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Problem Set 1 solutions

Problem 1. Prove that every group of order 4 is abelian, using only use the definition of a group.

Proof. Let G be a group with 4 elements, and suppose there are elements a,b € G such that ab # ba
for some elements a,b € G. Let e denote the identity element of G. Since ab # ba, we must have a # b,
a # e, and b # e. Since G has only 4 elements and ab # ba, either ab € {e,a,b} nor ba € {e,a,b}.
Without loss of generality, let us assume that ab = e. But ab = e implies b = o', and we know a~*
commutes with a, and hence this is not possible. If ab = a, then b = e and if ab = b then a = e, both
of which are impossible. Since a and b were arbitrary elements, G must be abelian. U

Problem 2. Let G be a group and x € G any element. Recall that |x| denotes the order of x, defined
to be the least integer n > 1 such that 2™ = e; if no such integer exists, we say |z| = co. Also, let |G|
denote the cardinality of G; note that |G| is an element of {1,2,3,---} U {oo}.

(a) Prove that if |z = n, then e, z,...,2" ! are all distinct elements of G.
Proof. If e = 20, x,22%,...,2" ! are not all distinct, then z! = 27 for some 0 < i < j < n — 1,
and thus 277% = e. Since 0 < j — ¢ < n, this contradicts the minimality of n. O

(b) Prove that if |x| = oo, then x? # 27 for all positive integers i # j.
Proof. Suppose ! = 27 for some i < j. Multiplying by the inverse of 2 on the right gives
277" = e and j — i > 0, contradicting the assumption that |z| = co. O
(c) Conclude that |z| < |G| in all cases.

Proof. If |z| = n, then part (a) shows that G contains n distinct elements, and thus |G| > n.
If |z| = oo then part (b) shows that G has infinitely many distinct elements, and thus |G| is
infinite. In either case, we have |z| < |G]|. O

Problem 3. A group G is called cyclic if it is generated by a single element.

(a) Prove that any cyclic group is abelian.
Note: your proof will be very short, as you can use the fact that z'z/ = z'*7 without proof.

Proof. Let G be a cyclic group. Then there is some element z of G such that G = {2' | i € Z}.
To show G is abelian, it suffices to show that x'z/ = 272" for all integers ¢« and j. But this holds
because ziz! = 2t/ = 27 = 272?, which is known as the law of exponents. O

(b) Prove that (Q,+) is not a cyclic group.
Proof. If Q is cyclic, let § be a generator, so that in additive notation Q = {%* | m € Z}. Note

that a,b # 0 are integers. Now 5 € Q, so 55 = 3% for some m € Z. But in Q we can now divide
by %, concluding that m = %, which is a contradiction since % ¢ 7. Thus Q is not cyclic. O

(c) Prove that GLa(Z2) is not cyclic.
Proof. By (a), it suffices to prove GL2(Z3) is not abelian. Let

1 1 11
A—(O 1) and B—(1 0).

Since det(A) = det(B) = 1, both matrices are in GLy(Z2). But AB # BA. O
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Problem 4. For n > 2, prove that S, is generated by (12) and the n-cycle (12---n).
Note: If you are unsure which formulas about permutations require proof, please ask.

Proof. Note: In all calculations below, everything should be read modulo n.

Let H = ((12),(12---n)) be the group generated by (12) and (12---n). Since every permutation
can be written as a product of transpositions, it suffices to show that every transposition is in H. We
will use two useful formulas about permutations:

Fl: (12---n)(@ i+ 1)(12---n) =G +1i+2).
F2: (i) = (1)(12)(1)).
First, let us prove that H = S, using F1 and F2. Since (12) and (12---n) are both in H, using
F1 repeatedly gives us (i i+ 1) € H for all i. Now take j =i+ 1 in F2, which gives us

F3:(ii+1)(1i)(ii+1) = (1i+1).

Since (12) € H and (ii+ 1) € H for all i, repeated applications of F3 give us (1 j) € H for all
j. Finally, since (1 4),(1 j) € H for all 7,7, then by F2 we conclude that (i j) € H. This shows all
transpositions are in H, and thus H = 5,,.

Let us finish the proof by checking that F1 and F2 hold. To show F1, we see that

((12n)(z 1+ 1)(12---n)*1) (i+1)=(12---n)(i i+1)(i)=(12---n)(i+1) =i+ 2.
((12n)(z i+1)(12---n)_1) (i+2)=(12--n)(@ i+1)(E+1)=(12---n)(i) =i+ 1.
Moreover, if j ¢ {i,i + 1}, then
(12--n)(@ i+ 1)(12---n)" ") () = (12---n)(i i+ 1)) (j — 1) = j.
This shows F1. To prove F2, note that
((17)(14)(15)
)

((17) (1) (13
Moreover, if | ¢ {i,j}, then (17) and (1j

) (1) = ((17)(19)) (1) = (15)(1) = .
) () = ((17)(14)) (1) = (15)(9) =
)b
(

oth keep [ invariant, and thus

(17)(8)(17)) () = L.

We conclude that F2 holds. O
Problem 5. Suppose the cycle type of o € S, is m1, mo, ..., mk. Recall this means that ¢ a product
of disjoint cycles of lengths my,ma, ..., my. Prove that |o| = lem(mq,...,mg).
Proof. We first consider the case when k = 1; that is, we will first show the order of an m-cycle is m.
Given an m-cycle a = (iydg -+ ,4,), note that for any k, we have a¥(i;) = @itk (mod m)- 1t follows
that @™ = e and, for each 1 < k < m, a* # e; hence |a| =

Now we consider the general case. Assume ¢y, ..., gy are pairwise disjoint cycles, with g; a cycle of
length m;, and let g := g1 - - - g,. Since these elements g1, ..., g; are disjoint cycles, and disjoint cycles

commute, we have (g1...gx)™ = g{"--- gp* for all m. It follows that if m is a multiple of |g;| = m; for

lem(my,...,mp) — e

each 7, then ¢ = (¢9;"")™ = e, and thus ¢" = e. In particular, g

Now suppose 1 < m < lem(myq,...,my). We need to prove that ¢ # e. Note that m is not a
multiple of m; for at least one value of i; for notational simplicity and without loss of generality (since
we can always renumber the list of cycles), let us assume m; does not divide m. Then

g =gt et 2 e

Thus there is an integer i with 1 < ¢ < n such that ¢{"(i) # i. But since the cycles are disjoint,
g;(1) =i for all j > 2 and hence also ¢7"(i) = i for all such j. This proves that g" = g{" - - gi* does
not fix ¢ and thus cannot be the identity element. O



