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Problem Set 2 solutions

Problem 1. (a) Show that every α ∈ Sn and every k-cycle (i1 i2 · · · ik) ∈ Sn satisfy

α (i1 i2 · · · ik)α−1 = (α(i1) α(i2) · · · α(ik)).

Hint: when writing your solution, you might find it helpful to consider α−1(j) for each j ∈ [n].

Proof. First, consider the element α(it) for some t ∈ {1, . . . , k}. We have

(α(i1 i2 · · · ik)α−1)(α(it)) = (α(i1 i2 · · · ik))(α−1α(it))

= α(i1 i2 · · · ik)(it)
= α(it+1 (mod k)).

Now consider any element j such that j /∈ {α(i1), . . . , α(ik)}. Equivalently, this means that
α−1(j) /∈ {i1, . . . , ik}. Then

(i1 i2 · · · ik) (α−1(j)) = α−1(j),

so (
α (i1 i2 · · · ik)α−1

)
(j) = αα−1(j) = j.

Thus the left hand side of our proposed equality sends α(it) to α(it (mod k)) and fixes all other
elements, and this is precisely what the cycle (α(i1) α(i2) · · · α(ik)) does.

(b) Prove that the center of Sn is trivial.

Proof. We will use a special case of part (a):

α (i j) = (α(i) α(j))α

for any α ∈ Sn and any 2-cycle (i j). Assume that α is in the center of Sn. Then the above
equation gives us

(i j) = (α(i) α(j))

and hence for all i ̸= j one of the following must hold:

• α(i) = i and α(j) = j, or

• α(i) = j and α(j) = i.

We will show that α(i) = i for all i. To do that, pick any i. If α(i) ̸= i, then by what we
just proved, α(j) = i for all j ̸= i. Since n ⩾ 3, we can find 1 ⩽ j, k ⩽ n so that i, j, k are all
distinct, and hence α(j) = i = α(k), which is not possible. We conclude that α(i) = i, and α
must be the identity. Thus the center of Sn is trivial.
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Problem 2. Find Z(Dn) for n ⩾ 3.
Hint: your answer will depend on whether n is even or odd.

To prove this, we will use the following lemma:

Lemma. For all integers i,
(∗) sri = r−is.

Proof. We will prove this lemma by induction on i. We showed the case i = 1 in class: sr = r−1s.
Now suppose sri = r−is for some i ⩾ 1. Then

sri+1 = (sri)r

= (r−is)r by Induction Hypothesis

= r−i(sr)

= r−i(r−1s) by the case i = 1

= r−(i+1)s.

Proof. We claim that

Z(Dn) =

{
{e} if n is odd

{e, rn/2} if n is even.

We will use lemma (∗) above, and the fact that all the elements of D2n can be written as ri or
ris for some integer 0 ⩽ i < n, and no two such expressions represent the same element of D2n.

Suppose ri is central. Then

r−is = sri by (∗)
= ris since ri is central.

Multiplying by the inverse of s gives us r−i = ri. But the equality r−i = ri holds if and only if i
and −i are congruent modulo n. When n is odd, i ≡ −i (mod n) can only occur if i = 0. When n
is even, i ≡ −i (mod n) can only happen when i = 0 or i = n

2 . This gives us r
n/2 ∈ Z(Sn) when n

is even, and it shows that no other power of r besides the identity can be in the center.
Now suppose ris is central. Then

ri(rs) = r(ris) by associativity

= (ris)rs since ris is central.

By cancellation (meaning, by multiplying by the inverse of ri on the left), we conclude that rs = sr.
Since we also proved in class that srs = r−1, then it would follow that r2 = e, which does not hold
since n ⩾ 3.

We have proven that Z(D2n) consists of at most e if n is odd and at most e and r
n
2 if n is even.

The element e belongs the center of any group. It remains to check that r
n
2 commutes with every

element of D2n for n odd.
First, note that for r

n
2 commutes with any ri since they are both powers of r. Moreover, using

(∗) and the fact that r−
n
2 = r

n
2 , we conclude that

sr
n
2 = r−

n
2 s = r−

n
2 s.

Since r
n
2 commutes with s and ri, it also commutes with ris, and thus it commutes with all elements

of Dn.
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Problem 3. Prove or disprove: if x and y have finite order in a group G, then xy has finite order.

Solution. (Many correct answers are possible) The given statement is false. We illustrate this with
a counterexample.

Consider the following two elements of GL2(R), both of order 2:(
0 1
1 0

)
and

(
0 2
1
2 0

)
.

Note that

AB =

(
0 1
1 0

)(
0 2
1
2 0

)
=

(
2 0
0 1

2

)
.

and so

(AB)n =

(
2n 0
0 1

2n

)
.

In particular, note that (AB)n ̸= I for all n ⩾ 1, and thus |AB| = ∞, while A and B both have
finite order.

Problem 4. Let G be a group. Consider the map f : G −→ G given by f(a) = a−1 for all a ∈ G.
Show that f is an automorphism if and only if G is abelian.

Proof. Suppose G is abelian. Then for all a, b ∈ G we have

f(ab) = (ab)−1 by definition of f

= b−1a−1

= a−1b−1 since G is abelian

= f(a)f(b) by definition of f

Therefore, f is a homomorphism. Now note that

(f ◦ f)(a) = f(f(a)) = f(a−1) = (a−1)−1 = a

for all a ∈ G. Hence, f ◦ f = idG, and thus f = f−1. In particular, f is bijective, and thus f is an
automorphism of G.

Conversely, suppose f is an automorphism. Then for any a, b ∈ G we have

ab = (a−1)−1(b−1)−1 since (x−1)−1 = x for all x ∈ G

= f(a−1)f(b−1) by definition of f

= f(a−1b−1) since f is a homomorphism

= (a−1b−1)−1 by definition of f

= (b−1)−1(a−1)−1 since (xy)−1 = y−1x−1.

= ba.

We conclude that G is abelian.

3


