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Problem Set 3 solutions

Problem 1. Show that for every integer n  2, there is no nontrivial group homomorphism
Z/n −→ Z.

Proof. Suppose that f : Z/n −→ Z is a group homomorphism. Denote the class of i ∈ Z by [i].
Then

0 = f([0]) since f is a group homomorphism

= f([n]) since [n] = [0]

= f(n[1]) since n[1] = [n]

= nf([1]) since f is a homomorphism

Thus nf([1]) = 0, which implies that f([1]) = 0. But [1] generates Z/n, and we conclude that f
must be the trivial map, since for any [a] ∈ Z/n, we have

f([a]) = af([1]) = 0.

For groups G and H, the group G×H, known as the product of G and H, refers to the set

G×H := {(g, h) | g ∈ G, h ∈ H}

equipped with the multiplication rule

(g1, h1) · (g2, h2) := (g1 ·G g2, h1 ·H h2).

You may take it as a known fact that the product of two groups is also a group.

Problem 2. Let G and H be groups, and consider elements g ∈ G and h ∈ H.

2.1. Show that if gn = e for some integer n  1, then |g| divides n.

Proof. First note that the fact that gn = e implies that g has finite order, so let |g| = d.
By the Division Algorithm, we can find integers q, r with 0  r < d such that n = qd + r.
Moreover,

e = gn = gqd+r = (gd)qgr = eqgr = gr.

Thus gr = e, but by minimality of d, we conclude that r = 0. Thus d = |g| divides n.

2.2. Show that |g| and |h| are both finite, then |(g, h)| = lcm(|g|, |h|).

Proof. Let |g| = a and |h| = b, and let ℓ = lcm(|g|, |h|). Since ℓ is a multiple of both a and b,
we can write ℓ = ac and ℓ = bd. Then

(g, h)ℓ = (gac, hbd) = ((ga)c, (hb)d) = (eG, eH) = eG×H .

Thus |(g, h)|  ℓ. Moreover, let n := |(g, h)|. Then (gn, hn) = (g, h)n = e, so in particular
gn = e and hb = e. By 2.1., we conclude that |g| and |h| both divide n, and thus n must be a
multiple of lcm(|g|, |h|). In particular, n  lcm(|g|, |h|). We showed that |(g, h)|  lcm(|g|, |h|)
and lcm(|g|, |h|)  |(g, h)|, so we must have lcm(|g|, |h|) = |(g, h)|.
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2.3. Show that if at least one of g or h has infinite order, then (g, h) also has infinite order.

Proof. By contrapositive. Suppose that (g, h) ∈ G×H has finite order n. Then

(gn, hn) = (g, h)n = (eG, eH),

so in particular gn = e and hn = e. We conclude that g and h both have finite order.

Problem 3. For each of the following pairs of groups, show that the two groups are not isomorphic.

3.1. (C,+) and (Q,+).

Proof. These groups are not isomorphic since C and Q have different cardinalities, and any
isomorphism is in particular a bijection of sets.

3.2. (R \ {0}, ·) and (R,+).

Proof. They are not isomorphic since (R\{0}, ·) has no element of order 2, namely −1, while
every element of (R,+) has infinite order.

3.3. Z/2× Z/2 and Z/4.

Proof. They are not isomorphic since Z/4 has an element of order 4 and Z/2 × Z/2 has no
such elements. To be more precise:

• In Z/4, [1] has order 4.
• Every element of Z/2 has order 1 or 2; in fact, there are only 2 elements in Z/2, the

identity and [1], which has order 2.

By 2.2., the order of any element in Z/2 × Z/2 must be 1 or 2, since it is the lcm of two
integers in the set {1, 2}.

3.4. Q8 × Z/3 and S4.

Proof. Since |−1| = 2 and |[1]3| = 3, the element (−1, [1]) in Q8×Z/3 has order lcm(2, 3) = 6.
We claim that S4 has no elements of order 6.

To prove that, consider any element σ ∈ S4. We can write σ as a product of disjoint cycles
σ = σ1 · · ·σk. By Problem Set 1, the order of σ is lcm(σ1, . . . ,σk). Any cycle in S4 that is
not the identity has order 2, 3, or 4, so the only way to get an element of order 6 would be
to take the product of a 3-cycle with a 2-cycle. But if σ1 = (i1i2i3) and σ2 = (j1, j2) with
ik, jk ∈ [4], we must have

{i1, i2, i3} ∩ {j1, j2} = ∅.

Thus this is impossible, and S4 has no elements of order 6.
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Problem 4. Let
G =



i∈N
Z = {(ni)i0 | ni ∈ Z}

be the group whose elements are sequences of integers, equipped with the operation given by
componentwise addition. Let H = (Z,+). Show that G×H ∼= G.

Note: this gives us an example of groups G,H such that there is an isomorphism G×H ∼= G but
H is nontrivial. Since G×H ∼= G can be rewritten as G×H ∼= G× {e}, this shows that in general
one cannot cancel groups in isomorphisms between direct products.

Proof. Consider the map that prepends an integer to a sequence of integers, more formally

f : G×H −→ G

f((zi)i∈N, h) = (h, z0, z1, z2, . . .).

We clam that this a group homomorphism. Indeed:

f((zi)i∈N, a) + f((wi)i∈N, b) = (a, z0, z1, . . .) + (b, w0, w1, . . .) by definition of f

= (a+ b, z0 + w0, z1 + w1, . . .) by definition of G×H

= f((zi + wi)i, a+ b) by definition of f

= f(((zi)i, a) + ((wi), b)) by definition of G×H

Moreover, this map surjective, since given any (zi)i∈N,

f((z1, z2, z3, . . .), z0) = (zi)i.

The map f is also injective: if we denote the constant sequence equal to 0 by 0, then

f((zi)i, h) = 0 ⇐⇒ (h, z0, z1, . . .) = 0 ⇐⇒ h = 0 and zi = 0 for all i  0 ⇐⇒ ((zi)i, h) = 0G×H .

We have established the desired isomorphism.
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