]
∼=

R[It, t−1]

t−1R[It, t−1]
.

By Remark 6.2, this is a quotient of a noetherian ring, and thus grI(R) is also a noetherian
ring.

Remark 6.14. If a ∈ In, b ∈ Im, u ∈ In+1, v ∈ Im+1, that is, a + u ∈ a + In+1 and
b+ v ∈ b+ Im+1 then

(a+ u)(b+ v) = ab+ av + bu+ uv ∈ ab+ Im+n+1.

This says that the multiplication on the associated graded ring is well-defined.

Remark 6.15.

1) [grI(R)]0 = R/I, so if (R,m, k) is a local ring then [gr(R)]0 = R/m = k.

2) Each graded piece [grI(R)]n = In/In+1 is an R-module annihilated by I, and thus it
is an R/I-module. In particular, if (R,m, k) is local then [gr(R)]n is a k-vector space.

3) Let R be Noetherian and I = (f1, . . . , fn). Then f1 + I2, . . . , fn + I2 ∈ [grI(R)]1 and
grI(R)

∼= (R/I)[f1, . . . , fn] is finitely generated as a [gr(R)]0-algebra by elements of
degree one. If (R,m, k) is Noetherian and local, then by NAK a basis for [gr(R)]n
corresponds to a minimal set of generators for mn, and in particular

dimk[gr(R)]n = µ(mn) <∞.
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Example 6.16. Take R = k[x, y] and I = (x, y). Then

grI(R) = R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · · = k ⊕ (k x⊕ k y)⊕ (k x2 ⊕ k xy ⊕ k y2)⊕ · · ·

so we see that in fact gr(x,y)(k[x, y]) = k[x, y]. Similarly, for any graded k-algebra generated
in degree 1, grR+

(R) = R.

Example 6.17. Let R = k[x, y](x,y).

a) Let I = (x, y). The same computation as above applies to show

gr(x,y) k[x, y](x,y) = k[x, y].

b) Now take I = (x2, y2). Then

grI(R) = R/I ⊕ (x2R/I ⊕ y2R/I)⊕ (x2R/I ⊕ x2y2R/I ⊕ y2R/I)⊕ · · ·

so we get
grI(R) = (R/I)[x2, y2]

with deg (x2) = deg (y2) = 1 and deg (r + I) = 0 for all r ∈ R. The R/I-algebra
generators for grI(R) are algebraically independent.

c) Finally, take I = (x2, xy). Then

grI(R) = (R/I)[x2, xy],

with deg(x2) = deg(xy) = 1 and deg(r + I) = 0 for all r ∈ R. However, in this case
the algebra generators x2, xy are not algebraically independent over R/I. For example,
yx2 − xxy = 0.

Example 6.18. If R = k[x, y] and I = (x2, y2), then R[It, t−1] = R[x2t, y2t, t−1]. Think
about t as being a constant which is allowed to vary in k. Then the extended Rees algebra
of I can be viewed as a family of R-algebras, one for each value of t−1. Let’s explore some
of the algebras in this family by plugging in values for t−1:

• if t−1 = 0, which is ok to do since t−1 is not actually a unit, then we get

R[It, t−1]|t−1=0 = R[x2t, y2t] ∼= grI [t].

• If t−1 = 1 then we get x2t = x2t · 1 = x2tt−1 = x2 ∈ R and similarly y2t = y2 ∈ R so

R[It, t−1]|t−1=1 = R[x2R, y
2
R]

∼= R.

In fact the same is true for every value t−1 ∈ k×.

The following lemma makes these observations rigorous.

Lemma 6.19. There are isomorphisms

R[It, t−1]/(t−1) ∼= grI(R) and R[It, t−1]/(t−1 − 1) ∼= R.
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Proof. For the first isomorphism, since t is homogeneous, we can use the graded structure.
We have

t−1R[It, t−1] = · · · ⊕Rt−2 ⊕Rt−1 ⊕ I ⊕ I2t⊕ I3t2 ⊕ · · · ,

so matching the graded pieces, we see that

R[It, t−1]/(t−1) =
· · · ⊕Rt−2 ⊕Rt−1 ⊕R⊕ It⊕ I2t2 ⊕ · · ·
· · · ⊕Rt−2 ⊕Rt−1 ⊕ I ⊕ I2t⊕ I3t2 ⊕ · · ·

∼= R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · ·
= grI(R).

For the second isomorphism, we consider the map R[It, t−1] −→ R given by sending
t 7→ 1. This is surjective, and the kernel is the set of elements amt

m + · · · + ant
n such that

am + · · · + an = 0. We claim that this ideal is generated by (t−1 − 1). We proceed by
induction on n −m. The case n −m = 0 corresponds to there being at most one nonzero
term, say atm, in which case atm is in the kernel if and only if a = 0. In n−m = 1, we have
an element of the form atn−1 − atn for some a, which is of the form (atn)(t−1 − 1). For the
inductive step, if am + · · ·+ an = 0, write

amt
m + · · ·+ ant

n = (amt
m + · · ·+ (an−1 + an)t

n−1) + (−antn−1 + ant
n).

Observe that −antn−1 + ant
n 7→ −an + an = 0, and thus amt

m + · · ·+ (an−1 + an)t
n−1 must

also be in the kernel. The induction hypothesis now applies to both −antn−1 + ant
n and

amt
m+· · ·+(an−1+an)t

n−1, which must then be in (t−1−1). Therefore, so is amt
m+· · ·+antn,

and we are done.

Theorem 6.20. Let (R,m) be a Noetherian local ring, and I ⊆ m an ideal. Then

dim(R) = dim(R[It, t−1])− 1 = dim(grI(R)).

Proof. First, let’s show dim(R) = dim(R[It, t−1])− 1. By Lemma 6.10, we can reduce to the
case when R is a domain by localizing at each of the minimal primes of R. In particular,
R[It, t−1] is also a domain.

By Lemma 6.19, R[It, t−1]/(t−1 − 1) ∼= R, so dim(R[It, t−1]) ⩾ dim(R). Also, since
(t−1−1) is principal, ht(t−1−1) ⩽ 1, by Krull’s Height Theorem. But R[It, t−1] is a domain,
so ht(t−1 − 1) = 1. By Theorem 3.20,

dimR = dim(R[It, t−1])− ht(t−1 − 1) = dim(R[It, t−1])− 1.

Now, we claim that

Q = · · · ⊕Rt−2 ⊕Rt−1 ⊕m⊕ It⊕ I2t2 ⊕ · · · = (m, It, t−1)R[It, t−1]

is a maximal ideal of height dim(R) + 1 in R[It, t−1]. The quotient ring is R/m, so m
is clearly maximal. Given a chain p0 ⊊ · · · ⊊ ph = m of length h = dim(R), let qi :=
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piR[t, t
−1] ∩ R[It, t−1]. Since qi ∩ R = pi[t, t

−1] ∩ R = pi, this is a proper chain of primes in
R[It, t−1]. We have

qh = · · · ⊕mt−2 ⊕mt−1 ⊕m⊕ It⊕ I2t2 ⊕ · · · = (m, It)R[It, t−1] ⊊ Q

so the height of Q is at least dim(R) + 1, and hence equal to dim(R) + 1 using the previous
upper bound on the dimension.

For the last equality, since t−1 is a nonzerodivisor on R[It, t−1], we have

dim(grI(R)) ⩽ dim(R[It, t−1])− 1.

For the other inequality, let Q = Q/(t−1). Then

dim(grI(R)) ⩾ dim(grI(R)Q) = dim(R[It, t−1]Q/(t
−1))

⩾ dim(R[It, t−1]Q)− 1

= height(Q)− 1

= dim(R).

6.2 Defining equations of Rees algebras

When I = (f1, . . . , fn) is an ideal in a ring R. Then R(I) = R[f1t, . . . , fnt]. Thus R(I) can
be written as a quotient of the polynomial ring R[T1, . . . , Tn], by the quotient map

R[T1, . . . , Tn]
π // //R(I)

Ti
� // fit

.

If we can describe the generators of the kernel L of π, we will have a complete understanding
of R(I) as a finitely generated R-algebra. This homogeneous ideal L is given by

L = (F (T1, . . . , Tn) ∈ R[T1, . . . , Tn] | F (f1, . . . , fn) = 0) .

We call a set of generators of L the defining equations of R(I). Unfortunately, finding
defining equations for the Rees algebra of a given ideal is incredibly difficult in practice.

We can also view the Rees algebra of I as a quotient of the symmetric algebra. Recall
that the symmetric algebra Sym(I) of I is the the quotient of the tensor algebra

⊕
n⩾0 I

⊗n

by the ideal generated by all elements of the form u ⊗ v − v ⊗ u. The symmetric algebra
is also a quotient of R[T1, . . . , Tn], the quotient Sym(I) ∼= R[T1, . . . , Tn]/L1, where L1 is the
ideal

L1 = (a1T1 + . . .+ anTn ∈ R[T1, . . . , Tn] | a1, . . . , an ∈ R satisfy a1f1 + . . .+ anfn = 0) .

As the notation suggests, this is indeed the ideal generated by the degree 1 elements in ideal
L defining R(I). As a consequence, we can write R(I) as a graded quotient of Sym(I), by
taking R[T1, . . . , Tn]/L1 ↠ R[T1, . . . , Tn]/L. Alternatively, the multiplication map on I ⊗ I
induces a surjective graded map Sym ↠ R(I).
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Definition 6.21. An ideal I is said to be of linear type if the natural surjective graded
map Sym ↠ R(I) is an isomorphism. Equivalently, the kernel L of the canonical projection
π : R[T1, . . . , Tn] → R(I) satisfies L1 = L.

So the Rees algebra of an ideals of linear type is determined by defining equations of
degree 1. The best case scenario when we want to study the Rees algebra of I is that I is of
linear type. For ideals that are not of linear type, describing R(I) is typically very difficult.

6.3 Stability of associated primes of powers

Rees algebras can be quite useful when studying symbolic powers. The first application we
will see is that the set of primes associated to some power of a given ideal is finite.

Before we prove this, we should note that this is not at all obvious. In fact, the behavior of
the function n 7→ Ass(In) can be quite complicated. For example, the number of associated
primes of the powers of a prime ideal can be arbitrarily large.

Example 6.22 (Kim–Swanson, [KS19]). Let k be any field, and fix positive integers m
and v. There exists an m-generated prime ideal P of height m − 1 in the polynomial ring
k[x1, . . . , xmv] in mv variables such that P e has vm associated primes for all e ⩾ 2.

Moreover, it is not true that Ass(In) ⊆ Ass(In+1) for all n; though by [Bro79], this is
eventually true.

Definition 6.23. We say an ideal I has the persistence property if Ass(In) ⊆ Ass(In+1)
for all n.

Here are some examples of ideals without the persistence property.

Example 6.24 (Sathaye, see the example on page 2 in [McA83]). Let k be a field and fix
s ⩾ 1. In the polynomial ring S = k[x, z1, . . . , z2s], consider the ideal

I =
(
xz2i−1

2i−1 − z2i2i | 1 ⩽ i ⩽ s
)
+
(
zjjzi | 1 ⩽ i, j ⩽ 2s

)
,

and let R = S/I. Consider the prime ideal P = (z1, . . . , z2s) ⊆ m = (x, z1, . . . , z2s) in R. For
all 2 ⩽ n ⩽ 2s, one can show that m ∈ Ass(P n) if n is odd, but m /∈ Ass(P n) whenever n is
even. In particular, Ass(P n) ⊈ Ass(P n+1) for all odd 3 ⩽ n ⩽ 2s.

One can even construct monomial ideals without the persistence property.

Example 6.25 (Bandari–Herzog–Hibi [BHH14]). Fix a field k and an integer s ⩾ 0, and
let m be the homogeneous maximal ideal in R = k[a, b, c, d, x1, y1, . . . , xs, ys]. The monomial
ideal

I = (a6, a5b, ab5, b6, a4b4c, a4b4d, a4x1y
2
1, b

4x21y1, . . . , a
4, xsy

2
s , b

4x2sys)

has m ∈ Ass(In) for all odd n ⩽ 2s+ 1, but m /∈ Ass(In) for n ⩽ 2s even.



126

In [BHH14], the authors showed even more: that function n 7→ depth(R/In) can have
arbitrarily many local maxima. Recall that m ∈ Ass(J) if and only if depth(R/J) = 0,
by Theorem 3.105. The function n 7→ depth(R/In) then encodes information about the
associated primes of In. This depth function must necessarily be constant for n ≫ 0. Hà,
Nguyen, Trung, and Trung [HNTT21] recently settled a conjecture of Herzog and Hibi by
showing that n 7→ depth(R/In) can be any function N → N that is eventually constant.

Remark 6.26. Note that the R-modules In/In+1 are all killed by I, so by Lemma 1.59

AssR/I

(
In/In+1

)
=
{
P/I | P ∈ AssR

(
In/In+1

)}
.

With this in mind, we will abuse notation and identify the associated primes of In/In+1 as
an R-module and as an R/I-module.

Any ideal of positive height with a Cohen-Macaulay associated graded ring has the per-
sistence property.

Theorem 6.27 (Morey, Lemma 2.3 in [Mor99]). Let R be a Cohen-Macaulay ring and let I
be an ideal with ht(I) ⩾ 1 and such that the associated graded ring grI(R) is Cohen-Macaulay.
Then the sets of associated primes Ass(In) form an ascending chain. Moreover, the sets of
associated primes Ass(In/In+1) also form an ascending chain.

Proof. Since ht(I) ⩾ 1, we must have dim(grI(R)) ⩾ 1, by Theorem 6.20. Since grI(R) is
Cohen-Macaulay, its homogeneous maximal ideal must have depth at least 1. In particular,
we can choose a regular element that is homogeneous of degree 1, say a∗ := a + I2 ∈ I/I2

for some a ∈ I. Given P ∈ Ass(In/In+1), fix c ∈ In/In+1 such that P = (0 :R/I c). Since
a∗ is regular, a∗c ̸= 0, and P = (0 :R/I a

∗c). But now a∗c + In+2 ∈ In+1/In+2, which shows
that P ∈ Ass (In+1/In+2).

Since I0 = R by convention, for n = 1 we have In−1/In = R/I and

Ass(I) = Ass(R/I) = Ass(In−1/In).

We claim that Ass(R/In) = Ass(In/In+1) for all n ⩾ 1, and since we have shown the case
n = 1, we now proceed by induction.

Suppose that Ass(R/I t) = Ass(I t−1/I t) for some t. Applying Lemma 1.46 to the short
exact sequence

0 // I t/I t+1 // R/I t+1 // R/I t // 0 ,

we obtain
Ass

(
R/I t+1

)
⊆ Ass

(
I t/I t+1

)
∪ Ass

(
R/I t

)
.

Then given any P ∈ Ass(R/I t+1), either

P ∈ Ass
(
I t/I t+1

)
or P ∈ Ass(R/I t) = Ass(I t−1/I t) ⊆ Ass(I t/I t+1).

By induction, we conclude that Ass(R/In) = Ass(In/In+1) for all n ⩾ 1. Since the sets
Ass(In/In+1) form an ascending chain, so do the sets Ass(R/In).
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So when is the associated graded ring Cohen-Macaulay? In [Hun81], Huneke showed
that if R is a Cohen-Macaulay ring and I is generated by n + 1 elements and ht(I) = n, if
R/I is Cohen-Macaulay then gr(I) is Cohen-Macaulay. Moreover, the converse holds if R is
Gorenstein.

We are now ready to show that despite the fact that Ass(In) can have a very complicated
behavior, there are only finitely many primes that are associated to In for some n.

Theorem 6.28 (Ratliff, [Rat76]). Let I be an ideal in a noetherian ring R. Then the set

A =
⋃
n⩾1

Ass(In)

is finite.

Proof. Fix n ⩾ 1. In the extended Rees algebra S = R[It, t−1] of I, the ideal

t−nR[It, t−1] =
⊕

k⩾n+1

t−k ⊕
⊕
k⩾0

Iktk−n

has degree 0 piece In, so t−nR[It, t−1]∩R = In. On the other hand, t−1 is a regular element
in S = R[It, t−1], so by Theorem 3.107

AssS(t
−nS) = AssS(t

−1S).

Now let Q ∈ AssR(I
n). Since t−nS ∩R = In, we have inclusions

R/Q ↪→ R/In ↪→ S/t−nS,

so Q ∈ AssR(S/t
−nS), when we view S/t−nS as an R-module. By Theorem 1.60,

AssR(S/t
−nS) =

{
P ∩R | P ∈ AssS(S/t

−nS)
}
.

We conclude that Q = P ∩R for some prime P in S that is associated to the ideal generated
by t−n. But as we saw above,

AssS(t
−nS) = AssS(t

−1S),

and since S is a noetherian ring, by Remark 6.8, AssS(t
−1S) is a finite set of primes, by

Corollary 1.53. Then

A =
⋃
n⩾1

Ass(In) ⊆
{
P ∩R | P ∈ AssS(t

−1S)
}

is a finite set.

As we mentioned in Chapter 1, more is true: Brodmann [Bro79] showed that in fact,
Ass(In) eventually stabilizes, meaning that there exists n such that Ass(In) = Ass(Im) for
all m ⩾ n. Brodmann’s proof, however, is rather technical, as it uses a technical lemma by
Ratliff [Rat76] involving superficial elements, which we have not discussed. Instead, we will
follow McAdam’s proof [McA83].
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Corollary 6.29. Let I be an ideal in a noetherian ring R. Then⋃
n⩾0

Ass
(
In/In+1

)
is a finite set.

As we discussed in Remark 6.26, the associated primes of In/In+1 as a module over R/I
can be identified with its associated primes as a module over R, so we are really showing
that both ⋃

n⩾0

AssR
(
In/In+1

)
and

⋃
n⩾0

AssR/I

(
In/In+1

)
are finite sets.

Proof. Since In/In+1 is a submodule of R/In+1, by Lemma 1.46 we have

AssR
(
In/In+1

)
⊆ AssR

(
R/In+1

)
.

Recall that we write Ass(In) for Ass (R/In), so we have⋃
n⩾0

AssR
(
In/In+1

)
⊆
⋃
n⩾0

AssR (In) ,

which is finite by Theorem 6.28. The R-modules In/In+1 are all killed by I, so by Lemma 1.59

AssR/I

(
In/In+1

)
=
{
P/I | P ∈ AssR

(
In/In+1

)}
.

Therefore, ⋃
n⩾0

AssR/I

(
In/In+1

)
is a finite set.

Lemma 6.30. Let R =
⊕

n⩾0Rn be a noetherian graded ring with R = R0[R1], meaning
that R is generated as an R0-algebra by the elements of degree 1. There exists an integer n
such that for all s > n,

(0 : R1) ∩Rs = (0).

In other words, all elements in R that annihilate the degree 1 piece have degree at most n.

Proof. The colon of two homogeneous ideals in a graded ring is also homogeneous ideal
(exercise!), so J = (0 : R1) is a homogeneous ideal. Since R is generated by elements of
degree 1, J is also the annihilator of the ideal R+ generated by all positive degree elements.

Pick homogeneous generators F1, . . . , Fs for J , and set n := 1 + max{deg(Fi)}. Any
homogeneous element F ∈ J can be written as F = r1F1 + · · ·+ rsFs for some homogeneous
ri ∈ R. In fact, if deg(F ) ⩾ n, then necessarily we must have deg(r1), . . . , deg(rs) ⩾ 1. But
each Fi ∈ J must annihilate any homogeneous element of positive degree, so riFi = 0 for all
i. We conclude that F = 0, and thus the nonzero homogeneous elements in J must all have
degree less than n.
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We will be applying this lemma to the associated graded ring of an ideal I in a noetherian
ring R, which is a noetherian ring by Remark 6.13. More precisely, we will use the following
corollary of Lemma 6.30: given an ideal I in a noetherian ring R, there exists an integer n
such that for all s ⩾ n, (

0 :grI(R) [grI(R)]1
)
∩ [grI(R)]s = (0).

Lemma 6.30 applies here because grI(R) is indeed generated in degree 1: every element in
In can be written as a linear combination of products of n elements in I, so any element in
[grI(R)]d = Id/Id+1 is a linear combination of products of elements in [grI(R)]1 = I/I2.

Lemma 6.31. Let I be an ideal in a noetherian ring R. There exists an integer N such that

AssR/I

(
In/In+1

)
⊆ AssR/I

(
In+1/In+2

)
for all n ⩾ N .

Proof. Let N be as in Lemma 6.30: all homogeneous elements in grI(R) that kill [grI(R)]1
must have degree at most N . Fix n > N , and a prime ideal P ∈ AssR/I (I

n/In+1). By
definition, there exists an element c ∈ In, c /∈ In+1, which we can think of as giving a
homogeneous element c+ In+1 ∈ In/In+1 such that

P = (0 + In+1 :R/I c+ In+1).

Now consider the submodule of In+1/In+2 given by (c+ In+1)I/I2. We claim that

P = (0 + In+1 :R/I c+ In+1) =
(
0 + In+1 :R/I (c+ In+1)I/I2

)
.

The containment ⊆ is immediate, so we just need to show that

(r + I) · (c+ In+1)I/I2 = 0 =⇒ (r + I) · (c+ In+1) = 0.

First, note that
(r + I) · (c+ In+1) = rc+ In+1 ∈ In/In+1,

so our assumption says that

rc+ In+1 ∈ (0 + In+2 :R/I I/I
2).

We can think of R/I as the degree 0 piece of grI(R), and of I/I2 as the degree 1 piece of
grI(R), so we must have

rc+ In+1 ∈ (0 :grR(R) [grI(R)]1).

Moreover, we can now view rc+ In+1 as a homogeneous element in grI(R) of degree n, but
by construction any element in grI(R) that kills [grI(R)]1 must have degree less than n. We
conclude that rc+ In+1 = 0, so indeed we proved our claim that

r + I ∈ (0 :R/I c+ Is+1).
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So we have shown that

P = (0 + In+1 :R/I c+ In+1) =
(
0 + In+1 :R/I (c+ In+1)I/I2

)
.

Our goal was to show that P is associated to In+1/In+2. By Lemma 1.39, it is sufficient
to show this holds after we localize at P , so we may as well assume that P is the unique
maximal ideal of R/I.

Now to find an explicit element that is annihilated by P , we claim that there exists an
element r + I2 ∈ I/I2 such that

cr + In+2 = (r + I2)(c+ In+1) ̸= 0.

If no such element exists, then (c+ In+1)I/I2 = 0, so

P =
(
0 + In+1 :R/I (c+ In+1)I/I2

)
= R/I,

which is absurd. Now given r + I2 ∈ I/I2 with cr + In+2 ̸= 0,

P =
(
0 + In+1 :R/I (c+ In+1)I/I2

)
⊆
(
0 + In+1 :R/I cr + In+2

)
̸= R/I,

but since P is maximal, we must have

P =
(
0 + In+1 :R/I (c+ In+1)I/I2

)
=
(
0 + In+1 :R/I cr + In+2

)
.

Therefore, P is the annihilator of cr + In+2 ∈ In+1/In+2, and thus P is associated to
In+1/In+2.

Theorem 6.32. Let I be an ideal in the noetherian ring R. There exists N such that for
all n ⩾ N ,

Ass
(
In/In+1

)
= Ass

(
In+1/In+2

)
.

Proof. By Lemma 1.59, P ∈ AssR (In/In+1) if and only if P/I ∈ AssR/I (I
n/In+1), so it is

sufficient to show that

AssR/I

(
In/In+1

)
= AssR/I

(
In+1/In+2

)
.

By Lemma 6.31, there exists N such that

AssR/I

(
In/In+1

)
⊆ AssR/I

(
In+1/In+2

)
⊆ · · ·

for all n ⩾ N . These are all contained in⋃
t⩾1

AssR/I

(
I t/I t+1

)
,

which is finite by Corollary 6.29. Whenever we have an increasing sequence of subsets of a
finite set, it must eventually stabilize, and thus

AssR/I

(
In/In+1

)
= AssR/I

(
In+1/In+2

)
for all n ⩾ N .
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We are finally ready to prove that the associated primes of In stabilize for large n [Rat76].

Theorem 6.33 (Stability of associated primes of powers). Let I be an ideal in a noetherian
ring R. There exists N such that Ass(In) = Ass(IN) for all n ⩾ N .

Proof. For all n, we have a short exact sequence

0 // In/In+1 // R/In+1 // R/In // 0 ,

so by Lemma 1.46 we have

Ass
(
In/In+1

)
⊆ Ass(R/In+1) ⊆ Ass(R/In) ∪ Ass

(
In/In+1

)
.

Notice here we chose to use the module notation (as opposed to the ideal notation) for
associated primes to avoid confusion.

By Theorem 6.32, there exists N such that for all n ⩾ N ,

Ass
(
In/In+1

)
= Ass

(
IN/IN+1

)
.

For any n ⩾ N + 1, we have

Ass
(
In/In+1

)
⊆ Ass(R/In+1) ⊆ Ass(R/In) ∪ Ass

(
In/In+1

)
,

but since
Ass

(
In/In+1

)
= Ass

(
In−1/In

)
⊆ Ass(R/In),

we can now say that for all n ⩾ N + 1

Ass(R/In+1.) ⊆ Ass(R/In).

This we have a chain

· · · ⊇ Ass(R/IN+t) ⊇ Ass(R/IN+t−1) ⊇ Ass(R/IN+t−2) ⊇ · · · ⊇ Ass(R/IN),

but since R is noetherian, Ass(R/IN) is finite, by Corollary 1.53. Therefore, only finitely
many of these inclusions can be strict, and thus for all t sufficiently large, we must have
Ass(R/IN+t) = Ass(R/IN+t+1).

Finding the value N at which Ass(In) stabilizes is not easy. For some results on this
stability index, see Susan Morey’s work in [Mor99].



Chapter 7

When is I(n) = In?

Given a noetherian ring R, which ideals I satisfy In = I(n) for all n? This is one of the most
fundamental questions we may ask about symbolic powers, and yet there is much that we
do not know.

When R is a ring of dimension 0, every prime is maximal, and thus there are no ideals with
embedded primes; therefore, every ideal I satisfies In = I(n) for all n. When R is a domain of
dimension 1, every nonzero ideal has height 1, so again there are no ideals with no embedded
primes, and every ideal I satisfies In = I(n) for all n. If we drop the domain assumption,
then a ring of dimension 1 that is not a domain might have minimal primes whose symbolic
powers are not the powers. For example, consider the ring R = k[x, y]/(xy, y3), which has
dimension 1, but is not a domain, and the height 0 prime P = (y). Then P 2 = (y) ∩ (x, y2)
has an embedded component, and thus P 2 ̸= P (2).

When R has dimension 2, even if R is a domain, things can get even more interesting: for
example, we saw in Example 2.3 that the symbolic powers of the height 1 prime P = (x, z)
in the hypersurface k[x, y, z]/(xy− zc) are interesting; in fact, one can show in that example
that P (n) ̸= P n for all n. If we consider a UFD, all the height 1 primes must be principal,
and thus generated by a regular element, so their symbolic powers are the ordinary powers,
by Theorem 3.107. In a UFD of dimension 1, we must then have P (n) = P n for all n ⩾ 1 and
all primes P . In a UFD of dimension 2, all primes are either maximal or have height 1, so
P (n) = P n for all n ⩾ 1 and all primes P . But in a UFD of dimension 3 – in fact, even over
a regular ring of dimension 3 – we no longer have equality between symbolic and ordinary
powers of all prime ideals. For example, in k[x, y, z], we saw in Example 2.4 that the height
2 prime P defining the curve (t3, t4, t5) has P (2) ̸= P 2.

In this chapter, we will discuss some of the many interesting variations on this question:

• Given a ring R, what are necessary or sufficient conditions on I so that I(n) = In for
all n ⩾ 1?

• Given an ideal I, for which n do we have I(n) = In?

• Is there a constant d, perhaps depending on the ideal I, such that I(n) = In for all
n ⩽ d implies I(n) = In for all n?

We will also give a new, more sophisticated proof of the equality of symbolic and ordinary
powers of ideals generated by a regular sequence in a Cohen-Macaulay ring, and collect some
interesting results and open questions.
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7.1 Complete intersections

We now have the tools to give a shorter, cleaner proof of the equality of symbolic and
ordinary powers of ideals generated by regular sequences. To do that, we will consider the
associated graded ring of I.

Theorem 7.1. Let I = (f1, . . . , ft) be an ideal in a noetherian ring R. If f1, . . . , ft is a
regular sequence, then grI(R) is a polynomial ring. More precisely, grI(R)

∼= R/I[T1, . . . , Tn].

Proof. Consider the degree 0 ring homomorphism induced by

R/I[T1, . . . , Tn]
π // grI(R)

r + I ∈ R/I � // r + I ∈ R/I

Ti
� // fi + I ∈ I/I2

which is also a homomorphism of R-modules. By construction, and since I = (f1, . . . , fn),
π is surjective. Notice that π is an isomorphism in degree 0. Now consider a homogeneous
element F (T1, . . . , Tn) ∈ kerπ, which we may as well assume has positive degree. After
choosing lifts of the coefficients of F to R, we may think of F as a polynomial in R[T1, . . . , Tn];
any two such choices of lifts of F will lead to the same image in grI(R). If F is in the
kernel of π, that means that F has degree d but F (f1, . . . , fn) is zero in Id/Id+1, meaning
F (f1, . . . , fn) ∈ Id+1. By Theorem 3.50, this implies that the coefficients of F are all in I.
When we view F as a polynomial with coefficients in R/I, this says that F = 0. Therefore,
π is an isomorphism.

Here is our second proof of Theorem 3.107.

Theorem. Let R be a noetherian ring and consider an ideal I = (f1, . . . , ft). If f1, . . . , ft is
a regular sequence, then I(n) = In for all n ⩾ 1.

Proof. By Theorem 7.1, we have an isomorphism grI(R)
∼= R/I[T1, . . . , Tn]. Therefore, as an

R-module Id/Id+1 is isomorphic to a sum of copies of R/I. In fact, Id/Id+1 ∼= (R/I)(
n+d−1

d ).
Therefore, by Corollary 1.49

Ass(Id/Id+1) = Ass(R/I),

which we have been denoting by Ass(I). On the other hand, we have short exact sequences

0 // Id/Id+1 // R/Id+1 // R/Id // 0 ,

so by Lemma 1.46

Ass(I) = Ass(Id/Id+1) ⊆ Ass(Id+1) ⊆ Ass(Id) ∪ Ass(Id/Id+1) = Ass(Id) ∪ Ass(I).

Simplifying, we have
Ass(I) ⊆ Ass(Id+1) ⊆ Ass(Id) ∪ Ass(I).

When d = 1, we get Ass(I2) = Ass(I). Proceeding by induction, Ass(In) = Ass(I) for all n,
and thus I(n) = In for all n.

The equality In = I(n) for all n does not imply I is generated by a regular sequence.
Later we will give other classes of ideals whose symbolic powers are all equal to the powers.
We will see some examples soon.
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7.2 The associated graded ring and In = I(n)

Our last proof of the equality of symbolic and ordinary powers of complete intersection ideals
relied on the associated graded ring of I. The associated graded ring is closely connected to
the equality of symbolic and ordinary powers in a more general way.

Theorem 7.2. Let I be an ideal in a noetherian ring R. If grI(R) is a domain, then I(n) = In

for all n ⩾ 1.

Proof. Suppose that I(n) ̸= In for some n ⩾ 2. Consider an element a ∈ I(n) but not in In.
By definition, as described in Remark 2.8, there exists some s not in any associated prime
of I such that sa ∈ In. In particular, s /∈ I.

If we consider the associated graded ring grI(R), the fact that s /∈ I means that the
homogeneous element s + I ∈ R/I of degree 0 in grI(R) is nonzero. Let m be such that
a ∈ Im but a /∈ Im+1, which necessarily satisfies m < n since a /∈ In. In the associated
graded ring grI(R), the homogeneous element a + Im ∈ Im/Im+1 is also nonzero. But the
product of s+ I in degree 0 and a+ Im+1 in degree m is the homogeneous element

(s+ I)(a+ Im+1) = sa+ Im+1 ∈ Im/Im+1

also in degree m, which is 0 in Im/Im+1 since sa ∈ In ⊆ Im+1. Therefore, grI(R) is not a
domain.

Theorem 7.3. Let P be a prime ideal in a noetherian ring R. If RP is regular, then grP (R)
is a domain if and only if P (n) = P n for all n ⩾ 1.

Proof. One implication is Theorem 7.2: if grP (R) is a domain, then P (n) = P n for all n ⩾ 1.
For the other implication, suppose that RP is regular and that P (n) = P n for all n ⩾ 1. For
s /∈ P , if sa ∈ P n for some a ∈ R and some n ⩾ 1 then a ∈ P (n) = P n. Translating this
into the associated graded ring grP (R), the nonzero homogeneous element s + P ∈ R/P of
degree 0 has the property that for any homogeneous element a+ P n ∈ P n−1/P n,

(s+ P )(a+ P n) = 0 =⇒ sa+ P n = 0 =⇒ sa ∈ P n =⇒ a ∈ P n =⇒ a+ P n = 0.

Therefore, all the nonzero homogeneous elements of degree 0 in grP (R) are regular in grI(P ).
On the other hand, the nonzero homogeneous elements in grP (R) of degree 0 form a

multiplicatively closed set, since they correspond to the image of R \ P in R/P and P is
prime. Let W be this multiplicatively closed set. The localization of grP (R) at W is iso-
morphic to the localization grP (R)RP of the R-module grP (R) at the prime P . Localization
commutes with direct sums and quotients, so in fact these localizations are isomorphic to
the associated graded ring grPP

(RP ) of the maximal ideal PP in RP . Since RP is a regular
ring, by Theorem 3.70 the ideal PP is generated by a regular sequence. By Theorem 7.1,
grRP

(RP ) is a polynomial ring, and thus a domain.
Now this domain is the localization of S = grP (R) at the multiplicatively closed set

W . If S has zerodivisors, say st = 0 for some nonzero s, t ∈ S, then s
1
and s

1
are still

zerodivisors in W−1S unless t
1
= 0 or s

1
= 0. But all the elements in W are regular in S,

so by Remark 1.26 the localization of S at W is injective. Therefore, any zerodivisor in S
gives rise to a zerodivisor in W−1S. Since W−1S is a domain, we conclude that grP (R) = S
is also a domain.
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In the proof of Theorem 7.3, we made a simple but useful observation. Before we can
explore it further, we need to recall some elementary definitions.

Definition 7.4. Let R be a ring and M be an R-module. An element m ∈ M is torsion
if rm = 0 for some element r ∈ R that is regular on R. An R-module M is torsion-free if
there are no nonzero elements in R that torsion.

Since the union of the associated primes of a module is its set of zerodivisors, a module
is torsion free if and only if its associated primes are contained in the associated primes of
R.

Definition 7.5. A ring R is reduced if it has no nonzero nilpotents; equivalently,
√

(0) =
(0), which can be rephrased as saying that (0) is a radical ideal.

Remark 7.6. Let I be a radical ideal in a noetherian ring R. The condition I(n) = In for
all n is equivalent to saying that for every s ∈ R that is not in any minimal prime of I, and
every r ∈ R, if sr ∈ In, then r ∈ In. Since I is radical, an element not in any minimal prime
of I corresponds to an element in R/I that is regular. We can rewrite this in terms of the
associated graded ring grI(R): for every n ⩾ 1, every regular element s+I ∈ R/I, and every
r + In ∈ In−1/In,

(s+ I)(r + In) = 0 =⇒ r + In = 0.

Equivalently, this says that grI(R) is torsion-free over R/I. So I
(n) = In for all n ⩾ 1 if and

only if grI(R) is torsion-free over R/I.

Theorem 7.7 (Huneke–Simis–Vasconcelos, 1984, Corollary 1.10 in [HSV89]). Let R be a
Cohen-Macaulay ring and I an ideal in R of finite projective dimension. Then grI(R) is
reduced if and only if it is torsion-free over R/I.

Proof. Suppose that grI(R) is reduced. The key technical point of the proof is [HSV89,
Theorem 1.2], which says that if Q is a minimal prime of grI(R), then Q ∩ R/I = q/I for
some minimal prime of I. The proof is rather technical, and we will skip it.

Since grI(R) is reduced, every associated prime of grI(R) is minimal. If r is a regular
element in R/I, it is not in any minimal prime of R/I, and thus it cannot be in any associated
prime of grI(R). Therefore, grI(R) is torsion-free over R/I.

Suppose that grI(R) is torsion-free over R/I. Let Q ∈ Ass(grI(R)) and Q ∩ R/I = q/I.
Since grI(R) is torsion-free over R/I, this prime q in R must be in Ass(R/I). But I is radical,
so all of its associated primes are minimal, and thus q is minimal over I, and thus Iq = qq.
Since I has finite projective dimension, so does qq, but then by Theorem 3.70 Rq must be
regular. Therefore, qq is generated by a regular sequence, and by Theorem 7.1, grRP

(RP ) is
a polynomial ring, and thus a domain.

Localization commutes with direct sums, so grqq(Rq) ∼= grIq(Rq), and grI(R)Q must also
be a domain. We started off with Q being any prime Ass(grI(R)), and showed that grI(R)Q
is a domain; we claim that this implies that grI(R) is reduced. Indeed, if grI(R) were
not reduced, then it would have a nonzero associated prime Q, which would contain only
zerodivisors, and grI(R)Q would not be a domain.

Remark 7.6 now gives us the following corollary directly:

Corollary 7.8. Let R be a Cohen-Macaulay ring and I an ideal in R of finite projective
dimension. Then grI(R) is reduced if and only if I(n) = In for all n ⩾ 1.
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7.3 Hochster’s criteria

In the 1970s, Hochster gave criteria for the equality P (n) = P n to hold for all n when P is a
prime ideal. He used this to prove the equality holds for prime ideals generated by regular
sequences, and for ideals of maximal minors of generic (n − 1) × n matrices. He also used
his criterion to give an example of a prime P such that R/P is not Cohen-Macaulay, and
still P (n) = P n for all n. To write the criteria, we need the following definition:

Definition 7.9. Let I = (f1, . . . , fn) be a radical ideal in a reduced noetherian ring R. Set
S := R[x1, . . . , xn]. The ideal Jm(I) are the following ascending chain of ideals in S:

• J0(I) := (0).

• For each m ⩾ 0, Jn+1(I) := (
∑m

i=1 sixi | si ∈ S and
∑m

i=1 sifi ∈ Jn(I)).

Theorem 7.10 (Hochster, [Hoc73]). Let P be a prime ideal in a noetherian domain R. Fix
a set of generators f1, . . . , fn for P , set S := R[x1, . . . , xn], and consider the ascending chain

Jm(I) from Definition 7.9. Let J :=
⋃
m⩾0

Jm. The following are equivalent:

1) P (m) = Pm for all m, and the associated graded ring of RP is a domain.

2) PS + J is a prime ideal.

3) For some m ⩾ 1, PS+Jm is a prime ideal of height n. In this case, PS+Jm = PS+J .

4) There is a prime Q in S of height n such that Q ⊆ PS+J . In this case, Q = PS+J .

5) The element t−1 in the extended Rees algebra R[Pt, t−1] is a prime element.

This was generalized by Li and Swanson to radical ideals [LS06].

Theorem 7.11 (Hochster, [Hoc73], Li–Swanson [LS06]). Let I = (f1, . . . , fn) be a radical
ideal in a reduced noetherian ring R. Set S := R[x1, . . . , xn], and consider the ascending

chain Jm(I) from Definition 7.9. Let J :=
⋃
n⩾0

Jm(I) and U := R \
⋃

P∈Min(I)

P . The following

are equivalent:

1) I(m) = Im for all m, and the associated graded ring grU−1I(U
−1R) is a reduced.

2) IS + J is a radical ideal and U ∩ Z(S/(IS + J)) = ∅.

3) For some m ⩾ 1, IS + Jm is a radical ideal of height n which has the same number of
minimal primes as IS+J , and U∩Z(S/(IS+J)) = ∅. In this case, IS+Jm = IS+J .

4) There is a radical ideal Q ⊆ IS + J in S of height n which has the same number of
minimal primes as IS + J , and such that U ∩Z(S/Q) = ∅. In this case, Q = IS + J .

5) In R′ = R[Pt, t−1], the ideal t−1R[Pt, t−1] is radical and U ∩ Z(S ′/(t−1)) = ∅.
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This sequence Jm(I) can be constant.

Theorem 7.12. Let R be a noetherian ring and let I be an ideal generated by the regular
sequence a1, . . . , an. Then

J1(I) = (xjak − xkaj | 1 ⩽ j < k ⩽ m) = J2 = · · · = J.

Proof. By definition, the generators of J1 are the elements of the form
∑

i sixi where
∑

i siai =
0 in R. These are relations among our generators; but since R/I is resolved by the Koszul
complex on the ai, this means that each relation (s1, . . . , sn) must be in the R-submodule of
Rn generated by the Koszul relations (0, . . . , ai, . . . ,−ak, . . . , 0) with k < j. Thus J1 is also
generated by ajxk − akxj.

Now we claim that J2 = J1, which will imply that Js = J1 for all s ⩾ 2. So consider
a generator

∑
i sixi for J2, which must necessarily come from a relation

∑
i siai ∈ J1. We

can rewrite this last element of J1 using the generators we found for J1, so in the form∑
i siai =

∑
j<k ljk(xjak − xkaj) for some ljk ∈ S. Then

m∑
i=1

(
si −

i−1∑
j=1

ljixj +
m∑

j=i+1

ljixj

)
ai = 0

and thus
m∑
i=1

sixi =
m∑
i=1

(
si −

i−1∑
j=1

ljixj +
m∑

j=i+1

ljixj

)
xi ∈ J1.

Theorem 7.13. Let I be a radical ideal in a noetherian ring R. If I is generated by a regular
sequence, then I(n) = In for all n ⩾ 1.

Proof. Let a1, . . . , am be a regular sequence generating I, and set S = R[x1, . . . , xm] as before.
If Min(I) = {P1, . . . , Pt}, then IS is a radical ideal with minimal primes P1S, . . . , PtS. Each
PiS is a minimal prime over an ideal generated by m elements, which must then have height
at most m, by Krull’s Height Theorem. Moreover, when viewed as elements of S, a1, . . . , am
still form a regular sequence, and thus each PiS has height exactly m.

By Theorem 7.12, J ⊆ IS, so J + IS = IS. Therefore, every minimal prime over the
radical ideal J + IS has height exactly m = ht(I). In order to apply Theorem 7.11, we
need to show that U = R \ P1 ∪ · · · ∪ Pt satisfies U ∩ Z(S/PS) = ∅. This follows from the
isomorphism S/IS ∼= R/I[x1, . . . , xm].

The sequence Ji(I) might not stabilize at J1. To see that, here is a nice example from Li
and Swanson’s paper [LS06]:

Example 7.14. Let k be a field, R = k[y1, y2], and let I = (y21, y1y2, y
2
2). The module of

relations on a1 = y21, a2 = y1y2, a3 = y22 in S = R[x1, x2, x3] is generated by (y2,−y1, 0) and
(0, y2,−y1), so J1 = (y2x1−y1x2, y2x2−y1x3) ⊆ (y1, y2)S. Notice in particular that x1x3−x22
is not in J1, but it is in J2, since

x1a3 − x2a2 = x1y
2
2 − x2y1y2 = y2(x1y2 − x2y1) ∈ J1.



138

7.4 Regular rings of dimension 3

For primes of height 2 in a regular local ring, Huneke showed that P (n) = P n for all n
is in fact equivalent to P being a complete intersection, and that if P is not a complete
intersection, then P (n) ̸= P n for all n ⩾ 2. To prove that, we will use the following fact:

Theorem 7.15 (Hilbert, Burch, [Bur68, Hil90]). Let R be a noetherian local ring and I be
an ideal with pdim(R/I) = 2. Then the minimal free resolution of R/I is of the form

0 // Rn−1 A // Rn B // R // R/I // 0

and there exists a regular element a such that I = aIn−1(A), where In−1(A) is the ideal of
maximal minors of the (n− 1)× n matrix A. In fact, the map B in degree 0 is the row with
(−1)ia times the determinant of the matrix obtained from A by deleting the ith column of A.

Remark 7.16. Notice that if P is a prime ideal and pdim(R/P ) = 2, then in fact Theo-
rem 7.15 says that P is the ideal of maximal minors of some (n− 1)× n matrix, since for a
nonunit, P = aIn−1(A) would be a product of two ideals.

We will also use the following useful observation:

Lemma 7.17. Let (R,m) be a local ring of dimension d, and let P be a prime ideal of height
d− 1. For each n, P (n) = P n if and only if R/P n is Cohen-Macaulay.

Proof. Since R is local and ht(P ) = dim(R)− 1, m is the only potential embedded prime of
P n, so we have P (n) = P n if and only if m ∈ Ass(P n). On the other hand, R/P n is a local
ring with dim(R/P n) = 1, so R/P n is Cohen-Macaulay if and only if depth(R/P n) ̸= 0, or
equivalently, m /∈ Ass(P n).

Notice that the proof also applies to any radical ideal I of pure height dim(R)− 1. And
ideal I has pure height h if all the minimal primes of I have height h.

The key technical point in Huneke’s proof is the following theorem; the proof involves
intersection multiplicities, which we have not discussed.

Theorem 7.18 (Huneke, 1986, Theorem 2.1 in [Hun86]). Let S be a Cohen-Macaulay local
ring and Q be a prime ideal in S such that S/Q is Cohen-Macaulay and SQ is regular.
Suppose that x = x1, . . . , xt is a sequence of elements in S that form a regular sequence on
S and S/Q. Let R = S/(x), and suppose that P = Q/(x) is a prime ideal such that RP is
regular. Then for each n, R/P n is Cohen-Macaulay if and only if R/P n is Cohen-Macaulay.

Taking the previous theorem as fact, we are finally ready to prove Huneke’s result about
regular rings of dimension 3:

Theorem 7.19 (Huneke, 1986, Corollary 2.2 in [Hun86]). Let (R,m) be a regular local ring
of dimension 3 and let P be a prime ideal of height 2 in R. If P is not a complete intersection,
meaning it is not generated by a regular sequence, then P (n) ̸= P n for all n ⩾ 2.
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Proof. Since R is regular, R/P has finite projective dimension, by Theorem 3.70. Since R/P
is a 1-dimensional domain, the maximal ideal must necessarily contain a regular element
(any nonzero nonunit will do), and so in particular depth(R/P ) = 1. By the Auslander–
Buchsbaum formula, pdim(R/P ) = depth(R) − depth(R/P ) = 3 − 1 = 2. By the Hilbert-
Burch Theorem, P is the ideal of maximal minors of some (n−1)×n matrix, where n is the
minimal number of generators of P . When n = 2, P is a complete intersection and P (t) = P t

for all t, so we are interested in the case when n ⩾ 3.
Let X = (xij) be a generic (n−1)×n matrix, and let R := R[X](xij)+m. Set Q = In−1(X)

to be the ideal of (n−1)-minors of X. By construction, S is a regular local ring, and thus SQ

is regular, and Q is a prime ideal. Moreover, it is well-known that S/Q is Cohen-Macaulay.
Notice also that {xij − aij}i,j, where aij are the entries in the matrix A defining our original
ideal P , is a regular sequence – in particular, because each element involves a different xij,
and {xij}i,j is also a regular sequence in S. Moreover, S/Q⊗S R = R/P .

By Lemma 7.17, for each fixed t we have P (t) = P t if and only if R/P t is Cohen-Macaulay.
By Theorem 7.18, R/P t is Cohen-Macaulay if and only if S/Qt is Cohen-Macaulay. We are
trying to show that R/P t is not Cohen-Macaulay when n ⩾ 3 and t ⩾ 2, which we will prove
by showing that S/Qt is not Cohen-Macaulay for all n ⩾ 3 and t ⩾ 2.

Since dim(S/Qt) = dim(S/Q), we only need to prove that depth(S/Qt) < depth(S/Q).
Since S is regular, S/Qt must have finite projective dimension. By the Auslander-Buchsbaum
Formula, depth(S/Qt) < depth(S/Q) is equivalent to pdim(S/Qt) > pdim(S/Q). In [Wey79],
Weyman gave explicit minimal resolutions for S/Qt, and those resolutions show that S/Qt

are never Cohen-Macaulay when t > 1 and n ⩾ 3.

In the proof, we reduced the problem to the Cohen-Macaulayness of powers of certain
ideals of minors, and then we needed to compute the resolutions of the powers of those ideals.
In general, finding resolutions for the powers of an ideal is not easy; the beauty of Huneke’s
idea is that we can reduce to a much simpler case of generic minors, where we can indeed
compute the minimal resolutions of the powers. This can be shown through several different
techniques; for example, it is one of the resolutions obtained by Weyman in [Wey79]. One
can also find these resolutions through the Rees algebra.

Theorem 7.20. Let k be a field, X be a generic (n − 1) × n generic matrix, and consider
the ideal I = In−1(X) of maximal minors of X in R = k[X]. If n > 2, pdim(I t) > pdim(I)
for all t ⩾ 2.

Proof. Let mi be the minor of X corresponding to (−1)i+1 times the determinant of the
matrix obtained by deleting the ith column of X, so that I = (m1, . . . ,mn). As we described
before, the Rees algebra R[It] of I is a quotient of U = R[T1, . . . , Tn], given by the surjection

R[T1, . . . , Tn] // R[It]

Ti
� //mi.

with kernel L, so that R[It] ∼= R[T1, . . . , Tn]/L. By [Hun82, Example 1.1], I is an ideal of
linear type (since it is generated by a d-sequence); this means that L is generated by the
elements of degree 1. These correspond to the relations among generators m1, . . . ,mn of the
original ideal I. But since X is generic, the relations among the generators are precisely

xi,1m1 + · · ·+ xi,nmn = 0
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for each i = 1, . . . , n− 1, and thus

L = L1 = (xi,1T1 + · · ·+ xi,nTn | 1 ⩽ i ⩽ n− 1) .

Notice moreover that each of the generators for L above involve completely different variables
xi,j, and thus in fact they form a regular sequence. Therefore, we can resolve R[It] ∼= U/L
by the Koszul complex on the regular sequence

F1 := x1,1T1 + · · ·+ x1,nTn, . . . , Fn−1 := xn−1,1T1 + · · ·+ xn−1,nTn

with n− 1 elements, which has the form

C = 0 // U(−(n− 1)) // U(−(n− 2))n−1 // · · · // U(−1)n−1 // U // 0.

n − 1 n − 2 · · · 1 0

In fact, this is a graded resolution of R[It], and each differential is a map of degree 1. For
each fixed degree d, Ud is the free R-module generated by the monomials in T1, . . . , Tn of
degree d, so if we break the resolution into strands in each fixed degree, we will obtain free
resolutions for the degree d piece of R[It], which is precisely Id. The linear strand in degree
d is thus a free resolution for Id over R.

When we read off the degree d strand of C, let’s call it Cd, in homological degree i we
have

U(−i)d = Ud−i = R{T a1
1 · · ·T an

n | a1 + · · ·+ an = d− i} =

{
R(

d−i+n−1
n−1 ) if i ⩽ d

0 if i > d.

The nonzero entries in the matrices in the resolution C are all of the form ±Fi. In Cd, the
nonzero entries in each matrix are induced by multiplication by ±Fi, and each basis element
in degree i ⩽ d corresponds to a monomial of degree d− i on T1 · · ·Tn. Since

FiT
a1
1 · · ·T an

n =
n∑

j=1

xi,jT
a1
1 + · · ·+ T

aj+1
j · · ·+ xi,nTn,

the nonzero entries in the matrices in Cd are of the form ±xi,j. We conclude that Cd is a
minimal free resolution for Id.

In particular, we can now compute the projective dimension of Id for each d. By the
description above, we see that the module in Cd in homological degree i is zero unless
i ⩽ min{d, n − 1}. We conclude that pdim(I) = min{1, n − 1} = 1, and for all d ⩽ 2,
pdim(Id) > 1 = pdim(I), as desired.

Notice that for any ideal J in a ring R, pdim(R/J) = pdim(J) + 1, so the statement of
Theorem 7.19 is equivalent to pdim(R/I t) > pdim(R/I) for all t ⩾ 2.

In the proof of Theorem 7.19, we actually used a version of Theorem 7.20 where k is
replaced by a ring R: if X be a generic (n − 1) × n generic matrix, and I = In−1(X) is
the ideal of maximal minors of X in S = R[X], then pdim(I t) > pdim(I) for all t ⩾ 2.
When R contains a field k, this is an easy corollary of Theorem 7.20: given a minimal free
resolution for the ideal of minors of the generic matrix over k, the functor −⊗k R is exact,
since R is a flat k-module, and thus we obtain a free resolution over R. Since in this case
the entries in the differentials of the resolutions over k involve only the variables xi,j, the
resulting resolutions over R are still minimal. In fact, the same reason implies that we still
get minimal resolutions when we localize and m+(xi,j), as did in the proof of Theorem 7.19.
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7.5 Higher dimension

When R is a regular local ring of dimension 3, we now know everything there is to know
about the equality of symbolic and ordinary powers of prime ideals, thanks to Huneke’s
Theorem 7.19:

• If ht(P ) = 1 or ht(P ) = 3, then P (n) = P n for all n.

• If htP = 2 and P is a complete intersection, then P (n) = P n for all n.

• If ht(P ) = 2 and P is not a complete intersection, then P (n) ̸= P n for all n ⩾ 2.

We can view this as a result about minimal number of generators: if P has height 2 and
the minimal number of generators of P is 3 or more, then P (n) ̸= P n for all n ⩾ 2. Or we
can view this as saying that is sufficient to test the equality P (2) = P 2: if it holds, then
P (n) = P n for all n ⩾ 2, otherwise, P (n) ̸= P n for all n ⩾ 2.

We saw in Example 2.12 that the equality I(n) = In can hold for low values of n without
holding for all n; this can happen even over a regular ring. Nevertheless, under some rea-
sonable conditions it is sufficient to reduce the test of equality up to n = dim(R) − 1. To
state such a result, we need a few definitions.

Definition 7.21. Let I be an ideal in a noetherian local ring R. We say I is perfect if
pdim(R/I) = depthI(R).

So an ideal is perfect if the largest length of a regular sequence inside I coincides with
the projective dimension of R/I.

Remark 7.22. When R is Cohen-Macaulay, Theorem 3.103 says that the maximal length
of a regular sequence inside I is precisely ht(I), and thus an ideal I is perfect ideal if
and only if it satisfies pdim(R/I) = ht(I). The Cohen-Macaulay assumption also gives
ht(I) = dim(R)− dim(R/I). On the other hand, pdim(R/I) = depth(R)− depth(R/I), by
the Auslander–Buchsbaum formula, so over a Cohen-Macaulay ring, an ideal I is perfect if
and only if

depth(R)− depth(R/I) = dim(R)− dim(R/I) ⇔ dim(R/I) = depth(R/I),

meaning that R/I is Cohen-Macaulay.

Definition 7.23. We say a ring I is generically a complete intersection if IP is generated
by a regular sequence for all P ∈ Min(I).

If I is a radical ideal in a regular ring, then for all P ∈ Min(I), RP is a regular local
ring with maximal ideal IP = PP , and thus IP is generated by a regular sequence, by Theo-
rem 3.70. Therefore, any radical ideal in a regular ring is generically a complete intersection.

The remainder of this section will contain several references to Gorenstein rings. While
we did not discuss these in detail, they are a very important class of Cohen-Macaulay rings
that includes all complete intersections, and in particular all regular rings. For more on
Gorenstein rings, see [BH93].
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Theorem 7.24 (Morey, 1999 [Mor99]). Let I be a perfect ideal in a noetherian local ring R,
and suppose that I is generically a complete intersection. Assume that either

• ht(I) = 2 and R/I is Cohen-Macaulay, or

• ht(I) = 3 and R/I is Gorenstein.

If I(n) = In for all n ⩽ dim(R)− 1, then I(n) = In for all n ⩾ 1. Moreover, if I(n) = In

for all n, then µ(I) ⩽ dim(R)− 1.

Remark 7.25. We claim that Theorem 7.24 recovers Huneke’s Theorem 7.19. Huneke’s
theorem is about height 2 primes in a 3-dimensional regular local ring, which as we discussed
above are all automatically generically a complete intersection. Moreover, if P is such a
height 2 prime, then as we discussed in the previous section, R/P is a 1-dimensional Cohen-
Macaulay ring, and thus P is perfect. Finally, the condition I(n) = In for all n ⩽ dim(R)−1
is now equivalent to I(2) = I2. The discussion in the beginning of this section should now
make it clear that indeed, Huneke’s theorem coincides with Morey’s in these circumstances.

One of the main points is that these conditions imply that I is strongly Cohen-Macaulay,
which is a technical but very nice condition that in short allows one a certain amount of
control over the powers of I.

Definition 7.26. An ideal I is strongly Cohen-Macaulay if the Koszul homology modules
Hi(f), where f = f1, . . . , fn is a generating set for I, are Cohen-Macaulay.

In fact, the conditions ht(I) = 3 and R/I is Gorenstein imply that I is licci. Linkage is
a vast, important topic, which we will not discuss in detail; however, here is a definition.

Definition 7.27. Two ideals I and J in a Cohen-Macaulay ring R are said to be linked
if there is a regular sequence a = a1, . . . , ag such that ((a) : I) = J and ((a) : J) = I, and
we write I ∼ J to denoted that I and J are linked. If there exists a sequence of ideals
I ∼ I1 ∼ I2 ∼ · · · ∼ In ∼ J , we say that I is in the linkage class of J . Finally, I is licci
if it is in the linkage class of a complete intersection.

Theorem 7.28 (Huneke–Ulrich, 1987, Corollary 2.9 in [HU89]). Let R be a regular local
ring and P a prime ideal in R which is not a complete intersection. If P is licci and
dim(R/P ) = 1, then the following holds:

1) If R/P is not Gorenstein, then P (n) ̸= P n for all n ⩾ 2.

2) If R/P is Gorenstein, then P (2) = P 2, but P (n) ̸= P n for all n ⩾ 3.

Ultimately, the equality I(n) = In is about what primes are associated to In for each n,
which is a statement about depth: I(n) = In if and only if

depth ((R/In)P ) > 0 for every prime P ⊇ I, P /∈ Min(I).

As we discussed in Section 6.3, computing the depth of the powers of a given ideal is very
challenging. However, there are lower bounds on depth(R/In) which can be exploited to give
sufficient conditions for equality. For more on this, see Ulrich’s work in [Ulr94, Corollary
2.13].
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7.6 The Packing Problem

When I is a squarefree monomial ideal, there is a beautiful conjecture, first made by Conforti
and Cornuéjols in the context of max-flow min-cut properties, which was reworked [GVV07,
GRV05a] into a commutative algebra statement that proposes an equivalent condition to the
equality I(n) = In for all n. To state the conjecture, we first need a few definitions.

Definition 7.29. A squarefree monomial ideal I of height c is König if there exists a regular
sequence of monomials in I of length c.

Remark 7.30. Since the polynomial ring R = k[x1, . . . , xd] over a field k if Cohen-Macaulay,
every squarefree monomial ideal I of height c does indeed contain a regular sequence of length
c. However, there might be no such regular sequence consisting of only monomials.

Lemma 7.31. Let k be a field and R = k[x1, . . . , xd]. A sequence of monomials f1, . . . , fn
is regular if and only if there is no variable xj dividing two or more monomials fi.

Proof. Since monomials are homogenous elements, by Corollary 3.45 the order of the fi does
not matter, so we can reduce to proving that fn is regular on R/(f1, . . . , fn−1) if and only if
there is no variable xj and no i < n such that xj divides fi and fn.

In general, for any monomials f1, . . . , fn the minimal monomial generating setG(f1, . . . , fn)
is a subset of {f1, . . . , fn}. If one of the fi is in the ideal generated by the remaining ones, then
f1, . . . , fn−1 is not a regular sequence and there are variables in common among f1, . . . , fn,
so we can assume without loss of generality that fi /∈ (fj | i ̸= j) for all i.

By the proof of Theorem 5.13, the associated primes of a monomial ideal I with G(I) =
(f1, . . . , fn) are generated by subsets of the variables appearing in f1, . . . , fn, and every vari-
able appearing in some fi must be a generator of at least one associated prime of (f1, . . . , fn).
Therefore, the monomials in the union of the associated primes of I are the monomials in R
that are multiples of at least one of the variables appearing in f1, . . . , fn.

By Theorem 1.45, fn is regular on R/(f1, . . . , fn−1) if and only if fn is not in the union of
the associated primes of (f1, . . . , fn−1). We conclude that fn is regular on R/(f1, . . . , fn−1)
if and only if none of the variables appearing in f1, . . . , fn−1 appears in fn.

We can now rephrase our definition of König: a squarefree monomial ideal I of height c
is König if and only if there exist c monomials in G(I) with no variables in common.

Example 7.32. The ideal I = (xy, xz, yz) has height 2, and it contains regular sequences
of length 2, such as xy, xz + yz. However, it is not König, since every two generators have a
common variable.

In contrast, the ideal J = (xy, xz) is König, since it has height 1, and xy is a regular
sequence of length 1.

Definition 7.33. Let I be a squarefree monomial ideal in k[x1, . . . , xd]. We say I is packed
if every ideal obtained from I by setting any number of variables equal to 0 or 1 is König.

Notice we are also allowed to do nothing to some or all of the variables. In particular,
any ideal that is not König cannot be packed. Notice moreover that setting a variable xi
equal to 0 is the same as looking at the image of I in R/(xi); setting a variable equal to 1
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corresponds to looking at the image of I in the localization Rxi
. The ideals obtained from I

by localizing at a collection of the variables, quotienting by an ideal generated by variables,
or a combination of the two, are called minors of I.

Example 7.34. We saw in Example 7.32 that I = (xy, xz, yz) is not König, so it is also not
packed.

We also saw that I = (xy, xz) is König. Here are the ideals we can obtain from I:

• Any option that involves x = 0 leads to (0), which is König for trivial reasons.

• If we set x = 1, we end up with (y, z), which is önig. If we further set y or z equal to
1 or 0 we end up with R, (y), (z), or (0), all of which are König.

• If we do not do anything to x, y and z have a symmetric role, so up to change of
variables, we can end up with (x), (xy), or (0), all of which are König.

Therefore, (xy, xz) is a packed ideal.

Here is the commutative algebra version of Conforti and Cornuéjols’ conjecture about
max-cut min-flow properties:

Conjecture 7.35 (Packing Problem). A squarefree monomial ideal I satisfies I(n) = In for
all n if and only if I is packed.

One implication is relatively easy. To do that, we first need a lemma.

Lemma 7.36. Let I be a squarefree monomial ideal. The property I(n) = In for all n is
preserved by setting any variables equal to 1 or 0.

Proof. We will write I(xi = 0) or I(xi = 0, xj = 1) to indicate the ideal obtained from I by
setting the corresponding variables equal to the given variables.

To prove our claim, let I = (m1, . . . ,mn), and let P1, . . . , Ps be the minimal primes of
I, so that I = P1 ∩ · · · ∩ Ps. We will first show that I(xi = a) = P1(a) ∩ · · · ∩ Ps(a). In
the proof of Theorem 5.13, we showed that the minimal components can be obtained via
the following process: given (f1, . . . , fn), if f1 = gh with gcd(g, h) = 1, then (f1, . . . , fn) =
(g, f2, . . . , fn)∩(h, f2, . . . , fn). Since P1, . . . , Ps are obtained from I by successive applications
of this process, it is sufficient to show that

(f1, . . . , fn)(xi = a) = (g, f2, . . . , fn)(xi = a) ∩ (h, f2, . . . , fn)(xi = a).

If xi does not divide f1, the statement is clear, so we might as well assume that g = xdi g
′

and xi does not divide g
′ nor h. When a = 0,

(f1, . . . , fn)(xi = 0) = (f2, . . . , fn)(xi = 0)

and

(g, f2, . . . , fn)(xi = 0) = (f2, . . . , fn)(xi = 0), (h, f2, . . . , fn)(xi = 0) = (h)+(f2, . . . , fn)(xi = 0),
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so
((g, f2, . . . , fn)(xi = 0)) ∩ ((h, f2, . . . , fn)(xi = 0))

= (f2, . . . , fn)(xi = 0) ∩ ((h) + (f2, . . . , fn)(xi = 0))

= (f2, . . . , fn)(xi = 0)

When a = 1,
(f1, . . . , fn)(xi = 1) = (g′h) + (f2, . . . , fn)(xi = 1)

and
((g, f2, . . . , fn)(xi = 1)) ∩ ((h, f2, . . . , fn)(xi = 1))

= ((g′) + (f2, . . . , fn)(xi = 1)) ∩ ((h) + (f2, . . . , fn)(xi = 1))

= (g′h) + (f2, . . . , fn)(xi = 1).

This shows that if Min(I) = {P1, . . . , Ps}, then I(xi = a) = P1(xi = a) ∩ · · ·Ps(xi = a).
Now note that setting a variable equal to 1 or 0 commutes with taking powers, and since
I(n) = P n

1 ∩ · · · ∩ P n
s , we conclude that

I(xi = a)(n) = I(n)(xi = a).

Therefore, the equality I(n) = In is preserved by setting variables equal to 0 or 1.

Theorem 7.37. Let I be a squarefree monomial ideal. If I(n) = In for all n, then I is
packed.

Proof. By Lemma 7.36, the property I(n) = In for all n is preserved by setting any variables
equal to 1 or 0. This reduces the problem to showing that if I(n) = In for all n then I must
be König. After setting all the variables that do not divide any minimal monomial generator
of I equal to 0, we may as well assume that every variable does indeed appear in at least
one of the monomial generators of I; say that the ring is now k[x1, . . . , xd]. Therefore, by
Remark 5.19 we know that every variable appears as a generator of some minimal prime of
I. Since I has height c, every minimal prime P of I has height at least c, so x1 · · ·xd ∈ P c.
Therefore, since

I(c) =
⋂

P∈Min(I)

P c,

by Corollary 5.20, we conclude that x1 · · ·xd ∈ I(c). By assumption, I(c) = Ic, which means
that there exist monomials m1, . . . ,mc ∈ I such that m1 · · ·mc = x1 · · ·xd. By construction,
these monomials involve disjoint sets of variables, and thus I is König.

Therefore, to solve the Packing Problem one needs to prove that any packed ideal must
satisfy I(n) = In for all n. This is, however, an open question.

For the case of edge ideals, however, the Packing Problem is solved. First, we note that
the conditions that the edge ideal of the graph G is König or packed can be rephrased in
terms of the graph.

Definition 7.38. Let G be a finite simple graph. The covering number of G is the
smallest number of vertices in any minimal vertex cover of G. A set of edges F of G is called
independent if no two edges in F share a common vertex. The independence number
of G is the maximum number of independent edges.
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It turns out (see [GRV09], Section 2 and Proposition 2.2) that if I is the edge ideal of
a graph G, the covering number of G is equal to the height of G, while the independence
number of G is equal to the monomial grade of I, which is the largest length of a regular
sequence of monomials in I. One then defines a König graph as a graph G whose covering
number and independence number coincide, and it is immediate from these facts that G is
König if and only if I(G) is König.

Definition 7.39. A finite simple graph G is bipartite if there is a partition its vertex set V
in two disjoint subsets V1 ∪ V2 such that every edge in G connects a vertex in V1 to a vertex
in V2.

Theorem 7.40 (Simis–Vasconcelos–Villarreal, 1994, Theorem 5.9 in [SVV94]). Let I = I(G)
be the edge ideal of a graph G. Then I(n) = In for all n if and only if G is bipartite.

Note that in their paper, instead of I(n) = In for all n, Simis, Vasconcelos, and Villarreal
write the condition that I is normally torsion free, which means that Ass(I t) = Ass(I) for
all t. As we know, this is equivalent to the equality of symbolic and ordinary powers.

In [GRV05b, Proposition 4.27], Gitler, Reyes, and Villarreal show that if I is the edge
ideal of a graph, G is bipartite if and only if I is packed, which completely solves the Packing
Problem in this case.

For monomial ideals in general, the question of equality and the packing problem in
particular remain open, though as we will see in the next section, Montaño and Núñez
Betancourt have recently given a sufficient condition for monomial ideal to satisfy I(n) = In

for all n.
The Packing Problem originated in the context of optimization. To describe the corre-

sponding combinatorial problem, we need to discuss clutters.

Definition 7.41. A clutter C = (V,E) is a collection of subsets E of V = {v1, . . . , vn} such
that every two elements of E are incomparable with respect to inclusion. The incidence
matrix of a clutter C is an m × n matrix M(C) where each row corresponds to a vertex
vi ∈ V and each column corresponds to an edge e ∈ E(V ), and in the entry corresponding
to the vertex v and the edge e we have a 1 or 0 according to whether or not v ∈ e.

One can define the covering number and independence numbers of a clutter just as above,
and extend the definition of König to a hypergraph.

Definition 7.42. Let C be a clutter with vertices V = {v1, . . . , vn} and edges E(C). Given
a field k, the edge ideal of C is the monomial ideal in k[x1, . . . , xn] given by

I(C) :=

(∏
vi∈e

xi | e ∈ E

)
.

The restriction that the edges should be incomparable automatically implies that the
monomials corresponding to each edge of C form a minimal generating set for I(C), and by
construction, I(C) is a squarefree monomial ideal. On the other hand, given a squarefree
monomial ideal I in n variables, one can define a clutter C on {v1, . . . , vn} with edges

E(C) = {{vi1 , . . . , vis} | xi1 · · ·xij ∈ G(I)}.
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Since the minimal generators of I must be incomparable, this gives us a clutter, and thus
we have a correspondence between clutters and squarefree monomial ideals.

We can also think of a clutter as the collection of facets of a simplicial complex. From
that perspective, the edge ideal of a clutter is the facet ideal of the corresponding simplicial
complex.

Definition 7.43. Let C = (V,E) be a clutter with n vertices V = {v1, . . . , vn} and incidence
matrix A. Given any c ∈ Zn

⩾0, the Strong Duality Theorem, which is a well-known result in
Optimization, says that dual linear programs have the same optimal solution:

min{c · x | x ∈ Rn
⩾0,M

tx ⩾ 1m} = max{1m · y | y ∈ Rm
⩾0,My ⩽ c}.

Here 1n denotes the vector (1, . . . , 1) ∈ Zn. We say that C has the max-flow min-cut
property (MCMF) if for every c ∈ Zn

⩾0 there exist integer solutions x ∈ Zn
⩾0 and y ∈ Zm

⩾0

to the linear programs above.

It turns out that a clutter has the MFMC property if and only its edge ideal I satisfies
I(n) = In for all n ⩾ 1 (see [GRV05b, Corollary 3.14] and [HHTZ08, Corollary 1.6]).

Definition 7.44. A clutter C has the packing property if every minor of I(C) is König.

The Conjecture of Conforti and Cornuéjols is that C has the MFMC property if and only
if it has the packing property.

7.7 A sufficient condition for monomial ideals

Morey’s Theorem 7.24 gives an answer to the following question of Huneke’s in a nice setting,
though the general question is open:

Question 7.45. Let I be an ideal in a noetherian ring R. Is there a constant d such that if
I(n) = In for all n ⩽ d, then I(n) = In for all n ⩾ 1?

Since Brodmann showed that Ass(In) stabilizes, the naive answer is yes — one can take
d to be the stability index such that Ass(In) = Ass(Id) for all n ⩾ d. But in practical terms,
this stability value is unknown, and indeed should be n = 1 when the equality I(n) = In

holds for all n ⩾ 1. So we should interpret the question as asking for a simple, computable
invariant of I, which does not require knowledge of the associated primes of the powers of I.

When I is a monomial ideal, such an invariant does exist, thanks to a recent theorem of
Jonathan Montaño and Luis Núñez Betancourt [MnNnB21]. The tools they use to do this
are inspired by standard prime characteristic tools which can be adapted to monomial ideals
in any characteristic.

Definition 7.46. Let R = k[x1, . . . , xd] be a standard graded polynomial ring over the field

k. For each m ⩾ 1, let R1/m := k[x
1/m
1 , . . . , x

1/m
d ], and let Φm : R1/m → R be the map

induced by

Φm(x
a/m) =

{
xa/m if ai ≡ 0 (mod m)
0 otherwise.

where a ∈ Zd
⩾0.
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Remark 7.47. When we restrict Φm to R, we get the identity map on R. Therefore, this
map Φm is a splitting of the inclusion map R ⊆ R1/m, and R is isomorphic to a direct
summand of R1/m.

Remark 7.48. Let I be a squarefree monomial ideal with minimal primes P1, . . . , Ps. Since
Φm commutes with intersections of ideals, for all n and m we have

I(n) = P n
1 ∩ · · · ∩ P n

s

= (P nm
1 )1/m ∩ · · · ∩ (P nm

s )1/m

= (P nm
1 ∩ · · · ∩ P nm

s )1/m

=
(
I(nm)

)1/m
.

Lemma 7.49 (Lemma 3.3 in [MnNnB21]). Let I be a squarefree monomial ideal. For all
n ⩾ 0, m ⩾ 1, and 1 ⩽ j ⩽ m, we have

Φm

(
(I(nm+j)1/m

)
= I(n+1).

Proof. By Remark 7.48,

I(n+1) ⊆
(
I((n+1)m)

)1/m ⊆
(
I(mn+j)

)1/m
.

On the other hand, Φm is an R-linear map, and thus it preserves inclusions, and since it is
the identity on R, we must have

I(n+1) = Φm

(
I(n+1)

)
⊆ Φm

((
I(mn+j)

)1/m)
.

It remains to show that Φm

((
I(mn+j)

)1/m) ⊆ I(n+1). First, we show the claim when I is

prime, which implies that I is generated by variables. Without loss of generality, we can

assume that I = (x1, . . . , xs) for some s. As a k-vector space,
(
I(mn+j)

)1/m
is generated by{

(xa)1/m | a1 + · · ·+ as ⩾ nm+ j
}
.

Given such an element (xa)1/m ∈
(
I(mn+j)

)1/m
, if Φm((x

a)1/m) ̸= 0, then we must have both
a1 + · · · + as ⩾ nm + j and that each ai is a multiple of m. Thus bi =

ai
m

is an integer for
each i, and

b1 + · · ·+ bs =
1

m
(a1 + · · ·+ as) ⩾ n+

j

m
,

but since all the bi are integers and j ⩾ 1, we must have

b1 + · · ·+ bs ⩾ n+ 1.

Therefore, (xa)1/m ∈
(
xb
)
⊆ I(n+1). Since this holds for all xa that is not sent to 0 by Φm,

we conclude that Φm

((
I(mn+j)

)1/m) ⊆ I(n+1).
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Now consider any radical squarefree monomial ideal I, and let P1, . . . , Ps be its minimal
primes. As in Remark 7.48,(

I(mn+j)
)1/m

=
(
P

(mn+j)
1

)1/m
∩ · · · ∩

(
P (mn+j)
s

)1/m
,

so

Φm

((
I(mn+j)

)1/m)
= Φm

((
P

(mn+j)
1

)1/m
∩ · · · ∩

(
P (mn+j)
s

)1/m)
⊆ P

(n+1)
1 ∩ · · · ∩ P (n+1)

s

= I(n+1).

Lemma 7.50 (Theorem 4.5 in [MnNnB21]). Let I be a squarefree monomial ideal. The
following are equivalent:

1) Φm((I
nm+1)

1/m
) ⊆ In+1 for all m ⩾ 2 and all n ⩾ 1.

2) Φm((I
nm+1)

1/m
) ⊆ In+1 for some m ⩾ 2 and all n ⩾ 1.

3) I(n) = In for all n ⩾ 1.

Proof. The fact that 1) implies 2) is obvious. By Lemma 7.49,

Φm(
(
I(nm+1)

)1/m
) ⊆ I(n+1)

holds for all m and all n, so if we assume that all symbolic powers are the powers, this
simplifies to 1). Thus we only need to show that 2) implies 3).

Consider the ideal J in the Rees algebra R[It] given by

J := IR[It] =
⊕
n⩾0

In+1tn ⊆ R[It].

Since grI(R)
∼= R[It]/J , the ideal J is radical if and only grI(R) is reduced. We will show

that J is radical, which by Corollary 7.8 implies I(n) = In for all n ⩾ 1.
To show that J is radical, consider a monomial f ∈ In such that ftn ∈

√
J . Fix e such

that (ftn)m
e ∈ J , which must necessarily exist since (ftn)s ∈ J for all s≫ 0.

We can extend Φm naturally to R[t], which induces a map on R[It]1/m := ⊕In/mtn/m
with

Φ(r1/mtn/m) =

{
Φ(r1/m)tn/m if m divides n
0 otherwise

Then

fme−1

tnm
e−1

= Φm

(
(fme

tnm
e

)1/m
)

∈ Φm

((
Inm

e+1tnm
e)1/m)

since fme

tnm
e ∈ Jnme = Inm

e+1

= Φm

((
Inm

e+1
)1/m)

tnm
e−1

⊆ Inm
e−1+1tnm

e−1

by assumption

⊆ J.

If we keep repeating the argument, in a sort of reverse induction, we eventually get to
ftn ∈ J . This shows that J is radical, and as described above this completes the proof.
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Theorem 7.51 (Montaño – Núnez Betancourt, Theorem 4.8 in [MnNnB21]). Let I be a

squarefree monomial ideal. If I(n) = In for all n ⩽
⌈
µ(I)
2

⌉
, then I(n) = In for all n ⩾ 1.

Proof. Set µ := µ(I). First, we are going to show that

Φ2

((
I2n+1

)1/2) ⊆ In+1

for all n. By Lemma 7.49,

Φ2

((
I2n+1

)1/2) ⊆ Φ2

((
I(2n+1)

)1/2) ⊆ I(n+1).

When n <
⌈
µ(I)
2

⌉
, I(n+1) = In+1, so

Φ2

((
I2n+1

)1/2) ⊆ In+1.

Now fix n ⩾
⌈
µ(I)
2

⌉
, and note that 2n + 1 ⩾ µ(I) + 1. Since I2n+1 is generated by elements

of the form
fa1
1 · · · faµ

µ

with a1 + · · ·+ aµ ⩾ 2n+1 > µ(I), necessarily there exists an i such that ai ⩾ 2. Therefore,
the power I2n+1 is generated by elements of the form fg2, where g ∈ I and f ∈ I2n−1 are
monomials. Note that (fg2)1/2 = f 1/2g and

Φ2

(
(fg2)1/2

)
= Φ2(f

1/2)g,

so
Φ2

((
I2n+1

)1/2)
= Φ2

((
I2n−1

)1/2)
I.

By induction, we may assume that Φ2

(
(I2n−1)

1/2
)
⊆ In, so

Φ2

((
I2n+1

)1/2)
= Φ2

((
I2n−1

)1/2)
I ⊆ InI = In+1.

By Lemma 7.50, this implies I(n) = In for all n ⩾ 1.



Chapter 8

A crash course on prime
characteristic tools

The subject of prime characteristic commutative algebra is vast and interesting in its own
right. Here we cover only a tiny corner of the subject, with an eye towards proving theorems
about symbolic powers. For more on characteristic p, there are a few sets of lecture notes I
strongly recommend:

• Karen Smith’s lecture notes;

• Karl Schwede’s lecture notes;

• Mel Hochster’s lecture notes (of which there are multiple versions, all accessible on his
website);

• Linquan Ma and Thomas Polstra’s notes.

These short notes draw from all those sources.

8.1 The Frobenius map

The advantages of being in prime characteristic p are many, and they all start with the
Frobenius map.

Definition 8.1. Let R be a ring of prime characteristic p. The Frobenius map on R is
the ring homomorphism F : R → R given by F (x) = xp.

The fact that this is a ring homomorphism is a simple exercise; the crucial point is that
in characteristic p, (a+ b)p = ap + bp, a fact often known as the Freshman’s Dream.

Many properties ofR are encoded in the Frobenius map. Depending on the circumstances,
we may think of R and its relationship with the Frobenius map in different ways, which help
us identify those nice properties.

We can view R as an R-module over itself with a new structure, the one induced by
the Frobenius map F , via restriction of scalars. This can be confusing, since the underlying
abelian group is R but the R-module structure is not the usual one, so we denote this module
by F∗(R).
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Notation 8.2. The R-module on the abelian group R with R-module structure

s · r := F (s)r = spr

is denoted by F∗. More generally, the R-module on the abelian group R with R-module
structure given by

s · r := F e(s)r = sp
e

r

is denoted by F e
∗ (R).

In this notation, the iterated Frobenius map F e : R → F e
∗ (R) is an R-module homomor-

phism.
We may also think of the Frobenius map as a functor from R-modules to R-modules,

where an R-module M is taken to the R-module F∗(M) with the same underlying abelian
group M but with R-action given by

rF∗(m) = F (r)m = rpm.

This is the restriction of scalars functor induced by F . Note that this is an exact functor,
since it is the identity at the level of abelian groups.

When R is a reduced ring, we may also consider the subring of R of peth powers, denoted

Rpe := {rpe | r ∈ R},

which is the image of the ring homomorphism given by the iterated Frobenius map F e : R →
R. This map then factors through the inclusion Rpe ⊆ R, so one may sometimes identify F
with this inclusion.

Finally, when R is a domain, one may fix an algebraic closure of the fraction field of R,
and consider the subring of peth roots of elements of R:

R1/pe := {r1/pe | r ∈ R}.

This ring R1/pe is the inspiration for the rings used by Monataño and Núñez Betancourt that
we discussed in Section 7.7. The Frobenius map on R1/pe has image R ⊆ R1/pe , so we can
identify the Frobenius map with the inclusion R ⊆ R1/pe .

Ultimately, these three different points of view are all equivalent:

• The structure of F e
∗ (R) as an R-module.

• The structure of R1/pe as an R-module.

• The structure of R as an Rpe-module.

Each perspective might be more or less convenient depending to the context.

Definition 8.3. Let I be an ideal in a ring R of prime characteristic p. The eth Frobenius
power of I is the ideal

I [p
e] :=

(
fpe | f ∈ I

)
.
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This is the image of I via the Frobenius map. Note that F e
∗
(
I [p

e]
)
= IF e

∗ (R).

The first thing one may ask about the module structure induced by the Frobenius map
is whether it is finitely generated.

Definition 8.4. Let R be a ring of prime characteristic p. We say R is F -finite if F∗(R) is
a finitely generated R-module.

Example 8.5. If k is a perfect field, then k is an F -finite ring. Therefore, any finitely
generated algebra over a perfect field is an F -finite ring.

There are many conditions one might impose on the Frobenius map — or equivalently,
on the R-module structure of F e

∗ (R) — which are collectively known as F -singularities.
Ultimately, F -singularities detect how singular (read: not nice) the ring is. Some of these
conditions are not new, but old conditions rephrased in terms of Frobenius.

Lemma 8.6. R is reduced if and only if the Frobenius map is injective.

Proof. If R is reduced, then there are no nilpotent elements. In particular, for any r ∈ R,
F (r) = rp ̸= 0 unless r = 0, so F is injective.

Conversely, supposed F is injective, and let r ∈ R. If r is nilpotent, then rn = 0 for some
n. Let e be such that pe > n. Then F e(r) = rp

e
= rnrp

e−n ∈ (rn) = (0). But F is injective,
and thus so is F e, so we must have r = 0.

We note that there is a type of F -singularity called F -injective, and it does not mean
reduced — more precisely, it does not mean that F is injective.

One of our main goals is to prove Theorem 9.13, and for that we will be focusing on
regular rings of prime characteristic. One of the main facts we will need is that over a
regular ring, the Frobenius map is flat. This is also one of the points where the assumption
that we are working over a regular ring is crucial: the flatness of Frobenius characterizes
regular rings.

Theorem 8.7 (Kunz, 1969 [Kun69]). If R is a reduced local ring of prime characteristic p.
Then R is regular if and only if F e

∗ (R) is a flat R-module for some e.

When R is a noetherian local ring, any finitely generated flat R-module must be free.
Therefore, if R is F -finite, Kunz’s theorem says that R is regular if and only if F e

∗ (R) is free.

Example 8.8. Let k be a perfect field and let R = k[x1, . . . , xd]. Then R is the free module
over Rp given by ⊕

0⩽ai⩽p−1

Rp · xa11 · · ·xadd .

Notice that this is equivalent to saying that F∗(R) is a free R-module. More generally, for
any e ⩾ 1,

R =
⊕

0⩽ai⩽pe−1

Rpe · xa11 · · ·xadd .
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8.2 Splittings

In prime characteristic, we can measure how far away the ring is from being regular by asking
how far F e

∗ (R) is from being free.

Definition 8.9. Let R be a ring of prime characteristic p. We say R is F-split if the
Frobenius map splits as a map of R-modules, meaning that there exists an R-module map
β, called a splitting such that

R
F
// F∗(R)

β

zz

β ◦ F = idR.

The concept of a split map is very important in characteristic p commutative algebra.
The fact that the inclusion map f : A→ B splits is equivalent to asking that if C = coker f
and g denotes the quotient map B → C, then the short exact sequence with

A
f
// B

g
// C // 0

splits. There is a very well-known result in homological algebra (the Splitting Lemma) which
says that the sequence splits if and only if B ∼= A ⊕ coker f , which happens if and only if
there is a map β : C → B such that g ◦ β = idC .

Remark 8.10. Any homomorphism of R-modules β ∈ HomR(F∗(R), R) such that β(1) = 1
is a splitting of the Frobenius map, since by R-linearity

β(F (r)) = β(rF (1)) = rβ(F (1)) = rβ(1) = r

for all r ∈ R.

We will make use of the fact that splitting is a local property, which we explain in detail
below.

Remark 8.11. Let M
f−→ N be a map of finitely generated R-modules, where R is a

noetherian ring. We claim that this map splits if and only if the induced map fP :MP → NP

splits for all primes P ; in fact, it is sufficient to consider whether fm splits for maximal
ideals m. One implication is immediate: if the map splits, then the localization of a splitting
induces a splitting on the localization.

To prove the converse, we first note a general fact about split exact sequences: a short
exact sequence

A
f
// B

g
// C // 0

splits if and only if there exists β ∈ HomR(C,B) such that g ◦ β = idQ, which is equivalent
to saying that idQ is in the image of the induced map

HomR(C,B)
g∗−→ HomR(C,C).
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Now we ready to show that splitting is a local property. Suppose that f does not splits,
and let Q be the cokernel of f , so that

0 //M // N // Q // 0

is a short exact sequence. We claim that there exists a maximal ideal m such that

0 //Mm
// Nm

// Qm
// 0

does not split. Let
C := coker (HomR(Q,M) → HomR(Q,Q)) .

Note that C is a quotient of HomR(Q,Q), so let g denote the image of idQ in C. Since
the original sequence does not split, g ̸= 0. Therefore, annR(g) ̸= R, and thus we can
find a maximal ideal m ⊇ annR(g). Since all our modules are finitely generated and R is
noetherian, localization commutes with Hom, and since localization is exact and HomR(Q,−)
is left exact, we obtain the following exact sequence:

0 // Hom(Qm,Mm) // Hom(Qm, Nm) // Hom(Qm, Qm) // Cm
// 0

By construction, g
1
̸= 0, and thus the image of the identity map on Qm in Cm is nonzero.

Therefore, our comment above shows that

0 //Mm
// Nm

// Qm
// 0

is not split.

Remark 8.12. The localization of the Frobenius map is the Frobenius map of the localiza-
tion, and thus the previous remark shows that the F-split property is a local property.

When R is F -finite, the F-split condition is equivalent to F -purity, which was first defined
by Hochster and Roberts in the same paper where they show rings of invariants of linearly
reductive groups are Cohen-Macaulay [HR74]. Funny enough, that result follows directly if
one proves these are strongly F-regular, a notion that Hochster and Huneke would invent
more than a decade later [HH89b].

Definition 8.13 (Hochster—Roberts, 1974 [HR74]). Let M
f−→ N be a homomorphism of

R-modules. We say f is pure if for every R-module W , the induced map

M // S ⊗R M

m � // f(1)⊗m

is injective. A ring extension R → S is pure if it is pure as a map of R-modules. Finally,
let R be a ring of prime characteristic p. We say R if F-pure if the Frobenius map is pure,
meaning that for every R-module M , M →M ⊗R F∗(R) is injective.
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Remark 8.14. Suppose that the ring homomorphism f : R → S splits, meaning that there
exists a splitting β such that β ◦ f = idR. In particular, this implies that f is injective.
Moreover, this also implies that S = R⊗N for some R-module N = ker β, and thus for any
R-module M , S ⊗R M ∼= M ⊕N ⊗R M . In particular, the map M → S ⊗R M induced by
f is injective.

As a consequence, we conclude that any F-split ring is F-pure.

When R is F -finite, the two notions coincide.

Lemma 8.15. Let R be an F -finite ring of characteristic p. Then R is F-pure if and only
R is F-split.

We will be focusing on F -finite rings, so we will not need to worry about the distinction.
Nevertheless, we note that the two notions do indeed differ when R is not F -finite. As it
often happens in the literature, we will prefer the term F-pure to F-split, though again they
are completely synonymous in our setting.

Lemma 8.16. Let (R,m) be an F -finite local ring. If R is regular then R is F-split.

Proof. Let (R,m) be an F -finite regular local ring. By Kunz’s Theorem, F∗(R) is flat,
and thus free. We claim that F∗(1) is part of a free basis. On the one hand, 1 /∈ m[p],
while F∗(m

[p]) = mF∗(R), so F∗(1) /∈ mF∗(R) is indeed a minimal generator of F∗(R). The
projection map from F∗(R) to the free submodule generated by F∗(1) is a homomorphism
of R-modules F∗(R) → R sending F∗(1) to 1, and thus it is a splitting for the Frobenius
map.

Recall that we say that a ring R is a direct summand of a ring S if the inclusion R ⊆ S
splits as a map of R-modules, or equivalently, that there exists an R-module M such that
S = R⊕M .

Theorem 8.17. Let R ⊆ S be an inclusion of rings of prime characteristic p such that R
is a direct summand of S. If S is F-split, then so is R.

Proof. Identifying the Frobenius map on R with the inclusion Rp ⊆ R and the Frobenius
map on S with the inclusion Sp ⊆ S, we want to show that the inclusion Rp ⊆ R splits.

Consider the following diagram, where β is a splitting of the inclusion R → S and ϕ is a
splitting of the Frobenius map Sp → S, and the ⊕ signs indicate a map splits:

R

β◦ϕ◦i
��

� � ⊕
i
// S

β
zz

ϕ

��

Rp // Sp
?�

⊕

OO

βcc

For each r ∈ R, rp ∈ Rp is an element of Sp, and thus ϕ(rp) = rp, since ϕ is a splitting of
the Frobenius map on S. Similarly, β(rp) = rp, since β is the identity on R. Identifying β
with its restriction to Sp, we see that

(β ◦ ϕ ◦ i) (rp) = β(ϕ(rp)) = β(rp) = rp,

so β ◦ ϕ ◦ i is a splitting of Rp ⊆ R.
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Definition 8.18. Let k be a field and R = k[x1, . . . , xd]. The nth Veronese subring of R
is the k-algebra generated by all the degree n monomials in R, meaning

R(n) := k [xa11 · · ·xadd | a1 + · · ·+ ad = n] .

More generally, if R is a graded k-algebra, the nth Veronese of R is the k-subalgebra of R
spanned by all the homogeneous elements in R whose degree is a multiple of n, meaning that

R(n) :=
⊕
i

Rin.

Corollary 8.19. Let R = k[x1, . . . , xd], where k is a perfect field of characteristic p > 0,
and let R(n) be the nth Veronese of R. Then R is F-split.

Proof. The main point is that Veronese rings are direct summands of the corresponding
polynomial ring. The graded map R → R(n) defined on homogeneous elements as

xa11 · · ·xadd 7→
{
xa11 · · ·xadd if a1 + . . .+ ad ≡ 0 (mod n)
0 otherwise

is a splitting. By Lemma 8.16, R is F-split, and thus by Theorem 8.17 so is R(n).

F -purity can be detected in a very precise and computable way.

Theorem 8.20 (Fedder’s Criterion, 1983 [Fed83]). Let (R,m) be a regular local ring of
characteristic p, and let I be a radical ideal I in R. The ring R/I is F-pure if and only if
(I [q] : I) ⊈ m[q] for all (or equivalently, some) q = pe.

This is especially simple to use for a hypersurface: if R is a regular local ring and f ∈ R,
the hypersurface R/f is F-pure if and only if fp−1 /∈ m[p]. Notice also that Fedder’s criterion
can easily be used to test for F -purity in Macaulay2. The only downside is that if p is large,
the computations can get considerably slow.

Exercise 22. Let I be a squarefree monomial ideal in R = k[x1, . . . , xd], where k is a perfect
field. Show that R/I is F-pure.

Metatheorem 8.21 (Luis Núñez Betancourt). Any fact about squarefree monomial ideals
probably extends to any ideal defining an F-pure ring.

We will later see an example of such a theorem in the context of symbolic powers. This
philosophy extends even to applying characteristic p like techniques to proving results about
monomial ideals — a great example of this is Montaño and Núñez Betancourt’s Theo-
rem 7.51] we proved in the previous chapter.

The F -purity condition is a measure of nice singularities, and yet the class of F-pure rings
is quite large, containing all Stanley-Reisner rings and all direct summands of F -finite regular
rings. In an R-pure ring, the Frobenius map has one splitting; if it has many splittings, our
rings has very nice singularities.

Definition 8.22 (Hochster–Huneke [HH89b]). Let R be a reduced F -finite ring of prime
characteristic p. We say R is strongly F-regular if for every c ∈ R that is not in any
minimal prime of R, there exists e≫ 0 such that the map R → R1/p sending 1 7→ c1/p splits.
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Remark 8.23. Strongly F-regular rings are F-split: if R is strongly F-regular, then in
particular the map R → R1/pe sending 1 → 1 splits, and this is just F e, so R is also F-pure.

Lemma 8.24. Every F -finite regular ring is strongly F-regular.

Proof. Regularity and strong F-regularity properties both localize, so we can reduce to the
local case. Let (R,m) be a regular local ring of prime characteristic p. Recall that regular
rings are domains. Given any nonzero c ∈ R, if c1/p

e ∈ mR1/pe for all e then c ∈ m[pe] for all
e. Now note that ⋂

e⩾0

m[pe] ⊆
⋂
e⩾0

mpe = 0,

where the intersection is 0 by Krull’s Intersection Theorem. Therefore, c1/p
e
/∈ mR1/pe for

some e, and thus it is a minimal generator for R1/pe . Since R is regular and local, by
Theorem 8.7 F e

∗ (R) is free, and thus c1/p
e
is a basis element for this free module. The

map R → R1/p sending 1 7→ c1/p splits, since the projection R1/p → R onto the summand
corresponding to c1/p send c1/p to 1.

Strongly F-regular rings are very nice; in particular, they are normal and Cohen-Macaulay.
There is a criterion similar Fedder’s Criterion for strongly F-regular rings:

Theorem 8.25 (Glassbrenner’s Criterion for strong F-regularity, 1996 [Gla96]). Let (R,m)
be an F-finite regular local ring of prime characteristic p. Given a proper radical ideal I of
R, R/I is strongly F-regular if and only if for each element c ∈ R not in any minimal prime
of I, we have c

(
I [q] : I

)
⊈ m[q] for all q = pe ≫ 0.

Fun fact: Richard Fedder and Donna Glassbrenner were both Mel Hochster’s students,
and Fedder’s Criterion was part of Richard Fedder’s PhD thesis, while Glassbrenner’s Cri-
terion was part of Donna Glassbrenner’s Phd thesis.

Lemma 8.26 (Theorem 5.5 c) in [HH94a]). Strongly F-regular rings are products of domains.
In particular, any local strongly F-regular ring must be a domain.

Exercise 23. Let I be a squarefree monomial ideal in R = k[x1, . . . , xd], where k is a perfect
field. Show that R/I is strongly F-regular if and only if I is generated by variables.

One can adapt the proof of Theorem 8.17 to show that direct summands of strongly
F-regular rings are strongly F-regular:

Theorem 8.27. Let R ⊆ S be an inclusion of rings of prime characteristic p such that R
is a direct summand of S. If S is strongly F-regular, then so is R.

Strongly F-regular rings can be roughly described as very nice singularities, but again
there are many interesting classes of rings that are strongly F-regular.

Example 8.28. Let k be a field of characteristic p and R = k [x1, . . . , xn]. Combining
Theorem 8.27 and the proof of Corollary 8.19, we see that the nth Veronese subring of R
is strongly F-regular. More generally, given a homogeneous ideal J in A, if A/J is strongly
F-regular, then any Veronese subring of A/J is also strongly F-regular.



159

Example 8.29. Let k be a field of characteristic p, and consider a generic m×n matrix M .
Given any t ⩽ m,n, the k-algebra generated by all the t-minors of M is strongly F-regular.
Moreover, if R is the polynomial ring over k generated by the entries of M , and I = It(M),
then R/I is strongly F-regular. More generally, rings of invariants of classical groups, after
reduction modulo p, are strongly F-regular [SVdB97, Theorem 5.2.3].

Locally acyclic cluster algebras [BMRS15] and certain ladder determinantal varieties
[GS95] are also strongly F-regular. See also [BT06].

8.3 Tight closure

Tight closure is a very useful tool introduced by Hochster and Huneke in 1989 [HH89a] which
revolutionized characteristic p commutative algebra.

Definition 8.30 (Tight Closure). Let R be a domain of prime characteristic p. Given an
ideal I in R, the tight closure of I is the ideal

I∗ =
(
z ∈ R | there exists a nonzero c ∈ R such that czq ∈ I [q] for all q = pe ≫ 0

)
.

When R is reduced but not a domain, one takes c not in any minimal prime of R.

Remark 8.31. Notice that I ⊆ I∗.

It is sometimes easier to prove something is contained in the tight closure of an ideal
than in the ideal itself. This idea is especially useful if we are working over a regular ring,
since all ideals are tightly closed. The main point is that taking Frobenius powers commutes
with the formation of colon ideals.

Exercise 24. Let R be a regular ring and let I and J be ideals in R. Then for all q = pe,
(I : J)[q] =

(
I [q] : J [q]

)
.

Theorem 8.32 (Theorem (4.4) in [HH90]). Let R be a regular ring containing a field of
prime characteristic. Then I = I∗ for every ideal I in R.

Proof. Let I be a proper ideal in R, and suppose that x ∈ I∗ but x /∈ I. By assumption,
(I : x) is a proper ideal, so let m be a maximal ideal containing (I : x) and localize at m.
Replacing R with Rm, we may as well assume that R is local with maximal ideal m. By
assumption, there exists a nonzero c and a positive integer e′ such that cxq ∈ I [q] for all
q = pe with e ⩾ e′. Therefore,

c ∈
⋂
q⩾q′

(
I [q] : x[q]

)
=
⋂
q⩾q′

(I : x)[q] ⊆
⋂
q⩾q′

m[q] = 0,

where the last equality is just Krull’s Intersection Theorem. We conclude that c = 0,
which contradicts our assumption that c ̸= 0. We conclude that no such x exists, and thus
I∗ = I.
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A ring in which every ideal is tightly closed is calledweakly F-regular. In that language,
the theorem above says that regular rings are weakly F-regular. Every strongly F-regular ring
is weakly F-regular. A famous open question in tight closure theory, known as the Weak
implies strong conjecture, asks whether every weakly F-regular ring is strongly F-regular.
Hochster and Huneke showed this holds when R is Gorenstein and F -finite [HH89a], and
Lyubeznik and Smith showed it holds when R is graded over a field of prime characteristic
[LS01], though the general case remains open.

Another famous conjecture was weather tight closure commutes with localization; turns
out this is false! Brenner and Monsky found a counterexample, in a paper aptly called Tight
closure does not commute with localization1 [BM10]. Since strong F-regularity is preserved
by localization, the Weak implies strong conjecture would imply that weak F-regularity also
commutes with localization.

1Metatheorem: the best paper titles are those that contain the main result of the paper.



Chapter 9

The Containment Problem

This chapter is dedicated to the Containment Problem:

Question 9.1 (Containment Problem). Let I be an ideal in a noetherian ring R. For what
values of a and b is I(a) ⊆ Ib?

This question first appeared in work of Schenzel in the 1980s [Sch86], but gained more
serious attention in the new millennium, in large part due to Irena Swanson’s answers [Swa00]
to some of Schenzel’s questions, which then inspired work of Ein–Lazarsfeld–Smith and
Hochster–Huneke [ELS01, HH02] in the early 2000s.

Giving an answer to the containment problem is a way to answer various other questions.
If I(n) ⊆ In, then we must have In = I(n), so from that perspective the containment problem
also contains the equality question as a subproblem. Moreover, if I is homogeneous and a
and b are such that I(a) ⊆ Ib, then we also obtain a lower bound for the smallest degree
α(I(a)) nonzero homogeneous elements in I(a), since we must necessarily have α(I(a)) ⊆ Ib.
We can also think of the Containment Problem as an attempt to compare the symbolic and
ordinary powers of I when they are not equal.

Ultimately, the Containment Problem is interesting in its own right, as we hope to show
in this chapter. In a way, this is an open ended question: there is no hope of ever completely
determining the best possible answer for all ideals in all rings. In fact, even if we restrict
to regular rings, there is much that we do not understand even about the smallest symbolic
power contained in I2. Nevertheless, one may hope to give best possible answers that work
for all radical ideals in a fixed ring, and we will indeed see that there are many things we
can say. In this chapter, we will discuss some beautiful theorems and many interesting open
questions; this is a subject of very active current research, with many fun open problems to
work on.

9.1 Linear equivalence of topologies

Before we even try to answer the Containment Problem, the first question we should is
whether an answer even exists : given an ideal I and a positive integer b, must there exist a
such that I(a) ⊆ Ib? This question is equivalent to asking if the topologies determined by
the filtrations {In} and {I(n)} are equivalent. To make that clear, we first, we need to recall
a few elementary things about filtrations and completion.

161
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Definition 9.2. Let I be an ideal on a ring R. The I-adic topology on R is the topology
that has the following basis of open sets:

{r + In | r ∈ R, n ⩾ 1} .

The I-symbolic topology on R is the topology with the following basis of open sets:{
r + I(n) | r ∈ R, n ⩾ 1

}
.

More generally, any filtration {In} determines a topology on R with basis elements of the
form r + In for r ∈ R and n ⩾ 1.

Definition 9.3. ACauchy sequence on R with respect to the I-adic topology is a sequence
of elements {ri}i such that for each n there exists N such that ri − rj ∈ In for all i, j > N .
Tow Cauchy sequences {ri} and {si} are equivalent if for all n there exists N such that
ri − si ∈ In for all i > N . The set of equivalence classes of Cauchy sequences on R forms a
ring, the I-adic completion of R, denoted R̂I . If (R,m) is a local ring, we write R̂ for R̂m,
and call it the completion of R.

Remark 9.4. Let I = {In} and J = {Jn} be two filtrations on a ring R. If for every n
there exists m such that Jm ⊆ In, then the topology determined by J is finer than the
topology defined by J , any open set in the topology determined by I must contain an open
set in the finer topology.

Definition 9.5. We say the two filtrations I = {In} and J = {Jn} are cofinal if:

• for every n there exists m such that Jm ⊆ In, and

• for every n there exists m such that Im ⊆ Jn.

Remark 9.6. If two filtrations I = {In} and J = {Jn} on R are cofinal, they determine
equivalent topologies: any open set in one of these topologies contains an open set in the
other topology.

The Containment Problem first appeared in work on Schenzel [Sch86], who was the first
one to ask about the function f : N → N that for each n returns the smallest possible f(n)
such that

I(f(n)) ⊆ In.

It is not even clear that this function is in fact defined; given an n, there may be no symbolic
power contained in In. Thus the first part of the Containment Problem is to determine when
this function f exists, which is the same as asking if the I-symbolic topology is finer than
the I-adic topology. On the other hand, we always have In ⊆ I(n) for all n ⩾ 1 by definition,
so the I-adic topology is always finer than the I-symbolic topology. Therefore, the function
f above exists if and only if the I-adic and I-symbolic topologies are equivalent. Schenzel
completely characterized when the I-adic and I-symbolic topologies are equivalent in the
1980s.

Theorem 9.7 (Schenzel, 1985 [Sch85]). For a prime ideal P in a noetherian ring R, the
following conditions are equivalent:
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(1) The P -adic topology is equivalent to the P -symbolic topology.

(2) For all Q ∈ A(P ) \ {P} and all p ∈ Ass(R̂Q), ht
(
P̂RQ + p/p

)
< dim

(
R̂Q/p

)
.

Here R̂Q denotes completion of RQ with respect to its maximal ideal QRQ.

Schenzel also asked if the equivalence of the I-adic and I-symbolic topologies must imply
that the function f above is actually linear. Fifteen years later, Swanson said yes.

Theorem 9.8 (Swanson, 2000 [Swa00]). Let R be a noetherian local ring and I an ideal in
R. The following are equivalent:

(1) The I-adic and I-symbolic topologies are equivalent.

(2) There exists a constant s such that I(sn) ⊆ In for all n.

She even proved the more general statement when we replace I(n) by (In : J∞) for
some ideal J . This is both a spectacular and surprising result, though the constant s is
not constructed explicitly, and Swanson dedicates the last section of her paper to explicit
examples where one can find such s.

Definition 9.9. Let I be an ideal in a noetherian ring R such that the I-adic and I-symbolic
topologies are equivalent. The smallest integer s such that I(sn) ⊆ In is the Swanson
constant of I.

It is natural to refer to the condition I(kn) ⊆ In as a linear equivalence between the
I-adic and the I-symbolic topologies. However, a word of caution: in papers from the 1980s
and 1990s, one finds references1 to linearly equivalent topologies in this context to mean
that there exists a constant k such that I(n+k) ⊆ In for all n, which is a much stronger
requirement.

For every prime ideal in a complete local domain, the symbolic and -adic topologies are
indeed equivalent.

Theorem 9.10 (Huneke–Katz–Validashti, Proposition 2.4 in [HKV09]). Let R be a complete
local domain. For all prime ideals P , there exists a constant h such that P (hn) ⊆ P n.

In the next section, we will discuss a situation where we can find explicit upper bounds
for Swanson’s constant – and where it can be taken uniformly on R.

9.2 A uniform constant

The remainder of the story will often rely on the following important invariant:

Definition 9.11. Let I be an ideal in a noetherian ring R. The big height of I is the
maximum height of an associated prime of I.

1For example, see [Sch85].
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Example 9.12. If P is prime, then its big height is just its height. In R = k[x, y, z], where
k is a field, the ideal I = (xy, xz) = (x) ∩ (y, z) has height 1 but big height 2.

Soon after Swanson’s theorem [Swa00] was announced, Lawrence Ein, Robert Lazarsfeld,
and Karen Smith [ELS01] found that Swanson’s constant can be computed very explicitly
when R = C[x1, . . . , xd], or more generally when R is any smooth C-algebra. Their proof
relies on multiplier ideals and their wonderful properties. Proving beautiful theorems is
contagious, it appears, since soon after that Mel Hochster and Craig Huneke [HH02] extended
the result to any regular ring containing a field, but using completely different techniques.
This time, Frobenius (and, as we will se later, our old friend the Pigeonhole Principle!)
came to the rescue: Hochster and Huneke proved the result in prime characteristic, and
then extended it to equicharacteristic zero via reduction to characteristic p. It wasn’t until
recently, when Yves André proved the Direct Summand Conjecture using Scholze’s perfectoid
spaces techniques [And18], that Linquan Ma and Karl Schwede [MS18] complete the story
by proving the result holds in mixed characteristic. The key idea is to establish a mixed
characteristic version of multiplier ideals, which then allows one to follow Ein, Lazersfeld, and
Smith’s original strategy. One technical detail remained to be settled: Ma and Schwede’s
proof needed R to be excellent. But just a few months ago, Takumi Murayama [Mur21]
settled the final technical details that allows us to state the following beautiful theorem:

Theorem 9.13 (Ein–Lazarsfeld–Smith, Hochster–Huneke, Ma–Schwede, Murayama). Let
R be a regular ring, and I be a radical ideal. If I has big height h, then

I(hn) ⊆ In for all n ⩾ 1.

Let us outline Ein, Lazarsfeld, and Smith’s proof, which as we mentioned above uses
multiplier ideals. Given an ideal I and t ⩾ 0, the multiplier ideal J (R, I t) measures the
singularities of V (I) ⊆ Spec(R), scaled by t in a certain sense. We refer to [ELS01, MS18]
for the definition. The proof of Theorem 9.13 in the equicharacteristic 0 case relies on a few
key properties of multiplier ideals:

• I ⊆ J (R, I);

• For all n ⩾ 1, J
(
R,
(
P (nh)

) 1
n

)
⊆ P whenever P is a prime of height h;

• For all integers n ⩾ 1, J (R, I tn) ⊆ J (R, I t)
n
.

Then, given a prime ideal P of height h,

P (hn) ⊆ J
(
R,
(
P (nh)

))
⊆ J

(
R,
(
P (nh)

) 1
n

)n
⊆ P n.

In characteristic p, a similar proof works, replacing multiplier ideals by test ideals. We
will later see Hochster and Huneke’s proof [HH02], which does not involve multiplier/test
ideals.

Example 9.14. Let P be the prime ideal defining the curve (t3, t4, t5) in k[x, y, z], which
we discussed in Example 2.4. Since this is a prime of height 2, Theorem 9.13 says that
P (2n) ⊆ P n for all n ⩾ 1.
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Example 9.15. Let I = (xy, xz, yz) in k[x, y, z], where k is a field. The minimal primes of
this radical ideal all have height 2, so the big height of I is 2, and thus by Theorem 9.13
I(2n) ⊆ In for all n ⩾ 1.

Remark 9.16. As a corollary of Theorem 9.13, we obtain a uniform constant c as in Swan-
son’s Theorem 9.8. Indeed, the big height of any ideal is at most the dimension d of the
ring, so that I(dn) ⊆ In for all n. This constant can be improved to d− 1, since the ordinary
and symbolic powers of any maximal ideal coincide.

In the non-regular setting, we do know that the two topologies are equivalent for all
prime ideals in a complete local domain. However, the question of whether this constant h
can be taken independently of P is still open in the non-regular setting. Since this asks for a
uniform comparison between the symbolic and adic topologies, rings with this property are
said to satisfy the Uniform Symbolic Topologies Property.

Question 9.17 (Uniform Symbolic Topologies). Let R be a complete local domain. Is there
a uniform constant h depending only on R such that

P (hn) ⊆ P n

for all primes P and all n ⩾ 1?

This is an open question, though the answer is known to be yes in some special settings.

Definition 9.18. A local ring (R,m) is an isolated singularity if RP is regular for all
P ̸= m.

Theorem 9.19 (Huneke–Katz–Validashti, 2009, [HKV09]). Let R be an equicharacteristic
reduced local ring such that R is an isolated singularity. Assume either that R is equidi-
mensional and essentially of finite type over a field of prime characteristic zero, or that R
has positive characteristic and is F -finite. Then there exists h ⩾ 1 with the following prop-
erty: for all ideals I with positive grade for which the I-symbolic and I-adic topologies are
equivalent, I(hn) ⊆ In holds for all n ⩾ 1.

Their result does not provide effective bounds for what h might be. In general, finding
explicit best possible bounds for this constant is a very difficult question. For the case of
monomial prime ideals over normal toric rings, see the work of Robert M. Walker [Wal16,
Wal18].

Example 9.20 (Carvajal-Rojas — Smolkin, 2018). Let k be a field of characteristic p and
consider R = k[a, b, c, d]/(ad− bc). Then for all primes P in R, P (2n) ⊆ P n for all n ⩾ 1.

9.3 A beautiful proof by Hochster and Huneke

In this section, we will discuss Hochster and Huneke’s proof of Theorem 9.13 in prime
characteristic. One of the main advantages of characteristic p is that while we cannot control
the associated primes of the powers of an ideal, when the ring is regular we can control the
associated primes of the Frobenius powers. The following is a corollary of [PS73, 1.7].
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Theorem 9.21. Let R be a regular ring of prime characteristic p and I be an ideal in R.
Then Ass

(
I [q]
)
= Ass(I) for all q = pe.

Proof. Fix a prime Q and q = pe. By Theorem 3.105, given an ideal J , Q ∈ Ass(J) if and
only if depth ((R/J)Q) = 0. By Theorem 3.70, since R is regular, so is RQ, and thus all
ideals over RQ have finite projective dimension. By the Auslander Buchsbaum formula, we
have Q ∈ Ass(J) if and only if pdimRQ

(RQ/JQ) = dim(RQ).

Frobenius commutes with localization. To show that Ass
(
I [q]
)
= Ass(I), we need only

to show that whenever (R,m) is a local ring, pdim(I) = pdim
(
I [q]
)
.

Let C be a minimal free resolution of I [q]. Frobenius is an exact functor, and thus F∗(C)
is exact. Since R is regular, F e

∗ (R) is a free R-module, by Theorem 8.7, and thus F∗(C) is
a free resolution of F e

∗
(
I [q]
)
= IF e

∗ (R). Moreover, this is a minimal free resolution, since
the entries in each map simply got raised to pe. Since F e

∗ (R) is a free R-module, IF e
∗ (R) is

just a finite direct sum of copies of I, and thus F e
∗ (R) is a sum of copies of a minimal free

resolution of I. In particular, their lengths are the same, meaning that pdim(I) = pdim(I [q]),
We conclude that Q ∈ Ass

(
I [q]
)
if and only if Q ∈ Ass(I).

The following theorem is the key piece of the puzzle, even though it is beautifully ele-
mentary: it is just a fancy version of the Pigeonhole Principle.

Theorem 9.22. Let I be a radical ideal of big height h in a regular ring R of prime char-
acteristic p. For all q = pe, I(hq) ⊆ I [q].

Proof. Fix q = pe. By Exercise 18, it is sufficient to show the containment holds after
localizing at all the associated primes of I [q]. By Theorem 9.21, and Ass

(
I [q]
)
= Ass(I).

Let Q ∈ Ass(I). We know that IQ = QQ,
(
I [q]
)
Q

= Q
[q]
Q , and

(
I(hq)

)
Q

= Qhq
Q . By

assumption, dim(RQ) = ht(Q) ⩽ h. So we have a regular local ring of dimension h with
maximal ideal m and we want to show that mhq ⊆ m[q]. Since our ring is regular, m is
generated by dimension many elements, so at most h elements. Let m = (x1, . . . , xh). The
power mhq is generated by all monomials of the form xa11 · · ·xahh with

a1 + · · ·+ ah ⩾ hq,

so by the Pigeonhole Principle, there exists i such that ai ⩾ q. Therefore,

xa11 · · ·xahh ∈ (xqi ) ⊆ m[q].

Remark 9.23. While the statement of Theorem 9.22 is all we need to prove Theorem 9.13,
we note that if we apply the full power of the Pigeonhole Principle we can do even better:
indeed, as long as

a1 + · · ·+ ah ⩾ h(q − 1) + 1,

at least one ai ⩾ q. We conclude that any radical ideal of big height h satisfies I(hq−h+1) ⊆ I [q]

for all q = pe.

We now have all the tools we need to give Hochster and Huneke’s proof of Theorem 9.13
in prime characteristic p. To show the theorem in equicharacteristic zero, one uses standard
reduction to characteristic p techniques — which while standard are quite technical, and thus
we will not discuss them here. For more on reduction to prime characteristic, see [HH99].
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Theorem 9.24. Let R be a regular ring of prime characteristic p, and I a radical ideal in
R. If I has big height h, then

I(hn) ⊆ In for all n ⩾ 1.

Proof. Fix n. We will show that if u ∈ I(hn), then u ∈ (In)∗, and since R is regular, by
Theorem 8.32 we conclude that u ∈ In. To do that, we will find a nonzero element c such
that crq ∈ (In)q for all q = pe.

Given q = pe, we can write q = an + r for some integers a, r ⩾ 0 with r < n. Then
ua ∈

(
I(hn)

)a ⊆ I(han), and

Ihnua ⊆ Ihrua ⊆ IhrI(han) ⊆ I(han+hr) = I(hq).

By Theorem 9.22, I(hq) ⊆ I [q], and thus we have Ihnua ⊆ I [q]. Now take powers of n on both
sides:

Ihn
2

uan ⊆
(
I [q]
)n

= (In)[q] .

By choice of a, we know q ⩾ an, so that

Ihn
2

uq ⊆ Ihn
2

uan ⊆ (In)[q] .

Since R is a domain, there exists a nonzero element c ∈ Ihn
2
, which does not depend on

the choice of q. Such c satisfies cuq ∈ (In)[q], and thus as we described above we must have
u ∈ In.

The following generalization is [ELS01, Theorem 2.2] in the case of smooth complex
varieties, [HH02, Theorem 2.6] in equicharacteristic, and [Mur21] in mixed characteristic:

Theorem 9.25 (Ein–Lazersfeld–Smith, Hochster–Huneke, Murayama). Let I be a radical
ideal of a regular ring, and let h be the big height of I. Then for all n ⩾ 1 and all k ⩾ 0,
I(hn+kn) ⊆

(
I(k+1)

)n
.

One can even do better! If we reinterpret kn as a sum of n terms all equal to k, we can
extend this further and allow the sum of any n terms:

Theorem 9.26 (Johnson, Murayama [Joh14, Mur21]). Let I be a radical ideal of a regular
ring, and let h be the big height of I. Then for all n ⩾ 1 and all a1, . . . , an ⩾ 0,

I(hn+a1+···+an) ⊆ I(a1+1) · · · I(an+1).

Exercise 25. Show Theorem 9.26 in prime characteristic, essentially by repeating the ar-
gument we just gave.

When k = 0, Theorem 9.25 says that I(hn) ⊆ In, so it is indeed a generalization of Theo-
rem 9.13. Moreover, in characteristic p, we can obtain a generalized version of Harbourne’s
Conjecture, which we will discuss in the next section, for powers of p:

Lemma 9.27 (Lemma 2.4 (a) in [HH02]). Let I be a radical ideal in a regular ring R of
prime characteristic p and h the big height of I. For all q = pe,

I(hq+kq−h+1) ⊆
(
I(k+1)

)[q]
.
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Proof. Since containments are local, it is enough the show that the statement holds once we

localize at each associated prime of
(
I(k+1)

)[q]
. Since

Ass
((
I(k+1)

)[q])
= Ass

(
I(k+1)

)
= Ass(I),

it is enough to show that the statement holds at the associated primes of I. If P is an
associated prime of I, the statement we need to show over RP is the following:

P hq+kq−h+1
P ⊆

(
P k+1
P

)[q]
.

To simplify notation, note that we just need to prove that if (R,m) is a regular local ring,
then

mhq+kq−h+1 ⊆
(
mk+1

)[q]
.

Now we claim that Frobenius powers commute with localization. To check that, suppose
that we are given any two ideals I and J . On the one hand, the ideal IJ is generated by
products of the form fg with f ∈ I and g ∈ J , so (IJ)[q] is generated by (fg)q = f qgq with
f ∈ I and g ∈ J . On the other hand, I [q] is generated by elements of the form f q with
f ∈ I, and thus I [q]J [q] is generated by products of the form f qgq with f ∈ I and g ∈ J .
This shows that (IJ)[q] = I [q]J [q], and as a consequence, Frobenius powers commute with
products. Therefore, to acchieve our goal we only need to show that

mhq+kq−h+1 ⊆
(
m[q]
)k+1

.

The claim now follows by a similar argument as Theorem 9.22. If m = (x1, . . . , xh), then
mhq+kq−h+1 is generated by monomials xa11 · · ·xahh with

a1 + · · ·+ ah ⩾ h(q − 1) + kq + 1,

then at least one of the ai must be at least q. Subtracting q from ai, we now have

a1 + · · ·+ ah ⩾ h(q − 1) + (k − 1)q + 1,

which once more implies that some aj must be at least q. We can repeat this k times, until

we have decomposed our monomial as product of an element in
(
m[q]
)k

and a monomial

xb11 · · · xbhh with
b1 + · · ·+ bh ⩾ h(q − 1) + 1,

which once more implies some bs ⩾ q. We conclude that our original monomial was in(
m[q]
)k+1

, as desired.

Finally, we note that Theorem 9.13 also holds more generally. When I is any ideal in a
regular ring R, we can take the constant h such that I(hn) ⊆ In to be any of the following:

• the largest number of generators of IP , where P ∈ Ass(I);

• the big height of I, taken to be the largest height of an associated prime of I;

• the largest analytic spread of IP , where P ∈ Ass(I).

When I is radical, these invariants all coincide. In general, the last invariant is the
smallest, and the point is that one can always replace IP in the containment by a minimal
reduction, which is generated by h many elements.
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9.4 Harbourne’s Conjecture

Theorem 9.13 says that if I is any radical ideal of big height h, then I(hn) ⊆ In for all
n ⩾ 1. But does this completely answer the Containment Problem? Our goal was to find
the smallest f(n) such that I(f(n)) ⊆ In, and the theorem tells us only that f(n) ⩽ hn. But
can we do better?

Example 9.28. Consider the monomial ideal I = (xy, xz, yz) in R = k[x, y, z], where k is
a field. Since all the minimal primes of I have height 2, the big height of I is 2. We saw in
Example 3.56 that I(2) ̸= I2, and Theorem 9.13 says that I(2n) ⊆ In for all n. To solve the
containment problem for I2 we need only to determine whether I(3) ⊆ I2. And indeed, one
can easily show that this does hold.

Example 9.29. Consider the prime ideal P defining the curve (t3, t4, t5) over a field k. As
we already pointed out in Example 9.14, P (2n) ⊆ P n for all n. We also saw in Example 9.14
that P (2) ̸= P 2. But once more, we can do better than Theorem 9.13: it turns out that
P (3) ⊆ P 2.

Question 9.30 (Huneke, 2000). Let P be a prime ideal of height 2 in a regular local ring
R. Is P (3) ⊆ P 2?

Remark 9.31. If R is a regular ring of prime characteristic 2, then by Remark 9.23 we must
have I(3) ⊆ I2 for any radical ideal of big height 2. Note that 3 = hn− h+ 1 for h = 2 and
n = 2.

This question remains open. As we will discuss in the next chapter, the symbolic powers
of the primes determining curves of the form (ta, tb, tc) exhibit lots of interesting behavior,
and would be a natural place for a counterexample. Nevertheless, they do satisfy the result.

Theorem 9.32 (Grifo, 2020 [Gri20]). Let k be a field of characteristic not 3. If P is the
prime ideal in k[x, y, z] defining the curve (ta, tb, tc), then P (3) ⊆ P 2.

Brian Harbourne extended Huneke’s question to a much more general setting. We note
that his original question, which first appeared in print in [BRH+09, 8.4.3], was about
homogeneous ideals in R = k[x1, . . . , xd], though we present here a slightly modified version
of his question:

Conjecture 9.33 (Harbourne, 2008). Let I be a radical ideal in a regular ring R. If I has
big height h, then

I(hn−h+1) ⊆ In for all n ⩾ 1.

The value suggested by this conjecture is very natural. In fact, by Remark 9.23, if R has
characteristic p and we take n = q = pe for some e, then the containment in Habourne’s
Conjecture holds, and it is simply the value suggested by the Pigeonhole Principle.

But in a strange turn of events, the conjecture does not hold for all radical ideals — not
even for homogeneous ideals in a polynomial ring. The first counterexample was found by
Dumnicki, Szemberg, and Tutaj-Gasińska [DSTG13], and it is the radical ideal defining a
certain nice configuration of twelve points in P2 over C. Harbourne and Seceleanu extended
their example to a family of examples in any characteristic other than 2 [HS15].
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Example 9.34 (Dumnicki—Szemberg—Tutaj-Gasińska, 2013, Harbourne–Seceleanu, 2015
[DSTG13, HS15]). Fix n ⩾ 3. Let k be a field of characteristic not 2 and containing n
distinct roots of unity, and let R = k[x, y, z]. The ideal

I = (x(yn − zn), y(zn − xn), z(zn − xn))

is a radical ideal of pure height 2, and yet I(3) ⊈ I2. In fact, the element

f = (yn − zn)(zn − xn)(zn − xn)

satisfies f ∈ I(3), but f /∈ I2.
This ideal is the homogeneous radical ideal corresponding to a particularly nice configu-

ration of points in P2, know as the Fermat configuration. When n = 3, the corresponding
picture is the following:

Figure 9.1: Fermat configuration of points when n = 3.

Other counterexamples to Harbourne’s Conjecture have since been found. There is much
we do not understand about the conjecture, though many of the known counterexamples arise
as the singular loci of hyperplane arrangements, and Ben Drabkin and Alexandra Seceleanu
[DS21] have completely classified which finite complex reflection group lead to counterex-
amples to I(3) ⊆ I2. Notice, however, that these do not provide any counterexamples to
Huneke’s Question 9.30.

However, all the known examples are, in a way, very special; nice classes of ideals do
satisfy Harbourne’s Conjecture.

Definition 9.35. A set S of points in Pn
k is generic if the coordinates of the points in

S are algebraically independent over the prime field of k; this is the smallest subring of k
containing 1, which is either isomorphic to Fp or Q depending on the characteristic of k.

Theorem 9.36 (Bocci–Harbourne, 2010, Theorems 4.1 and 4.2 in [BH10]). Let S be a set
of generic points in P2, and let I = I(S). Then I(3) ⊆ I2. Moreover, I(a) ⊆ Ib whenever
a
b
> 3

2
.

Notice that 2n − 1 > 3
2
n for all n ⩾ 2, so in particular generic points in P2 satisfy

Harbourne’s Conjecture.
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Theorem 9.37 (Dumnicki, 2015 [Dum15]). Let S be a set of generic points in P3, and let
I = I(S). Then I satisfies Harbourne’s Conjecture: I(3n−2) ⊆ In for all n ⩾ 1.

Certain special configurations of points in Pn also satisfy Harbourne’s Conjecture.

Definition 9.38. Let H = {H1, . . . , Hs} be a collection of s ⩾ 1 distinct hyperplanes in
Pn corresponding to linear forms L1, . . . , Ls. Suppose that these hyperplanes meet properly,
meaning that the intersection of any i of the hyperplanes is either empty or has codimension
i. The ideal

I =
⋂

1⩽i1<···<ic⩽s

(Li1 , . . . , Lic),

where 1 ⩽ i1 < · · · < ic ⩽ s range over all the indices such thatHi1∩· · ·∩His has codimension
c, is called a codimension c star configuration.

By construction, each (Li1 , . . . , Lic) is an ideal of height c, and thus a complete inter-
section. In fact, this is the radical ideal corresponding to the intersection of hyperplanes
Hi1 ∩ · · · ∩Hic . Therefore, the symbolic powers of this star configuration are given by

I(n) =
⋂

1⩽i1<···<ic⩽s

(Li1 , . . . , Lic)
n.

Star configurations satisfy Harbourne’s Conjecture [BRH+09, Example 8.4.8].
Next, we will show that squarefree monomial ideals satisfy Harbourne’s Conjecture. In

order to do that, we need a definition inspired by prime characteristic ideals — when I is a
monomial ideal, we can consider a sort of fake Frobenius power for any m, independently of
characteristic.

Definition 9.39. Let f1, . . . , fs be monomials in R = k[x1, . . . , xd] and let I = (f1, . . . , fs).
For each m ⩾ 1, I [m] denotes the ideal

I [m] := (fm
1 , . . . , f

m
s ).

Lemma 9.40. If I and J are monomial ideals, then I [t] ∩ J [t] = (I ∩ J)[t].

Proof. Let G(I) = {f1, . . . , fn} and G(J) = {g1, . . . , gm}. By Lemma 5.9,

I ∩ J = (lcm(fi, gj) | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m)

so
(I ∩ J)[t] =

(
lcm(fi, gj)

t | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m
)
,

while
I [t] ∩ J [t] =

(
lcm(f t

i , g
t
j) | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m

)
.

Since lcm(f t
i , g

t
i) = lcm(fi, gi)

t, we conclude that I [t] ∩ J [t] = (I ∩ J)[t].

Lemma 9.41 (see Example 8.4.5 in [BRH+09]). Let I be a squarefree monomial ideal in
R = k[x1, . . . , xd], where k is any field. If I has big height h, then I(hn−h+1) ⊆ In for all
n ⩾ 1.
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Proof. Let Min(I) = P1, . . . , Ps, so that

I(m) = Pm
1 ∩ · · · ∩ Pm

s

for all m ⩾ 1, by Corollary 5.20. Each Pi is generated by at most h variables. Given the
prime ideal P = (x1, . . . , xh), the same argument in Remark 9.23 shows that P hn−h+1 ⊆
(xn1 , . . . , x

n
d): the power P hn−h+1 is generated by monomials xa11 · · ·xahh with

a1 + · · ·+ ah ⩾ h(n− 1) + 1,

and thus the Pigeonhole Principle guarantees that there exists an i such that ai ⩾ n. For each
m and each monomial ideal J , if J = (f1, . . . , fs), then let I [m] := (fm

1 , . . . , f
m
s ). Therefore,

I(hn−h+1) =
s⋂

i=1

P hn−h+1
i

⊆
s⋂

i=1

P
[n]
i what we have just shown

=

(
s⋂

i=1

Pi

)[n]

by Lemma 9.40

= I [n]

⊆ In.

As we learned from Luis Núñez Betancourt’s philosophy in Metatheorem 8.21, any fact
about squarefree monomial ideals probably extends to any ideal defining an F-pure ring.
With that in mind, do ideals defining F-pure rings satisfy Harbourne’s Conjecture? Indeed,
they do!

This is what we will show next. Naively, the idea of the proof is to study the colon ideal(
In : I(hn−h+1)

)
. The colon ideal (J : I) measures the failure of I ⊆ J , and (J : I) = R

precisely when I ⊆ J . In order to show that
(
In : I(hn−h+1)

)
= R, we need to show that this

ideal contains some large ideal; Fedder’s Criterion 8.20 provides the perfect candidate. The
proof in [GH19] does just that — we show that(

I [q] : I
)
⊆
(
II(n) : I(n+h)

)[q]
,

for all ideals I and all q = pe ≫ 0, and when R/I is F-pure that implies Harbourne’s
Conjecture. The proof we will follow here uses the same techniques, but instead we will
show a slightly more powerful lemma.

Lemma 9.42. Let R be a regular ring of prime characteristic p. Let I be a radical ideal in
R and h the big height of I. For all n ⩾ 1,(

I [q] : I
)
⊆
(
II(n) : I(n+h)

)[q]
for all q = pe ≫ 0.
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Proof. By Exercise 24, (
II(n) : I(n+h)

)[q]
=
((
II(n)

)[q]
:
(
I(n+h)

)[q])
.

Take s ∈
(
I [q] : I

)
. Then sI(n+h) ⊆ sI ⊆ I [q], so

s
(
I(n+h)

)[q] ⊆ (sI(n+h)
) (
I(n+h)

)q−1 ⊆ I [q]
(
I(n+h)

)q−1
.

We will show that (
I(n+h)

)q−1 ⊆
(
I(n)
)[q]

,

which implies that

s
(
I(n+h)

)[q] ⊆ (II(n))[q] ,
completing the proof.

By Lemma 2.9, (
I(n+h)

)q−1 ⊆ I((n+h)(q−1)).

By Lemma 9.27 with k = n− 1, we obtain the following containment:

I(hq+(n−1)q−h+1) ⊆
(
I(n)
)[q]

.

We claim that for all q ≫ 0,
(
I(n+h)

)q−1 ⊆ I(hq+(n−1)q−h+1), which would conclude the

proof that
(
I(n+h)

)q−1 ⊆
(
I(n)
)[q]

. To show that the claim, it is enough to prove that

(n+ h)(q − 1) ⩾ hq + (n− 1)q − h+ 1

for large values of q. This can be seen by comparing the coefficients in q, and noticing that
n + h ⩾ n + h − 1, or by explicitly solving the inequality. In particular, it holds as long as
q ⩾ n+ 1.

Corollary 9.43. Let R be a regular ring of prime characteristic p. Let I be an ideal in R
of big height h. If R/I is F-pure, then for all n ⩾ 1 we have

I(n+h) ⊆ II(n).

Proof. First, note that we can reduce to the local case:

• containments are local statements, by Exercise 18;

• the big height of an ideal does not increase under localization;

• all localizations of an F-pure ring are F-pure [HR74, 6.2].

So suppose that (R,m) is a regular local ring, and that R/I is F-pure. Fix n ⩾ 1, and
consider q ≫ 0 as in Lemma 9.42. Then(

I [q] : I
)
⊆
(
II(n) : I(n+h)

)[q]
.

If I(n+h) ⊈ II(n), then
(
II(n) : I(n+h)

)[q] ⊆ m[q], and thus
(
I [q] : I

)
⊆ m[q], contradicting

Fedder’s Criterion.
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We can now show that Harbourne’s conjecture holds for ideals defining F-pure rings.

Theorem 9.44 (Grifo–Huneke, 2019 [GH19]). Let R be a regular ring of prime characteristic
p. Let I be an ideal in R of big height h. If R/I is F-pure, then for all n ⩾ 1, I(hn−h+1) ⊆ In.

Proof. By Corollary 9.43,
I(n+h) ⊆ II(n)

for all n ⩾ 1. Inductively, we conclude that

I(h(n−1)+1) ⊆ II(h(n−2)+1) ⊆ I2I(h(n−3)+1) ⊆ · · · ⊆ In−1I = In.

In fact, Corollary 9.43 implies more than just Harbourne’s Conjecture.

Exercise 26. Let R be a regular ring of prime characteristic p, and consider an ideal I in
R such that R/I is F-pure. Show that given any integer c ⩾ 1, if I(hk−c) ⊆ Ik for some k,
then I(hn−c) ⊆ In for all n≫ 0.

There are examples — even of monomial ideals — that show that we cannot do better
than Harbourne’s Conjecture.

Exercise 27. Let R = k[x1, . . . , xd] and consider the squarefree monomial ideal

I =
⋂
i<j

(xi, xj) .

Show that while I(2n−1) ⊆ In holds for all n ⩾ 1, I(2n−2) ⊈ In for n < d, so we cannot do
better than Harbourne’s Conjecture in this case. What happens when n = d? How does this
example generalize to higher height?

Exercise 28. Let I be a radical ideal in a ring R, and fix n ⩾ 1. Show that (In : I(n))
always contains an element not in any minimal prime of I.

If we ask for more than F-pure — if we ask for R/I to be strongly F-regular — then we
can in fact do better: not only does Harbourne’s Conjecture hold, but we can replace the
big height h of I by h − 1. In a way, this says that when R/I is strongly F-regular, then
I behaves like an ideal of smaller height. This is particularly interesting when h = 2. To
prove this, we need the following lemma:

Lemma 9.45 (Lemma 4.2 in [GH19]). Let R be a regular ring of characteristic p > 0, I an
ideal in R, and h ⩾ 2 the big height of I. Then for all d ⩾ h− 1 and for all q = pe,(

Id : I(d)
) (
I [q] : I

)
⊆
(
II(d+1−h) : I(d)

)[q]
.

Proof. Let t ∈
(
Id : I(d)

)
and s ∈

(
I [q] : I

)
. Again by Exercise 24, it suffices to prove that

st
(
I(d)
)[q] ⊆ (II(d+1−h)

)[q]
.
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First, note that

st
(
I(d)
)[q] ⊆ s

(
tI(d)

) (
I(d)
)q−1 ⊆ sId

(
I(d)
)q−1 ⊆ I [q]Id−1

(
I(d)
)q−1

.

Now since d − 1 + d(q − 1) = dq − 1, we have Id−1
(
I(d)
)q−1 ⊆ I(qd−1). By Lemma 9.27, we

get

I(qd−h+1) ⊆
(
I(d+1−h)

)[q]
.

As long as h ⩾ 2, we have qd − 1 ⩾ qd − h + 1, which implies that I(qd−1) ⊆
(
I(d+1−h)

)[q]
.

Then
st
(
I(d)
)[q] ⊆ I [q]Id−1

(
I(d)
)q−1 ⊆

(
II(d+1−h)

)[q]
,

as desired.

We can now show the main result on ideals defining strongly F-regular rings:

Theorem 9.46 (Grifo–Huneke, Theorem 4.1 in [GH19]). Let R be an F-finite regular ring of
characteristic p > 0, and I an ideal of big height h ⩾ 2 such that R/I is strongly F-regular.
Then I(d) ⊆ II(d+1−h) for all d ⩾ h− 1. In particular,

I((h−1)n−(h−1)+1) ⊆ In

for all n ⩾ 1.

Proof. We first note that the second statement follows from the first, by induction. To see
this, assume we have shown that I(d) ⊆ II(d+1−h) for all d ⩾ h− 1. When d = h, this means
that I(h) ⊆ II(1) ⊆ I2, which is the statement we are trying to show for the case n = 1. The
induction step follows from choosing d = (h− 1)(n+ 1) + 1.

We prove the first statement by contradiction. As before, we can reduce to the case where
(R,m) is a regular local ring. Note that strong F-regularity is a local property, that is, R
is strongly F-regular if and only if all of its localizations are strongly F-regular [HH89b, 3.1
(a)].

Suppose that
(
II(d+1−h) : I(d)

)
⊆ m. By Exercise 28, we can always find an element

t ∈
(
Id : I(d)

)
not in any minimal prime of I. By Lemma 9.45,

t
(
I [q] : I

)
⊆
(
II(d+1−h) : I(d)

)[q] ⊆ m[q].

By Glassbrenner’s Criterion, this contradicts the fact that R/I is strongly F-regular.

Remark 9.47. Note that if R is a local ring and R/I is strongly F-regular, then R/I is a
domain and I is a prime ideal, so that the big height of I is in fact the height of I.

For primes of height 2, Theorem 9.46 actually gives equality:

Corollary 9.48. Let R be a regular ring of characteristic p > 0, and I a height 2 prime
such that R/I is strongly F-regular. Then I(n) = In for all n ⩾ 1.

This gives non-trivial classes of ideals with I(n) = In for all n ⩾ 1.
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Example 9.49. Let S = k[s3, s2t, st2, t3] ⊆ k[s, t], where k is a field of characteristic p > 3.
This is a Veronese subring of k[s, t], and thus strongly F-regular. We can write S as a
quotient of k[a, b, c, d] by a 3-generated height 2 prime ideal,

P =
(
b2 − ac, c2 − bd, bc− ad

)
.

By Corollary 9.48, P (n) = P n for all n ⩾ 1.

Example 9.50. Let R = k[a, b, c, d], where k is a field of prime characteristic p > 2. Let n
be an integer, and let I be the ideal of 2× 2 minors of the 2× 3 matrix(

a2 b d
c a2 bn − d

)
.

By [Sin99, Proposition 4.3], R/I is strongly F-regular. Since I is has height 2, Corollary
9.48 says that I(k) = Ik for all k.

We do not know if Theorem 9.46 is sharp when h > 2. There are, however, subclasses of
ideals defining strongly F-regular rings for which we can obtain better containments. The
following is Example 3 in [GH19].

Example 9.51 (Determinantal ideals). Consider a generic n × n matrix X, a field k of
characteristic 0 or p > min {t, n− t}, and let I = It(X) denote the ideal of t-minors of X
in R = k[X]. These ideals of minors define strongly F-regular rings in characteristic p, by

[HH94b, 7.14]. For which values of k and m do we have I
(k)
t ⊆ Imt ? We claim that this holds

when n
t(n−t+1)

k ⩾ m.
The key tool that allows us to make such a precise statement is that we have an explicit

description of the symbolic and ordinary powers of generic determinantal ideals [DEP80].
In fact, such a dedscription also exists for ideals of minors of generic symmetric matrices
and for pfaffians of skew-symmetric matrices [JMnV15, DN96]. Any such ideal and all of its
symbolic powers are generated by minors of X of various sizes (not just t). Moreover, there
is a basis for k[X] given by certain products of minors of X, called standard monomials, and
thus one can explicitly describe I(n) for all n by determining which standard monomials live
in I(n) [DEP80, JMnV15, DN96].

Fix k and consider m ⩽ nk
t(n−t+1)

. By [BV88, Theorem 10.4], given si-minors δi of X, we
have

δ1 · · · δu ∈ I
(k)
t if and only if

u∑
i=1

max {0, si − t+ 1} ⩾ k,

and moreover, I
(k)
t is generated by such products. Notice that according to this formula, any

factors corresponding to minors of size less than t are irrelevant to determine whether or not
the given product is in I

(k)
t , since their contribution to the sum is 0, and thus we might as

well ignore minors of small size.
So consider δ1, . . . , δu, with δi an si-minor for each i, such that δ1 · · · δu ∈ I

(k)
t , and write

s = s1 + · · ·+ su. Using the remark above, we may assume that si ⩾ t for each i. We want
to show that for all such possible choices of δi, δ1 · · · δu ∈ Imt . Since δ1 · · · δu ∈ I

(k)
t , then

u∑
i=1

max {0, si − t+ 1} ⩾ k
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which, since we are assuming si ⩾ t for all i, can be rewritten as

(∗) s ⩾ k + u(t− 1).

Moreover, si is the size of a minor of an n× n matrix, and thus each si ⩽ n. In particular,
this implies that un ⩾ s. Therefore, we must have

un ⩾ k + u(t− 1),

so that

u ⩾
k

n− t+ 1
.

Combining this with (∗), we obtain

s ⩾ k +
k

n− t+ 1
(t− 1) =

nk

n− t+ 1
.

By [DEP80, 7.3], Imt = I
(m)
t ∩I(2m)

t−1 ∩· · ·∩I(tm)
1 . Thus it suffices to show that δ1 · · · δu ∈ Imt .

In particular, for each 1 ⩽ j ⩽ t, we need to show that δ1 · · · δu ∈ I
((t−j+1)m)
j , which is

equivalent to the following inequalities:

s ⩾ tm
s ⩾ (t− 1)m+ u = tm+ (u−m)
s ⩾ (t− 2)m+ 2u = tm+ 2(u−m)

...
s ⩾ m+ (t− 1)u = tm+ (t− 1)(u−m).

Note that all these inequalities are convex combinations of the first and the last one, so that
they are verified as long as the first and last one are, that is, if and only if

s ⩾ tm
s ⩾ m+ (t− 1)u.

Since we are assuming that s ⩾ k + (t − 1)u, then s ⩾ m + (t − 1)u as long as k ⩾ m,

which must be satisfied by any m with I
(k)
t ⊆ Imt . It remains to check that s ⩾ tm.

We have seen above that s ⩾ nk
n−t+1

. Given this, s ⩾ tm is satisfied as long as nk
n−t+1

⩾ tm,

which can be rewritten as k ⩾ (n−t+1)t
n

m, which was our claim.

We conclude that I(k) ⊆ Im as long as k ⩾ t(n−t+1)
n

m. This bound is much better than
that of Theorem 9.46 when n is large and t is close to n

2
. We also note that the computations

above can be used to show that, given k, this is actually the best possible value of m.
Note that we can obtain the same containment results for the ideal of t × t minors of a

symmetric n×nmatrix or the ideal of 2t-Pfaffians of a generic n×nmatrix, using Proposition
4.3 and Theorem 4.4 in [JMnV15] for the symmetric case and Theorem 2.1 and Theorem 2.4
in [DN96] for the Pfaffians.

The key ingredient that allowed us to completely answer the Containment Problem for
such ideals is the explicit description of the symbolic and ordinary powers given by [DEP80,
JMnV15, DN96]. In general, there is no such nice characterization of symbolic powers.

Theorems 9.44 and 9.46 actually extend beyond regular rings:
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Theorem 9.52 (Grifo–Ma–Schwede, 2022 [GMS22]). Let R be an F-finite Gorenstein ring
Gorenstein ring of prime characteristic p and let I be an ideal of finite projective dimension
with big height h. Then

• If R/I is F-pure, then I(hn−h+1) ⊆ In for all n ⩾ 1.

• If R/I is strongly F-regular, then I((h−1)n−(h−1)+1) ⊆ In for all n ⩾ 1.

To prove the theorem above, one needs to develop a Fedder-like criterion for ideals of
finite projective dimension. The colon of interest in that case is no longer (I [q] : I), but
an analogous colon where Frobenius powers are replaced by a slightly more technical ideal
whose symbolic powers coincide with the associated primes of I.

We may also ask about Harbourne’s Conjecture in singular rings.

Question 9.53. Let R be a noetherian ring, and I a radical ideal. If I has Swanson constant
s, must I(sn−s+1) ⊆ In for all n ⩾ 1?



Appendix A

Macaulay2

There are several computer algebra systems dedicated to algebraic geometry and commu-
tative algebra computations, such as Singular (more popular among algebraic geometers),
CoCoA (which is more popular with european commutative algebraists, having originated in
Genova, Italy), and Macaulay2. There are many computations you could run on any of these
systems (and others), but we will focus on Macaulay2 since it’s the most popular computer
algebra system among US based commutative algebraists.

Macaulay2, as the name suggests, is a successor of a previous computer algebra system
named Macaulay. Macaulay was first developed in 1983 by Dave Bayer and Mike Stillman,
and while some still use it today, the system has not been updated since its final release in
2000. In 1993, Daniel Grayson and Mike Stillman released the first version of Macaulay2,
and the current stable version if Macaulay2 1.16.

Macaulay2, or M2 for short, is an open-source project, with many contributors writing
packages that are then released with the newest Macaulay2 version. Journals like the Journal
of Software for Algebra and Geometry publish peer-refereed short articles that describe and
explain the functionality of new packages, with the package source code being peer reviewed
as well.

The National Science Foundation has funded Macaulay2 since 1992. Besides funding the
project through direct grants, the NSF has also funded several Macaulay2 workshops —
conferences where Macaulay2 package developers gather to work on new packages, and to
share updates to the Macaulay2 core code and recent packages.

A.1 Getting started

A Macaulay2 session often starts with defining some ambient ring we will be doing compu-
tations over. Common rings such as the rationals and the integers can be defined using the
commands QQ and ZZ; one can easily take quotients or build polynomial rings (in finitely
many variables) over these. For example,

i1 : R = ZZ/101[x,y]

o1 = R
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o1 : PolynomialRing

and

i1 : k = ZZ/101;

i2 : R = k[x,y];

both store the ring Z/101 as R, with the small difference that in the second example
Macaulay2 has named the coefficient field k. One quirk that might make a difference later
is that if we use the first option and later set k to be the field Z/101, our ring R is not a
polynomial ring over k. Also, in the second example we ended each line with a ;, which tells
Macaulay2 to run the command but not display the result of the computation — which is
in this case was simply an assignment, so the result is not relevant.

We can now do all sorts of computations over our ring R. For example, we can define an
ideal in R, as follows:

i3 : I = ideal(x^2,y^2,x*y)

2 2

o3 = ideal (x , y , x*y)

o3 : Ideal of R

Above we have set I to be the ideal in R that is generated by x2, y2, xy. The notation
ideal( ) requires the usage of ˆ for powers and ∗ for products; alternatively, we can define
the exact same ideal with the notation ideal" ", as follows:

i3 : I = ideal"x2,y2,xy"

2 2

o3 = ideal (x , y , x*y)

o3 : Ideal of R

Now we can use this ideal I to either define a quotient ring S = R/I or the R-module
M = R/I, as follows:

i4 : M = R^1/I

o4 = cokernel | x2 y2 xy |

1

o4 : R-module, quotient of R

i5 : S = R/I

o5 = S

o5 : QuotientRing
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It’s important to note that while R is a ring, R1 is the R-module R — this is a very
important difference for Macaulay2, since these two objects have different types. So S defined
above is a ring, while M is a module. Notice that Macaulay2 stored the module M as the
cokernel of the map

R3

[
x2 y2 xy

]
// R .

When you make a new definition in Macaulay2, you might want to pay attention to
what ring your new object is defined over. For example, now that we defined this ring S,
Macaulay2 has automatically taken S to be our current ambient ring, and any calculation
or definition we run next will be considered over S and not R. If you want to return to the
original ring R, you must first run the command use R.

If you want to work over a finitely generated algebra over one of the basic rings you
can define in Macaulay2, and your ring is not a quotient of a polynomial ring, you want
to rewrite this algebra as a quotient of a polynomial ring. For example, suppose you want
to work over the second Veronese in 2 variables over our field k from before, meaning the
algebra k[x2, xy, y2]. We need 3 algebra generators, which we will call a, b, c, corresponding
to x2, xy, and y2:

i6 : U = k[a,b,c]

o6 = U

o6 : PolynomialRing

i7 : f = map(R,U,{x^2,x*y,y^2})

2 2

o7 = map(R,U,{x , x*y, y })

o7 : RingMap R <--- U

i8 : J = ker f

2

o8 = ideal(b - a*c)

o8 : Ideal of U

i9 : T = U/J

o9 = T

o9 : QuotientRing

Our ring T at the end is isomorphic to the 2nd Veronese of R, which is the ring we
wanted. Note the syntax order in map: first target, then source, then a list with the images
of each algebra generator.
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A.2 Asking Macaulay2 for help

As you’re learning how to use Macaulay2, you will often find yourself needing some help.
Luckily, Macaulay2 can help you directly! For example, suppose you know the name of a
command, but do not remember the syntax to use it. You can ask ?command, and Macaulay2
will show you the different usages of the command you want to know about.

i10 : ?primaryDecomposition

primaryDecomposition -- irredundant primary decomposition of an ideal

* Usage:

primaryDecomposition I

* Inputs:

* I, an ideal, in a (quotient of a) polynomial ring R

* Optional inputs:

* MinimalGenerators => a Boolean value, default value true, if false, the

components will not be minimalized

* Strategy => ..., default value null,

* Outputs:

* a list, containing a minimal list of primary ideals whose intersection

is I

Ways to use primaryDecomposition :

==================================

* "primaryDecomposition(Ideal)" -- see "primaryDecomposition" -- irredundant

primary decomposition of an ideal

* "primaryDecomposition(Module)" -- irredundant primary decomposition of a

module

* "primaryDecomposition(Ring)" -- see "primaryDecomposition(Module)" --

irredundant primary decomposition of a module

For the programmer

==================

The object "primaryDecomposition" is a method function with options.

If instead you’d rather read the complete Macaulay2 documentation on the command
you are interested in, you can use the viewHelp command, which will open an html page
with the documentation you asked for. So running

i11 : viewHelp "primaryDecomposition"

will open an html page dedicate to the method primaryDecomposition, which includes
examples and links to related methods.
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A.3 Basic commands

Many Macaulay2 commands are easy to guess, and named exactly what you would expect
them to be named. Often, googling “Macaulay2” followed by a few descriptive words will
easily land you on the documentation for whatever you are trying to do.

Here are some basic commands you will likely use:

• ideal(f1, . . . , fn) will return the ideal generated by f1, . . . , fn. Here products should
be indicated by ∗, and powers with .̂ If you’d rather not use ̂ (this might be nice if
you have lots of powers), you can write ideal(f1, . . . , fn) instead.

• map(S,R, f1, . . . , fn) gives a ring map R → S if R and S are rings, and R is a quotient
of k[x1, . . . , xn]. The resulting ring map will send xi 7→ fi. There are many variations
of map — for example, you can use it to define R-module homomorphisms — but you
should carefully input the information in the required format. Try viewHelp map in
Macaulay2 for more details

• ker(f) returns the kernel of the map f .

• I + J and I*J return the sum and product of the ideals I and J , respectively.

• A = matrix{{a1,1, . . . , a1,n}, . . . , {am,1, . . . , am,n}} returns the matrix

A =

a1,1 . . . a1,n
. . .

am,1 . . . am,n


If you are familiar with any other programming language, many of the basics are still the

same. For example, some of the commands we will use return lists, and we might often need
to do operations on lists. As with many other programming languages, a list is indicated by
{ } with the elements separated by commas.

i6 : w = {ZZ, 3, ideal"xy3"}

3

o6 = {ZZ, 3, ideal(x*y )}

o6 : List

As in most programming languages, Macaulay2 follows the convention that the first
position in a list is the 0th position.

The method primaryDecomposition returns a list of primary ideals whose intersection
is the input ideal, and associatedPrimes returns the list of associated primes of the given
ideal or module. Operations on lists are often intuitive. For example, let’s say we want to
find the primary component of an ideal with a particular radical.
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i1 : R = QQ[x,y];

i2 : I = ideal"x2,xy";

o2 : Ideal of R

i3 : prim = primaryDecomposition I

2

o3 = {ideal x, ideal (y, x )}

o3 : List

i4 : L = select(prim, Q -> radical(Q) == ideal"x,y")

2

o4 = {ideal (y, x )}

o4 : List

The method select returns a list of all the elements in our list with the required prop-
erties. In this case, if we actually want the primary ideal we just selected, as opposed to a
list containing it, we need to extract the first component of our list L.

i5 : L_0

2

o5 = ideal (y, x )

o5 : Ideal of R

A.4 Graded rings

Polynomial rings in Macaulay2 are graded with the standard grading by default, meaning
that all the variables have degree 1. To define a different grading, we give Macaulay2 a list
with the grading of each of the variables:

i1 : R = ZZ/101[a,b,c,Degrees=>{{1,2},{2,1},{1,0}}];

We can check whether an element of R isHomogeneous, and the function degree applied to
an element of R returns the least upper bound of the degrees of its monomials:

i2 : degree (a+b)

o2 = {2, 2}

o2 : List

i3 : isHomogeneous(a+b)

o3 = false
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A.5 Complexes and homology in Macaulay2

There are two different ways to do computations involving complexes in Macaulay2: using
ChainComplexes, or the new (and still under construction) Complexes package. To use
Complexes, you must first load the Complexes package, while the ChainComplexes methods
are automatically loaded with Macaulay2.

A.5.1 Chain Complexes

To create a new chain complex by hand, we start by setting up R-module maps.

i1 : R = QQ[a,b];

i2 : d1 = map(R^1, R^2, {{a,b}})

o2 = | a b |

1 2

o2 : Matrix R <--- R

i3 : d2 = map(R^2, R^1, {{-b},{a}})

o3 = | -b |

| a |

2 1

o3 : Matrix R <--- R

Keep in mind that the syntax of map is a bit funny: we write map(target,source,matrix).
To make sure we set up the next map in a way that is composable with d1, we can use the
methods source and target:

i3 : d1 = map(source d0, R^1, {{-b},{a}})

o3 = | -b |

| a |

2 1

o3 : Matrix R <--- R

We can also double check our maps do indeed map a complex, by checking the composition
d1 ◦ d2:

i4 : d1 * d2 == 0

o4 = true

So now we are ready to set up our new chain complex.
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i5 : C = new ChainComplex

o5 = 0

o5 : ChainComplex

i6 : C#0 = target d1

1

o6 = R

o6 : R-module, free

i7 : C#1 = target d2

2

o7 = R

o7 : R-module, free

i8 : C#2 = source d2

1

o8 = R

o8 : R-module, free

Given a chain complex C, we can ask Macaulay2 what our complex is by simply running the
name of the complex:

i9 : C

1 2 1

o9 = R <-- R <-- R

0 1 2

o9 : ChainComplex

Or we can ask for a better visual description of the maps, using C.dd:

i10 : C.dd

1 2

o10 = 0 : R <----- R : 1

0
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2 1

1 : R <----- R : 2

0

o10 : ChainComplexMap

We can also set up the same complex in a more compact way, by simply feeding the maps
we want in order. Macaulay2 will automatically place the first map with the target in
homological degree 0 and the source in degree 1.

11 : D = chainComplex(d1,d2)

1 2 1

o11 = R <-- R <-- R

0 1 2

o11 : ChainComplex

Notice this is indeed the same complex.

i12 : D.dd

1 2

o12 = 0 : R <----------- R : 1

| a b |

2 1

1 : R <---------- R : 2

| -b |

| a |

o12 : ChainComplexMap

We can also ask Macaulay2 to compute the homology of our complex:

i13 : HH D

o13 = 0 : cokernel | a b |

1 : subquotient (| b |, | -b |)

| -a | | a |

2 : image 0

o13 : GradedModule
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Or we could simply ask for the homology in a specific degree:

i14 : HH_0 D

o14 = cokernel | a b |

1

o14 : R-module, quotient of R

A.5.2 The Complexes package

To use this functionality, you must first load the Complexes package.

i15 : needsPackage "Complexes";

o15 = Complexes

o15 : Package

We can use our maps from above to set up a complex with the same maps. We feed a
list of the maps we want to use to the method complex.

i16 : F = complex({d1,d2})

1 2 1

o16 = R <-- R <-- R

0 1 2

o16 : Complex

We can read off the maps and the homology in our complex using the same commands as
we use with chainComplexes, although the information returned gets presented in a slightly
different fashion.

i17 : HH F

o17 = cokernel | a b | <-- subquotient (| b |, | -b |) <-- image 0

| -a | | a |

0 2

1

o17 : Complex

i18 : F.dd

1 2
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o18 = 0 : R <----------- R : 1

| a b |

2 1

1 : R <---------- R : 2

| -b |

| a |

o18 : ComplexMap

If we want to set up our complex starting in a different homological degree, we can do the
following:

i19 : G = complex({d1,d2}, Base => 7)

1 2 1

o19 = R <-- R <-- R

7 8 9

o19 : Complex

i20 : H = complex({d1,d2}, Base => -13)

1 2 1

o20 = R <-- R <-- R

-13 -12 -11

o20 : Complex

A.5.3 Maps of complexes

Suppose we are given two complexes C and D and a map of complexes f : C −→ D. The
routine map can be used to define f using chainComplexes: it receives the target D, the
source D, and a function f that returns fi when we compute f(i).

i1 : R = QQ[a,b];

i2 : c1 = map(R^0,R^1,0);

1

o2 : Matrix 0 <--- R

i3 : c2 = map(R^1, R^2, {{a,b}});
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1 2

o3 : Matrix R <--- R

i4 : c3 = map(R^2, R^1, {{-b},{a}});

2 1

o4 : Matrix R <--- R

i5 : c4 = map(R^1, R^0, 0);

1

o5 : Matrix R <--- 0

i6 : C = chainComplex(c1,c2,c3,c4);

i7 :

d1 = map(R^0,R^1,0);

1

o7 : Matrix 0 <--- R

i8 : d2 = id_(R^1);

1 1

o8 : Matrix R <--- R

i9 : d3 = map(R^1, R^0, 0);

1

o9 : Matrix R <--- 0

i10 : d4 = map(R^0, R^0, 0);

o10 : Matrix 0 <--- 0

i11 : D = chainComplex(d1,d2,d3,d4)

1 1

o11 = 0 <-- R <-- R <-- 0 <-- 0

0 1 2 3 4

o11 : ChainComplex

i12 :
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f0 = map(R^0, R^0, 0);

o12 : Matrix 0 <--- 0

i13 : f1 = map(R^1, R^1, matrix{{0_R}});

1 1

o13 : Matrix R <--- R

i14 : f2 = map(R^2, R^1, {{b},{-a}});

2 1

o14 : Matrix R <--- R

i15 : f3 = map(R^1, R^0, 0);

1

o15 : Matrix R <--- 0

i16 : f4 = map(R^0, R^0, 0);

o16 : Matrix 0 <--- 0

i17 : f = map(C,D,i -> if i==0 then f0 else(

if i==1 then f1 else (

if i==2 then f2 else (

if i == 3 then f3 else (

if i==4 then f4)))))

o17 = 0 : 0 <----- 0 : 0

0

1 1

1 : R <----- R : 1

0

2 1

2 : R <---------- R : 2

| b |

| -a |

1

3 : R <----- 0 : 3

0

4 : 0 <----- 0 : 4
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0

o17 : ChainComplexMap

Here’s what we can do if we prefer to write a list with the maps in f:

i18 : f = map(C,D,i -> {f0,f1,f2,f3,f4}_i)

o18 = 0 : 0 <----- 0 : 0

0

1 1

1 : R <----- R : 1

0

2 1

2 : R <---------- R : 2

| b |

| -a |

1

3 : R <----- 0 : 3

0

4 : 0 <----- 0 : 4

0

o18 : ChainComplexMap

If we prefer to do the same with the Complexes package, one advantage is that map does
receive (target, source, list of maps).

i42 : C = complex({c1,c2,c3,c4});

i43 : D = complex({d1,d2,d3,d4});

i44 : f = map(C,D,{f0,f1,f2,f3,f4})

2 1

o44 = 2 : R <---------- R : 2

| b |

| -a |

o44 : ComplexMap
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Commutative algebra background

B.1 Prime Avoidance

Theorem B.1 (Prime avoidance). Let R be a ring, I1, . . . , In, J be ideals, and suppose that
Ii is prime for i > 2.1 If J ̸⊆ Ii for all i, then J ̸⊆

⋃
i Ii. Equivalently, if J ⊆

⋃
i Ii, then

J ⊆ Ii for some i. So if J ⊈ Ii for all i, then we can find an element x ∈ J such that x /∈ Ii
for all i.

Moreover, if R is N-graded, and all of the ideals are homogeneous, all Ii are prime, and
J ̸⊆ Ii for all i, then there is a homogeneous element in J that is not in

⋃
i Ii.

Proof. We proceed by induction on n. If n = 1, there is nothing to show.
By induction hypothesis, we can find elements ai such that

ai /∈
⋃
j ̸=i

Ij and ai ∈ J

for each i. If some ai /∈ Ii, we are done, so let’s assume that ai ∈ Ii for each i. Consider
a = an + a1 · · · an−1 ∈ J . Notice that a1 · · · an−1 = ai(a1 · · · âi · · · an−1) ∈ Ii. If a ∈ Ii for
i < n, then we also have an ∈ Ii, a contradiction. If a ∈ In, then we also have a1 · · · an−1 =
a − an ∈ In, since an ∈ In. If n = 2, this says a1 ∈ I2, a contradiction. If n > 2, our
assumption is that In is prime, so one of a1, . . . , an−1 ∈ In, which is a contradiction. So a is
the element we were searching for, meaning a /∈ Ii for all i.

If all Ii are homogeneous and prime, then we proceed as above but replacing an and
a1, . . . , an−1 with suitable powers so that an + a1 · · · an−1 is homogeneous. For example, we
could take

a := adeg(a1)+··· deg(an−1)
n + (a1 · · · an−1)

deg(an) .

The primeness assumption guarantees that noncontainments in ideals is preserved.

Corollary B.2. Let I be an ideal and M a finitely generated module over a Noetherian ring
R. If I consists of zerodivisors on M , then Im = 0 for some nonzero m ∈M .

1So all the ideals are prime, except we may allow two of them to not be prime.
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Proof. The assumption says that

I ⊆
⋃

p∈Ass(M)

(p).

By the assumptions, Corollary 1.53 applies, and it guarantees that this is a finite set of
primes. By Prime Avoidance, I ⊆ p for some p ∈ Ass(M). Equivalently, I ⊆ annR(m) for
some nonzero m ∈M .

Later on, we will also need a slightly stronger version of Prime Avoidance, so we record
it now.

Theorem B.3. Let R be a ring, P1, . . . , Pn prime ideals, x ∈ R and I be an ideal in R. If
(x) + I ̸⊆ Pi for each i, then there exists y ∈ I such that

x+ y /∈
n⋃

i=1

Pi.

Proof. We proceed by induction on n. When n = 1, if every element of the form x+ y with
y ∈ R is in P = P1, then multiplying by r ∈ R we conclude that every rx+ y ∈ P , meaning
(x) + I ⊆ P .

Now suppose n > 1 and that we have shown the statement for n− 1 primes. If Pi ⊆ Pj

for some i ̸= j, then we might as well exclude Pi from our list of primes, and the statement
follows by induction. So assume that all our primes Pi are incomparable.

If x /∈ Pi for all i, we are done, since we can take x+ 0 for the element we are searching
for. So suppose x is in some Pi, which we assume without loss of generality to be Pn. Our
induction hypothesis says that we can find y ∈ I such that x + y /∈ P1 ∪ · · · ∪ Pn−1. If
x + y /∈ Pn, we are done, so suppose x + y ∈ Pn. Since we assumed x ∈ Pn, we must have
I ̸⊆ Pn, or else we would have had (x) + I ⊆ Pn. Now Pn is a prime ideal that does not
contain P1, . . . , Pn−1, nor I, so

P ̸⊇ IP1 · · ·Pn−1.

Choose z ∈ IP1 · · ·Pn−1 not in Pn. Then x + y + z /∈ Pn, since z /∈ Pn but x + y ∈ Pn.
Moreover, for all i < n we have x+ y + z /∈ Pi, since z ∈ Pi and x+ y /∈ Pi.

B.2 NAK

We will now show a very simple but extremely useful result known as Nakayama’s Lemma.
As noted in [Mat89, page 8], Nakayama himself claimed that this should be attributed to
Krull and Azumaya, but it’s not clear which of the three actually had the commutative ring
statement first. So some authors (eg, Matsumura) prefer to refer to it as NAK. There are
actually a range of statements, rather than just one, that go under the banner of Nakayama’s
Lemma a.k.a. NAK.

Proposition B.4. Let R be a ring, I an ideal, and M a finitely generated R-module. If
IM =M , then

a) there is an element r ∈ 1 + I such that rM = 0, and
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b) there is an element a ∈ I such that am = m for all m ∈M .

Proof. Let M = Rm1 + · · ·+Rms. By assumption, we have equations

m1 = a11m1 + · · ·+ a1sms , . . . , ms = as1m1 + · · ·+ assms,

with aij ∈ I. Setting A = [aij] and v = [xi] we have a matrix equations Av = v. By the
determinantal trick, Lemma B.18, the element det(Is×s − A) ∈ R kills each mi, and hence
M . Since det(Is×s−A) ≡ det(Is×s) ≡ 1mod I, this determinant is the element r we seek for
the first statement.

For the latter statement, set a = 1 − r; this is in I and satisfies am = m − rm = m for
all m ∈M .

Proposition B.5. Let (R,m, k) be a local ring, and M be a finitely generated module. If
M = mM , then M = 0.

Proof. By the Proposition B.4, there exists an element r ∈ 1+m that annihilatesM . Notice
that 1 /∈ m, so any such r must be outside of m, and thus a unit. Multiplying by its inverse,
we conclude that 1 annihilates M , or equivalently, that M = 0.

Proposition B.6. Let (R,m, k) be a local ring, and M be a finitely generated module, and
N a submodule of M . If M = N +mM , then M = N .

Proof. By taking the quotient by N , we see that

M/N = (N +mM)/N = m (M/N) .

By Proposition B.5, M = N .

Proposition B.7. Let (R,m, k) be a local ring, and M be a finitely generated module. For
m1, . . . ,ms ∈M ,

m1, . . . ,ms generate M ⇐⇒ m1, . . . ,ms generate M/mM.

Thus, any generating set for M consists of at least dimk(M/mM) elements.

Proof. The implication (⇒) is clear. If m1, . . . ,ms ∈ M are such that m1, . . . ,ms generate
M/mM , let N = Rm1 + · · · + Rms ⊆ M . By Proposition B.5, M/N = 0 if and only if
M/N = m(M/N). The latter statement is equivalent to M = mM +N , which is equivalent
to saying that M/mM is generated by the image of N .

Remark B.8. Since R/m is a field, M/mM is a vector space over the field R/m.

Definition B.9. Let (R,m) be a local ring, and M a finitely generated module. A set of
elements {m1, . . . ,mt} is a minimal generating set of M if the images of m1, . . . ,mt form
a basis for the R/m vector space M/mM .

As a consequence of basic facts about basis for vector spaces, we conclude that any
generating set for M contains a minimal generating set, and that every minimal generating
set has the same cardinality.
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Definition B.10. Let (R,m) be a local ring, and N an R-module. The minimal number
of generators of M is

µ(M) := dimR/m (M/mM) .

Equivalently, this is the number of elements in a minimal generating set for M .

We commented before that graded rings behave a lot like local rings, so now we want to
give graded analogues for the results above.

Proposition B.11. Let R be an N-graded ring, andM a Z-graded module such thatM<a = 0
for some a. If M = (R+)M , then M = 0.

Proof. On the one hand, the homogeneous elements in M live in degrees at least a, but
(R+)M lives in degrees strictly bigger than a. If M has a nonzero element, it has a nonzero
homogeneous element, and we obtain a contradiction.

This condition includes all finitely generated Z-graded R-modules.

Remark B.12. If M is finitely generated, then it can be generated by finitely many ho-
mogeneous elements, the homogeneous components of some finite generating set. If a is the
smallest degree of a homogeneous element in a homogeneous generating set, since R lives
only in positive degrees we must have M ⊆ RM⩾a ⊆M⩾a, so M<a = 0.

Just as above, we obtain the following:

Proposition B.13. Let R be an N-graded ring, with R0 a field, and M a Z-graded module
such thatM<a = 0 for some degree a. A set of elements ofM generatesM if and only if their
images in M/(R+)M spans as a vector space. Since M and (R+)M are graded, M/(R+)M
admits a basis of homogeneous elements.

In particular, if k is a field, R is a positively graded k-algebra, and I is a homogeneous
ideal, then I has a minimal generating set by homogeneous elements, and this set is unique
up to k-linear combinations.

Definition B.14. Let R be an N-graded ring with R0 a field, and M a finitely generated
Z-graded R-module. The minimal number of generators of M is

µ(M) := dimR/R+ (M/R+M) .

We can use Macaulay2 to compute (the) minimal (number of ) generators of graded
modules over graded k-algebras, using the commands mingens and numgens.

Note that we can use NAK to prove that certain modules are finitely generated in the
graded case; in the local case, we cannot.
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B.3 Krull’s Intersection Theorem

Theorem B.15 (Krull intersection theorem). Let (R,m, k) be a Noetherian local ring. Then⋂
n⩾1

mn = 0.

Proof. Let J =
⋂
n∈N

mn. First, we claim that J ⊆ mJ .

Let mJ = q1∩· · ·∩qt be a primary decomposition. To show that J ⊆ mJ , it is sufficient to
prove that J ⊆ qi for each i. If

√
qi ̸= m, pick x ∈ m such that x /∈ √

qi. Then xJ ⊆ mJ ⊆ qi,
but x /∈ √

qi, so J ⊆ qi by definition of primary. If instead
√
qi = m, there is some N with

mN ⊆ qi by ??. By definition of J , we have J ⊆ mN ⊆ qi, and we are done.
We showed that J ⊆ mJ , hence J = mJ , and thus J = 0 by NAK.

This also holds over any domain without the local assumption.

Theorem B.16 (Krull Intersection Theorem for domains). If R is a domain, then⋂
n⩾1

In = 0.

for any proper ideal I in R.

Proof. Let m be a maximal ideal in R. The only minimal prime over mn is m, so the powers of
m have no embedded primes and must then all be m-primary. In particular, mn = mnRm∩R.
Notice that taking pre-images commutes with taking intersections, so

⋂
n⩾1

mn =
⋂
n⩾1

(mnRm ∩R) =

(⋂
n⩾1

mnRm

)
∩R =

(⋂
n⩾1

mn
m

)
∩R.

By Theorem B.15,
⋂

n⩾1m
n
m = 0. Since R is a domain, the localization map is injective, and

we conclude that ⋂
n⩾1

mn = 0.

Now if I is any proper ideal in R, I ⊆ m for some maximal ideal m, and⋂
n⩾1

In =
⋂
n⩾1

mn = 0.

B.4 Ring extensions

In field theory, there is a close relationship between (vector space-)finite field extensions and
algebraic equations. The situation for rings is similar.



198

Definition B.17 (Integral element/extension). Let R be an A-algebra. The element r ∈ R
is integral over A if there are elements a0, . . . , an−1 ∈ A such that

rn + an−1r
n−1 + · · ·+ a1r + a0 = 0;

i.e., r satisfies an equation of integral dependence over A. We say that R is integral
over A if every r ∈ R is integral over A.

Integral automatically implies algebraic, but the condition that there exists an equation
of algebraic dependence that is monic is stronger in the setting of rings.

Lemma B.18 (Determinantal trick). Let R be a ring, B ∈Mn×n(R), v ∈ R⊕n, and r ∈ R.

1) adj(B)B = det(B)In×n.

2) If Bv = rv, then det(rIn×n −B)v = 0.

Proof.

1) When R is a field, this is a basic linear algebra fact. We deduce the case of a general
ring from the field case.

The ring R is a Z-algebra, so we can write R as a quotient of some polynomial ring
Z[X]. Let ψ : Z[X] // // R be a surjection, aij ∈ Z[X] be such that ψ(aij) = bij, and

let A = [aij]. Note that

ψ(adj(A)ij) = adj(B)ij and ψ((adj(A)A)ij) = (adj(B)B)ij,

since ψ is a homomorphism, and the entries are the same polynomial functions of the
entries of the matrices A and B, respectively. Thus, it suffices to establish

adj(B)B = det(B)In×n

in the case when R = Z[X], and we can do this entry by entry. Now, R = Z[X] is an
integral domain, hence a subring of a field (its fraction field). Since both sides of the
equation

(adj(B)B)ij = (det(B)In×n)ij

live in R and are equal in the fraction field (by linear algebra) they are equal in R.
This holds for all i, j, and thus 1) holds.

2) We have (rIn×n −B)v = 0, so by part 1)

det(rIn×n −B)v = adj(rIn×n −B)(rIn×n −B)v = 0.

Theorem B.19. Let A ⊆ R be module-finite. Then R is integral over A.



199

Proof. Given r ∈ R, we want to show that r is integral over A. The idea is to show that
multiplication by r, realized as a linear transformation over A, satisfies the characteristic
polynomial of that linear transformation.

Write R = Ar1 + · · ·Art. We may assume that r1 = 1, perhaps by adding module
generators. By assumption, we can find aij ∈ A such that

rri =
t∑

j=1

aijrj

for each i. Let C = [aij], and v be the column vector (r1, . . . , rt). We have rv = Cv, so by
the determinant trick, det(rIn×n − C)v = 0. Since we chose one of the entries of v to be 1,
we have in particular that det(rIn×n−C) = 0. Expanding this determinant as a polynomial
in r, this is a monic equation with coefficients in A.

Lemma B.20. If R ⊆ S is an integral extension of domains, R is a field if and only S is a
field.

Proof. Take any nonzero s ∈ S, and consider an equation of integral dependance of s over
R, say

sn + an−1s
n−1 + · · ·+ a1s+ a0 = 0.

Since a0 is a unit in R ⊆ S, we can divide by a0, so that

−s(sn−1 + an−1s
n−2 + · · ·+ a1) = 1.

The s is a unit, and S is a field.
If S is a field, and r ∈ R is nonzero, then there exists an inverse s for r in S, which is

integral over R. Then
sn + an−1s

n−1 + · · ·+ a1s+ a0 = 0

for some ai ∈ R, and multiplying through by rn−1 gives

s = −(an−1 + an−2r · · ·+ a1r
n−2 + a0r

n−1) ∈ R.

Then R is a field.
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covering number of a graph, 145

depth, 63
determinantal trick, 198
differential power, 94
dimension of a module, 38
dimension of a ring, 38

edge ideal, 115
embedded prime, 14
embedding dimension, 43
equation of integral dependence, 198
equidimensional ring, 39
equivalent Cauchy sequences, 162
expansion of an ideal, 6
extended Rees algebra, 119

F-pure ring, 155
F-split ring, 154
face of a simplicial complex, 111
Fermat configuration, 170
filtration, 12, 118
finer topology, 162
free resolution, 54
Freshman’s Dream, 151
Frobenius, 151
Frobenius power of an ideal, 152

generic points, 170

Harbourne’s Conjecture, 169
height, 38
height of a prime, 38
height of an ideal, 38
homogeneous coordinates, 86
homogeneous system of parameters, 71

ideal of linear type, 125
ideal of points, 90
incidence matrix of a clutter, 146
independence number of a graph, 145
integral element, 198
integral over A, 198

irreducible ideal, 20
irredundant primary decomposition, 19
irrelevant maximal ideal, 88

Jacobian ideal, 80
Jacobson ring, 91

König ideal, 143, 146
Koszul complex, 44, 46
Koszul complex of a module, 45
Koszul homology, 47
Krull dimension, 38
Krull Intersection Theorem, 197
Krull’s Height Theorem, 41
Krull’s Principal Ideal Theorem, 40

length of a chain of primes, 38
licci, 142
linkage, 142
linked ideals, 142
localization, 5
localization at a prime, 7
localization of a module, 5
localization of a ring, 5

max-flow min-cut property, 147
minimal complex, 56
minimal free resolution, 56
minimal generating set, 195
minimal generators, 195
minimal number of generators, 196
minimal prime, 3
minors of a monomial ideal, 144
mixed differential power of an ideal, 102
monomial grade of an ideal, 146

nilradical, 4
nonzerodivisor, 50

packed ideal, 143
parameters, 71
perfect field, 96
perfect ideal, 141
primary decomposition, 19
primary ideal, 16
Prime avoidance, 193
prime filtration, 12



202
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[BMRS15] Angélica Benito, Greg Muller, Jenna Rajchgot, and Karen E. Smith. Singular-
ities of locally acyclic cluster algebras. Algebra and Number Theory, 9(4):913–
936, 2015.

[BRH+09] T. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A. Knutsen, W. Syzdek,
and T. Szemberg. A primer on Seshadri constants. Contemporary Mathematics,
vol. 496:39–70, 2009.

[Bro79] Markus P. Brodmann. Asymptotic stability of Ass(M/InM). Proc. Amer. Math.
Soc., 74(1):16–18, 1979.

[BT06] Michel Brion and Jesper Funch Thomsen. F-regularity of large Schubert vari-
eties. American Journal of Mathematics, 128(4):949–962, 2006.

[Bui95] Alexandru Buium. Differential characters of abelian varieties over p-adic fields.
Inventiones mathematicae, 122(2):309–340, 1995.

203



204

[Bui05] Alexandru Buium. Arithmetic differential equations, volume 118 of Mathemati-
cal Surveys and Monographs. American Mathematical Society, Providence, RI,
2005.

[Bur68] Lindsay Burch. A note on the homology of ideals generated by three elements
in local rings. Proc. Cambridge Philos. Soc., 64:949–952, 1968.

[BV88] Winfried Bruns and Udo Vetter. Determinantal rings, volume 1327 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1988.

[CEHH16] Susan M. Cooper, Robert J. D. Embree, Tai Ha, and Andrew H. Hoefel. Sym-
bolic powers of monomial ideals. Proceedings of the Edinburgh Mathematical
Society, 60:39–55, 2016.

[CLO92] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms.
Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992. An
introduction to computational algebraic geometry and commutative algebra.

[CR21] Yairon Cid-Ruiz. Noetherian operators, primary submodules and symbolic pow-
ers. Collect. Math., 72(1):175–202, 2021.

[DDSG+18] Hailong Dao, Alessandro De Stefani, Elóısa Grifo, Craig Huneke, and Luis
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Briançon-Skoda theorem. J. Amer. Math. Soc., 3(1):31–116, 1990.

[HH94a] Melvin Hochster and Craig Huneke. F-regularity, test elements, and smooth
base change. Trans. Amer. Math. Soc., 346(1):1–62, 1994.

[HH94b] Melvin Hochster and Craig Huneke. Tight closure of parameter ideals and
splitting in module-finite extensions. J. Algebraic Geom., 3(4):599–670, 1994.

[HH99] Melvin Hochster and Craig Huneke. Tight closure in equal characteristic zero.
1999.

[HH02] Melvin Hochster and Craig Huneke. Comparison of symbolic and ordinary
powers of ideals. Invent. Math. 147 (2002), no. 2, 349–369, November 2002.

[HH11] Jürgen Herzog and Takayuki Hibi. Monomial Ideals. Graduate Texts in Math-
ematics, 260. Springer London, London, 1st ed. 2011. edition, 2011.

[HHTZ08] Jürgen Herzog, Takayuki Hibi, Ngô Viêt Trung, and Xinxian Zheng. Stan-
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[HS02] Serkan Hoşten and Gregory G. Smith. Monomial ideals. In Computations in
algebraic geometry with Macaulay 2, volume 8 of Algorithms Comput. Math.,
pages 73–100. Springer, Berlin, 2002.

[HS15] Brian Harbourne and Alexandra Seceleanu. Containment counterexamples
for ideals of various configurations of points in PN . J. Pure Appl. Algebra,
219(4):1062–1072, 2015.

[HSV89] Craig Huneke, Aron Simis, and Wolmer Vasconcelos. Reduced normal cones
are domains. In Invariant theory (Denton, TX, 1986), volume 88 of Contemp.
Math., pages 95–101. Amer. Math. Soc., Providence, RI, 1989.

[HU89] Craig Huneke and Bernd Ulrich. Powers of licci ideals. In Commutative algebra
(Berkeley, CA, 1987), volume 15 of Math. Sci. Res. Inst. Publ., pages 339–346.
Springer, New York, 1989.

[Hun81] Craig Huneke. Symbolic powers of prime ideals and special graded algebras.
Comm. Algebra, 9(4):339–366, 1981.

[Hun82] Craig Huneke. The theory of d-sequences and powers of ideals. Adv. in Math.,
46(3):249–279, 1982.

[Hun86] Craig Huneke. The primary components of and integral closures of ideals in 3-
dimensional regular local rings. Mathematische Annalen, 275(4):617–635, Dec
1986.

[JMnV15] Jack Jeffries, Jonathan Montaño, and Matteo Varbaro. Multiplicities of classical
varieties. Proceedings of the London Mathematical Society, 110(4):1033–1055,
2015.



208

[Joh14] Mark R. Johnson. Containing symbolic powers in regular rings. Communica-
tions in Algebra, 42(8):3552–3557, 2014.

[Joy85] A. Joyal. δ-anneaux et vecteurs de Witt. C.R. Acad. Sci. Canada, VII(3):177–
182, 1985.

[KS19] Jesse Kim and Irena Swanson. Many associated primes of powers of primes. J.
Pure Appl. Algebra, 223(11):4888–4900, 2019.

[Kun69] Ernst Kunz. Characterizations of regular local rings for characteristic p. Amer.
J. Math., 91:772–784, 1969.

[Las05] Emanuel Lasker. Zur theorie der moduln und ideale. Mathematische Annalen,
60:20–116, 1905.

[LS01] Gennady Lyubeznik and Karen E. Smith. On the commutation of the test ideal
with localization and completion. Trans. Amer. Math. Soc., 353(8):3149–3180
(electronic), 2001.

[LS06] Aihua Li and Irena Swanson. Symbolic powers of radical ideals. Rocky Mountain
J. Math., 36(3):997–1009, 2006.

[Mat80] Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture
Note Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second
edition, 1980.

[Mat89] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, second
edition, 1989. Translated from the Japanese by M. Reid.

[McA83] Stephen McAdam. Asymptotic prime divisors, volume 1023 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1983.
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