Introduction to Modern Algebra I UNL | Fall 2024

Problem Set 3 solutions

Problem 1. Show that for every integer m > 2, there is no nontrivial group homomorphism
Z/n — 7.

Then

Proof. Suppose that f: Z/n — Z is a group homomorphism. Denote the class of i € Z by [i].
0= f([0]) since f is a group homomorphism
= f([n]) since [n] = [0]
= f(n[1]) since n[l] = [n]
=nf([1]) since f is a homomorphism

Thus nf([1]) = 0, which implies that f([1]) = 0. But [1] generates Z/n, and we conclude that f
must be the trivial map, since for any [a] € Z/n, we have

For groups G and H, the group G x H, known as the product of G and H, refers to the set

equipped with the multiplication rule

You may take it as a known fact that the product of two groups is also a group.

Gx H:={(g,h) | g€ G,h € H}

(91, 1) - (92, h2) :== (91 -G 92, h1 -1 h2).

Problem 2. Let G and H be groups, and consider elements g € G and h € H.

2.1.

2.2.

Show that if g" = e for some integer n > 1, then |g| divides n.

Proof. First note that the fact that ¢" = e implies that ¢g has finite order, so let |g| = d.
By the Division Algorithm, we can find integers ¢,r with 0 < r < d such that n = qd + r.

Moreover,

e=g"=g""" = (g")g" =elg" =g

Thus ¢" = e, but by minimality of d, we conclude that » = 0. Thus d = |g| divides n. O

Show that |g| and |h| are both finite, then |(g, k)| = lem(|g], |h|).

Proof. Let |g| = a and |h| = b, and let £ = lcm(|g|, |h|). Since ¢ is a multiple of both a and b,
we can write £ = ac and ¢ = bd. Then

(97 h)e = (gac7 hbd) = ((ga)c’ (h'b)d) = (GG, eH) = €GxH-

Thus |(g,h)| < £. Moreover, let n := |(g,h)|. Then (¢",h"™) = (g,h)™ = e, so in particular
g" = e and h® = e. By 2.1., we conclude that |g| and |h| both divide n, and thus n must be a
multiple of lem(|g|, ||). In particular, n > lem(|g|, |h|). We showed that |(g, k)| < lem(|g], |h|)
and lem(|g|, |h]) = |(g, k)|, so we must have lem(|g|, |h|) = |(g,h)]. O
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2.3.

Show that if at least one of g or h has infinite order, then (g, k) also has infinite order.

Proof. By contrapositive. Suppose that (g, h) € G x H has finite order n. Then
(gn, hn) = (ga h’)n = (eG7 eH)a

so in particular ¢" = e and A" = e. We conclude that g and h both have finite order. U

Problem 3. For each of the following pairs of groups, show that the two groups are not isomorphic.

3.1.

3.2.

3.3.

3.4.

(C,+) and (Q,+).

Proof. These groups are not isomorphic since C and QQ have different cardinalities, and any
isomorphism is in particular a bijection of sets. U

(R\ {0},-) and (R, +).

Proof. They are not isomorphic since (R \ {0}, -) has no element of order 2, namely —1, while
every element of (IR, +) has infinite order. O

Z)2 x Z]2 and Z/4.

Proof. They are not isomorphic since Z/4 has an element of order 4 and Z/2 x Z/2 has no
such elements. To be more precise:

e In 7Z/4, [1] has order 4.

e Every element of Z/2 has order 1 or 2; in fact, there are only 2 elements in Z/2, the
identity and [1], which has order 2.

By 2.2., the order of any element in Z/2 x Z/2 must be 1 or 2, since it is the lem of two
integers in the set {1,2}. O

Qs X Z/3 and Sy.

Proof. Since |—1| = 2 and |[1]3| = 3, the element (—1, [1]) in Qg x Z/3 has order lem(2, 3) = 6.
We claim that S4 has no elements of order 6.

To prove that, consider any element o € S;. We can write ¢ as a product of disjoint cycles
o = 01---0k. By Problem Set 1, the order of ¢ is lem(oy,...,0%). Any cycle in Sy that is
not the identity has order 2, 3, or 4, so the only way to get an element of order 6 would be
to take the product of a 3-cycle with a 2-cycle. But if o1 = (i1i2i3) and o9 = (j1,72) with
ik, Jk € [4], we must have

{i1, 42,33} N {1, j2} = 0.

Thus this is impossible, and S4 has no elements of order 6. U
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Problem 4. Let
G = HZ = {(ni)i>0 | n; € Z}
1€EN
be the group whose elements are sequences of integers, equipped with the operation given by
componentwise addition. Let H = (Z,+). Show that G x H = G.

Note: this gives us an example of groups G, H such that there is an isomorphism G x H = G but
H is nontrivial. Since G x H = G can be rewritten as G x H = G x {e}, this shows that in general
one cannot cancel groups in isomorphisms between direct products.

Proof. Consider the map that prepends an integer to a sequence of integers, more formally

f[:GxH—G

f((zi)iENv h‘) = (h" 20y 21y 225 - - )

We clam that this a group homomorphism. Indeed:

f((#i)ien, a) + f((wi)ien, b) = (a, 20, 21, - . .) + (b, wp, w1, .. .) by definition of f
= (a+0b,zp + wo, 21 + wi,...) by definition of G x H
= f((zi +w;)i,a+b) by definition of f
= f(((#i)i,a) + ((wi), b)) by definition of G x H

Moreover, this map surjective, since given any (z;)ien,
f((z1,22,23,...),20) = (2i)i-
The map f is also injective: if we denote the constant sequence equal to 0 by 0, then
f((zi)i,h) =0 <= (h,20,21,...) =0 <= h=0and z; =0foralli >0 <= ((z)i,h) =0gxmn-

We have established the desired isomorphism. O
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