Problem Set 2 solutions

Problem 1. (a) Show that every $\alpha \in S_n$ and every k-cycle $(i_1 \ i_2 \ \cdots \ i_k) \in S_n$ satisfy

$$
\alpha(i_1 \ i_2 \cdots i_k) \alpha^{-1} = (\alpha(i_1) \ \alpha(i_2) \ \cdots \ \alpha(i_k)).
$$

Hint: when writing your solution, you might find it helpful to consider $\alpha^{-1}(j)$ for each $j \in [n]$.

Proof. First, consider the element $\alpha(i_t)$ for some $t \in \{1, \ldots, k\}$. We have

$$
(\alpha(i_1 \ i_2 \cdots i_k)\alpha^{-1})(\alpha(i_t)) = (\alpha(i_1 \ i_2 \cdots i_k))(\alpha^{-1}\alpha(i_t))
$$

= $\alpha(i_1 \ i_2 \cdots i_k)(i_t)$
= $\alpha(i_{t+1 \pmod{k}}).$

Now consider any element j such that $j \notin {\alpha(i_1), \ldots, \alpha(i_k)}$. Equivalently, this means that $\alpha^{-1}(j) \notin \{i_1, \ldots, i_k\}.$ Then

$$
(i_1 \ i_2 \ \cdots \ i_k) \ (\alpha^{-1}(j)) = \alpha^{-1}(j),
$$

so

$$
(\alpha (i_1 i_2 \cdots i_k) \alpha^{-1})(j) = \alpha \alpha^{-1}(j) = j.
$$

Thus the left hand side of our proposed equality sends $\alpha(i_t)$ to $\alpha(i_t \mod k)$ and fixes all other elements, and this is precisely what the cycle $(\alpha(i_1) \quad \alpha(i_2) \quad \cdots \quad \alpha(i_k))$ does. \Box

(b) Prove that the center of S_n is trivial.

Proof. We will use a special case of part (a):

$$
\alpha(i \quad j) = (\alpha(i) \quad \alpha(j)) \alpha
$$

for any $\alpha \in S_n$ and any 2-cycle $(i \, j)$. Assume that α is in the center of S_n . Then the above equation gives us

 $(i \, j) = (\alpha(i) \, \alpha(j))$

and hence for all $i \neq j$ one of the following must hold:

- $\alpha(i) = i$ and $\alpha(j) = j$, or
- $\alpha(i) = j$ and $\alpha(j) = i$.

We will show that $\alpha(i) = i$ for all i. To do that, pick any i. If $\alpha(i) \neq i$, then by what we just proved, $\alpha(j) = i$ for all $j \neq i$. Since $n \geq 3$, we can find $1 \leq j, k \leq n$ so that i, j, k are all distinct, and hence $\alpha(j) = i = \alpha(k)$, which is not possible. We conclude that $\alpha(i) = i$, and α must be the identity. Thus the center of S_n is trivial. \Box

Problem 2. Find $Z(D_n)$ for $n \ge 3$.

Hint: your answer will depend on whether n is even or odd.

To prove this, we will use the following lemma:

Lemma. For all integers i,

$$
(*) \qquad \qquad sr^i = r^{-i}s.
$$

Proof. We will prove this lemma by induction on i. We showed the case $i = 1$ in class: $sr = r^{-1}s$. Now suppose $sr^i = r^{-i}s$ for some $i \geq 1$. Then

$$
sr^{i+1} = (sr^{i})r
$$

= $(r^{-i}s)r$ by Induction Hypothesis
= $r^{-i(sr)$
= $r^{-i(r^{-1}s)}$ by the case $i = 1$
= $r^{-(i+1)}s$.

Proof. We claim that

$$
Z(D_n) = \begin{cases} \{e\} & \text{if } n \text{ is odd} \\ \{e, r^{n/2}\} & \text{if } n \text{ is even.} \end{cases}
$$

We will use lemma (*) above, and the fact that all the elements of D_{2n} can be written as r^i or

 r^i s for some integer $0 \leq i \leq n$, and no two such expressions represent the same element of D_{2n} . Suppose r^i is central. Then

$$
r^{-i}s = sr^{i}
$$
 by (*)
= $r^{i}s$ since r^{i} is central.

Multiplying by the inverse of s gives us $r^{-i} = r^i$. But the equality $r^{-i} = r^i$ holds if and only if i and $-i$ are congruent modulo n. When n is odd, $i \equiv -i \pmod{n}$ can only occur if $i = 0$. When n is even, $i \equiv -i \pmod{n}$ can only happen when $i = 0$ or $i = \frac{n}{2}$ $\frac{n}{2}$. This gives us $r^{n/2} \in Z(S_n)$ when n is even, and it shows that no other power of r besides the identity can be in the center.

Now suppose $r^i s$ is central. Then

$$
r^{i}(rs) = r(r^{i}s)
$$
 by associativity
= $(r^{i}s)rs$ since $r^{i}s$ is central.

By cancellation (meaning, by multiplying by the inverse of r^i on the left), we conclude that $rs = sr$. Since we also proved in class that $srs = r^{-1}$, then it would follow that $r^2 = e$, which does not hold since $n \geqslant 3$.

We have proven that $\mathcal{Z}(D_{2n})$ consists of at most e if n is odd and at most e and $r^{\frac{n}{2}}$ if n is even. The element e belongs the center of any group. It remains to check that $r^{\frac{n}{2}}$ commutes with every element of D_{2n} for n odd.

First, note that for $r^{\frac{n}{2}}$ commutes with any r^i since they are both powers of r. Moreover, using (*) and the fact that $r^{-\frac{n}{2}} = r^{\frac{n}{2}}$, we conclude that

$$
sr^{\frac{n}{2}} = r^{-\frac{n}{2}}s = r^{-\frac{n}{2}}s.
$$

Since $r^{\frac{n}{2}}$ commutes with s and r^i , it also commutes with $r^i s$, and thus it commutes with all elements of D_n . \Box **Problem 3.** Prove or disprove: if x and y have finite order in a group G , then xy has finite order.

Solution. (Many correct answers are possible) The given statement is false. We illustrate this with a counterexample.

Consider the following two elements of $GL_2(\mathbb{R})$, both of order 2:

$$
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 2 \\ \frac{1}{2} & 0 \end{pmatrix}.
$$

Note that

$$
AB = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ \frac{1}{2} & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}.
$$

and so

$$
(AB)^n = \begin{pmatrix} 2^n & 0 \\ 0 & \frac{1}{2^n} \end{pmatrix}.
$$

In particular, note that $(AB)^n \neq I$ for all $n \geq 1$, and thus $|AB| = \infty$, while A and B both have finite order.

Problem 4. Let G be a group. Consider the map $f: G \longrightarrow G$ given by $f(a) = a^{-1}$ for all $a \in G$. Show that f is an automorphism if and only if G is abelian.

Proof. Suppose G is abelian. Then for all $a, b \in G$ we have

$$
f(ab) = (ab)^{-1}
$$
 by definition of f
= $b^{-1}a^{-1}$
= $a^{-1}b^{-1}$ since G is abelian
= $f(a)f(b)$ by definition of f

Therefore, f is a homomorphism. Now note that

$$
(f \circ f)(a) = f(f(a)) = f(a^{-1}) = (a^{-1})^{-1} = a
$$

for all $a \in G$. Hence, $f \circ f = id_G$, and thus $f = f^{-1}$. In particular, f is bijective, and thus f is an automorphism of G.

Conversely, suppose f is an automorphism. Then for any $a, b \in G$ we have

$$
ab = (a^{-1})^{-1} (b^{-1})^{-1} \text{ since } (x^{-1})^{-1} = x \text{ for all } x \in G
$$

= $f(a^{-1}) f(b^{-1})$ by definition of f
= $f(a^{-1}b^{-1})$ since f is a homomorphism
= $(a^{-1}b^{-1})^{-1}$ by definition of f
= $(b^{-1})^{-1}(a^{-1})^{-1}$ since $(xy)^{-1} = y^{-1}x^{-1}$.
= ba .

We conclude that G is abelian.

 \Box