Problem Set 3 solutions

Problem 1. Show that for every integer $n \geq 2$, there is no nontrivial group homomorphism $\mathbb{Z}/n \longrightarrow \mathbb{Z}$.

Proof. Suppose that $f: \mathbb{Z}/n \longrightarrow \mathbb{Z}$ is a group homomorphism. Denote the class of $i \in \mathbb{Z}$ by [*i*]. Then

Thus $nf([1]) = 0$, which implies that $f([1]) = 0$. But [1] generates \mathbb{Z}/n , and we conclude that f must be the trivial map, since for any $[a] \in \mathbb{Z}/n$, we have

$$
f([a]) = af([1]) = 0. \quad \Box
$$

For groups *G* and *H*, the group $G \times H$, known as the **product of** *G* and *H*, refers to the set

$$
G \times H := \{(g, h) \mid g \in G, h \in H\}
$$

equipped with the multiplication rule

$$
(g_1, h_1) \cdot (g_2, h_2) := (g_1 \cdot_G g_2, h_1 \cdot_H h_2).
$$

You may take it as a known fact that the product of two groups is also a group.

Problem 2. Let *G* and *H* be groups, and consider elements $q \in G$ and $h \in H$.

2.1. Show that if $g^n = e$ for some integer $n \ge 1$, then |g| divides *n*.

Proof. First note that the fact that $g^n = e$ implies that *g* has finite order, so let $|g| = d$. By the Division Algorithm, we can find integers q, r with $0 \leq r < d$ such that $n = qd + r$. Moreover,

$$
e = g^n = g^{qd+r} = (g^d)^q g^r = e^q g^r = g^r.
$$

Thus $g^r = e$, but by minimality of *d*, we conclude that $r = 0$. Thus $d = |g|$ divides *n*. \Box

2.2. Show that $|q|$ and $|h|$ are both finite, then $|(q, h)| = \text{lcm}(|q|, |h|)$.

Proof. Let $|g| = a$ and $|h| = b$, and let $\ell = \text{lcm}(|q|, |h|)$. Since ℓ is a multiple of both *a* and *b*, we can write $\ell = ac$ and $\ell = bd$. Then

$$
(g,h)^{\ell} = (g^{ac}, h^{bd}) = ((g^a)^c, (h^b)^d) = (e_G, e_H) = e_{G \times H}.
$$

Thus $|(g, h)| \leq \ell$. Moreover, let $n := |(g, h)|$. Then $(g^n, h^n) = (g, h)^n = e$, so in particular $q^n = e$ and $h^b = e$. By [2.1.](#page-0-0), we conclude that |g| and |h| both divide *n*, and thus *n* must be a multiple of lcm(|g|, |h|). In particular, $n \geq \text{lcm}(|g|, |h|)$. We showed that $|(g, h)| \leq \text{lcm}(|g|, |h|)$
and lcm(|g|, |h|) $\geq |(g, h)|$, so we must have lcm(|g|, |h|) = $|(g, h)|$. and $\text{lcm}(|g|, |h|) \geq |(g, h)|$, so we must have $\text{lcm}(|g|, |h|) = |(g, h)|$.

2.3. Show that if at least one of *g* or *h* has infinite order, then (*g, h*) also has infinite order.

Proof. By contrapositive. Suppose that $(g, h) \in G \times H$ has finite order *n*. Then

$$
(g^n, h^n) = (g, h)^n = (e_G, e_H),
$$

so in particular $g^n = e$ and $h^n = e$. We conclude that *g* and *h* both have finite order. \Box

Problem 3. For each of the following pairs of groups, show that the two groups are not isomorphic.

3.1. $(\mathbb{C}, +)$ and $(\mathbb{Q}, +)$.

Proof. These groups are not isomorphic since $\mathbb C$ and $\mathbb Q$ have different cardinalities, and any isomorphism is in particular a bijection of sets. \Box

3.2. $(\mathbb{R} \setminus \{0\}, \cdot)$ and $(\mathbb{R}, +)$.

Proof. They are not isomorphic since $(\mathbb{R} \setminus \{0\}, \cdot)$ has no element of order 2, namely -1 , while every element of $(\mathbb{R}, +)$ has infinite order. every element of $(\mathbb{R}, +)$ has infinite order.

3.3. $\mathbb{Z}/2 \times \mathbb{Z}/2$ and $\mathbb{Z}/4$.

Proof. They are not isomorphic since $\mathbb{Z}/4$ has an element of order 4 and $\mathbb{Z}/2 \times \mathbb{Z}/2$ has no such elements. To be more precise:

- In $\mathbb{Z}/4$, [1] has order 4.
- Every element of $\mathbb{Z}/2$ has order 1 or 2; in fact, there are only 2 elements in $\mathbb{Z}/2$, the identity and [1], which has order 2.

By [2.2.](#page-0-1), the order of any element in $\mathbb{Z}/2 \times \mathbb{Z}/2$ must be 1 or 2, since it is the lcm of two integers in the set $\{1, 2\}$. integers in the set $\{1, 2\}$.

3.4. $Q_8 \times \mathbb{Z}/3$ and S_4 .

Proof. Since $|-1| = 2$ and $|[1]_3| = 3$, the element $(-1, [1])$ in $Q_8 \times \mathbb{Z}/3$ has order lcm(2*,* 3) = 6. We claim that *S*⁴ has no elements of order 6.

To prove that, consider any element $\sigma \in S_4$. We can write σ as a product of disjoint cycles $\sigma = \sigma_1 \cdots \sigma_k$. By Problem Set 1, the order of σ is $\text{lcm}(\sigma_1, \ldots, \sigma_k)$. Any cycle in S_4 that is not the identity has order 2, 3, or 4, so the only way to get an element of order 6 would be to take the product of a 3-cycle with a 2-cycle. But if $\sigma_1 = (i_1 i_2 i_3)$ and $\sigma_2 = (j_1, j_2)$ with $i_k, j_k \in [4]$, we must have

$$
\{i_1, i_2, i_3\} \cap \{j_1, j_2\} = \emptyset.
$$

Thus this is impossible, and *S*⁴ has no elements of order 6.

 \Box

Problem 4. Let

$$
G = \prod_{i \in \mathbb{N}} \mathbb{Z} = \{(n_i)_{i \geq 0} \mid n_i \in \mathbb{Z}\}\
$$

be the group whose elements are sequences of integers, equipped with the operation given by componentwise addition. Let $H = (Z, +)$. Show that $G \times H \cong G$.

Note: this gives us an example of groups G, H such that there is an isomorphism $G \times H \cong G$ but *H* is nontrivial. Since $G \times H \cong G$ can be rewritten as $G \times H \cong G \times \{e\}$, this shows that in general one cannot cancel groups in isomorphisms between direct products.

Proof. Consider the map that prepends an integer to a sequence of integers, more formally

$$
f: G \times H \longrightarrow G
$$

$$
f((z_i)_{i \in \mathbb{N}}, h) = (h, z_0, z_1, z_2, \ldots).
$$

We clam that this a group homomorphism. Indeed:

$$
f((z_i)_{i \in \mathbb{N}}, a) + f((w_i)_{i \in \mathbb{N}}, b) = (a, z_0, z_1, \ldots) + (b, w_0, w_1, \ldots)
$$
 by definition of f
\n
$$
= (a + b, z_0 + w_0, z_1 + w_1, \ldots)
$$
 by definition of $G \times H$
\n
$$
= f((z_i + w_i)_i, a + b)
$$
 by definition of f
\n
$$
= f(((z_i)_i, a) + ((w_i), b))
$$
 by definition of $G \times H$

Moreover, this map surjective, since given any $(z_i)_{i \in \mathbb{N}}$,

$$
f((z_1, z_2, z_3, \ldots), z_0) = (z_i)_i.
$$

The map f is also injective: if we denote the constant sequence equal to 0 by 0, then

$$
f((z_i)_i, h) = \mathbf{0} \iff (h, z_0, z_1, \ldots) = \mathbf{0} \iff h = 0 \text{ and } z_i = 0 \text{ for all } i \ge 0 \iff ((z_i)_i, h) = 0_{G \times H}.
$$

We have established the desired isomorphism.