Problem Set 1 solutions

Problem 1. Prove that every group of order 4 is abelian, using only use the definition of a group. *Proof.* Let *G* be a group with 4 elements, and suppose there are elements $a, b \in G$ such that $ab \neq ba$ for some elements $a, b \in G$. Let *e* denote the identity element of *G*. Since $ab \neq ba$, we must have $a \neq b$, $a \neq e$, and $b \neq e$. Since G has only 4 elements and $ab \neq ba$, either $ab \in \{e, a, b\}$ nor $ba \in \{e, a, b\}$. Without loss of generality, let us assume that $ab = e$. But $ab = e$ implies $b = a^{-1}$, and we know a^{-1} commutes with *a*, and hence this is not possible. If $ab = a$, then $b = e$ and if $ab = b$ then $a = e$, both of which are impossible. Since *a* and *b* were arbitrary elements, *G* must be abelian. □

Problem 2. Let *G* be a group and $x \in G$ any element. Recall that $|x|$ denotes the *order* of *x*, defined to be the least integer $n \geq 1$ such that $x^n = e$; if no such integer exists, we say $|x| = \infty$. Also, let $|G|$ denote the cardinality of *G*; note that $|G|$ is an element of $\{1, 2, 3, \dots\} \cup \{\infty\}.$

(a) Prove that if $|x| = n$, then e, x, \ldots, x^{n-1} are all distinct elements of *G*.

Proof. If $e = x^0, x, x^2, ..., x^{n-1}$ are not all distinct, then $x^i = x^j$ for some $0 \le i \le j \le n-1$, and thus $x^{j-i} = e$. Since $0 \le i \le n$ this contradicts the minimality of n and thus $x^{j-i} = e$. Since $0 < j - i < n$, this contradicts the minimality of *n*.

(b) Prove that if $|x| = \infty$, then $x^i \neq x^j$ for all positive integers $i \neq j$.

Proof. Suppose $x^i = x^j$ for some $i < j$. Multiplying by the inverse of *x* on the right gives $x^{j-i} = e$ and $j - i > 0$, contradicting the assumption that $|x| = \infty$. \Box

(c) Conclude that $|x| \leq |G|$ in all cases.

Proof. If $|x| = n$, then part (a) shows that *G* contains *n* distinct elements, and thus $|G| \geq n$. If $|x| = \infty$ then part (b) shows that *G* has infinitely many distinct elements, and thus $|G|$ is infinite. In either case, we have $|x| \leq |G|$. infinite. In either case, we have $|x| \leq |G|$.

Problem 3. A group *G* is called *cyclic* if it is generated by a single element.

(a) Prove that any cyclic group is abelian.

Note: your proof will be very short, as you can use the fact that $x^i x^j = x^{i+j}$ without proof.

Proof. Let *G* be a cyclic group. Then there is some element *x* of *G* such that $G = \{x^i \mid i \in \mathbb{Z}\}\$. To show *G* is abelian, it suffices to show that $x^i x^j = x^j x^i$ for all integers *i* and *j*. But this holds because $x^i x^j = x^{i+j} = x^{j+i} = x^j x^i$, which is known as the law of exponents. \Box

(b) Prove that $(\mathbb{Q}, +)$ is not a cyclic group.

Proof. If Q is cyclic, let $\frac{a}{b}$ be a generator, so that in additive notation $\mathbb{Q} = {\frac{ma}{b} \mid m \in \mathbb{Z}}$. Note that $a, b \neq 0$ are integers. Now $\frac{a}{2b} \in \mathbb{Q}$, so $\frac{a}{2b} = \frac{ma}{b}$ for some $m \in \mathbb{Z}$. But in \mathbb{Q} we can now divide by $\frac{a}{b}$, concluding that $m = \frac{1}{2}$, which is a contradiction since $\frac{1}{2} \notin \mathbb{Z}$. Thus $\mathbb Q$ is not cyclic.

(c) Prove that $GL_2(\mathbb{Z}_2)$ is not cyclic.

Proof. By (a), it suffices to prove $GL_2(\mathbb{Z}_2)$ is not abelian. Let

$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.
$$

Since $\det(A) = \det(B) = 1$, both matrices are in $GL_2(\mathbb{Z}_2)$. But $AB \neq BA$.

Problem 4. For $n \geq 2$, prove that S_n is generated by (12) and the *n*-cycle (12 \cdots *n*). Note: If you are unsure which formulas about permutations require proof, please ask.

Proof. Note: In all calculations below, everything should be read modulo *n*.

Let $H = \langle (12), (12 \cdots n) \rangle$ be the group generated by (12) and $(12 \cdots n)$. Since every permutation can be written as a product of transpositions, it suffices to show that every transposition is in *H*. We will use two useful formulas about permutations:

F1:
$$
(12 \cdots n)(i \ i+1)(12 \cdots n)^{-1} = (i+1 \ i+2).
$$

F2: $(ij) = (1j)(1i)(1j).$

First, let us prove that $H = S_n$ using F1 and F2. Since (12) and (12 \cdots *n*) are both in *H*, using F1 repeatedly gives us $(i \ i+1) \in H$ for all *i*. Now take $j = i+1$ in F2, which gives us

$$
F3:(i i + 1)(1 i)(i i + 1) = (1 i + 1).
$$

Since $(1\ 2) \in H$ and $(i\ i+1) \in H$ for all *i*, repeated applications of F3 give us $(1\ i) \in H$ for all *j*. Finally, since $(1\ i)$, $(1\ j) \in H$ for all i, j , then by F2 we conclude that $(i\ j) \in H$. This shows all transpositions are in *H*, and thus $H = S_n$.

Let us finish the proof by checking that F1 and F2 hold. To show F1, we see that

$$
((12 \cdots n)(i \ i+1)(12 \cdots n)^{-1}) (i+1) = ((12 \cdots n)(i \ i+1)) (i) = (12 \cdots n)(i+1) = i+2.
$$

$$
((12 \cdots n)(i \ i+1)(12 \cdots n)^{-1}) (i+2) = ((12 \cdots n)(i \ i+1)) (i+1) = (12 \cdots n)(i) = i+1.
$$

Moreover, if $j \notin \{i, i+1\}$, then

$$
((12 \cdots n)(i \ i+1)(12 \cdots n)^{-1}) (j) = ((12 \cdots n)(i \ i+1)) (j-1) = j.
$$

This shows F1. To prove F2, note that

$$
((1j)(1i)(1j))(i) = ((1j)(1i))(i) = (1j)(1) = j.
$$

$$
((1j)(1i)(1j))(j) = ((1j)(1i))(1) = (1j)(i) = i.
$$

Moreover, if $l \notin \{i, j\}$, then $(1i)$ and $(1j)$ both keep *l* invariant, and thus

$$
((1j)(1i)(1j))(l) = l.
$$

We conclude that F2 holds.

Problem 5. Suppose the cycle type of $\sigma \in S_n$ is m_1, m_2, \ldots, m_k . Recall this means that σ a product of disjoint cycles of lengths m_1, m_2, \ldots, m_k . Prove that $|\sigma| = \text{lcm}(m_1, \ldots, m_k)$.

Proof. We first consider the case when $k = 1$; that is, we will first show the order of an *m*-cycle is *m*. Given an *m*-cycle $\alpha = (i_1 i_2 \cdots, i_m)$, note that for any k, we have $\alpha^k(i_j) = i_{j+k \pmod{m}}$. It follows that $\alpha^m = e$ and, for each $1 \leq k < m$, $\alpha^k \neq e$; hence $|\alpha| = m$.

Now we consider the general case. Assume g_1, \ldots, g_k are pairwise disjoint cycles, with g_i a cycle of length m_i , and let $g := g_1 \cdots g_m$. Since these elements g_1, \ldots, g_j are disjoint cycles, and disjoint cycles commute, we have $(g_1 \ldots g_k)^m = g_1^m \cdots g_k^m$ for all m. It follows that if m is a multiple of $|g_i| = m_i$ for each *i*, then $g_i^m = (g_i^{m_i})^{\frac{m}{m_i}} = e$, and thus $g^m = e$. In particular, $g^{\text{lcm}(m_1,...,m_k)} = e$.

Now suppose $1 \leq m < \text{lcm}(m_1, \ldots, m_k)$. We need to prove that $g^m \neq e$. Note that *m* is not a multiple of m_i for at least one value of i ; for notational simplicity and without loss of generality (since we can always renumber the list of cycles), let us assume *m*¹ does not divide *m*. Then

$$
g_1^m = g_1^m \pmod{m_i} \neq e.
$$

Thus there is an integer *i* with $1 \leq i \leq n$ such that $g_1^m(i) \neq i$. But since the cycles are disjoint, $g_j(i) = i$ for all $j \geq 2$ and hence also $g_j^m(i) = i$ for all such j. This proves that $g^m = g_1^m \cdots g_k^m$ does not fix *i* and thus cannot be the identity element. □

 \Box