
Introduction to Modern Algebra I UNL | Fall 2024

Problem Set 7
solutions

Problem 1. Let p be prime and let G be a group of order pm for some m 󰃍 1. Show that if N is a
nontrivial normal subgroup of G, then N ∩ Z(G) ∕= {e}. In fact, show that |N ∩ Z(G)| = pj for some
j 󰃍 1.

Proof 1. Since N is normal, the rule g · n := gng−1 defines an action of G on N . Given n ∈ N , if n is
a fixed point for the action, then for all g ∈ G

g · n = n ⇐⇒ gng−1 = n ⇐⇒ gn = ng ⇐⇒ n ∈ Z(G).

Thus the number of fixed points for this action is |N ∩ Z(G)|.
Now consider the Orbit Equation for this action. To do that, fix elements n1, . . . , nr in each one

of the orbits with more than one element. Then

|N | = |N ∩ Z(G)|+
r󰁛

i

|OrbG(ni)|.

By the Orbit-Stabilizer Theorem, for each ni we have

|OrbG(ni)| = [G : StabG(ni)],

so

|N | = |N ∩ Z(G)|+
r󰁛

i

[G : StabG(ni)].

Since ni is not a fixed point, StabG(ni) ∕= G, so [G : StabG(ni)] > 1. Note that by Lagrange’s Theorem
[G : StabG(ni)] must divide |G| = pm, so in particular p divides [G : StabG(ni)]. Since N is a nontrivial
subgroup of G, its order must be also divisible by p. Thus

|N ∩ Z(G)| = |N |−
r󰁛

i

[G : StabG(ni)]

is a multiple of p. In particular, |N ∩ Z(G)| > 1.
Since Z(G)∩N is a subgroup of G, its order must divide pm, and we conclude that |Z(G)∩N | = pj

for some j 󰃍 1.

Proof 2. Since N is a normal subgroup of G, it must be the union of conjugacy classes of G. The
conjugacy classes with one element are precisely the elements in Z(G); thus N can be written as

N = (N ∩ Z(G))

s󰁞

i=1

[gi]c,

where g1, . . . , gs are representatives of distinct conjugacy classes with more than one element. Thus

|N | = |N ∩ Z(G)|+
s󰁛

i=1

|[gi]c|.

We proved in class that the order of each conjugacy class must divide |G| = pm, so each |[gi]c| must
be a power of p. By assumption, |[gi]c| ∕= 1, so for each i we have |[gi]c| = pj for some j 󰃍 1. In
particular, p divides |[gi]c|.
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Since N is a subgroup of G, by Lagrange’s Theorem its order must divide |G| = pm. But N is
nontrivial, so we conclude that |N | must be divisible by p. Therefore,

|N ∩ Z(G)| = |N |−
r󰁛

i

[G : StabG(ni)]

is a multiple of p. In particular, |N ∩ Z(G)| > 1.
Since Z(G)∩N is a subgroup of G, its order must divide pm, and we conclude that |Z(G)∩N | = pj

for some j 󰃍 1.

Problem 2. Prove the converse to Lagrange’s theorem is false: find a group G and an integer d > 0
such that d divides the order of G but G does not have any subgroups of order d.

Solution. Consider G = A5, which has order

|A5| =
|S5|
2

=
120

2
= 60.

Let d = 30, which divides |A5|. If A5 had a subgroup H with |H| = 30, then

[A5 : H] =
60

30
= 2,

so H must be normal in A5. But we have shown in class that A5 is simple, so this is a contradiction.
We conclude that A5 has no subgroup of order 30 despite the fact that 30 divides the order of A5.

Problem 3. Let G be a group and H a subgroup of G. Show that NG(H)/CG(H) is isomorphic to
a subgroup of the automorphism group Aut(H) of H.

Proof. Consider the action of NG(H) on H given by

n · h := nhn−1.

By definition of the normalizer, nhn−1 ∈ H for all h ∈ H, so this is well-defined. Moreover,

e · h = ehe−1 = h

and
(ab) · h = (ab)h(ab)−1 = a(bhb−1)b−1 = a · (b · h),

so this is indeed an action.
Let ρ : NG(H) → Perm(H) be the corresponding permutation representation. For each n ∈ NG(H),

we claim that ρn := ρ(n) is a group homomorphism. Indeed, for all h1, h2 ∈ H we have

ρn(h1h2) = n(h1h2)n
−1 = (nh1n

−1)(nh2n
−1) = ρn(h1)ρn(h2).

Thus ρ(n) is a group homomorphism for all n ∈ H. But ρ(n) is also a bijection, and thus ρ(n)
must be an isomorphism. We can now restrict the codomain of ρ to Aut(H), and we get a group
homomorphism ρ : NG(H) → Aut(H). Finally,

n ∈ ker(ρ) ⇐⇒ ρ(n) = id ⇐⇒ nhn−1 = n for all h ∈ H ⇐⇒ nh = hn for all h ∈ H ⇐⇒ n ∈ CG(H).

Thus ker ρ = CG(H). By the First Isomorphism Theorem,

NG(H)/CG(H) ∼= im ρ,

and im ρ is a subgroup of Aut(H).
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Problem 4. Let G be a nonabelian group of order 21. Find the number and the sizes of the conjugacy
classes of G, with justification.

Solution. We will first show that if G is nonabelian, then Z(G) = {e}. First, note that |Z(G)| must
divide |G| = 21, by Lagrange’s Theorem. Moreover, if |Z(G)| = 21, then G would be abelian, so
|Z(G)| ∈ {3, 7, 21}. If |Z(G)| ∕= 1, then |Z(G)| ∈ {3, 7}. Thus

󰀏󰀏󰀏󰀏
G

Z(G)

󰀏󰀏󰀏󰀏 ∈ {3, 7}.

Every group of prime order is cyclic, by a midterm problem, and thus G
Z(G) is cyclic. Since we know

by a previous homework problem that if G
Z(G) is cyclic then G is abelian, this would also result in a

contradiction. We are left with |Z(G)| = 1 as the only possibility.
The class equation for G has the form

21 = |Z(G)|+ n1 + · · ·+ nj = 1 + n1 + · · ·+ nj ,

where ni 󰃍 2 are the sizes of each of the conjugacy classes with more than one element. Note that
we have shown that |Z(G)| = 1, and that ni < 21 for all i. We have ni | 21 by LOIS, and hence
ni ∈ {3, 7} for all i, since 1 and 21 are impossible.

There is only one way to get 20 by adding up any number of terms equal to 3 or 7, and thus

21 = 1 + 3 + 3 + 7 + 7

is the only class equation that is possible. To justify this, one could note that we want to add some
copies of 3 and 7 to add up to 20, but 3 · 7 = 21 > 20, so we can only use at most two copies of 7. On
the other hand, 20 ≡ 2 (mod 3) and 7 ≡ 1 (mod 3), so we must have exactly two copies of 7, leaving
us with two copies of 3 necessarily.

We conclude that there are 5 conjugacy classes, of sizes 1, 3, 3, 7, and 7.

Problem 5. Let G be a group acting on a set S.

(5.1) Let s, t ∈ S be elements in the same orbit. Show that there exists g ∈ G such that

StabG(s) = g · StabG(t) · g−1.

Proof. Since s and t are in the same orbit, there exists g ∈ G such that

t = g · s, or equivalently, s = g−1t.

Then given any h ∈ StabG(t), since StabG(t) is a subgroup of G, then

(g−1hg) · s = (g−1h) · (g · s)
(g−1h) · t
g−1 · (ht)
g−1 · t since h ∈ StabG(t)

s.

Thus g−1hg ∈ StabG(s). This shows that

g−1 StabG(t)g ⊆ StabG(s).
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Moreover, the same argument but switching the roles of s and t shows that

g StabG(s)g
−1 ⊆ StabG(t),

and multiplying by g−1 on the left and g on the right gives

StabG(s) ⊆ g−1 StabG(t)g.

We conclude that
StabG(s) = g−1 StabG(t)g.

(5.2) Show that if the action is transitive, then the kernel of the associated permutation representation
ρ : G → Perm(S) is

ker(ρ) =
󰁟

g∈G
g StabG(s)g

−1.

Proof. Fix s ∈ S. If the action is transitive, then there is only one orbit, so that by the previous
part, for every t ∈ S there exists g ∈ G such that

StabG(t) = g−1 StabG(s)g.

Moreover, if we fix s ∈ S, given any g ∈ G, the element t = g · s ∈ S satisfies

StabG(t) = g−1 StabG(s)g,

so the collection of all stabilizers of elements in S is the collection of all

g−1 StabG(s)g

where g ranges over all the elements in G.

Now note that

x ∈ ker(ρ) ⇐⇒ x · t = t for all t ∈ S ⇐⇒ x ∈ StabG(t) for all t ∈ S.

Thus
ker(ρ) =

󰁟

t∈S
StabG(t) =

󰁟

g∈G
g−1 StabG(s)g.

(5.3) Show that if G is finite, the action is transitive, and S has at least two elements, then there is
g ∈ G which has no fixed point, meaning that gs ∕= s for all s ∈ S.

Proof. Fix any s ∈ S. Since S has at least two elements and the action is transitive, there is
some element of G that does not fix s, so StabG(s) ∕= G. By a theorem from class,

󰁞

g∈g
g StabG(s)g

−1 ∕= G.

In the previous part we showed that this is just the union of all the stabilizers of elements of S,
meaning 󰁞

t∈S
StabG(t) ∕= G.

In particular, there exists some element g ∈ G that is not in the stabilizer of any element in S,
and thus g has no fixed points.
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