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Problem Set 1 solutions

Problem 1. Prove that every group of order 4 is abelian, using only use the definition of a group.
Proof. Let G be a group with 4 elements, and suppose there are elements a, b ∈ G such that ab ∕= ba
for some elements a, b ∈ G. Let e denote the identity element of G. Since ab ∕= ba, we must have a ∕= b,
a ∕= e, and b ∕= e. Since G has only 4 elements and ab ∕= ba, either ab ∈ {e, a, b} nor ba ∈ {e, a, b}.
Without loss of generality, let us assume that ab = e. But ab = e implies b = a−1, and we know a−1

commutes with a, and hence this is not possible. If ab = a, then b = e and if ab = b then a = e, both
of which are impossible. Since a and b were arbitrary elements, G must be abelian.

Problem 2. Let G be a group and x ∈ G any element. Recall that |x| denotes the order of x, defined
to be the least integer n  1 such that xn = e; if no such integer exists, we say |x| = ∞. Also, let |G|
denote the cardinality of G; note that |G| is an element of {1, 2, 3, · · · } ∪ {∞}.

(a) Prove that if |x| = n, then e, x, . . . , xn−1 are all distinct elements of G.

Proof. If e = x0, x, x2, . . . , xn−1 are not all distinct, then xi = xj for some 0  i < j  n − 1,
and thus xj−i = e. Since 0 < j − i < n, this contradicts the minimality of n.

(b) Prove that if |x| = ∞, then xi ∕= xj for all positive integers i ∕= j.

Proof. Suppose xi = xj for some i < j. Multiplying by the inverse of x on the right gives
xj−i = e and j − i > 0, contradicting the assumption that |x| = ∞.

(c) Conclude that |x|  |G| in all cases.

Proof. If |x| = n, then part (a) shows that G contains n distinct elements, and thus |G|  n.
If |x| = ∞ then part (b) shows that G has infinitely many distinct elements, and thus |G| is
infinite. In either case, we have |x|  |G|.

Problem 3. A group G is called cyclic if it is generated by a single element.

(a) Prove that any cyclic group is abelian.

Note: your proof will be very short, as you can use the fact that xixj = xi+j without proof.

Proof. Let G be a cyclic group. Then there is some element x of G such that G = {xi | i ∈ Z}.
To show G is abelian, it suffices to show that xixj = xjxi for all integers i and j. But this holds
because xixj = xi+j = xj+i = xjxi, which is known as the law of exponents.

(b) Prove that (Q,+) is not a cyclic group.

Proof. If Q is cyclic, let a
b be a generator, so that in additive notation Q = {ma

b | m ∈ Z}. Note
that a, b ∕= 0 are integers. Now a

2b ∈ Q, so a
2b = ma

b for some m ∈ Z. But in Q we can now divide
by a

b , concluding that m = 1
2 , which is a contradiction since 1

2 /∈ Z. Thus Q is not cyclic.

(c) Prove that GL2(Z2) is not cyclic.

Proof. By (a), it suffices to prove GL2(Z2) is not abelian. Let

A =


1 1
0 1


and B =


1 1
1 0


.

Since det(A) = det(B) = 1, both matrices are in GL2(Z2). But AB ∕= BA.
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Problem 4. For n  2, prove that Sn is generated by (12) and the n-cycle (12 · · ·n).
Note: If you are unsure which formulas about permutations require proof, please ask.

Proof. Note: In all calculations below, everything should be read modulo n.
Let H = 〈(12), (12 · · ·n)〉 be the group generated by (12) and (12 · · ·n). Since every permutation

can be written as a product of transpositions, it suffices to show that every transposition is in H. We
will use two useful formulas about permutations:

F1 : (12 · · ·n)(i i+ 1)(12 · · ·n)−1 = (i+ 1 i+ 2).

F2 : (ij) = (1j)(1i)(1j).

First, let us prove that H = Sn using F1 and F2. Since (12) and (12 · · ·n) are both in H, using
F1 repeatedly gives us (i i+ 1) ∈ H for all i. Now take j = i+ 1 in F2, which gives us

F3 :(i i+ 1)(1i)(i i+ 1) = (1 i+ 1).

Since (1 2) ∈ H and (i i + 1) ∈ H for all i, repeated applications of F3 give us (1 j) ∈ H for all
j. Finally, since (1 i), (1 j) ∈ H for all i, j, then by F2 we conclude that (i j) ∈ H. This shows all
transpositions are in H, and thus H = Sn.

Let us finish the proof by checking that F1 and F2 hold. To show F1, we see that

(12 · · ·n)(i i+ 1)(12 · · ·n)−1


(i+ 1) = ((12 · · ·n)(i i+ 1)) (i) = (12 · · ·n)(i+ 1) = i+ 2.


(12 · · ·n)(i i+ 1)(12 · · ·n)−1


(i+ 2) = ((12 · · ·n)(i i+ 1)) (i+ 1) = (12 · · ·n)(i) = i+ 1.

Moreover, if j /∈ {i, i+ 1}, then

(12 · · ·n)(i i+ 1)(12 · · ·n)−1


(j) = ((12 · · ·n)(i i+ 1)) (j − 1) = j.

This shows F1. To prove F2, note that

((1j)(1i)(1j)) (i) = ((1j)(1i)) (i) = (1j)(1) = j.

((1j)(1i)(1j)) (j) = ((1j)(1i)) (1) = (1j)(i) = i.

Moreover, if l /∈ {i, j}, then (1i) and (1j) both keep l invariant, and thus

((1j)(1i)(1j)) (l) = l.

We conclude that F2 holds.

Problem 5. Suppose the cycle type of σ ∈ Sn is m1,m2, . . . ,mk. Recall this means that σ a product
of disjoint cycles of lengths m1,m2, . . . ,mk. Prove that |σ| = lcm(m1, . . . ,mk).

Proof. We first consider the case when k = 1; that is, we will first show the order of an m-cycle is m.
Given an m-cycle α = (i1 i2 · · · , im), note that for any k, we have αk(ij) = ij+k (mod m). It follows

that αm = e and, for each 1  k < m, αk ∕= e; hence |α| = m.
Now we consider the general case. Assume g1, . . . , gk are pairwise disjoint cycles, with gi a cycle of

length mi, and let g := g1 · · · gm. Since these elements g1, . . . , gj are disjoint cycles, and disjoint cycles
commute, we have (g1 . . . gk)

m = gm1 · · · gmk for all m. It follows that if m is a multiple of |gi| = mi for

each i, then gmi = (gmi
i )

m
mi = e, and thus gm = e. In particular, glcm(m1,...,mk) = e.

Now suppose 1  m < lcm(m1, . . . ,mk). We need to prove that gm ∕= e. Note that m is not a
multiple of mi for at least one value of i; for notational simplicity and without loss of generality (since
we can always renumber the list of cycles), let us assume m1 does not divide m. Then

gm1 = g
m (mod mi)
1 ∕= e.

Thus there is an integer i with 1  i  n such that gm1 (i) ∕= i. But since the cycles are disjoint,
gj(i) = i for all j  2 and hence also gmj (i) = i for all such j. This proves that gm = gm1 · · · gmk does
not fix i and thus cannot be the identity element.
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