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Problem Set 10
solutions

Problem 1. Let R be a ring.

(1.1) Prove that an ideal I of R is proper if and only if I contains no units.

Proof. Let I be an ideal. If it contains no units, then it does not contain 1 and hence I ∕= R. If
I contains a unit u, then for all r ∈ R,

r = (ru−1)u ∈ I

and hence I = R.

(1.2) Assume R is commutative. Show that R is a field if and only if its only ideals are {0} and R.

Proof. Suppose R is a field. Every nonzero ideal I contains a nonzero element u, but since R is
a field the element u must be unit. By (1.1), I = R. Assume R has exactly two ideals, {0} and
R. If 0 ∕= a ∈ R, then the ideal (a) = Ra is nonzero, and thus (a) = R. In particular, there is
u ∈ R such that

au = ua = 1.

Thus a is a unit, and therefore R is a field.

(1.3) Show that the only ideals of R = Mat2×2(R) are {0} and R, and yet R is not a division ring.

Proof. Let I be a nonzero ideal in R and suppose A ∈ I is any nonzero matrix. By elementary
linear algebra, we we may do row and column operations to get either

I2 =

󰀗
1 0
0 1

󰀘
or B =

󰀗
1 0
0 0

󰀘
.

Row and column operations amount to multiplying on the left or right by (invertible) matrices,
so we can multiply A by other matrices on the left and/or right and obtain either I2 or B. We
conclude that I2 ∈ I or B ∈ I.

If B ∈ I, then we can apply a row operation and a column operation to B to obtain

C =

󰀗
0 0
0 1

󰀘
.

Thus C ∈ I. Therefore,
I2 = B + C ∈ I.

Either way, we conclude that I2 ∈ I, and thus I = R by (1.1).

But R is not a division ring since it has many nonzero, nonunit elements; for example, B is
nonzero but not invertible, since its determinant is zero and all invertible matrices have invertible
determinant.

Problem 2. Let a and b be nonzero integers. Prove that (a, b) = (d) where d = gcd(a, b).

Proof. Since d divides a, then a = dx for some integer x and a ∈ (d). Similarly, b ∈ (d). Hence
(a, b) ⊆ (d). By the Euclidean Algorithm (or a corollary of it), we can write d = ax + by for some
x, y ∈ Z. Thus d ∈ (a, b), so (d) ⊆ (a, b). We conclude that (a, b) = (d).
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Problem 3. Let I and J be ideals of a commutative ring R with 1 ∕= 0. In this problem, you can use
without proof that I + J , I ∩ J , and IJ are ideals of R.

(4.1) Show that IJ ⊆ I ∩ J .

Proof. Recall that

IJ =

󰀫
n󰁛

i=1

aibi | n 󰃍 0, ai ∈ I, bi ∈ J

󰀬
.

Given a ∈ I and b ∈ J , since J is an ideal we have ab ∈ J , and since I is an ideal we have ab ∈ I.
We conclude that ab ∈ I ∩ J . Moreover, I ∩ J is an ideal and thus closed for sums, so for any
a1, . . . , an ∈ I and b1, . . . , bn ∈ J we must then have

n󰁛

i=1

aibi ∈ IJ.

Thus IJ ⊆ I ∩ J always holds.

(4.2) Give an example where IJ ∕= I ∩ J .

Solution. Consider the ring R = k[x], where k is any field, and let I = J = (x). Then
I ∩ J = I = (x), but IJ = I2 = (x2) ∕= I ∩ J .

(4.3) Suppose that I + J = R. Show that IJ = I ∩ J .

Proof. If I + J = R, then there exist i ∈ I and j ∈ J such that i + j = 1. Let α ∈ I ∩ J , then
α = α · 1 = α · (i + j) = ai + aj ∈ IJ and thus it follows that I ∩ J ⊆ IJ under the given
hypotheses.

(4.4) Suppose m and n are distinct maximal ideals of a commutative ring R. Prove that mn = m∩n.

Hint: First consider m+ n.

Proof. First note that m + n is an ideal, and contains both m and n. Hence, m + n properly
contains both (as m ∕= n), so we must have m+ n = R. We conclude that m ∩ n = mn.

(4.5) Suppose that I + J = R. Show that there is a ring isomorphism R/(I ∩ J) ∼= R/I ×R/J .

Proof. Let f : R → R/I ×R/J be defined by

f(r) = (r + I, r + J).

This is a ring homomorphism:

• f(r + s) = (r + s+ I, r + s+ J) = (r + I, r + J) + (s+ I, s+ J) = f(r) + f(s)

• f(rs) = (rs+ I, rs+ J) = (r + I, s+ I)(r + J, s+ J) = f(r)f(s).

• f(1R) = (1 + I, 1 + J) = 1R/I×R/J .
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Note that

ker(f) = {r ∈ R | r + I = 0 + I and r + J = 0 + J} = {r ∈ R | r ∈ I and r ∈ J} = I ∩ J.

Moreover, we claim that f is surjective. Since I + J = R, there exist i ∈ I and j ∈ J such that
i+ j = 1. Set z := rj + si. Now given any (r + I, s+ J), note that si, ri ∈ I and rj, sj ∈ J , so

z + I = rj + si+ I = rj + I = r(1− i) + I = r − ri+ I = r + I

and
z + J = rj + si+ J = si+ J = s(1− j) + J = s− sj + J = s+ J.

Thus
(r + I, s+ J) = (z + I, z + J) = f(z).

By the UMP of quotient rings there is a well-defined ring homomorphism

f : R/(I ∩ J) → R/I ×R/J

given by
f(r + I ∩ J) = (r + I, r + J).

Moreover, its kernel is {0}, since ker f = I ∩ J , and f is surjective since f is surjective. This
shows f is an isomorphism.

Problem 4. Define N : C → R to be the square of the complex norm; that is,

N(a+ bi) = (a+ bi)(a− bi) = a2 + b2.

You can use without proof that N satisfies N(αβ) = N(α)N(β) for any α,β ∈ C.

(2.1) Show that the only units of Z[i] are ±1 and ±i.

Proof. First, note that given a+ bi ∈ Z[i], we have

N(a+ bi) = a2 + b2 ∈ Z,

and in fact N(a + bi) 󰃍 0. If αβ = 1, then N(α)N(β) = 1 and hence the nonnegative integers
N(α) and N(β) must satisfy N(α) = N(β) = 1. We conclude that α ∈ {±1,±i}.
On the other hand, −1 is its own inverse and i(−i) = 1, so ±1 and ±i are all units.

(2.2) Prove that the only units of the ring Z[
√
−5] are ±1.

Proof. Note that the norm of α = a + b
√
−5 is N(α) = a2 + 5b2. It α is a unit, then as in the

previous proof its norm would have to be 1 and this can only occur if a = ±1 and b = 0.

(2.3) Are there units in Z[
√
2] other than ±1?

Solution: Yes, for instance 3 + 2
√
2 is a unit since (3 + 2

√
2)(3 − 2

√
2) = 9 − 4 · 2 = 1. Note

that the trick we used on the Gaussian integers and Z[
√
−5] does not apply here, as the norm

of α = a+ b
√
2 is

N(α) = (a+ b
√
2)2 = a2 + ab

√
2 + 2b2.
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