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Problem Set 9
solutions

Problem 1.

(1.1) Show that there exists a nonabelian group of order 63.

Proof. We will show that there exists a nontrivial homomorphism ρ : Z/9 → Aut(Z/7). As a
consequence, the semidirect product Z/7⋊ρ Z/9 is a nonabelian group.

Since Z/9 is a cyclic group generated by 1, the UMP for cyclic groups says that to any homomor-
phism ρ : Z/9 → Aut(Z/7) is completely determined by α = ρ(1), and that any α ∈ Aut(Z/7)
such that α9 = id gives rise to such a homomorphism. Moreover, we showed in Problem Set 8
that each f ∈ Aut(Z/7) corresponds to an element a ∈ (Z/7)×, with f(i) = ai.

So consider the automorphism f : Z/7 −→ Z/7 given by

f(i) = 2i.

Note that 2 is indeed invertible in Z/7. Moreover, for all i ∈ Z/7 we have

f3(i) = 2(2(2i)) = 8i = i,

so f3 = id. As a consequence, f9 = id, and thus by the UMP for cyclic groups there is a
homomorphism ρ : Z/9 → Aut(Z/7) with

ρ(1) = f.

Since f ∕= id this is a nontrivial homomorphism, we conclude that

Z/7⋊ρ Z/9

is a nonabelian group.

Alternative proof. Consider H = Z/7 and K = Z/9. If we can find a nontrivial homomorphism
ρ : Z/9 → Aut(Z/7), then the semidirect product H ⋊ρ K is not abelian.

We also know that
Aut(Z/7) ∼= Z/6.

Since Z/9 is a cyclic group, by the UMP for cyclic groups any homomorphism ρ : Z/9 → Z/6
is completely determined by α = ρ(1), and any α ∈ Z/6 such that 9α = 0 gives rise to such a
homomorphism. Thus setting α = 2 gives us the homomorphism ρ : Z/9 → Z/6 with

ρ(i) = 2i.

Moreover, ρ is nontrivial, since
ρ(1) = 2 ∕= 0 in Z/6.

We conclude that
Z/7⋊ρ Z/9

is a nonabelian group.

Note: This proof has a big disadvantage: it does not tell us what ρ(a)(b) is for each a ∈ Z/9 and
b ∈ Z/6, which is important for solving part (b).
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(1.2) Find a presentation for the group you found, with justification.

Proof. To give a presentation for this group, let x = (1, 0) and y = (0, 1), and note that Z/7⋊ρZ/9
is generated by x and y: indeed, for any a ∈ Z/7 and b ∈ Z/9 we have

(a, b) = (1, 0)a(0, 1)b = xayb.

Note also that
x9 = (9, 0) = (0, 0) and y7 = (0, 7) = 0.

Moreover,
yx = (0, 1)(1, 0) = (0 + ρ(1)(1), 1 + 0) = (f(1), 1) = (2, 1) = x2y.

We claim that
〈x, y | x9 = e, y7 = e, yx = x2y〉

is a presentation for Z/7⋊ρ Z/9. So let

G = 〈u, v | u9 = e, v7 = e, vu = u2v〉.

By the UMP for presentations, since x and y satisfy

x9 = e, y7 = e, yx = x2y,

then there exists a homomorphism ϕ : G → Z/7⋊ρ Z/9 given by

ϕ(u) = x and ϕ(v) = y.

We showed that x and y generate Z/7 ⋊ρ Z/9, so this homomorphism must be surjective. In
particular, |G|  |Z/7⋊ρ Z/9| = 7 · 9 = 63.

On the other hand, in G, any expression involving u and v can be rewritten by replacing v2u
by uv, so that any element can be written as uavb for some integers a and b. Since u7 = e and
v9 = e, any element in G can then be written as

uavb where 0  a  6 and 0  b  8.

There are 9 · 7 = 63 expressions of this form, and thus |G|  63. We conclude that

|G| = 63 = |Z/7⋊ρ Z/9|,

so that the surjective map ϕ must in fact be an isomorphism, proving that

〈x, y | x9 = e, y7 = e, yx = x2y〉

is a presentation for Z/7⋊ρ Z/9.
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Problem 2. Let G be a group of order 75 = 52 · 3 which contains an element of order 25. Prove that
G is cyclic.

Proof. Let n5 = | Syl5(G)|. By the Main Theorem of Sylow Theory, n5 divides 3, so n5 ∈ {1, 3}. But
the Main Theorem of Sylow Theory also gives us

n5 ≡ 1 (mod 5),

and n5 = 3 ∕≡ 1(mod 5). We conclude that n5 = 1, and thus the unique Sylow 5-subgroup Q of G
must be normal. Note moreover that G has an element of order 25, which must then generated a
subgroup of order 25; that subgroup must then be Q. We conclude that Q ∼= Z /25.

Let P be a Sylow 3-subgroup. Since the order of P ∩ Q must divide both |P | = 3 and |Q| = 25,
then P ∩Q = {e}. Therefore,

|PQ| = |P | · |Q|
|P ∩Q| =

3 · 25
1

= 75,

so we conclude that G = PQ. So we have G = PQ, P normal in G, and P ∩Q = {e}.
By the Recognition Theorem for Semidirect Products, we have that G = Q ⋊φ P where φ is a

homomorphism
φ : P −→ Aut(Q).

Note that Aut(Q) ∼= Aut(Z /25) ∼= Z×
25, which has order ϕ(25) = 5(5 − 1) = 20. In particular, the

order of every element in Aut(Q) must divide 20.
Since |P | = 3, every nontrivial element in P has order 3, and thus for all x ∈ P we have

φ(x)3 = φ(x3) = φ(e) = e.

But gcd(3, 20) = 1, so there are no elements in Aut(Q) of order 3. We conclude that φ must be the
trivial map. Hence G = P ×Q, which is a direct product of cyclic groups of orders 3 and 5. Therefore,
using the CRT we get

G ∼= Z/3× Z/5 ∼= Z/15,

and thus G is cyclic.
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Problem 3. Let G be a group of order 231 = 3 ·7 ·11. Prove that there is a unique Sylow 11-subgroup
of G, and that it is contained in Z(G).

Proof. Let np = | Sylp(G)| for p ∈ {3, 7, 11}. By the Sylow Theorems,

and n7 divides 3 · 11 =⇒ n7 ∈ {1, 3, 11, 33},

But
n7 ≡ 1 (mod 7) and 3 ∕≡ 1 (mod 7), 11 ∕≡ 1 (mod 7), 33 ∕≡ 1 (mod 7),

so n7 = 1. Similarly,
n11 divides 3 · 7 =⇒ n11 ∈ {1, 3, 7, 21},

but
n11 ≡ 1 (mod 11) and 3 ∕≡ 1 (mod 11), 7 ∕≡ 1 (mod 11), 21 ∕≡ 1 (mod 11).

Thus n11 = 1.
Let Q be the unique Sylow 7 subgroup and R be the unique Sylow 11-subgroup, which must then

be normal. Let P be a Sylow subgroup of order 3. Since Q is normal, PQ is a subgroup of G of
order 21, and since R is also normal, PQR is a subgroup of G of order 231, so PQR = G. By the
Recognition Theorem for Semidirect Products, G = R⋊φ PQ where

φ : PQ → Aut(R).

Since 11 is prime and R is a group of order 11, we conclude that R ∼= Z/11 and |Aut(R)| = 10.
Moreover, | im(φ)| must divide both |PQ| = 21 and |Aut(R)| = 10, but since gcd(10, 21) = 1, we
conclude that φ must be the trivial map.

Hence G ∼= R × PQ, and every element of R commutes with every element of PQ. Since R is
cyclic and thus abelian, we see that every element of R commutes with every element of PQR = G:
indeed, the isomorphism G ∼= R×PQ, sends R to the subgroup of elements of the form (r, e), and for
all (a, b) ∈ R× PQ we have

(r, e)(a, b) = (ra, b) = (ar, b) = (a, b)(r, e).

We conclude that R ⊆ Z(G).

Problem 4. Prove that there are precisely two groups of order 105 = 3 · 5 · 7 up to isomorphism. You
can use the following lemma without proof:

Lemma 1. Let K be a finite cyclic group and let H be an arbitrary group. Suppose φ : K → Aut(H)
and θ : K → Aut(H) are homomorphisms whose images are conjugate subgroups of Aut(H); that is,
suppose there is σ ∈ Aut(H) such that σφ(K)σ−1 = θ(K). Then H ⋊φ K ∼= H ⋊θ K.

Hint: here are a few facts you likely want to prove:

• There is either a unique Sylow 5-subgroup or a unique Sylow 7-subgroup of G.

• G has a cyclic subgroup of order 35.
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Proof. Let n5 = | Syl5(G)| and n7 = | Syl7(G)|. By Sylow Theory,

n5 ≡ 1 (mod 5) and n5 divides 21 =⇒ n5 ∈ {1, 21}.
n7 ≡ 1 (mod 7) and n7 divides 15 =⇒ n5 ∈ {1, 15}.

Suppose n5 = 21 and n7 = 15. For a prime p, any two distinct subgroups of order p intersect trivially,
as the order of the intersection divides p by Lagrange’s Theorem but must be smaller than p. Thus
any two Sylow 5-subgroups and any two Sylow 7-subgroups intersect trivially. Moreover, we showed
in a previous problem set that the intersection of two subgroups whose orders are coprime is trivial,
so any pair consisting of one Sylow 5-subgroup and one Sylow 7-subgroup intersect trivially. Thus we
could count all the distinct elements among the Sylow 5-subgroups and the Sylow 7-subgroups, and
get

n5(5− 1) + n7(7− 1) = 21 · 4 + 15 · 6 = 84 + 90 > 105.

This is absurd, so n5 = 1 or n7 = 1. This shows there is either a unique Sylow 5-subgroup or a unique
Sylow 7-subgroup of G. Note that that unique subgroup must be normal.

Let P ∈ Syl5(G) and Q ∈ Syl7(G). Since at least one of P or Q is normal, then PQ ≤ G. We
know that P ∩Q = {e}, so the order of PQ is

|PQ| = |P ||Q|
|P ∩Q| = 35.

By the Classification Theorem for groups of order pq with p < q primes, where p = 3 ∤ q − 1 = 4, we
know that there is a unique group of order 35 up to isomorphism, namely C35. Thus PQ ∼= C35.

Let K ∈ Syl3(G) and H = PQ as above. Since [G : H] = 3 and 3 is the smallest prime dividing
|G|, we must have H ⊴ G. Since |H and |K are coprime, we must have H ∩K = {e}, and thus

|HK| = |H| · |K|
|H ∩K

= 105 =⇒ HK = G.

By the Recognition Theorem for Semidirect Products, we conclude that

G ∼= H ⋊ρ K

for some ρ : K → Aut(H). Since |K| = 3 we deduce that K ∼= C3 and we showed above that H ∼= C35.
Thus G ∼= C35 ⋊ρ C3 for some ρ : C3 → Aut(C35). By the UMP of cyclic groups such a ρ is uniquely
determined by sending the generator of C3 to some z ∈ Aut(C35) with z3 = id.

If ρ is trivial, the semidirect product is the direct product, and by the CRT we can rewrite it as

G ∼= C35 × C3
∼= C105.

We claim that there exist nontrivial homomorphisms ρ : C3 → Aut(C35). Such a nontrivial ρ exists
exactly if there exists an element z ∈ Aut(C35) of order 3. We know that

|Aut(C35)| = ϕ(35) = (7− 1)(5− 1) = 24 = 3 · 23.
By Cauchy’s Theorem, Aut(C35) must have an element z of order 3, and thus there is indeed a
nontrivial homomorphism ρ : C3 → Aut(C35). In that case, im(ρ) = 〈z〉 has order 3. But |Aut(C35)| =
3 ·23, so the set of subgroups of Aut(C35) of order 3 is Syl3(Aut(C35)). By the Main Theorem of Sylow
Theory, all the subgroups in Syl3(Aut(C35)) are conjugate. Thus by the lemma all the semidirect
products C35 ⋊ρ C3 corresponding to morphisms ρ whose image is in Syl3(Aut(C35)) are isomorphic.
Thus in this case we obtain a unique isomorphism class. Moreover, this group is nonabelian and hence
not isomorphic to C105.

Finally, we showed that there are exactly two distinct isomorphism classes of groups of order 105:
C105 and the nonabelian group

G ∼= C35 ⋊ρ C3

given by any nontrivial homomorphism ρ : C3 → Aut(C35).
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