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Problem Set 6

solutions

Problem 1. Let H be a subgroup of G.

(1.1) Fix g € G. Prove that gHg~! = {ghg™! | h € H} is a subgroup of G of the same order as H.

Note: we are not assuming that H is finite, so you must show that there is a bijection between
H and gHg™ "

Proof. Since

e=geg ' €gHg ",

then gHg~ ' # (). For any =,y € H, we have

L=g(ay gt egHg™.

1

(929" N (gyg™ ")t =gzg gy g™

By the One-Step subgroup test, it follows that gH g™ " is a subgroup of G.

The map given by conjugation by g

H—2>gHg™

x »—>gxg_1

is surjective by the definition of the set ¢Hg~'. Furthermore,

1 1

cg(x) =cyly) = grg  =gyg = v =y,

where on the last step we multiplied by g on the right and ¢g~! on the left, or their inverses to get

(«). thus ¢, is injective. Therefore, ¢, is a bijection and we conclude that |H| = |gHg™!|. O
(1.2) Show that if H is the unique subgroup of G of order |H|, then H < G.

Proof. Let g € G. If H is the unique subgroup of G of order |H|, then by part (a) we have
gHg™' = H. Multiplying by ¢ on the right, we conclude that Hg = gH. This holds for for all
g € G, hence from a criterion for normality proven in class we conclude that H < G. O

Problem 2.

(2.1) Let A and B be groups and let f: A — B be any homomorphism of groups. Prove that if A is
finite, then |im(f)| divides |A|.

Proof. By the First Isomorphism Theorem, im(f) = A/ker(f), and hence

. |A]
im(f)| = |A/ker(f)| =
im()] = 4/ kex(f)] = T
where the last equality follows from Lagrange’s Theorem. Thus |im(f)| divides |A|. O
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(2.2) Let G be a finite group, and let H and N be subgroups of G such that |H| and [G : N] are
relatively prime. Prove that if N < G then H C N.

Proof. Let i : H — G be the inclusion homomorphism and 7 : G — G/N be the canonical

projection. Then
f=moi:H - G/N

is also a homomorphism, as the composition of homomorphisms is a homomorphism. Note that
f(h) = hN for any h € H. By part (a), |im(f)| divides |H|. Moreover, im(f) is a subgroup of
G/N, so by Lagrange’s Theorem, |im(f)| also divides |G/N| = [G : N]. Thus |im(f)| divides
both |H| and [G : N]. Since |H| and [G : N] are relatively prime, we conclude that |im(f)| =1
and hence f is the trivial map. Therefore, for all h € H we have hN = f(h) = N, which implies
that h € N. We conclude that H C N. O

Alternative proof. We can instead apply the Second Isomorphism Theorem to get that
H/(HNN)= HN/N

and hence |[H/(H N N)| = |[HN/N|. Since HN/N is a subgroup of G/N, its order divides
|G/N| =[G : N]. On the other hand,

\H/(HNN)| =[H: HnN],

which divides |H|. Since [G : N] and |H| are relatively prime, we must have [H : H N N] =1
and hence H N N = H. This implies H C N. O

Problem 3. Let G be a finite group. Prove that if the order of G is even, then G must have an
element of order 2.

You are NOT allowed to use Cauchy’s theorem, in case we prove it before this problem set is due.
Hint: Consider the set S = {g € G | g # g~'}, and show that S has an even number of elements.

Proof. Consider the set S = {g € G | g # g~'}. Define an equivalence relation on G by a ~ b if and
only if @ = b or a = b~!. It is easily checked that this relation is an equivalence relation. Thus, the
equivalence classes partition G. For each a € G, the equivalence class of a has 1 or 2 elements, and
has 2 elements if and only if a € S. Thus, each equivalence class of an element in S has size 2, and
the class is contained in S, so |S]| is even. We have |G| = |S| + n where n is the number of elements a
having an equivalence class of size 1; those are precisely the elements a satifying a = a~!. Since |G| is
even and |S| is even, we must have n is even also. Since e = e~!, there must exist at least one other
element @ such that @ = a™!. Then a? = aa™! = e and a # e, so a has order 2. O
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Problem 4. Let G be a group of order 6. Prove that either G is cyclic or G = S3.
Hint: By the previous problem, GG has a subgroup H of order 2. Consider the action of G on the left
cosets of H.

Proof. Let G be any group of order 6. Since G has even order, then there exists an element h € G of
order 2. Let H := (h), which is then a subgroup of G of order 2.
Consider the action of G on the set G/H of left cosets of H given by left multiplication:

x- (yH) = (zy)H.

Since Gl 6
G/H =|G:H=—=-=3,
G/H| =[G+ H] = = 3
the corresponding permutation representation is a homomorphism p: G — Ss.
Given z € G, if x € ker p then in particular

p(r) =idg/y = x-eH =eH <= zH=e¢H <= z€ H.

Thus ker p C H. But |H| = 2, so either ker p = H or p is injective.

If p is injective, then p must be an isomorphism since |G| = 6 = |Ss|, which forces p to be a
bijection. In that case, we conclude that G = Ss.

Now suppose that ker p = H. Kernels are normal subgroups, so H < G. Moreover, |G/H| = 3. By
a problem on the midterm, every group of order 3 is cyclic, since 3 is prime, and thus G/H is cyclic.
Thus there exists some a € G such that G = (aH), and aH has order 3 in G/H. Now n := |a| satisfies

(aH)" =a"H = H.

Therefore, |aH| = 3 divides |a|. On the other hand, by Lagrange’s Theorem |a| must divide |G| = 6,
so we conclude that |a| = 3 or |a| = 6. If |a| = 6, then G = (a), as G has order 6, so G is indeed cyclic.

Suppose |a| = 3. We claim that m := |ah| = 6. First, note that |ab| < |G| = 6. On the other hand,
note that since H is a normal subgroup,

aha™' € H = aha '=hor aha ' =e.

But
so aha™! = h, and thus

Thus a and h commute, so
a™h™ = (ah)" =e = a™" =h""" € (a) N (D).

By Lagrange’s Theorem, the order of (a) N (b) must divide |(a)| = |a|] = 3 and [(h)| = |h| = 2.
Therefore, (a) N (b) has order 1, so (a) N (b) = {e}. Hence, a™ = h™ = e. Thus, |a| = 3 and |h| = 3
both divide m, so we must have m > 6. But G has order 6, so m = |ah| = 6. We conclude that
G = (ah) is cyclic. O
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Problem 5. Suppose that G is an abelian group acting transitively and faithfully on a set X. Prove
that |G| = | X]|.

Proof. By the Orbit-Stabilizer Theorem, for any « € X we have
|G| = | Orbe ()| - | Stabg ()]

Let h € Stabg(z) and y € X. Since the action is transitive, then there exists g € G such that g-z = y.
Then

h-y=h-(g-) since g-z =1y
= (hg) -x by definition of group action
= (gh) - x since G is abelian
=g-(hx) by definition of group action
=g-x since h € Stabg(z)
=y.

Thus h-y =y for all y € X, but the action is faithful, so h = e. We conclude that Stabg(z) is trivial,
and thus | Stabg(z)| = 1. Therefore,

|G| = [Orbg(z)]. O



