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Problem Set 8

solutions

Problem 1. Show that there are no simple groups of order 56 = 8 - 7.
Proof. Let G be a group of order 56. Let ny = |Syl;(G)|. By Sylow theory,

ny=1 (mod 7) and mn7|8,

so ny € {1,8}. Note that if ny = 1, then the unique subgroup of order 7 would be normal, and G
would not be simple. So suppose that ny = 8.

Given any two Sylow 7T-subgroups P and (), which have order 7, the order of their intersection
P N Q must divide 7, but it cannot be 7 unless P = ). Thus any two Sylow 7-subgroups have trivial
intersection. Moreover, any element in such a subgroup that is not the identity must have order 7.
Counting these, we get

8(7—1) =148

elements of order 7, so that there are at most 56 — 48 = 8 elements in G that do not have order 7.

Now consider any Sylow 2-subgroup @ of G, which has order 8. By Lagrange, the order of any
element in @ must divide 8, so in particular @) has no elements of order 7. But there are only 8

elements in G that may have order other than 7, so they must form the unique subgroup of order 8.
In particular, that subgroup must be normal, and G is not simple. U

Problem 2. Show that there are no simple groups of order 2° - 73.

Proof. Let ng = |Syly(G)| and ny = |Syl;(G)|. If ng = 1 or ny = 1, the unique Sylow subgroup
corresponding to that prime is normal, and thus G is not simple. So let’s assume n; # 1 and n7 # 1.
The Main Theorem of Sylow theory gives us

ny|2° and ny=1 (mod7) = n7e{l,8} = n;=S8.

Let’s consider the action of G' by conjugation on the set of its Sylow 7-subgroups Syl;(G). This gives
us a group homomorphism (the corresponding permutation representation)

p: G — Perm(Syl;(G)) = Ss.
By the First Isomorphism Theorem,
G/ ker(p) = im(p).
Since im(p) is a subgroup of Perm(Syl,(G)), then Lagrange’s Theorem guarantees that |im(p)| must
divide | Perm(Syl;(G))| = 8!. Since

5,73
o) = 16 o) = [l = Ty

we conclude that
2°.7°

m divides 8!.
Note that while 7 divides 8!, 72 does not, and thus 72 must divide |ker(p)|. In particular, ker(p) is
nontrivial. Moreover, the Main Theorem of Sylow Theory says that the action of G by conjugation
on Syl;(QG) is transitive, so p must be nontrivial, and ker(p) # G. But ker(p) is a normal subgroup of
G, and we just proved it is neither {e} nor G, so it is a proper nontrivial normal subgroup of G. This
shows that G is not simple. O
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Problem 3. Let G be a finite group of order pgr with 0 < p < ¢ < r prime numbers. Show that G is
not simple.

Proof. Let
np = |SyL,(G)l,  ng =[Syl (G)],  nr=|SyL.(G)].

If any of n,, ng, or n, is 1, then the unique Sylow subgroup corresponding to that prime is normal,
and G is not simple.
So suppose that n,,ng,n, # 1. By the Main Theorem of Sylow Theory,

7’Lp | qr,

and since 1 < ¢ < r < gr are the only divisors of ¢qr, we conclude that n, > ¢q. Moreover, n, = 1
(mod ¢), and since ng # 1, we conclude that n, > ¢+ 1. But we also have

T'Lq | pr,
and 1 < p <r < pr are the only divisors of pr. Since p < g, we conclude that n, > r. Finally,
np=1 (mod r),n, #1 = n, >r+1,

while
ne | pg = nr € {p,q,pq}-
But p,q < r, so n, = pq.

By Lagrange’s Theorem, for any distinct a,b € {p,q,r}, any Sylow a-subgroup and any Sylow
b-subgroup intersect trivially. Moreover, since a is prime, any two Sylow a-subgroups, which have
order a, must intersect trivially. Thus each Sylow a-subgroup contains a — 1 nonidentity elements that
are not in any other subgroup.

Counting all these distinct elements gives us

I+(p—1Dnp+(g—Lng+(r—1n, =21+ (p—1)g+ (¢—1)r+ (r — 1)pgq
=14pgr+rq—7r—q.

Since r > q > 2, then
rq—r—q>2r—r—q>0,

and thus we have found strictly more elements than |G|, which is impossible. |

Problem 4. Prove that 5S4 has precisely three distinct subgroups of order 8, all of which are isomorphic
to Dy.

Proof. First, note that |Sy| = 4! = 23 - 3. Thus any subgroup of Sy of order 8 is a Sylow 2-subgroup;
let no be the number of Sylow 2-subgroups. By Sylow Theory,

ny =1 (mod 2) and ng|3.

Thus ne € {1, 3}.

Any transposition or 4-cycle generates a subgroup of Sy of order 2 or 4, which are powers of 2, so
by the Main Theorem of Sylow Theory they must each be subgroups of some Sylow 2-subgroup. But
we counted in class that there are six 2-cycles and six 4-cycles, and 6 + 6 > 8, so they cannot all be
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in the same Sylow 2-subgroup. Thus ng = 3, meaning that there are precisely 3 distinct subgroups of
order 8.

By the Main Theorem of Sylow Theory, all of the Sylow 2-subgroups are conjugate. Given one
such group H and g € S, the function H — gHg ™! given by h + ghg~! is a group isomorphism, so
any two Sylow 2-subgroups are isomorphic. Hence, we just need to show that S4 contains a subgroup
isomorphic to Ds.

Let X be the set of left cosets of the subgroup S = {1, s} of D4. Note that

8
X =[Da: 8] =5 =4

Let G act on X by left multiplication. Note that since |X| = 4, Perm(X) = Ss. This action induces
a homomorphism ¢: G — S4. Moreover, we proved in class that

ker(p) = ) 9Sg~".

g€Dy

This is the largest normal subgroup of G contained in S. But S is not normal, so ker(p) # S, leaving
ker(p) = {e} as the only possibility. Thus ¢ is injective and the image of ¢ is a subgroup of Sy
isomorphic to Dsg. O

Problem 5. Let (), denote the cyclic group of order n > 2, and consider the group
(Z/n)* = {ljln | ged(j,n) = 1}
with the binary operation given by the usual multiplication. Prove that
Aut(Cp) = (Z/n)*.

Proof. Let C,, = (x | 2™ = e). By the Universal Mapping Property for cyclic groups, each group
homomorphism C;,, — C,, is uniquely determined by the image of . The possible images for = are the
n elements in C,,, which are 2 € C), for 0 < i < n. Let p;: C,, — C,, be the unique homomorphism
determined by p;(z) = 2. We have for now shown that

Aut(Cp) = {pi | 0 < i <n}.

Note that im(p;) = (z'), and we proved in class that (z') = C,, if and only if ged(i,n) = 1. Note
moreover that if p; is surjective, then it must also be injective, given that it is a function between two
finite sets of the same order. Thus

pi € Aut (Cy,) if and only if [i], € (Z/n)™.
Now consider ¢: Aut (C,,) — (Z /n)* given by
¢ (pi) = [iln-

Note that N
(pi © ,0])(.’1}) =" = Pij  (mod m) (l’)
The uniqueness part of the UMP for cyclic groups implies that

Pi © Pj = Pij (mod m)-
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Hence,
e(piop;) =% (pij (mod m)) = lidln = [ilnliln = ©(pi)e(py)-
Thus ¢ is a group homomorphism.
Given [j]n € (Z /n)*, by the UMP for cyclic groups there exists a unique homomorphism

Y([j]n): Cn — Cy

that takes x — 7. This gives us amap 9: (Z /n)* — Aut(C,). We need to show that v is well-defined
both in terms of independence of representative in (Z /n)* but also in terms of the the image landing
in the automorphism group of C,,." Indeed,

i=i (modn) = 2’ =12 € C, = Y([i]n) = ¥([i']n).

Thus the definition of 1) does not depend on the choice of representative i for the class [i],. Moreover,
the image of 1([i],) is the subgroup (z*) of C,,, and since ged(i,n) = 1, we know that (z') = C,,. This
shows that 1([i],,) is surjective, and hence bijective because its domain and codomain have the same
number of elements. This shows that 1 is a well-defined function whose codomain is indeed Aut(C,,).
Finally,
V() = Y([ln) =¥ @ ([ila) = (pi) = [i]n-

Therefore, ¢ is a group isomorphism, as desired. O

!Note that in principle 9([]») could simply be a homomorphism C,, — C,, rather than an isomorphism.



