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Problem Set 11
solutions

Problem 1. Let I = (2,z) in R = Z[z].

(5.1)

(5.2)

Show that m = (2, z) is a maximal ideal.

Proof. Consider the ring homomorphism evq: Z[zx] — Z given by evaluation at 0. On the one
hand, this map is surjective, as any n € Z can be obtained by evaluating the constant polynomial
n: evg(n) = n. The kernel of evy is the set of polynomials with zero constant term, which are
the multiples of z, so ker(evg) = (x). By the First Isomorphism Theorem for rings, we conclude
that

Zlz]/(x) = 2.

Moreover, under this isomorphism I/(z) corresponds to evo(I). Since I is the set of all polyno-
mials with even constant term, we conclude that I/(x) corresponds to evg(l) = (2) under the
isomorphism

above. Thus

(Zla]/(x))/(1/(x)) = Z/(2).
By the Third Isomorphism Theorem for rings,

Zlz]) /1 = (Z[z]/(2))/(I/(z))-

Therefore,
Zle)/I = 2/(2). O

Now note that Z/(2) is a field, and thus I must be a maximal ideal.
Show that (2,x) is not a principal ideal.

Proof. Suppose by way of contradiction that (2,z) = (f) for some f € Z[z]. Since 2 € (f), we
have 2 = fg for some g € Z[z]. Since Z is a domain,

0 =deg2 = deg(fg) = deg f + degy,
and since f, g # 0 we conclude that

deg(f) = deg(g) = 0.

Hence f and g are constant polynomials, say f = p and g = q with p,q € Z. Therefore, 2 = pq in
Z, and since 2 is a prime integer either p = +1 and ¢ = +2 or p = £2 and ¢ = £1. We conclude
that either (f) = R or (f) = (2). We will show that both of these are impossible.

Suppose that I = (2,z) = R. Then 1 € (2,z), so there exist u,v € Z[z] such that

1 =2u+2v.
The constant term of the polynomial 1 is the integer 1, while the constant term of 2u + zv is
twice the constant term of w, and thus even. This is a contradiction, so (2,z) # R.

If I =(2,z) = (2), then x € (2), and thus z = 2h for some polynomial h € Z[z]. Again this leads
to a contradiction: every nonzero coefficient of the polynomial x is odd, while every nonzero
coefficient of the polynomial 2h is even.

We conclude that (2, z) cannot be principal. O
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Problem 2. Show that every finite domain must be a field.

Proof. Let R be a finite domain, and consider any nonzero element x € R. Since R is finite, there are
only finitely many elements of the form 2™ with n > 0. In particular, there exist n > m such that
" = z". Thus by the cancellation rule, we have

""" =" = " = 1.

Note that a = n —m > 0 and 2® = 1. In particular, z is a unit, with inverse ¢~!. We conclude that
R is a field. 0

Problem 3. Consider the ring R = Z[z] and the ideal I = (3,2% + x + 1).
(2.1) Show that R/I = (Z/3)[z]/(x3 + = + 1).

Proof. Using the Third Isomorphism Theorem, we have
Z[z)/1 = (Z[z]/(3))/(a® + = + 1).
Now consider the map quotient map 7: Z — Z/3, and let
p: Llx] — (2/3)]]
be the ring homomorphism defined by
plag+ a1z + -+ apa™) = w(ag) + w(ar)x + - - - + w(ay)z™.

A polynomial is in ker(y) if and only if all its coefficients are multiples of 3, and thus ker(¢) = (3).
Moreover, ¢ is surjective by construction. By the First Isomorphism Theorem, we conclude that

Zlx]/(3) = (Z/3)[x].

Therefore,
Zl)/1 = (Z/3)[a) /@ + 2 +1). O

(2.2) Find, with proof, all the ideals of R that contain I.

Proof. By the Lattice Isomorphism Theorem, the ideals of (Z/3)[x]/(z® + = + 1) correspond to the
ideals of (Z/3)[x] that contain 2% 4+ z + 1. Since Z/3 is a field, Z/3[z] is a PID. Given any f € Z/3[2],
(f) 2 (2 + 2 + 1) if and only if f divides 2® + 2 + 1.

The ring Z/3 is a field, and over Z/3 the polynomial 23 + z + 1 factors as

P r+l=(-1)(*+z-1).

The polynomial 22 + 2 — 1 has no roots in Z/3, which we can check by explicitly evaluating it at all
the three elements of Z/3. Hence, by degree considerations, 22 4+ 2 — 1 must be irreducible, as any
factor would have degree 1 and lead to a root.

Thus the ideals of Z/3[x] that contain 23 + x + 1 are (1), (z3 +z + 1), (z — 1) and (2? + z — 1).
This gives 4 ideals of Z[x] that contain I: Z[x], I, (3,7 — 1) and (3,2% + x + 1). O
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Problem 4. Let R be a commutative ring. Show that every proper ideal I # R is contained in some
maximal ideal of R.

Proof. Fix a ring R and a proper ideal I. Let
S = {J proper ideal in R | J D I}.

This set is partially ordered with the inclusion order C. We claim that Zorn’s Lemma applies to S.
First, S is nonempty, since it contains I. Now consider a chain of proper ideals in R, say {.J;};, all of
which contain I. Now we claim that
J = U Ji
3

is an ideal as well. All the J; are nonempty, so J is nonempty. Moreover, giving a,b € J, and r € R,
note that a € J, for some index = and b € J, for some index y. Since {J;}; is a totally ordered set,
we have J, C J, or J, C J,. Assume without loss of generality that J, C J,, so that a,b € J,. Since
J is an ideal, we have a — b € J, and ra € J,. We conclude that a — b,ra € J, and thus J is an ideal.

Moreover, all the J; are proper ideals, so 1 ¢ J; for all i. We conclude that 1 ¢ J and thus J # R.
Since each J; O I, we conclude that J O I. Thus we have checked that J € S. Now this ideal J € S
is an upper bound for our chain {J;};, and thus Zorn’s Lemma applies to S. We conclude that S has
a maximal element.

There is one subtle point missing: we have shown that there is a maximal element M in S containing
I, but we have yet to show that this maximal element is a maximal ideal of R. Finally, suppose that
L is an ideal in R with L O M. Since M contains J, so does L. If L € S, by the maximality of M we
must have L = M. Since L already satisfies L D J, if L ¢ S then we must have L = R. We conclude
that M is a maximal ideal of R. O

Problem 5. Let R be a commutative ring. We say that R is noetherian if it satisfies the following
ascending chain condition: for any ascending chain of ideals

L CI,CI3C---

there exists a positive integer n such that I, = I, for all positive integers k; that is, the ascending
chain stabilizes. Prove that a ring R is noetherian if and only if every ideal of R is finitely generated.

Proof. (<): Suppose every ideal of R is finitely generated, and consider an ascending chain of ideals
LCLCI3C---.
Let
o0
J=J I
k=1

which is an ideal by the previous problem. By assumption, J is finitely generated, say J = (a1, ..., as).
For each index 1 < ¢ </, the element q; is in I, for some natural number k;. Set

k = max{ki,..., k¢},
and note that I}, C I for all <. Then ay,...,as € I}, and hence J C I},. But I, C J, so
Iy=Ip1=---=1,

for all n > k, and the chain stops. Thus R is noetherian.
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(=): Suppose that there is an ideal I of R that is not finitely generated. Let Ip = 0 = (0). Since
I is not finitely generated, then I # Ip, and so there is an element a; € I\ Ip. Let I} = (a1); then
I € I, and I; # I. Suppose by induction that we have constructed I; = (ay,...,a;) C I such that

IhChL G- CIj

Since I; is finitely generated, I; # I, so there is an element aj41 € I\ I;. Set Ij41 = (a1,...,a;41).
then
ICh G- Clin

and ;41 € I. We can thus construct an infinite ascending chain of ideals, so R is not noetherian.
O



