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Problem Set 9

solutions

Problem 1.

(1.1) Show that there exists a nonabelian group of order 63.

Proof. We will show that there exists a nontrivial homomorphism p: Z/9 — Aut(Z/7). As a
consequence, the semidirect product Z/7 x, Z/9 is a nonabelian group.

Since Z/9 is a cyclic group generated by 1, the UMP for cyclic groups says that to any homomor-
phism p: Z/9 — Aut(Z/7) is completely determined by a = p(1), and that any o € Aut(Z/7)
such that o” = id gives rise to such a homomorphism. Moreover, we showed in Problem Set 8
that each f € Aut(Z/7) corresponds to an element a € (Z/7)*, with f(i) = ai.

So consider the automorphism f: Z/7 — Z/7 given by
fli) = 2i.
Note that 2 is indeed invertible in Z/7. Moreover, for all ¢ € Z/7 we have
£2() = 2(2(2i)) = 8i =1,

so f2 = id. As a consequence, f? = id, and thus by the UMP for cyclic groups there is a
homomorphism p: Z/9 — Aut(Z/7) with

p(l) = f.
Since f # id this is a nontrivial homomorphism, we conclude that
Z]T %, Z]9
is a nonabelian group. O

Alternative proof. Consider H = Z/7 and K = 7Z/9. If we can find a nontrivial homomorphism
p:7Z/9 — Aut(Z/7), then the semidirect product H x, K is not abelian.

We also know that
Aut(Z/7) = 7Z/6.

Since Z/9 is a cyclic group, by the UMP for cyclic groups any homomorphism p: Z/9 — Z/6
is completely determined by a = p(1), and any « € Z/6 such that 9o = 0 gives rise to such a
homomorphism. Thus setting o = 2 gives us the homomorphism p: Z/9 — Z/6 with

p(i) = 2i.
Moreover, p is nontrivial, since
p(1) =2#0in Z/6.
We conclude that
Z]T %, 7/9
is a nonabelian group.

Note: This proof has a big disadvantage: it does not tell us what p(a)(b) is for each a € Z/9 and
b € Z/6, which is important for solving part (b). O
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(1.2) Find a presentation for the group you found, with justification.

Proof. To give a presentation for this group, let = (1,0) and y = (0, 1), and note that Z/7x ,Z/9
is generated by = and y: indeed, for any a € Z/7 and b € Z/9 we have

(CL, b) = (17 O)a(oa 1)b = :L,ayb.
Note also that
2% =(9,0)=(0,0) and 3" =(0,7)=0.

Moreover,
yzr = (0,1)(1,0) = (0+p(1)(1),1+0) = (f(1),1) = (2,1) = 2%y.

We claim that
<-T»y ‘ 2’ = e,y7 =6,Yyr = $2y>

is a presentation for Z/7 x, Z/9. So let

G = (u,v| v =env" =e vu=1u).

By the UMP for presentations, since x and y satisfy
2 =ey =eyr =1y,
then there exists a homomorphism ¢: G — Z/7 x, Z/9 given by
p(u) =z and ¢(v)=y.

We showed that = and y generate Z/7 x, Z/9, so this homomorphism must be surjective. In
particular, |G| > |Z/7 %, Z/9| =T -9 = 63.

On the other hand, in G, any expression involving u and v can be rewritten by replacing v?u

by uw, so that any element can be written as u®v® for some integers a and b. Since v’ = e and
v = e, any element in G can then be written as
u?  where 0 < a <6 and 0 <b<8.
There are 9 -7 = 63 expressions of this form, and thus |G| > 63. We conclude that
|G| =63 =12/7x,Z/9],
so that the surjective map ¢ must in fact be an isomorphism, proving that
2,y | 2% = e,y = e, yz = ay)
is a presentation for Z/7 x, Z/9. O
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Problem 2. Let G be a group of order 75 = 5% - 3 which contains an element of order 25. Prove that
G is cyclic.

Proof. Let ns = | Syl5(G)|. By the Main Theorem of Sylow Theory, ns divides 3, so ns € {1,3}. But
the Main Theorem of Sylow Theory also gives us

ns =1 (mod 5),

and ny = 3 # 1(mod 5). We conclude that ns = 1, and thus the unique Sylow 5-subgroup @ of G
must be normal. Note moreover that G has an element of order 25, which must then generated a
subgroup of order 25; that subgroup must then be Q. We conclude that @ = Z /25.

Let P be a Sylow 3-subgroup. Since the order of P N @ must divide both |P| = 3 and |Q| = 25,
then PN Q = {e}. Therefore,
P|-|Q 3-25
po PL1l

PrQl 1

so we conclude that G = PQ. So we have G = PQ, P normal in G, and PN Q = {e}.

By the Recognition Theorem for Semidirect Products, we have that G = Q) x4 P where ¢ is a
homomorphism

=75,

¢: P — Aut(Q).

Note that Aut(Q) = Aut(Z /25) = Zj;, which has order ¢(25) = 5(5 — 1) = 20. In particular, the
order of every element in Aut(Q)) must divide 20.
Since |P| = 3, every nontrivial element in P has order 3, and thus for all x € P we have

But ged(3,20) = 1, so there are no elements in Aut(Q) of order 3. We conclude that ¢ must be the
trivial map. Hence G = P x ), which is a direct product of cyclic groups of orders 3 and 5. Therefore,
using the CRT we get

G=~7/3xZ/5=17/15,

and thus G is cyclic. O
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Problem 3. Let G be a group of order 231 = 3-7-11. Prove that there is a unique Sylow 11-subgroup
of G, and that it is contained in Z(G).

Proof. Let ny, = | Syl,(G)| for p € {3,7,11}. By the Sylow Theorems,
and ny divides 3-11 = ny7 € {1, 3,11, 33},

But
n7=1 (mod7) and 3#1 (mod7), 11# 1 (mod 7), 33 # 1 (mod 7),

so ny = 1. Similarly,
nip divides 3-7 = nq; € {1,3,7,21},

but
nip =1 (mod 11) and 3 # 1 (mod 11), 7# 1 (mod 11), 21 # 1 (mod 11).

Thus ni1 = 1.

Let @ be the unique Sylow 7 subgroup and R be the unique Sylow 11-subgroup, which must then
be normal. Let P be a Sylow subgroup of order 3. Since ) is normal, PQ is a subgroup of G of
order 21, and since R is also normal, PQR is a subgroup of G of order 231, so PQR = G. By the
Recognition Theorem for Semidirect Products, G = R x4 PQ where

¢: PQ — Aut(R).

Since 11 is prime and R is a group of order 11, we conclude that R = Z/11 and | Aut(R)| = 10.
Moreover, |im(¢)| must divide both |PQ| = 21 and | Aut(R)| = 10, but since ged(10,21) = 1, we
conclude that ¢ must be the trivial map.

Hence G = R x PQ, and every element of R commutes with every element of PQ. Since R is
cyclic and thus abelian, we see that every element of R commutes with every element of PQR = G:
indeed, the isomorphism G = R x PQ, sends R to the subgroup of elements of the form (r,e), and for
all (a,b) € R x PQ we have

(r,e)(a,b) = (ra,b) = (ar,b) = (a,b)(r,e).

We conclude that R C Z(G). O

Problem 4. Prove that there are precisely two groups of order 105 = 3-5-7 up to isomorphism. You
can use the following lemma without proof:

Lemma 1. Let K be a finite cyclic group and let H be an arbitrary group. Suppose ¢: K — Aut(H)
and 0: K — Aut(H) are homomorphisms whose images are conjugate subgroups of Aut(H); that is,
suppose there is ¢ € Aut(H) such that o¢(K)o~! = 0(K). Then H x4 K = H xy K.

Hint: here are a few facts you likely want to prove:

e There is either a unique Sylow 5-subgroup or a unique Sylow 7-subgroup of G.

e (G has a cyclic subgroup of order 35.
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Proof. Let ns = | Syls(G)| and n7 = | Syl;(G)|. By Sylow Theory,
ns =1 (mod 5) and ns divides 21 = ns € {1,21}.
ny =1 (mod 7) and ny divides 15 = ns € {1,15}.

Suppose ns = 21 and ny = 15. For a prime p, any two distinct subgroups of order p intersect trivially,
as the order of the intersection divides p by Lagrange’s Theorem but must be smaller than p. Thus
any two Sylow 5-subgroups and any two Sylow 7-subgroups intersect trivially. Moreover, we showed
in a previous problem set that the intersection of two subgroups whose orders are coprime is trivial,
so any pair consisting of one Sylow 5-subgroup and one Sylow 7-subgroup intersect trivially. Thus we
could count all the distinct elements among the Sylow 5-subgroups and the Sylow 7-subgroups, and
get,
ns(5—1)+n7(7—1)=21-4+15-6 = 84 + 90 > 105.

This is absurd, so n5 = 1 or ny = 1. This shows there is either a unique Sylow 5-subgroup or a unique
Sylow 7-subgroup of G. Note that that unique subgroup must be normal.

Let P € Syl;(G) and @ € Syl;(G). Since at least one of P or @ is normal, then PQ < G. We
know that P N Q = {e}, so the order of PQ is

ro) — |PIQ)

[PNQ
By the Classification Theorem for groups of order pqg with p < ¢ primes, where p =3tq—1 =4, we
know that there is a unique group of order 35 up to isomorphism, namely Cs5. Thus PQ = Css.

Let K € Syl3(G) and H = PQ as above. Since [G : H| = 3 and 3 is the smallest prime dividing
|G|, we must have H < G. Since |H and |K are coprime, we must have H N K = {e}, and thus

35.

[H| - |K]|
HK| = =105 — HK =(G.
| | |HNK
By the Recognition Theorem for Semidirect Products, we conclude that
G=Hx,K

for some p: K — Aut(H). Since |K| = 3 we deduce that K = C3 and we showed above that H = Cjs.
Thus G = Cs5 31, C3 for some p : C3 — Aut(Css). By the UMP of cyclic groups such a p is uniquely
determined by sending the generator of C3 to some z € Aut(Cs5) with 23 = id.

If p is trivial, the semidirect product is the direct product, and by the CRT we can rewrite it as

G = O35 x O3 = Cps-

We claim that there exist nontrivial homomorphisms p: C5 — Aut(Cs5). Such a nontrivial p exists
exactly if there exists an element z € Aut(Css) of order 3. We know that

| Aut(Cs5)| = p(35) = (7T—1)(5 — 1) =24 =3 - 2%,

By Cauchy’s Theorem, Aut(Css) must have an element z of order 3, and thus there is indeed a
nontrivial homomorphism p: C3 — Aut(Cs5). In that case, im(p) = (z) has order 3. But | Aut(Css)| =
3-23, so the set of subgroups of Aut(C3s) of order 3 is Syl;(Aut(C3s5)). By the Main Theorem of Sylow
Theory, all the subgroups in Syls(Aut(Css)) are conjugate. Thus by the lemma all the semidirect
products Css X, C'3 corresponding to morphisms p whose image is in Syl;(Aut(Css)) are isomorphic.
Thus in this case we obtain a unique isomorphism class. Moreover, this group is nonabelian and hence
not isomorphic to Cigs.

Finally, we showed that there are exactly two distinct isomorphism classes of groups of order 105:
C105 and the nonabelian group

G = Cg5 X p 03

given by any nontrivial homomorphism p: C5 — Aut(Css). O



