
Introduction to Modern Algebra I UNL | Fall 2024

Problem Set 6
solutions

Problem 1. Let H be a subgroup of G.

(1.1) Fix g ∈ G. Prove that gHg−1 = {ghg−1 | h ∈ H} is a subgroup of G of the same order as H.

Note: we are not assuming that H is finite, so you must show that there is a bijection between
H and gHg−1.

Proof. Since
e = geg−1 ∈ gHg−1,

then gHg−1 ∕= ∅. For any x, y ∈ H, we have

(gxg−1)(gyg−1)−1 = gxg−1gy−1g−1 = g(xy−1)g−1 ∈ gHg−1.

By the One-Step subgroup test, it follows that gHg−1 is a subgroup of G.

The map given by conjugation by g

H
cg  gHg−1

x ✤  gxg−1

is surjective by the definition of the set gHg−1. Furthermore,

cg(x) = cg(y) ⇐⇒ gxg−1 = gyg−1 ⇐⇒ x = y,

where on the last step we multiplied by g on the right and g−1 on the left, or their inverses to get
(⇐). thus cg is injective. Therefore, cg is a bijection and we conclude that |H| = |gHg−1|.

(1.2) Show that if H is the unique subgroup of G of order |H|, then H ⊴ G.

Proof. Let g ∈ G. If H is the unique subgroup of G of order |H|, then by part (a) we have
gHg−1 = H. Multiplying by g on the right, we conclude that Hg = gH. This holds for for all
g ∈ G, hence from a criterion for normality proven in class we conclude that H ⊴ G.

Problem 2.

(2.1) Let A and B be groups and let f : A → B be any homomorphism of groups. Prove that if A is
finite, then | im(f)| divides |A|.

Proof. By the First Isomorphism Theorem, im(f) ∼= A/ ker(f), and hence

| im(f)| = |A/ ker(f)| = |A|
| ker(f)|

where the last equality follows from Lagrange’s Theorem. Thus | im(f)| divides |A|.
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(2.2) Let G be a finite group, and let H and N be subgroups of G such that |H| and [G : N ] are
relatively prime. Prove that if N ⊴ G then H ⊆ N .

Proof. Let i : H → G be the inclusion homomorphism and π : G → G/N be the canonical
projection. Then

f = π ◦ i : H → G/N

is also a homomorphism, as the composition of homomorphisms is a homomorphism. Note that
f(h) = hN for any h ∈ H. By part (a), | im(f)| divides |H|. Moreover, im(f) is a subgroup of
G/N , so by Lagrange’s Theorem, | im(f)| also divides |G/N | = [G : N ]. Thus | im(f)| divides
both |H| and [G : N ]. Since |H| and [G : N ] are relatively prime, we conclude that | im(f)| = 1
and hence f is the trivial map. Therefore, for all h ∈ H we have hN = f(h) = N , which implies
that h ∈ N . We conclude that H ⊆ N .

Alternative proof. We can instead apply the Second Isomorphism Theorem to get that

H/(H ∩N) ∼= HN/N

and hence |H/(H ∩ N)| = |HN/N |. Since HN/N is a subgroup of G/N , its order divides
|G/N | = [G : N ]. On the other hand,

|H/(H ∩N)| = [H : H ∩N ],

which divides |H|. Since [G : N ] and |H| are relatively prime, we must have [H : H ∩ N ] = 1
and hence H ∩N = H. This implies H ⊆ N .

Problem 3. Let G be a finite group. Prove that if the order of G is even, then G must have an
element of order 2.

You are NOT allowed to use Cauchy’s theorem, in case we prove it before this problem set is due.
Hint: Consider the set S = {g ∈ G | g ∕= g−1}, and show that S has an even number of elements.

Proof. Consider the set S = {g ∈ G | g ∕= g−1}. Define an equivalence relation on G by a ∼ b if and
only if a = b or a = b−1. It is easily checked that this relation is an equivalence relation. Thus, the
equivalence classes partition G. For each a ∈ G, the equivalence class of a has 1 or 2 elements, and
has 2 elements if and only if a ∈ S. Thus, each equivalence class of an element in S has size 2, and
the class is contained in S, so |S| is even. We have |G| = |S|+ n where n is the number of elements a
having an equivalence class of size 1; those are precisely the elements a satifying a = a−1. Since |G| is
even and |S| is even, we must have n is even also. Since e = e−1, there must exist at least one other
element a such that a = a−1. Then a2 = aa−1 = e and a ∕= e, so a has order 2.
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Problem 4. Let G be a group of order 6. Prove that either G is cyclic or G ∼= S3.
Hint: By the previous problem, G has a subgroup H of order 2. Consider the action of G on the left
cosets of H.

Proof. Let G be any group of order 6. Since G has even order, then there exists an element h ∈ G of
order 2. Let H := 〈h〉, which is then a subgroup of G of order 2.

Consider the action of G on the set G/H of left cosets of H given by left multiplication:

x · (yH) := (xy)H.

Since

|G/H| = [G : H] =
|G|
|H| =

6

2
= 3,

the corresponding permutation representation is a homomorphism ρ : G → S3.
Given x ∈ G, if x ∈ ker ρ then in particular

ρ(x) = idG/H =⇒ x · eH = eH ⇐⇒ xH = eH ⇐⇒ x ∈ H.

Thus ker ρ ⊆ H. But |H| = 2, so either ker ρ = H or ρ is injective.
If ρ is injective, then ρ must be an isomorphism since |G| = 6 = |S3|, which forces ρ to be a

bijection. In that case, we conclude that G ∼= S3.
Now suppose that ker ρ = H. Kernels are normal subgroups, so H ⊴ G. Moreover, |G/H| = 3. By

a problem on the midterm, every group of order 3 is cyclic, since 3 is prime, and thus G/H is cyclic.
Thus there exists some a ∈ G such that G = 〈aH〉, and aH has order 3 in G/H. Now n := |a| satisfies

(aH)n = anH = H.

Therefore, |aH| = 3 divides |a|. On the other hand, by Lagrange’s Theorem |a| must divide |G| = 6,
so we conclude that |a| = 3 or |a| = 6. If |a| = 6, then G = 〈a〉, as G has order 6, so G is indeed cyclic.

Suppose |a| = 3. We claim that m := |ah| = 6. First, note that |ab|  |G| = 6. On the other hand,
note that since H is a normal subgroup,

aha−1 ∈ H =⇒ aha−1 = h or aha−1 = e.

But
aha−1 = e =⇒ h = a−1a = e,

so aha−1 = h, and thus
ah = ha.

Thus a and h commute, so

amhm = (ah)m = e =⇒ am = h−m ∈ 〈a〉 ∩ 〈b〉.

By Lagrange’s Theorem, the order of 〈a〉 ∩ 〈b〉 must divide |〈a〉| = |a| = 3 and |〈h〉| = |h| = 2.
Therefore, 〈a〉 ∩ 〈b〉 has order 1, so 〈a〉 ∩ 〈b〉 = {e}. Hence, am = hm = e. Thus, |a| = 3 and |h| = 3
both divide m, so we must have m  6. But G has order 6, so m = |ah| = 6. We conclude that
G = 〈ah〉 is cyclic.
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Problem 5. Suppose that G is an abelian group acting transitively and faithfully on a set X. Prove
that |G| = |X|.

Proof. By the Orbit-Stabilizer Theorem, for any x ∈ X we have

|G| = |OrbG(x)| · | StabG(x)|.

Let h ∈ StabG(x) and y ∈ X. Since the action is transitive, then there exists g ∈ G such that g ·x = y.
Then

h · y = h · (g · x) since g · x = y

= (hg) · x by definition of group action

= (gh) · x since G is abelian

= g · (hx) by definition of group action

= g · x since h ∈ StabG(x)

= y.

Thus h · y = y for all y ∈ X, but the action is faithful, so h = e. We conclude that StabG(x) is trivial,
and thus | StabG(x)| = 1. Therefore,

|G| = |OrbG(x)|.
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