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Problem Set 7

solutions

Problem 1. Let p be prime and let G be a group of order p™ for some m > 1. Show that if IV is a
nontrivial normal subgroup of G, then N N Z(G) # {e}. In fact, show that [N N Z(G)| = p’ for some
i>1.

Proof 1. Since N is normal, the rule g -n := gng~! defines an action of G on N. Given n € N, if n is
a fixed point for the action, then for all g € G

1

g-n=mn < gng  =n <= gn=ng <= ncZG).

Thus the number of fixed points for this action is |[N N Z(G)|.
Now consider the Orbit Equation for this action. To do that, fix elements nq,...,n, in each one
of the orbits with more than one element. Then

IN|=INNZ(G)| + Z | Orbe ().

By the Orbit-Stabilizer Theorem, for each n; we have
| Orbe(ng)| = [G = Stabe(ng)],

SO

IN| = [N NZ(G)| + Z[G : Stabg (n:)].

Since n; is not a fixed point, Stabg(n;) # G, so [G : Stabg(n;)] > 1. Note that by Lagrange’s Theorem
[G : Stabg(n;)] must divide |G| = p™, so in particular p divides [G : Stabg(n;)]. Since N is a nontrivial
subgroup of G, its order must be also divisible by p. Thus

T

INNZ(G)| = |N| — Z[G : Stabg(n;)]

)

is a multiple of p. In particular, [N N Z(G)| > 1.
Since Z(G) NN is a subgroup of G, its order must divide p™, and we conclude that | Z(G)NN| = p’
for some j > 1. O

Proof 2. Since N is a normal subgroup of (G, it must be the union of conjugacy classes of G. The
conjugacy classes with one element are precisely the elements in Z(G); thus N can be written as

S
N = (NnzZ(@) Jlgiles
i=1
where g1, ..., gs are representatives of distinct conjugacy classes with more than one element. Thus
S
IN| = INNZ(@G)+ ) |lgilel-
i=1

We proved in class that the order of each conjugacy class must divide |G| = p™, so each |[gi].| must
be a power of p. By assumption, |[gi]c| # 1, so for each i we have |[g;]c| = p’ for some j > 1. In
particular, p divides |[g;]c|-
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Since N is a subgroup of G, by Lagrange’s Theorem its order must divide |G| = p™. But N is
nontrivial, so we conclude that |N| must be divisible by p. Therefore,

T

INNZ(G)| = [N| = Z[G : Stabg (ns)]

2

is a multiple of p. In particular, |N NZ(G)| > 1.
Since Z(G) NN is a subgroup of G, its order must divide p™, and we conclude that | Z(G)NN| = p’
for some j > 1. O

Problem 2. Prove the converse to Lagrange’s theorem is false: find a group G and an integer d > 0
such that d divides the order of G but G does not have any subgroups of order d.

Solution. Consider G = As;, which has order

1S5] 120
A = — = — = .
|45 = = 5 = 60
Let d = 30, which divides |As|. If A5 had a subgroup H with |H| = 30, then
60
As:Hl = — =2
s H] = 35 =2

so H must be normal in As. But we have shown in class that As is simple, so this is a contradiction.
We conclude that As has no subgroup of order 30 despite the fact that 30 divides the order of As.

Problem 3. Let G be a group and H a subgroup of G. Show that Ng(H)/Cq(H) is isomorphic to
a subgroup of the automorphism group Aut(H) of H.

Proof. Consider the action of Ng(H) on H given by
n-h:=nhn"'.
By definition of the normalizer, nhn~! € H for all h € H, so this is well-defined. Moreover,
e-h=che ! =h

and
(ab) - h = (ab)h(ab)™ = a(bhb™ b~  =a- (b- h),

so this is indeed an action.
Let p: Ng(H) — Perm(H) be the corresponding permutation representation. For eachn € Ng(H),
we claim that p,, := p(n) is a group homomorphism. Indeed, for all hy, hy € H we have

pn(hihg) = n(hiha)n™! = (nhin™ ") (nhan™') = pp(h1)pa(ha).

Thus p(n) is a group homomorphism for all n € H. But p(n) is also a bijection, and thus p(n)
must be an isomorphism. We can now restrict the codomain of p to Aut(H), and we get a group
homomorphism p: Ng(H) — Aut(H). Finally,

n € ker(p) <= p(n)=id <= nhn"! =nforallh€ H < nh=hnforallhc H <= n € Cq(H).
Thus ker p = Cg(H). By the First Isomorphism Theorem,
No(H)/Ca(H) = imp,

and im p is a subgroup of Aut(H). O
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Problem 4. Let G be a nonabelian group of order 21. Find the number and the sizes of the conjugacy
classes of G, with justification.

Solution. We will first show that if G is nonabelian, then Z(G) = {e}. First, note that | Z(G)| must
divide |G| = 21, by Lagrange’s Theorem. Moreover, if |Z(G)| = 21, then G would be abelian, so
|Z(G)| € {3,7,21}. If | Z(G)| # 1, then |Z(G)| € {3,7}. Thus

€ {3,7}.

G
Z(G)
Every group of prime order is cyclic, by a midterm problem, and thus % is cyclic. Since we know

by a previous homework problem that if % is cyclic then G is abelian, this would also result in a

contradiction. We are left with | Z(G)| = 1 as the only possibility.
The class equation for G has the form

21=|Z(G)|+n1++nj=1+n+--+nj,

where n; > 2 are the sizes of each of the conjugacy classes with more than one element. Note that
we have shown that |Z(G)| = 1, and that n; < 21 for all . We have n; | 21 by LOIS, and hence
n; € {3,7} for all 7, since 1 and 21 are impossible.

There is only one way to get 20 by adding up any number of terms equal to 3 or 7, and thus

21=14+3+3+7+7

is the only class equation that is possible. To justify this, one could note that we want to add some
copies of 3 and 7 to add up to 20, but 3-7 = 21 > 20, so we can only use at most two copies of 7. On
the other hand, 20 =2 (mod 3) and 7=1 (mod 3), so we must have exactly two copies of 7, leaving
us with two copies of 3 necessarily.

We conclude that there are 5 conjugacy classes, of sizes 1, 3, 3, 7, and 7.

Problem 5. Let G be a group acting on a set S.
(5.1) Let s,t € S be elements in the same orbit. Show that there exists g € G such that

Stabg(s) = g - Stabg(t) - g~ L.

Proof. Since s and t are in the same orbit, there exists g € G such that
t=g-s, orequivalently, s=g 't

Then given any h € Stabg(t), since Stabg(¢) is a subgroup of G, then

g
g t-t since h € Stabg(t)
s

Thus g~ 'hg € Stabg(s). This shows that

g~ ' Stabg(t)g C Stabg(s).
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(5.2)

(5.3)

Moreover, the same argument but switching the roles of s and ¢ shows that

g Stabga(s)g~" C Stabg(t),

1

and multiplying by ¢g~" on the left and g on the right gives

Stabg(s) C ¢! Stabg(t)g.

We conclude that
Stabg(s) = g~ ' Stabg(t)g. O

Show that if the action is transitive, then the kernel of the associated permutation representation
p: G — Perm(S) is
ker(p) = ﬂ g Stabg(s)g™t.
geG

Proof. Fix s € S. If the action is transitive, then there is only one orbit, so that by the previous
part, for every t € S there exists g € G such that

Stabg(t) = g~ ! Stabg(s)g.
Moreover, if we fix s € S, given any g € G, the element ¢t = g - s € S satisfies
Stabg(t) = g~ Stabg(s)g,
so the collection of all stabilizers of elements in S is the collection of all
g~ ! Stabg(s)g
where g ranges over all the elements in G.
Now note that
x €ker(p) <= x-t=tforallte S <= x € Stabg(t) for all t € S.

Thus

ker(p) = m Stabg(t) = ﬂ g ! Stabg(s)g. O
tesS geG

Show that if G is finite, the action is transitive, and S has at least two elements, then there is
g € G which has no fixed point, meaning that gs # s for all s € S.

Proof. Fix any s € S. Since S has at least two elements and the action is transitive, there is
some element of G that does not fix s, so Stabg(s) # G. By a theorem from class,

U g Stabg(s)g™t # G.

geyg

In the previous part we showed that this is just the union of all the stabilizers of elements of S,
meaning

| Staba(t) # G.

tesS

In particular, there exists some element g € GG that is not in the stabilizer of any element in S,
and thus ¢g has no fixed points. O



