Problem Set 8 solutions

Problem 1. Show that there are no simple groups of order $56 = 8 \cdot 7$.

Proof. Let *G* be a group of order 56. Let $n_7 = |Syl_7(G)|$. By Sylow theory,

 $n_7 \equiv 1 \pmod{7}$ and $n_7 | 8$,

so $n_7 \in \{1, 8\}$. Note that if $n_7 = 1$, then the unique subgroup of order 7 would be normal, and *G* would not be simple. So suppose that $n_7 = 8$.

Given any two Sylow 7-subgroups *P* and *Q*, which have order 7, the order of their intersection $P \cap Q$ must divide 7, but it cannot be 7 unless $P = Q$. Thus any two Sylow 7-subgroups have trivial intersection. Moreover, any element in such a subgroup that is not the identity must have order 7. Counting these, we get

$$
8(7-1)=48
$$

elements of order 7, so that there are at most $56 - 48 = 8$ elements in *G* that do not have order 7.

Now consider any Sylow 2-subgroup *Q* of *G*, which has order 8. By Lagrange, the order of any element in *Q* must divide 8, so in particular *Q* has no elements of order 7. But there are only 8 elements in *G* that may have order other than 7, so they must form the unique subgroup of order 8. In particular, that subgroup must be normal, and *G* is not simple. □

Problem 2. Show that there are no simple groups of order $2^5 \cdot 7^3$.

Proof. Let $n_2 = |\mathrm{Syl}_2(G)|$ and $n_7 = |\mathrm{Syl}_7(G)|$. If $n_2 = 1$ or $n_7 = 1$, the unique Sylow subgroup corresponding to that prime is normal, and thus *G* is not simple. So let's assume $n_1 \neq 1$ and $n_7 \neq 1$.

The Main Theorem of Sylow theory gives us

 $n_7 | 2^5$ and $n_7 \equiv 1 \pmod{7}$ $\implies n_7 \in \{1, 8\} \implies n_7 = 8.$

Let's consider the action of *G* by conjugation on the set of its Sylow 7-subgroups $Syl₇(G)$. This gives us a group homomorphism (the corresponding permutation representation)

$$
\rho: G \to \mathrm{Perm}(\mathrm{Syl}_7(G)) = S_8.
$$

By the First Isomorphism Theorem,

$$
G/\ker(\rho) \cong \operatorname{im}(\rho).
$$

Since $\text{im}(\rho)$ is a subgroup of $\text{Perm}(\text{Syl}_7(G))$, then Lagrange's Theorem guarantees that $|\text{im}(\rho)|$ must divide $|\text{Perm}(\text{Syl}_7(G))|=8!$. Since

$$
|\operatorname{im}(\rho)| = |G/\ker(\rho)| = \frac{|g|}{|\ker(\rho)|} = \frac{2^5 \cdot 7^3}{|\ker(\rho)|},
$$

$$
\frac{2^5 \cdot 7^3}{|\operatorname{div}(\rho)|} = \frac{2^5 \cdot 7^3}{|\operatorname{div}(\rho)|} = \frac{2^5 \cdot 7^3}{|\operatorname{div}(\rho)|} = 2^5 \cdot 7^3
$$

 $\frac{1}{|\ker(\rho)|}$ divides 8!.

we conclude that

Note that while 7 divides 8!, 7^2 does not, and thus 7^2 must divide $| \text{ker}(\rho) |$. In particular, $\text{ker}(\rho)$ is nontrivial. Moreover, the Main Theorem of Sylow Theory says that the action of *G* by conjugation on $\text{Syl}_7(G)$ is transitive, so ρ must be nontrivial, and ker(ρ) $\neq G$. But ker(ρ) is a normal subgroup of *G*, and we just proved it is neither $\{e\}$ nor *G*, so it is a proper nontrivial normal subgroup of *G*. This shows that *G* is not simple. shows that *G* is not simple.

Problem 3. Let *G* be a finite group of order *pqr* with $0 < p < q < r$ prime numbers. Show that *G* is not simple.

Proof. Let

$$
n_p = |Syl_p(G)|
$$
, $n_q = |Syl_q(G)|$, $n_r = |Syl_r(G)|$.

If any of n_p , n_q , or n_r is 1, then the unique Sylow subgroup corresponding to that prime is normal, and *G* is not simple.

So suppose that $n_p, n_q, n_r \neq 1$. By the Main Theorem of Sylow Theory,

 n_p | *qr*,

and since $1 < q < r < qr$ are the only divisors of *qr*, we conclude that $n_p \geqslant q$. Moreover, $n_q \equiv 1$ (mod *q*), and since $n_q \neq 1$, we conclude that $n_q \geq q+1$. But we also have

n^q | pr,

and $1 < p < r < pr$ are the only divisors of *pr*. Since $p < q$, we conclude that $n_q \geq r$. Finally,

$$
n_r \equiv 1 \pmod{r}, n_r \neq 1 \implies n_r \geq r+1,
$$

while

$$
n_r \mid pq \implies n_r \in \{p, q, pq\}.
$$

But $p, q < r$, so $n_r = pq$.

By Lagrange's Theorem, for any distinct $a, b \in \{p, q, r\}$, any Sylow *a*-subgroup and any Sylow *b*-subgroup intersect trivially. Moreover, since *a* is prime, any two Sylow *a*-subgroups, which have order *a*, must intersect trivially. Thus each Sylow *a*-subgroup contains *a*−1 nonidentity elements that are not in any other subgroup.

Counting all these distinct elements gives us

$$
1 + (p - 1)n_p + (q - 1)n_q + (r - 1)n_r \ge 1 + (p - 1)q + (q - 1)r + (r - 1)pq
$$

= 1 + pqr + rq - r - q.

Since $r > q > 2$, then

$$
rq - r - q > 2r - r - q > 0,
$$

and thus we have found strictly more elements than $|G|$, which is impossible.

Problem 4. Prove that S_4 has precisely three distinct subgroups of order 8, all of which are isomorphic to D_4 .

Proof. First, note that $|S_4| = 4! = 2^3 \cdot 3$. Thus any subgroup of S_4 of order 8 is a Sylow 2-subgroup; let *n*² be the number of Sylow 2-subgroups. By Sylow Theory,

$$
n_2 \equiv 1 \pmod{2} \text{ and } n_2 \mid 3.
$$

Thus $n_2 \in \{1, 3\}.$

Any transposition or 4-cycle generates a subgroup of *S*⁴ of order 2 or 4, which are powers of 2, so by the Main Theorem of Sylow Theory they must each be subgroups of some Sylow 2-subgroup. But we counted in class that there are six 2-cycles and six 4-cycles, and $6 + 6 > 8$, so they cannot all be

 \Box

in the same Sylow 2-subgroup. Thus $n_2 = 3$, meaning that there are precisely 3 distinct subgroups of order 8.

By the Main Theorem of Sylow Theory, all of the Sylow 2-subgroups are conjugate. Given one such group *H* and $g \in S_4$, the function $H \to gHg^{-1}$ given by $h \mapsto ghg^{-1}$ is a group isomorphism, so any two Sylow 2-subgroups are isomorphic. Hence, we just need to show that *S*⁴ contains a subgroup isomorphic to D_8 .

Let X be the set of left cosets of the subgroup $S = \{1, s\}$ of D_4 . Note that

$$
|X| = [D_4 : S] = \frac{8}{2} = 4.
$$

Let *G* act on *X* by left multiplication. Note that since $|X| = 4$, Perm $(X) \cong S_4$. This action induces a homomorphism $\phi: G \to S_4$. Moreover, we proved in class that

$$
\ker(\rho) = \bigcap_{g \in D_4} gSg^{-1}.
$$

This is the largest normal subgroup of *G* contained in *S*. But *S* is not normal, so ker(ρ) \neq *S*, leaving ker(ρ) = {*e*} as the only possibility. Thus ϕ is injective and the image of ϕ is a subgroup of S_4 isomorphic to D_8 . isomorphic to D_8 .

Problem 5. Let C_n denote the cyclic group of order $n \geq 2$, and consider the group

$$
(\mathbb{Z}/n)^{\times} = \{ [j]_n \mid \gcd(j, n) = 1 \}
$$

with the binary operation given by the usual multiplication. Prove that

$$
Aut(C_n) \cong (\mathbb{Z}/n)^{\times}.
$$

Proof. Let $C_n = \langle x | x^n = e \rangle$. By the Universal Mapping Property for cyclic groups, each group homomorphism $C_n \to C_n$ is uniquely determined by the image of x. The possible images for x are the *n* elements in C_n , which are $x^i \in C_n$ for $0 \leq i \leq n$. Let $\rho_i : C_n \to C_n$ be the unique homomorphism determined by $\rho_i(x) = x^i$. We have for now shown that

$$
Aut(C_n) = \{ \rho_i \mid 0 \leq i < n \}.
$$

Note that $\text{im}(\rho_i) = \langle x^i \rangle$, and we proved in class that $\langle x^i \rangle = C_n$ if and only if $\gcd(i, n) = 1$. Note moreover that if ρ_i is surjective, then it must also be injective, given that it is a function between two finite sets of the same order. Thus

 $\rho_i \in \text{Aut}(C_n)$ if and only if $[i]_n \in (\mathbb{Z}/n)^{\times}$.

Now consider $\varphi: \text{Aut}(C_n) \to (\mathbb{Z}/n)^\times$ given by

$$
\varphi(\rho_i)=[i]_n.
$$

Note that

$$
(\rho_i \circ \rho_j)(x) = x^{ij} = \rho_{ij} \pmod{m}(x).
$$

The uniqueness part of the UMP for cyclic groups implies that

$$
\rho_i \circ \rho_j = \rho_{ij} \pmod{m}
$$

Hence,

$$
\varphi(\rho_i \circ \rho_j) = \varphi(\rho_{ij \pmod{m}}) = [ij]_n = [i]_n[j]_n = \varphi(\rho_i)\varphi(\rho_j).
$$

Thus φ is a group homomorphism.

Given $[j]_n \in (Z/n)^\times$, by the UMP for cyclic groups there exists a unique homomorphism

$$
\psi([j]_n) \colon C_n \to C_n
$$

that takes $x \mapsto x^j$. This gives us a map $\psi: (Z/n)^{\times} \to \text{Aut}(C_n)$. We need to show that ψ is well-defined both in terms of independence of representative in $(Z/n)^{\times}$ but also in terms of the the image landing in the automorphism group of C_n .^{[1](#page-3-0)} Indeed,

$$
i \equiv i' \pmod{n} \implies x^i = x^{i'} \in C_n \implies \psi([i]_n) = \psi([i']_n).
$$

Thus the definition of ψ does not depend on the choice of representative *i* for the class $[i]_n$. Moreover, the image of $\psi([i]_n)$ is the subgroup $\langle x^i \rangle$ of C_n , and since $gcd(i, n) = 1$, we know that $\langle x^i \rangle = C_n$. This shows that $\psi([i]_n)$ is surjective, and hence bijective because its domain and codomain have the same number of elements. This shows that ψ is a well-defined function whose codomain is indeed Aut (C_n) .

Finally,

$$
\psi(\varphi(\rho_i)) = \psi([i]_n) = \psi_i \quad \varphi(\psi([i]_n) = \varphi(\rho_i) = [i]_n.
$$

Therefore, φ is a group isomorphism, as desired.

 \Box

¹Note that in principle $\psi(j_n)$ could simply be a homomorphism $C_n \to C_n$, rather than an isomorphism.