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Chapter 1

Groups: an introduction

Many mathematical structures consist of a set with special properties. Groups are elementary
algebraic structures that allow us to deal with many objects of interest, such as geometric
shapes and polynomials.

1.1 Definitions and first examples

Definition 1.1. A binary operation on a set S is a function S × S → S. If the binary
operation is denoted by ·, we write x · y for the image of (x, y) under the binary operation ·.

Remark 1.2. We often write xy instead of x · y if the operation is clear from context.

Remark 1.3. We say that that a set S is closed under the operation · when we want to
emphasize that for any x, y ∈ S the result xy of the operation is an element of S. But note
that closure is really part of the definition of a binary operation on a set, and it is implicitly
assumed whenever we consider such an operation.

Definition 1.4. A group is a set G equipped with a binary operation · on G called the
group multiplication, satisfying the following properties:

• Associativity: For every x, y, z ∈ G, we have (x · y) · z = x · (y · z).

• Identity element: There exists e ∈ G such that e · x = x · e = x for all x ∈ G.

• Inverses: For each x ∈ G, there is an element y ∈ G such that xy = e = yx .

The element e is called the identity element or simply identity of the group. For each
element x ∈ G, an element y ∈ G such that xy = e = yx is called an inverse of x. We may
write that (G, ·) is a group to mean that G is a group with the operation ·.

The order of the group G is the number of elements in the underlying set.

Remark 1.5. Although a group is the set and the operation, we will usually refer to the
group by only naming the underlying set, G.
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Remark 1.6. A set G equipped with an associative binary operation is a semigroup; if a
semigroup also has an identity element, it is a monoid.

While we will not be discussing semigroups nor monoids that are not groups in this class,
they can be useful and interesting objects. We will however include some fun facts about
monoids in the remarks. In particular, there will be no monoids whatsoever in the qualifying
exam.

Lemma 1.7. For any group G, we have the following properties:

(1) The identity is unique: there exists a unique e ∈ G with ex = x = xe for all x ∈ G.

(2) Inverses are unique: for each x ∈ G, there exists a unique y ∈ G such that xy = e = yx.

Proof. Suppose e and e′ are two identity elements; that is, assume e and e′ satisfy ex = x = xe
and e′x = x = xe′ for all x ∈ G. Then

e = ee′ = e′.

Now given x ∈ G, suppose y and z are two inverses for x, meaning that yx = xy = e and
zx = xz = e. Then

z = ez since e is the identity

= (yx)z since y is an inverse for x

= y(xz) by associativity

= ye since z is an inverse for x

= y since e is the identity.

Remark 1.8. Note that our proof of Lemma 1.7 also applies to show that the identity
element of a monoid is unique.

Given a group G, we can refer to the identity of G. Similarly, given an element x ∈ G,
we can refer to the inverse of x.

Notation 1.9. Given an element x in a group G, we write x−1 to denote its unique inverse.

Remark 1.10. In a monoid G with identity e, an element x might have a left inverse,
which is an element y satisfying yx = e. Similarly, x might have a right inverse, which is
an element z satisfying xz = e. An element in a monoid might have several distinct right
inverses, or several distinct left inverses, but if it has both a left and a right inverse, then it
has a unique left inverse and a unique right inverse, and those elements coincide.

Exercise 1. Give an example of a monoid M and an element in M that has a left inverse
but not a right inverse.

Definition 1.11. Let G be a group, x ∈ G, and n > 1 be an integer. We write xn to denote
the element obtained by multiplying x with itself n times:

xn := x · · ·x︸ ︷︷ ︸
n times

.
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Exercise 2 (Properties of group elements). Let G be a group and let x, y, z, a1, . . . , an ∈ G.
Show that the following properties hold:

(1) If xy = xz, then y = z.

(2) If yx = zx, then y = z.

(3) (x−1)−1 = x.

(4) (a1 . . . an)−1 = a−1
n . . . a−1

1 .

(5) (x−1yx)n = x−1ynx for any integer n > 1.

(6) (x−1)n = (xn)−1.

Notation 1.12. Given a group G, an element x ∈ G, and a positive integer n, we write
x−n := (xn)−1.

Note that by Exercise 2, x−n = (x−1)n.

Exercise 3. Let G be a group and consider x ∈ G. Show that xaxb = xa+b.

Definition 1.13. A group G is abelian if · is commutative, meaning that x · y = y · x for
all x, y ∈ G.

Often, but not always, the group operation for an abelian group is written as + instead
of ·. In this case, the identity element is usually written as 0 and the inverse of an element
x is written as −x.

Example 1.14.

(1) The trivial group is the group with a single element {e}. This is an abelian group.

(2) The pairs (Z,+), (Q,+), (R,+) and (C,+) are abelian groups.

(3) For any n, let Z/n denote the integers modulo n. Then (Z/n,+) is an abelian group
where + denotes addition modulo n.

(4) For any field F , such as Q, R, C or Z/p for a prime p, the set F× := F \ {0} is an
abelian group under multiplication. We will later formally define what a field is, but
these fields might already be familiar to you.

Example 1.15. Let F be any field. If you are not yet familiar with fields, the real or
complex numbers are excellent examples. Consider a positive integer n, and let

GLn(F ) := {invertible n× n matrices with entries in F}.

An invertible matrix is one that has a two-sided (multiplicative) inverse. It turns out that
if an n × n matrix M has a left inverse N then that inverse N is automatically a right
inverse too, and vice-versa; this is a consequence of a more general fact we mentioned in
Remark 1.10.

It it not hard to see that GLn(F ) is a nonabelian group under matrix multiplication.
Note that (GL1(F ), ·) is simply (F×, ·).
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Even if the group is not abelian, the set of elements that commute with every other
element is particularly important.

Definition 1.16. Let G be a group. The center of G is the set

Z(G) := {x ∈ G | xy = yx for all y ∈ G}.
Remark 1.17. Note that the center of any group always includes the identity. Whenever
Z(G) = {eG}, we say that the center of G is trivial.

Remark 1.18. Note that G is abelian if and only if Z(G) = G.

One might describe a group by giving a presentation.

Informal definition 1.19. A presentation for a group is a way to specify a group in the
following format:

G = 〈 set of generators | set of relations 〉.
A set S is said to generate or be a set of generators for G if every element of the group
can be expressed in some way as a product of finitely many of the elements of S and their
inverses (with repetitions allowed). A relation is an identity satisfied by some expressions
involving the generators and their inverses. We usually record just enough relations so that
every valid equation involving the generators is a consequence of those listed here and the
axioms of a group.

Remark 1.20. We can only take products of finitely many of our generators and their
inverses because we do not have a way to make sense of infinite products.

Note, however, that the set of generators and the set of relations are allowed to be infinite.

Example 1.21. The group Z has one generator, the element 1, which satisfies no relations.

Example 1.22. The following is a presentation for the group Z/n of integers modulo n:

Z/n = 〈x | xn = e〉.
Definition 1.23. A group G is called cyclic if it is generated by a single element. A group
G is finitely generated if it is generated by finitely many elements.

Example 1.24. We saw above that Z and Z/n are cyclic groups.

Exercise 4. Prove that every cyclic group is abelian.

Exercise 5. Prove that (Q,+) and GL2(Z2) are not cyclic groups.

In general, given a presentation, it is very difficult to prove certain expressions are not
actually equal to each other. In fact,

There is no algorithm that, given any group presentation as an input, can decide
whether the group is actually the trivial group with just one element.

and perhaps more strikingly

There exist a presentation with finitely many generators and finitely many rela-
tions such that whether or not the group is actually the trivial group with just
one element is independent of the standard axioms of mathematics!

We will now dedicate the next few sections to some classes of examples are very important.
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1.2 Permutation groups

Definition 1.25. For any set X, the permutation group on X is the set Perm(X) of all
bijective functions from X to itself equipped with the binary operation given by composition
of functions.

Notation 1.26. For an integer n > 1, we write [n] := {1, . . . , n} and Sn := Perm([n]). An
element of Sn is called a permutation on n symbols, sometimes also called a permutation
on n letters or n elements.

We can write an element σ of Sn as a table of values:

i 1 2 3 · · · n
σ(i) σ(1) σ(2) σ(3) · · · σ(n)

We may also represent this using arrows, as follows:

1 � // σ(1)

2 � // σ(2)
...

n � // σ(n).

Remark 1.27. To count the elements σ ∈ Sn, note that

• there are n choices for σ(1);

• once σ(1) has been chosen, we have n− 1 choices for σ(2);

...

• once σ(1), . . . , σ(n − 1) have been chosen, there is a unique possible value for σ(n),
which is the only value left.

Thus the group Sn has n! elements.

It is customary to use cycle notation for permutations.

Definition 1.28. If i1, . . . , im are distinct integers between 1 and n, then σ = (i1 i2 . . . im)
denotes the element of Sn determined by

σ(i1) = i2, σ(i2) = i3, . . . , σ(im−1) = im, and σ(im) = i1,

and which fixes all elements of [n] \ {i1, . . . , im}, meaning that

σ(j) = j for all j ∈ [n] with j /∈ {i1, . . . , im}.

Such a permutation is called a cycle or an m-cycle when we want to emphasize its length.
In particular, we say that σ has length m.
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Remark 1.29. A 1-cycle is the identity permutation.

Notation 1.30. A 2-cycle is often called a transposition.

Remark 1.31. The cycles (i1 . . . im) and (j1 . . . jm) represent the same cycle if and only if
the two lists i1, . . . , im and j1, . . . , jm are cyclical rearrangements of each other. For example,
(1 2 3) = (2 3 1) but (1 2 3) 6= (2 1 3).

Remark 1.32. Consider the m-cycle σ = (i1 . . . im). Then for any integer k, we have

σk(ij) = ij+k (mod m).

Here we interpret j + k (mod m) to denote the unique integer 0 6 s < m such that

s ≡ j + k (mod m).

Notation 1.33. We denote the product (composition) of the cycles (i1 . . . is) and (j1 . . . jt)
by juxtaposition; more precisely, (i1 . . . is)(j1 . . . jt) denotes the composition of the two cycles,
read from right to left.

Example 1.34. We claim that the permutation group Perm(X) is nonabelian whenever the
set X has 3 or more elements. Indeed, given three distinct elements x, y, z ∈ S, consider the
transpositions (xy) and (yz). Now consider the permutations (yz)(xy) and (yz)(xy), where
the composition is read from right to left, such as function composition. Then

x � (xy) // y � (yz) // z x � (yz) // x � (xy) // y

(yz)(xy) : y � (xy) // x � (yz) // x (xy)(yz) : y � (yz) // z � (xy) // z

z � (xy) // z � (yz) // y z � (yz) // y � (xy) // x

Note that (yz)(xy) 6= (xy)(yz), since for example the first one takes x to z while the second
one takes x to y.

Lemma 1.35. Disjoint cycles commute; that is, if

{i1, i2, . . . , im} ∩ {j1, j2, . . . , jk} = ∅

then the cycles
σ1 = (i1 i2 · · · im) and σ2 = (j1 j2 · · · jk)

satisfy σ1 ◦ σ2 = σ2 ◦ σ1.

Proof. We need to show σ1(σ2(l)) = σ2(σ1(l)) for all l ∈ [n]. If l /∈ {i1, . . . , im, j1, . . . , jk},
Then σ1(l) = l = σ2(l), so

σ1(σ2(l)) = σ1(l) = l and σ2(σ1(l)) = σ2(l) = l.

If l ∈ {j1, . . . , jk}, then σ2(l) ∈ {j1, . . . , jk} and hence, since the subsets are disjoint, l
and σ2(l) are not in the set {i1, i2, . . . im}. It follows that σ1 preserves l and σ2(l), and thus

σ1(σ2(l)) = σ2(l) and σ2(σ1(l)) = σ2(l).

The case when l ∈ {i1, . . . , im} is analogous.
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Theorem 1.36. Each σ ∈ Sn can be written as a product of disjoint cycles, and such a
factorization is unique up to the order of the factors.

Remark 1.37. For the uniqueness part of Theorem 1.36, one needs to establish a convention
regarding 1-cycles: we need to decide whether the 1-cycles will be recorded. If we decide not
to record 1-cycles, this gives the shorter version of our factorization into cycles. If all the
1-cycles are recorded, this gives a longer version of our factorization, but this option has the
advantage that it makes it clear what the size n of our group Sn is. We will follow the first
convention: we will write only m-cycles with m > 2. Under this convention, the identity
element of Sn is the empty product of disjoint cycles. We will, however, sometimes denote
the identity by (1) for convenience.

Proof. Fix a permutation σ. The key idea is to look at the orbits of σ: for each x ∈ [n], its
orbit by σ is the subset of [n] of the form

Ox = {σ(x), σ2(x), σ3(x), . . .} = {σi(x) | i > 1}.

Notice that the orbits of two elements x and y are either the same orbit, which happens
precisely when y ∈ Ox, or disjoint. Since [n] is a finite set, and σ is a bijection of σ, we will
eventually have σi(x) = σj(x) for some j > i, but then

σj−i(x) = σi−i(x) = σ0(x) = x.

Thus we can find the smallest positive integer nx such that σnx(x) = x. Now for each x ∈ [n],
we consider the cycle

τx = (σ(x) σ2(x) σ3(x) · · · σnx(x)).

Now let S be a set of indices for the distinct τx, where note that we are not including the τx
that are 1-cycles. We claim that we can factor σ as

σ =
∏
i∈S

τi.

To show this, consider any x ∈ [n]. It must be of the form σj(i) for some i ∈ S, given that
our choice of S was exhaustive. On the right hand side, only τi moves x, and indeed by
definition of τi we have

τi(x) = σj+1(i) = σ(σj(i)) = σ(x).

This proves that

σ =
∏
i∈S

τi.

As for uniqueness, note that if σ = τ1 · · · τs is a product of disjoint cycles, then each
x ∈ [n] is moved by at most one of the cycles τi, since the cycles are all disjoint. Fix i such
that τi moves x. We claim that

τx = (σ(x) σ2(x) σ3(x) · · · σnx(x)).
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This will show that our product of disjoint cycles giving σ is the same (unique) product we
constructed above. To do this, note that we do know that there is some integer s such that
τ sx(x) = e, and

τx = (τx(x) τ 2
x(x) τ 3

x(x) · · · τ sx(x)).

Thus we need only to prove that
τ kx (x) = σk(x)

for all integers k > 1. Now by Lemma 1.35, disjoint cycles commute, and thus for each
integer k > 1 we have

σk = τ k1 · · · τ ks .

But τj fixes x whenever j 6= i, so
σk = τ ki (x).

We conclude that the integer nx we defined before is the length of the cycle τi, and that

τi = (x τi(x) τ 2
i (x) · · · τnx−1

i (x)) = (x σ(x)σ2(x) · · ·σnx−1(x)).

Thus this decomposition of σ as a product of disjoint cycles is the same decomposition we
described above.

Example 1.38. Consider the permutation σ ∈ S5 given by

1 � // 3
2 � // 4
3 � // 5
4 � // 2
5 � // 1.

Its decomposition into a product of disjoint cycles is

(135)(24).

Definition 1.39. The cycle type of an element σ ∈ Sn is the unordered list of lengths of
cycles that occur in the unique decomposition of σ into a product of disjoint cycles.

Example 1.40. The element

(3 4)(1 5)(2 6 7)(9 8 11)(15 16 17 105 114)

of S156 has cycle type 2, 2, 3, 3, 5. Note here that the n of Sn is not recorded, but is implicit.

It is also useful to write permutations as products of (not necessarily disjoint) transpo-
sitions. First, we need the following exercise:

Exercise 6. Show that

(i1 i2 · · · ip) = (i1 ip)(i1 ip−2)(i1 i3)(i1 i2)

for any p > 2.
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Corollary 1.41. Every permutation is a product of transpositions, thus the group Sn is
generated by transpositions.

Proof. Given any permutation, we can decompose it as a product of cycles by Theorem 1.36.
Thus it suffices to show that each cycle can be written as a product of permutations. For a
cycle (i1 i2 · · · ip), one can show that

(i1 i2 · · · ip) = (i1 i2)(i2 i3) · · · (ip−2 ip−1)(ip−1 ip),

which we leave as an exercise (see Exercise 6).

Remark 1.42. Note however that when we write a permutation as a product of transposi-
tions, such a product is no longer necessarily unique.

Example 1.43. If n > 2, the identity in Sn can be written as (12)(12). In fact, any
transposition is its own inverse, so we can write the identity as (ij)(ij) for any i 6= j.

Exercise 7. Show that

(cd)(ab) = (ab)(cd) and (bc)(ab) = (ac)(bc)

for all distinct a, b, c, d in [n].

Theorem 1.44. Given a permutation σ ∈ Sn, the parity of the number of transpositions in
any representation of σ as a product of transpositions depends only on σ.

Proof. Suppose that σ is a permutation that can be written as a production of transpositions
βi and λj in two ways,

σ = β1 · · · βs = λ1 · · ·λt
where s is even and t is odd. As we noted in Example 1.43, every transposition is its own
inverse, so we conclude that

eSn = β1 · · · βsλt · · ·λ1,

which is a product of s+ t transpositions. This is an odd number, so it suffices to show that
it is not possible to write the identity as a product of an odd number of transpositions.

So suppose that the identity can be written as the product (a1b1) · · · (akbk), where each
ai 6= bi. First, note that a single transposition cannot be the identity, and thus k 6= 1. So
assume, for the sake of an argument by induction, that for a fixed k, we know that every
product of fewer than k transpositions that equals the identity must use an even number of
transpositions. We might as well have k > 3, since we 2 is even.

Now note that since k > 1, and our product is the identity, then some transposition (aibi)
with i > 1 must move a1; otherwise, b1 would be sent to a1, and our product would not be
the identity.

Now notice that the two rules in Exercise 7 allow us to rewrite the overall product without
changing the number of transpositions in such a way that the transposition (a2b2) moves a1,
meaning a2 or b2 is a1. So let us assume that our product of transpositions has already been
put in this form. Note also that (aibi) = (biai), so we might as well assume without loss of
generality that a2 = a1. We will consider the cases when b2 = b1 and b2 6= b1.
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Case 1: When b1 = b2, our product is

(a1b1)(a1b1)(a3b3) · · · (akbk),

but (a1b1)(a1b1) is the identity, so we can rewrite our product using only k−2 transpositions.
By induction hypothesis, k − 2 is even, and thus k is even.

Case 2: When b1 6= b2, we can use Exercise 7 to write

(a1b1)(a1b2) = (a1b1)(b2a1) = (a1b2)(b1b2).

Notice here that it matters that a1, b1, and b2 are all distinct, so that we can apply Exercise 7.
So our product, which equals the identity, is

(a1b2)(b1b2)(a3b3) · · · (akbk).

The advantage of this shuffling is that while we have only changed the first two transpositions,
we have decreased the number of transpositions that move a1. We must now have some other
transposition that moves a1, and we can repeat the argument to keep decreasing the number
of transpositions in our product that move a1. Each time we do this, we cannot keep landing
in case 2 indefinitely, as each time we lower the number of transpositions moving a1. So
eventually we will land in case 1, which allows us to lower the total number of transpositions,
and using the induction hypothesis we will show that k must be even.

Definition 1.45. Consider a permutation σ ∈ Sn. If σ = τ1 · · · τs is a product of transposi-
tions, the sign of σ is given by (−1)s. Permutations with sign 1 are called even and those
with sign −1 are called odd. This is also called the parity of the permutation.

Theorem 1.44 tells us that the sign of a permutation is well-defined.

Example 1.46. The identity permutation is even. Every transposition is odd.

Example 1.47. The 3-cycle (123) can be rewritten as (12)(23), a product of 2 transpositions,
so the sign of (123) is 1.

Exercise 8. Show that every permutation is a product adjacent transpositions, meaning
transpositions of the form (i i+ 1).

11



1.3 Dihedral groups

For any integer n > 3, let Pn denote a regular n-gon. For concreteness sake, let us imagine
Pn is centered at the origin with one of its vertices located along the positive y-axis. Note
that the size of the polygon will not matter. Here are some examples:

P3 P4 P5

Definition 1.48. The dihedral group Dn is the set of symmetries of the regular n-gon Pn
equipped with the binary operation given by composition.

Remark 1.49. There are competing notations for the group of symmetries of the n-gon.
Some authors prefer to write it as D2n, since, as we will show, that is the order of the group.
Democracy has dictated that we will be denoting it by Dn, which indicates that we are
talking about the symmetries of the n-gon. Some authors like to write D2×n, always keeping
the 2, for example with D2×3, to satisfy both camps.

Let us make this more precise. Let d(−,−) denote the usual Euclidean distance between
two points on the plane R2. An isometry of the plane is a function f : R2 → R2 that is
bijective and preserves the Euclidean distance, meaning that

d(f(A), f(B)) = d(A,B) for all A,B ∈ R2.

Though not obvious, it is a fact that if f preserves the distance between every pair of points
in the plane, then it must be a bijection.

A symmetry of Pn is an isometry of the plane that maps Pn to itself. By this I do not
mean that f fixes each point of Pn, but rather that we have an equality of sets f(Pn) = Pn,
meaning every point of Pn is mapped to a (possibly different) point of Pn and every point
of Pn is the image of some point in Pn via f .

We are now ready to give the formal definition of the dihedral groups:

Remark 1.50. Let us informally verify that this really is a group. If f and g are in Dn,
then f ◦ g is an isometry (since the composition of any two isometries is again an isometry)
and

(f ◦ g)(Pn) = f(g(Pn)) = f(Pn) = Pn,

so that f ◦ g ∈ Dn. This proves composition is a binary operation on Dn. Now note that
associativity of composition is a general property of functions. The identity function on
R2, denoted idR2 , belongs to Dn and it is the identity element of Dn. Finally, the inverse
function of an isometry is also an isometry. Using this, we see that every element of Dn has
an inverse.

Later on we will need the following elementary fact, which we leave as an exercise:

12



Lemma 1.51. Every point on a regular polygon is completely determined, among all points
on the polygon, by its distances to two adjacent vertices of the polygon.

Exercise 9. Prove Lemma 1.51.

Definition 1.52 (Rotations in Dn). Assume that the regular n-gon Pn is drawn in the plane
with its center at the origin and one vertex on the x axis. Let r denote the rotation about the
origin by 2π

n
radians counterclockwise; this is an element of Dn. Its inverse is the clockwise

rotation by 2π
n

. This gives us rotations ri, where ri is the counterclockwise rotation by 2πi
n

,
for each i = 1, . . . , n. Notice that when i = n this is simply the identity map.

Each symmetry of Pn is completely determined by the images of the vertices. In partic-
ular, it is sometimes convenient to label the vertices of Pn with 1, 2, . . . , n, and to indicate
each symmetry by indicating the images of the vertices, as in the following example.

Example 1.53. Here are the rotations of D3:

1 3

2

The identity

2 1

3

Rotation by 2π
3

3 2

1

Rotation by 4π
3

Definition 1.54 (Reflections in Dn). For any line of symmetry of Pn, reflection about that
line gives an element of Dn. When n is odd, the line connecting a vertex to the midpoint
of the opposite side of Pn is a line of symmetry. When n is even, there are two types of
reflections: the ones about the line connecting tow opposite vertices, and the ones across the
line connecting midpoints of opposite sides.

In both cases, these give us a total of n reflections.

Example 1.55.

The reflection lines in D3 The reflection lines in D4

Let us summarize the content of this page:
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Notation 1.56. Fix n > 3. We will consider two special elements of Dn:

• Let r denote the symmetry of Pn given by counterclockwise rotation by 2π
n

.

• Let s denote a reflection symmetry of Pn that fixes at least one of the vertices of Pn,
as described in Definition 1.54. Let V1 be a vertex of Pn that is fixed by s, and label
the remaining vertices of Pn with V2, . . . , Vn by going counterclockwise from V1.

From now on, whenever we are talking about Dn, the letters r and s will refer only to
these specific elements. Finally, we will sometimes denote the identity element of Dn by id,
since it is the identity map.

Theorem 1.57. The dihedral group Dn has 2n elements.

Proof. First, we show that Dn has order at most 2n. Any element σ ∈ Dn takes the polygon
Pn to itself, and must in particular send vertices to vertices and preserve adjacencies, meaning
that any two adjacent vertices remain adjacent after applying σ. Fix two adjacent vertices A
and B. By Lemma 1.51, the location of every other point P on the polygon after applying σ
is completely determined by the locations of σ(A) and σ(B). There are n distinct possibilities
for σ(A), since it must be one of the n vertices of the polygon. But once σ(A) is fixed, σ(B)
must be a vertex adjacent to σ(B), so there are at most 2 possibilities for σ(B). This gives
us at most 2n elements in Dn.

Now we need only to present 2n distinct elements in Dn. We have described n reflections
and n rotations for Dn; we need only to see that they are all distinct. First, note that the
only rotation that fixes any vertices of Pn is the identity. Moreover, if we label the vertices
of Pn in order with 1, 2, . . . , n, say by starting in a fixed vertex and going counterclockwise
through each adjacent vertex, then the rotation by an angle of 2πi

n
sends V1 to Vi+1 for each

i < n, showing these n rotations are distinct. Now when n is odd, each of the n reflections
fixes exactly one vertex, and so they are all distinct and disjoint from the rotations. Finally,
when n is even, we have two kinds of reflections to consider. The reflections through a line
connecting opposite vertices have exactly two fixed vertices, and are completely determined
by which two vertices are fixed; since rotations have no fixed points, none of these matches
any of the rotations we have already considered. The other reflections, the ones through
the midpoint of two opposite sides, are completely determined by (one of) the two pairs
of adjacent vertices that they switch. No rotation switches two adjacent vertices, and thus
these give us brand new elements of Dn.

In both cases, we have a total of 2n distinct elements of Dn given by the n rotations and
the n reflections.

Remark 1.58. Given an element of Dn, we now know that it must be a rotation or a reflec-
tion. The rotations are the elements of Dn that preserve orientation, while the reflections
are the elements of Dn that reverse orientation.

Remark 1.59. Any reflection is its own inverse. In particular, s2 = id.

Remark 1.60. Note that rj(V1) = V1+j (mod n) for any j. Thus if rj = ri for some 1 6 i, j 6
n, then we must have i = j.

In fact, we have seen that rn = id and that the rotations id, r, r2, . . . , rn−1 are all distinct,
so |r| = n. In particular, the inverse of r is rn−1.

14



Lemma 1.61. Following Notation 1.56, we have srs−1 = r−1.

Proof. First, we claim that rs is a reflection. To see this, observe that s(V1) = V1, so

rs(V1) = r(V1) = V2

and
rs(V2) = r(Vn) = V1.

This shows that rs must be a reflection, since it reverses orientation. Reflections have order
2, so rsrs = (rs)2 = id and hence srs = r−1.

Remark 1.62. Given |r| = n and |s| = 2, as noted in Remark 1.59 and Remark 1.60, we
can rewrite Lemma 1.61 as

srs = rn−1.

Exercise 10. Show that sris−1 = rn−i for all i.

Theorem 1.63. Every element in Dn can be written uniquely as rj or rjs for 0 6 j 6 n−1.

Proof. Let α be an arbitrary symmetry of Pn. Note α must fix the origin, since it is the
center of mass of Pn, and it must send each vertex to a vertex because the vertices are the
points on Pn at largest distance from the origin. Thus α(V1) = Vj for some 1 6 j 6 n and
therefore the element r−jα fixes V1 and the origin. The only elements that fix V1 are the
identity and s. Hence either r−jα = id or r−jα = s. We conclude that α = rj or α = rjs.

Notice that we have shown that Dn has exactly 2n elements, and that there are 2n
distinct expressions of the form rj or rjs for 0 6 j 6 n − 1. Thus each element of Dn can
be written in this form in a unique way.

Remark 1.64. The elements s, rs, . . . , rn−1 are all reflections since they reverse orientation.
Alternatively, we can check these are all reflections by checking they have order 2. As we
noted before, the elements id, r, . . . , rn−1 are rotations, and preserve orientation.

Example 1.65. The 8 elements of D4, the group of symmetries of the square, are

4

3 2

1

The identity

3

2 1

4

r

Rotation by 2π
4

= π
2

2

1 4

3

r2

Rotation by 4π
4

= π

1

4 3

2

r3

Rotation by 6π
4

= 3π
2

and the reflections

2

3 4

1

s

3

4 1

2

rs

4

1 2

3

r2s

1

2 3

4

r3s

15



Let us now give a presentation for Dn.

Theorem 1.66. Let r : R2 → R2 denote counterclockwise rotation around the origin by 2π
n

radians and let s : R2 → R2 denote reflection about the x-axis respectively. Set

X2n = 〈r, s | rn = 1, s2 = 1, srs−1 = r−1〉.

Then Dn = X2n, that is,

Dn = 〈r, s | rn = 1, s2 = 1, srs−1 = r−1〉.

Proof. Theorem 1.63 shows that {r, s} is a set of generators for Dn. Moreover, we also know
that the relations listed above rn = 1, s2 = 1, srs−1 = r−1 hold; the first two are easy to
check, and the last one is Lemma 1.61. The only concern we need to deal with is that we
may not have discovered all the relations of Dn; or rather, we need to check that we have
found enough relations so that any other valid relation follows as a consequence of the ones
listed.

Let
X2n = 〈r, s | rn = 1, s2 = 1, srs−1 = r−1〉.

Assume that Dn has more relations than X2n does. Then Dn would be a group of cardinality
strictly smaller than X2n, meaning that |Dn| < |X2n|. 1 We will show below that in fact
|X2n| 6 2n = |Dn|, thus obtaining a contradiction.

Now we show that X2n has at most 2n elements using just the information contained in
the presentation. By definition, since r and s generated X2n then every element x ∈ X2n

can be written as
x = rm1sn1rm2sn2 · · · rmjsnj

for some j and (possibly negative) integers m1, . . . ,mj, n1, . . . ,mj.
2 As a consequence of the

last relation, we have
sr = r−1s,

and its not hard to see that this implies

srm = r−ms

for all m. Thus, we can slide an s past a power of r, at the cost of changing the sign of the
power. Doing this repeatedly gives that we can rewrite x as

x = rMsN .

By the first relation, rn = 1, from which it follows that ra = rb if a and b are congruent
modulo n. Thus we may assume 0 6M 6 n−1. Likewise, we may assume 0 6 N 6 1. This
gives a total of at most 2n elements, and we conclude that X2n must in fact be Dn.

Note that we have not shown that

X2n = 〈r, s | rn, s2, srs−1 = r−1〉

has at least 2n elements using just the presentation. But for this particular example, since
we know the group presented is the same as Dn, we know from Theorem 1.63 that it has
exactly 2n elements.

1This will become more clear once we properly define presentations.
2Note that, m1 could be 0, so that expressions beginning with a power of s are included in this list.
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1.4 The quaternions

For our last big example we mention the group of quaternions, written Q8.

Definition 1.67. The quaternion group Q8 is a group with 8 elements

Q8 = {1,−1, i,−i, j,−j, k,−k}

satisfying the following relations: 1 is the identity element, and

i2 = −1, j2 = −1, k2 = −1, ij = k, jk = i, ki = j,

(−1)i = −i, (−1)j = −j, (−1)k = −k, (−1)(−1) = 1.

To verify that this really is a group is rather tedious, since the associative property takes
forever to check. Here is a better way: in the group GL2(C), define elements

I =

[
1 0
0 1

]
, A =

[√
−1 0
0 −

√
−1

]
, B =

[
0 1
−1 0

]
, C =

[
0

√
−1√

−1 0

]
where

√
−1 denotes the complex number whose square is −1, to avoid confusion with the

symbol i ∈ Q8. Let −I,−A,−B,−C be the negatives of these matrices.
Then we can define an injective map f : Q8 → GL2(C) by assigning

1 7→ I, −1 7→ −I
i 7→ A, −i 7→ −A
j 7→ B, −j 7→ −B
k 7→ C, −k 7→ −C.

It can be checked directly that this map has the nice property (called being a group homo-
morphism) that

f(xy) = f(x)f(y) for any elements x, y ∈ Q8.

Let us now prove associativity for Q8 using this information:

Claim: For any x, y, z ∈ Q8, we have (xy)z = x(yz).

Proof. By using the property f(xy) = f(x)f(y) as well as associativity of multiplication in
GL2(C) (marked by ∗) we obtain

f((xy)z) = f(xy)f(z) = (f(x)f(y)) f(z)
∗
= f(x) (f(y)f(z)) = f(x)f(yz) = f(x(yz)).

Since f is injective and f((xy)z) = f(x(yz)), we deduce (xy)z = x(yz).

The subset {±I,±A,±B,±C} of GL2(C) is a subgroup (a term we define carefully later),
meaning that it is closed under multiplication and taking inverses. (For example, AB = C
and C−1 = −C.) This proves it really is a group and one can check it satisfies an analogous
list of identities as the one satisfied by Q8.

This is an excellent motivation to talk about group homomorphisms.

17



1.5 Group homomorphisms

A group homomorphism is a function between groups that preserves the group structure.

Definition 1.68. Let (G, ·G) and (H, ·H) be groups. A (group) homomorphism from G
is H is a function f : G→ H such that

f(x ·G y) = f(x) ·H f(y).

Note that a group homomorphism does not necessarily need to be injective nor surjective,
it can be any function as long as it preserves the product.

Definition 1.69. Let G and H be groups A homomorphism f : G→ H is an isomorphism
if there exists a homomorphism g : H → G such that

f ◦ g = idH and g ◦ f = idG .

If f : G → H is an isomorphism, G and H are called isomorphic, and we denote this by
writing G ∼= H. An isomorphism G −→ G is called an automorphism of G. We de denote
the set of all automorphisms of G by Aut(G).

Remark 1.70. Two groups G and H are isomorphic if we can obtain H from G by renaming
all the elements, without changing the group structure. One should think of an isomorphism

f : G
∼=−−→ H of groups as saying that the multiplication tables of G and H are the same

up to renaming the elements. The multiplication rule ·G for G can be visualized as a table
with both rows and columns labeled by elements of G, and with x ·G y placed in row x and
column y. The isomorphism f sends x to f(x), y to f(y), and the table entry x ·G y to the
table entry f(x) ·H f(y). The inverse map f−1 does the opposite.

Remark 1.71. Suppose that f : G→ H is an isomorphism. As a function, f has an inverse,
and thus it must necessarily be a bijective function. Our definition, however, requires more:
the inverse must in fact also be a group homomorphism. Note that many books define
group homomorphism by simply requiring it to be a homomorphism that is bijective: and
we will soon show that this is in fact equivalent to the definition we gave. There are however
good reasons to define it as we did: in many contexts, such as sets, groups, rings, fields, or
topological spaces, the correct meaning of the word “isomorphism” in “a morphism that has
a two-sided inverse”. This explains our choice of definition.

Exercise 11. Let G be a group. Show that Aut(G) is a group under composition.

Example 1.72.

(a) For any group G, the identity map idG : G→ G is a group isomorphism.

(b) For all groups G and H, the constant map f : G→ H with f(g) = eH for all g ∈ G is a
homomorphism, which we sometimes refer to as the trivial homomorphism.
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(c) The exponential map and the logarithm map

exp: (R,+) // (R \ {0}, ·) ln : (R>0, ·) // (R,+)

x � // ex y � // ln y

are both isomorphisms, so (R,+) ∼= (R>0, ·). In fact, these maps are inverse to each other.

(d) The function f : Z → Z given by f(x) = 2x is a group homomorphism that is injective
but not surjective.

(e) For any positive integer n and any field F , the determinant map

det : GLn(F ) // (F \ {0}, ·)
A � // det(A)

is a group homomorphism. For n > 2, the determinant map is not injective (you should
check this!) and so it cannot be an isomorphism. It is however surjective: for each
c ∈ F \ {0}, the diagonal matrix 

c
1

. . .

1


has determinant c.

(f) Fix an integer n > 1, and consider the function f : (Z,+)→ (C∗, ·) given by f(n) = e
2πi
n .

This is a group homomorphism, but it is neither surjective nor injective. It is not
surjective because the image only contains complex number x with |x| = 1, and it is not
injective because f(0) = f(n).

Group homomorphisms preserve the group structure. In particular, group homomor-
phisms preserve the identity and all inverses.

Lemma 1.73 (Properties of homomorphisms). If f : G→ H is a homomorphism of groups,
then

f(eG) = eH .

Moreover, for any x ∈ G we have

f(x−1) = f(x)−1.

Proof. By definition,
f(eG)f(eG) = f(eGeG) = f(eG).

Multiplying both sides by f(eG)−1, we get

f(eG) = eH .

Now given any x ∈ G, we have

f(x−1)f(x) = f(x−1x) = f(e) = e,

and thus f(x−1) = f(x)−1.
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Remark 1.74. Let G be a cyclic group generated by the element g. Then any homomor-
phism f : G → H is completely determined by f(g), since any other element h ∈ G can be
written as h = gn for some integer n, and

f(gn) = f(g)n.

More generally, given a group G a set S of generators for G, any homomorphism f : G −→ H
is completely determined by the images of the generators in S: the element g = s1 · · · sm,
where si is either in S or the inverse of an element of S, has image

f(g) = f(s1 · · · sm) = f(s1) · · · f(sm).

Note, however, that not all choices of images for the generators might actually give rise
to a homomorphism; we need to check that the map determined by the given images of the
generators is well-defined.

Definition 1.75. The image of a group homomorphism f : G −→ G is

im(f) := {f(g) | g ∈ G}.

Notice that f : G→ H is surjective if and only if im(f) = H.

Definition 1.76. The kernel of a group homomorphism f : G −→ G is

ker(f) := {g ∈ G | f(g) = eH}.

Remark 1.77. Given any group homomorphism f : G −→ G, we must have eG ∈ ker f by
Lemma 1.73.

When the kernel of f is as small as possible, meaning ker(f) = {e}, we say that f the
kernel of f is trivial. A homomorphism is injective if and only if it has a trivial kernel.

Lemma 1.78. A group homomorphism f : G→ H is injective if and only if ker(f) = {eG}.

Proof. First, note that eG ∈ ker f by Lemma 1.73. If f is injective, then eG must be the
only element that f sends to eH , and thus ker(f) = {eG}.

Now suppose ker(f) = {eG}. If f(g) = f(h) for some g, h ∈ G, then

f(h−1g) = f(h−1)f(g) = f(h)−1f(g) = eH .

But then h−1g ∈ ker(f), so we conclude that h−1g = eG, and thus g = h.

Example 1.79. First, number the vertices of Pn from 1 to n in any manner you like. Now
define a function f : Dn → Sn as follows: given any symmetry α ∈ Dn, set f(α) to be
the permutation of [n] that records how α permutes the vertices of Pn according to your
labelling. So f(α) = σ where σ is the permutation that for all 1 6 i 6 n, if α sends the ith
vertex to the jth one in the list, then σ(i) = j. This map f is a group homomorphism.

Now suppose f(α) = idSn . Then α must fix all the vertices of Pn, and thus α must be the
identity element of Dn. We have thus shown that the kernel of f is trivial. By Lemma 1.78,
this proves f is injective.

We defined isomorphisms to be homomorphisms that have an inverse that is also a homo-
morphism. We are now ready to show that this can simplified: an isomorphism is a bijective
group homomorphism.
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Lemma 1.80. Suppose f : G → H is a group homomorphism. Then f an isomorphism if
and only if f is bijective.

Proof. (⇒) A function f : X → Y between two sets is bijective if and only if it has an
inverse, meaning that there is a function g : Y → X such that f ◦ g = idY and g ◦ f = idX .
Our definition of group isomorphism implies that this must hold for any isomorphism (and
more!), as we noted in Remark 1.71.

(⇐) If f is bijective homomorphism, then as a function is has a set-theoretic two-sided
inverse g, as remarked in Remark 1.71. But we need to show that this inverse g is actually
a homomorphism. For any x, y ∈ H, we have

f(g(xy)) = xy since fg = idG

= f(g(x))f(g(y)) since fg = idG

= f(g(x)g(y)) since f is a group homomorphism.

Since f is injective, we must have g(xy) = g(x)g(y). Thus g is a homomorphism, and f is
an isomorphism.

Exercise 12. Let f : G → H be an isomorphism. Show that for all x ∈ G, we have
|f(x)| = |x|.

In other words, isomorphisms preserve the order of an element. This is an example of an
isomorphism invariant.

Definition 1.81. An isomorphism invariant (of a group) is a property P (of groups)
such that whenever G and H are isomorphic groups and G has the property P , then H also
has the property P .

Theorem 1.82. The following are isomorphism invariants:

(a) the order of the group,

(b) the set of all the orders of elements in the group,

(c) the property of being abelian,

(d) the order of the center of the group,

(e) being finitely generated.

Recall that by definition two sets have the same cardinality if and only if they are in
bijection with each other.

Proof. Let f : G→ H be any a group isomorphism.

(a) Since f is a bijection by Remark 1.71, we conclude that |G| = |H|.
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(b) We wish to show that {|x| | x ∈ G} = {|y| | y ∈ H}.
(⊆) follows from Exercise 12: given any x ∈ G, we have |x| = |f(x)|, which is the order
of an element in H.

(⊇) follows from the previous statement applied to the group isomorphism f−1: given
any y ∈ H, we have f−1(y) ∈ G and |y| = |f−1(y)| is the order of an element of G.

(c) For any y1, y2 ∈ H there exist some x1, x2 ∈ G such that f(xi) = yi. Then we have

y1y2 = f(x1)f(x2) = f(x1x2)
∗
= f(x2x1) = f(x2)f(x1) = y2y1,

where ∗ indicates the place where we used that G is abelian.

(d) Exercise. The idea is to show f induces an isomorphism Z(G) ∼= Z(H).

(e) Exercise. Show that if S generates G then f(S) = {f(s) | s ∈ S} generates H.

The easiest way to show that two groups are not isomorphic is to find an isomorphism
invariant that they do not share.

Remark 1.83. Let G and H be two groups. If P is an isomorphism invariant, and G has
P while H does not have P , then G is not isomorphic to H.

Example 1.84.

(1) We have Sn ∼= Sm if and only if n = m, since |Sn| = n! and |Sm| = m! and the order
of a group is an isomorphism invariant.

(2) Since Z/6 is abelian and S3 is not abelian, we conclude that Z/6 � S3.

(3) You will show in Problem Set 2 that |Z(D24)| = 2, while Sn has trivial center. We
conclude that D24 � S4.
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Chapter 2

Group actions: a first look

We come to one of the central concepts in group theory: the action of a group on a set.
Some would say this is the main reason one would study groups, so we want to introduce it
early both as motivation for studying group theory but also because the language of group
actions will be very helpful to us.

2.1 What is a group action?

Definition 2.1. For a group (G, ·) and set S, an action of G on S is a function

G× S → S,

typically written as (g, s) 7→ g · s, such that

(1) g · (h · s) = (gh) · s for all g, h ∈ G and s ∈ S.

(2) eG · s = s for all s ∈ S.

Remark 2.2. To make the first axiom clearer, we will write · for the action of G on S and
no symbol (concatenation) for the multiplication of two elements in the group G.

A group action is the same thing as a group homomorphism.

Lemma 2.3 (Permutation representation). Consider a group G and a set S.

(1) Suppose · is an action of G on S. For each g ∈ G, let µg : S −→ S denote the function
given by µg(s) = g · s. Then the function

ρ : G // Perm(S)

g � // µg

is a well-defined homomorphism of groups.

(2) Conversely, if ρ : G→ Perm(S) is a group homomorphism, then the rule

g · s := (ρ(g))(s)

defines an action of G on S.
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Proof. (1) Assume we are given an action of G on S. We first need to check that for all g, µg
really is a permutation of S. We will show this by proving that µg has a two-sided inverse;
in fact, that inverse is µg−1 . Indeed, we have

(µg ◦ µg−1)(s) = µg(µg−1(s)) by the definition of composition

= g · (g−1 · s) by the definitinion for µg and µg−1

= (gg−1) · s by the definition of a group action

= eG · s by the definition of a group

= s by the definition of a group action

thus µg ◦ µg−1 = idS, and a similar argument shows that µg−1 ◦ µg = idS (exercise!). This
shows that µg has an inverse, and thus it is bijective; it must then be a permutation of S.

Finally, we wish to show that ρ is a homomorphism of groups, so we need to check that
ρ(gh) = ρ(g) ◦ ρ(h). Equivalently, we need to prove that µgh = µg ◦ µh. Now for all s, we
have

µgh(s) = (gh) · s by definition of µ

= g · (h · s) by definition of a group action

= µg (µh(s)) by definition of µg and µh

= (µg ◦ µh)(s).

This proves that ρ is a homomorphism.
(2) On the other hand, given a homomorphism ρ, the function

G× S // S

(g, s) � // g · s = ρ(g)(s)

is an action, because

h · (g · s) = ρ(h)(ρ(g)(s)) by definition of ρ

= (ρ(h) ◦ ρ(g))(s)

= ρ(gh)(s) since ρ is a homomorphism

= (gh) · s by definition of ρ,

and
eGs = ρ(eG)(s) = id(s) = s.

Definition 2.4. Given a group G acting on a set S, the group homomorphism ρ associated
to the action as defined in Lemma 2.3 is called the permutation representation of the
action.

Definition 2.5. Let G be a group acting on a set S. The equivalence relation on S induced
by the action of G, written ∼G, is defined by s ∼G t if and only if there is a g ∈ G such that
t = g · s. The equivalence classes of ∼G are called orbits: the equivalence class

OrbG(s) := {g · s | g ∈ G}

is the orbit of s. The set of equivalence classes with respect to ∼G is written S/G.
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Lemma 2.6. Let G be a group acting on a set S. Then

(a) The relation ∼G really is an equivalence relation.

(b) For any s, t ∈ S either OrbG(s) = OrbG(t) or OrbG(s) ∩OrbG(t) = ∅.

(c) The orbits of the action of G form a partition of S: S =
⋃
s∈S OrbG(s).

Proof. Assume G acts on S.

(a) We really need to prove three things: that ∼G is reflexive, symmetric, and transitive.

(Reflexive): We have x ∼G x for all x ∈ S since x = eG · x.

(Symmetric): If x ∼G y, then y = g · x for some g ∈ G, and thus

g−1 · y = g−1 · (g · x) = (g−1g) · x = e · x = x,

which shows that y ∼G x.

(Transitive): If x ∼G y and y ∼G z, then y = g · x and z = h · y for some g, h ∈ G and
hence z = h · (g · x) = (hg) · x, which gives x ∼G z.

Parts (b) and (c) are formal properties of the equivalence classes for any equivalence
relation.

Corollary 2.7. Suppose a group G acts on a finite set S. Let s1, . . . , sk be a complete set
of orbit representatives — that is, assume each orbit contains exactly one member of the list
s1, . . . , sk. Then

|S| =
k∑
i=1

|OrbG(si)|.

Proof. This is an immediate corollary of the fact that the orbits form a partition of S.

Remark 2.8. Let G be a group acting on S. The associated group homomorphism ρ
is injective if and only if it has trivial kernel, by Lemma 1.78. This is equivalent to the
statement µg = idS =⇒ g = eG. The later can be written in terms of elements of S: for
each g ∈ G,

g · s = s for all s ∈ S =⇒ g = eG.

Definition 2.9. Let G be a group acting on a set S. The action is faithful if the associated
group homomorphism is injective. Equivalently, the action is faithful if and only if

g · s = s for all s ∈ S =⇒ g = eG.

The action is transitive if for all p, q ∈ S there is g ∈ G such that q = g · p. Equivalently,
the action is transitive if there is only one orbit, meaning that

OrbG(p) = S for all p ∈ S.
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2.2 Examples of group actions

Example 2.10 (Trivial action). For any group G and any set S, g · s := s defines an action,
the trivial action. The associated group homomorphism is the map

G // Perm(S)

g � // idS .

A trivial action is not faithful unless the group G is trivial; in fact, the corresponding group
homomorphism is trivial.

Example 2.11. The group Dn acts on the vertices of Pn, which we will label with V1, . . . , Vn
in a counterclockwise fashion, with V1 on the positive x-axis, as in Notation 1.56. Note that
Dn acts on {V1, . . . , Vn}: for each g ∈ Dn and each integer 1 6 j 6 n, we set

g · Vj = Vi if and only if g(Vj) = Vi.

This satisfies the two axioms of a group action (check!).
Let ρ : Dn → Perm ({V1, . . . , Vn}) ∼= Sn be the associated group homomorphism. Note

that ρ is injective, because if an element of Dn fixes all n vertices of a polygon, then it must
be the identity map. More generally, if an isometry of R2 fixes any three noncolinear points,
then it is the identity. To see this, note that given three noncolinear points, every point in
the plane is uniquely determined by its distance from these three points (exercise!).

The action of Dn on the n vertices of Pn is faithful; in fact, we saw before that each
σ ∈ Dn is completely determined by what it does to any two adjacent vertices.

Example 2.12 (group acting on itself by left multiplication). Let G be any group and define
an action · of G on G (regarded as just a set) by the rule

g · x := gx.

This is an action, since multiplication is associative and eG · x = x for all x; it is know as
the left regular action of G on itself.

The left regular action of G on itself is faithful, since if g ·x = x for all x (or even for just
one x), then g = e. It follows that the associated homomorphism is injective. This action is
also transitive: given any g ∈ G, g = g · e, and thus OrbG(e) = G.

Example 2.13 (conjugation). Let G be any group and fix an element g ∈ G. Define the
conjugation action of G on itself by setting

g · x := gxg−1 for any g, x ∈ G.

The action of G on itself by conjugation is not necessarily faithful. In fact, we claim that
the kernel of the permutation representation ρ : G→ Perm(G) for the conjugation action is
the center Z(G). Indeed,

g ∈ ker ρ ⇐⇒ g · x = x for all x ∈ G ⇐⇒ gxg−1 = x for all x ∈ G

⇐⇒ gx = xg for all x ∈ G ⇐⇒ g ∈ Z(G).

If G is nontrivial, this action is never transitive unless G is trivial: note that OrbG(e) = {e}.
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Chapter 3

Subgroups

Every time we define a new abstract structure consisting of a set S with some extra structure,
we then want to consider subsets of S that inherit that special structure. It is now time to
discuss subgroups.

3.1 Definition and examples

Definition 3.1. A nonempty subset H of a group G is a subgroup of G if H is a group
under the multiplication law of G. If H is a subgroup of G, we write H ≤ G, or H < G if
we want to indicate that H is a subgroup of G but H 6= G.

Remark 3.2. Note that if H is a subgroup of G, then necessarily H must be closed for the
product in G, meaning that for any x, y ∈ H we must have xy ∈ H.

Remark 3.3. Let H be a subgroup of G. Since H itself is a group, it has an identity element
eH , and thus

eHeH = eH

in H. But the product in H is just a restriction of the product of G, so this equality also
holds in G. Multiplying by e−1

H , we conclude that eH = eG.
In summary, if H is any subgroup of G, then we must have eG ∈ H.

Example 3.4. Any group G has two trivial subgroups: G itself, and {eG}.

Any subgroup H of G that is neither G nor {eG} is a nontrivial subgroup. A group
might not have any nontrivial subroups.

Example 3.5. The group Z/2 has no nontrivial subgroup.

Example 3.6. The following are strings of subgroups with the obvious group structure:

Z < Q < R < C and Z× < Q× < R× < C×.

To prove that a certain subset H of G forms a subgroup, it is very inefficient to prove
directly that H forms a group under the same operation as G. Instead, we use one of the
following two tests:
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Lemma 3.7 (Subgroup tests). Let G be a subset of a group G.

• Two-step test: If H is nonempty and closed under multiplication and taking inverses, then
H is a subgroup of G. More precisely, if for all x, y ∈ H, we have xy ∈ H and x−1 ∈ H,
then H is a subgroup of G.

• One-step test: If H is nonempty and xy−1 ∈ H for all x, y ∈ H, then H is a subgroup
of G.

Proof. We prove the One-step test first. Assume H is nonempty and for all x, y ∈ H we have
xy−1 ∈ H. Since H is nonempty, there is some h ∈ H, and hence eG = hh−1 ∈ H. Since
eGx = x = xeG for any x ∈ G, and hence for any x ∈ H, then eG is an identity element for
H. For any h ∈ H, we that h−1 = eh−1 ∈ H, and since in G we have h−1h = e = hh−1 ∈ H
and this calculation does not change when we restrict to H, we can conclude that every
element of H has an inverse inside H. For every x, y ∈ H we must have y−1 ∈ H and thus

xy = x(y−1)−1 ∈ H

so H is closed under the multiplication operation. This means that the restriction of the
group operation of G to H is a well-defined group operation. This operation is associative
by the axioms for the group G. The axioms of a group have now been established for (H, ·).

Now we prove the Two-Step test. Assume H is nonempty and closed under multiplication
and taking inverses. Then for all x, y ∈ H we must have y−1 ∈ H and thus xy−1 ∈ H. Since
the hypothesis of the One-step test is satisfied, we conclude that H is a subgroup of G.

Lemma 3.8 (Examples of subgroups). Let G be a group.

(a) If H is a subgroup of G and K is a subgroup of H, then K is a subgroup of G.

(b) Let J be any (index) set. If Hα is a subgroup of G for all α ∈ J , then H =
⋂
α∈J Hα is

a subgroup of G.

(c) If f : G→ H is a homomorphism of groups, then im(f) is a subgroup of H.

(d) If f : G→ H is a homomorphism of groups, and K is a subgroup of G, then

f(K) := {f(g) | g ∈ K}

is a subgroup of H.

(e) If f : G→ H is a homomorphism of groups, then ker(f) is a subgroup of G.

(f) The center Z(G) is a subgroup of G.

Proof.

(a) By definition, K is a group under the multiplication in H, and the multiplication in
H is the same as that in G, so K is a subgroup of G.

(b) First, note that H is nonempty since eG ∈ Hα for all α ∈ J . Moreover, given x, y ∈ H,
for each α we have x, y ∈ Hα and hence xy−1 ∈ Hα. It follows that xy−1 ∈ H. By the
Two-Step test, H is a subgroup of G.
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(c) Since G is nonempty, then im(f) must also be nonemtpy; for example, it contains
f(eG) = eH . If x, y ∈ im(f), then x = f(a) and y = f(b) for some a, b ∈ G, and hence

xy−1 = f(a)f(b)−1 = f(ab−1) ∈ im(f).

By the Two-Step Test, im(f) is a subgroup of H.

(d) The restriction g : K → H of f to K is still a group homomorphism, and thus f(K) =
im g is a subgroup of H.

(e) Using the One-step test, note that if x, y ∈ ker(f), meaning f(x) = f(y) = eG, then

f(xy−1) = f(x)f(y)−1 = eG.

This shows that if x, y ∈ ker(f) then xy−1 ∈ ker(f), so ker(f) is closed for taking
inverses. By the Two-Step test, ker(f) is a subgroup of G.

(f) The center Z(G) is the kernel of the permutation representation G→ Perm(G) for the
conjugation action, so Z(G) is a subgroup of G since the kernel of a homomorphism is
a subgroup.

Example 3.9. For any field F , the special linear group

SLn(F ) := {A | A = n× n matrix with entries in F, det(A) = 1F}

is a subgroup of the general linear group GLn(F ). To prove this, note that SLn(F ) is the
kernel of the determinant map det : GLn(F ) → F×, which is one of the homomorphisms in
Example 1.72. By Lemma 3.8, this implies that SLn(F ) is indeed a subgroup of GLn(F ).

Definition 3.10. Let f : G → H be a group homomorphism and K ≤ H. The preimage
of K if given by

f−1(K) := {g ∈ G | f(g) ∈ K}

Exercise 13. Prove that if f : G → H is a group homomorphism and K ≤ H, then the
preimage of K is a subgroup of G.

Exercise 14. The set of rotational symmetries {ri | i ∈ Z} = {id, r, r2, . . . , rn−1} of Pn is a
subgroup of Dn.

In fact, this is the subgroup generated by r.

Definition 3.11. Given a group G and a subset X of G, the subgroup of G generated
by X is

〈X〉 :=
⋂
H≤G
H⊇X

H.

If X = {x} is a set with one element, then we write 〈X〉 = 〈x〉 and we refer to this as the
cyclic subgroup generated by x. More generally, when X = {x1, . . . , xn} is finite, we
may write 〈x1, . . . , xn〉 instead of 〈X〉. Finally, given two subsets X and Y of G, we may
sometimes write 〈X, Y 〉 instead of 〈X ∪ Y 〉.
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Remark 3.12. Note that by Lemma 3.8, 〈X〉 really is a subgroup of G. By definition, the
subgroup generated by X is the smallest (with respect to containment) subgroup of G that
contains X, meaning that 〈X〉 is contained in any subgroup that contains X.

Remark 3.13. Do not confuse this notation with giving generators and relations for a group;
here we are forgoing the relations and focusing only on writing a list of generators. Another
key difference is that we have picked elements in a given group G, but the subgroup they
generate might not be G itself, but rather some other subgroup of G.

Lemma 3.14. For a subset X of G, the elements of 〈X〉 can be described as:

〈X〉 =
{
xj11 · · ·xjmm | m > 0, j1, . . . , jm ∈ Z and x1, . . . , xm ∈ X

}
.

Note that the product of no elements is by definition the identity.

Proof. Let

S =
{
xj11 · · ·xjmm | m > 0, j1, . . . , jm ∈ Z and x1, . . . , xm ∈ X

}
.

Since 〈X〉 is a subgroup that contains X, it is closed under products and inverses, and thus
must contain all elements of S. Thus X ⊇ S.

To show X ⊆ S, we will prove that the set S is a subgroup of G using the One-step test:

• S 6= ∅ since we allow m = 0 and declare the empty product to be eG.

• Let a and b be elements of S, so that they can be written as a = xj11 · · · xjmm and
b = yi11 · · · yinn . Then

ab−1 = xj11 · · ·xjmm (yi11 · · · yimn )−1 = xj11 · · ·xjmm y−inn · · · y−i11 ∈ S.

Therefore, S ≤ G and X ⊆ S (by taking m = 1 and j1 = 1) and by the minimality of 〈X〉
we conclude that 〈X〉 ⊆ S.

Example 3.15. Lemma 3.14 implies that for an element x of a group G, 〈x〉 = {xj | j ∈ Z}.

Example 3.16. We showed in Theorem 1.63 that Dn = 〈r, s〉, so Dn is the subgroup of Dn

generated by {r, s}. But do not mistake this for a presentation with no relations! In fact,
these generators satisfy lots of relations, such as srs = r−1, which we proved in Lemma 1.61.

Example 3.17. For any n > 1, we proved in Problem Set 2 that Sn is generated by the
collection of adjacent transpositions (i i+ 1).

Theorem 3.18 (Cayley’s Theorem). Every finite group is isomorphic to a subgroup of Sn.

Proof. Suppose G is a finite group of order n and label the group elements of G from 1 to n
in any way you like. The left regular action of G on itself determines a permutation repre-
sentation ρ : G→ Perm(G), which is injective. Note that since G has n elements, Perm(G)
is the group of permutations on n elements, and thus Perm(G) ∼= Sn. By Lemma 3.8, im(ρ)
is a subgroup of Sn. If we restrict ρ to its image, we get an isomorphism ρ : G → im(ρ).
Hence G ∼= im(ρ), which is a subgroup of Sn.

Remark 3.19. From a practical perspective, this is a nearly useless theorem. It is, however,
a beautiful fact.
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3.2 Subgroups vs isomorphism invariants

Some properties of a group G pass onto all its subgroups, but not all. In this section, we
collect some facts examples illustrating some of the most important properties.

Theorem 3.20 (Lagrange’s Theorem). If H is a subgroup of a finite group G, then |H|
divides |G|.

You will prove Lagrange’s Theorem in the next problem set.

Exercise 15. Let G be a finite group Suppose that A and B are subgroups of G such that
gcd(|A|, |B|) = 1. Show that A ∩B = {e}.

Example 3.21 (Infinite group with finite subgroup). The group SL2(R) is infinite, but the
matrix

A =

(
0 1
1 0

)
has order 2 and it generates the subgroup 〈A〉 = {A, I} with two elements.

Example 3.22 (Nonabelian group with abelian subgroup). The dihedral group Dn, with
n > 3, is nonabelian, while the subgroup of rotations (see Exercise 14) is abelian (for example,
because it is cyclic; see Lemma 3.27 below).

To give an example of a finitely generated group with an infinitely generated group, we
have to work a bit harder.

Example 3.23 (Finitely generated group with infinitely generated subgroup). Consider the
subgroup G of GL2(Q) generated by

A =

(
1 1
0 1

)
and B =

(
2 0
0 1

)
.

Let H be the subgroup of GL2(Q) given by

H =

{(
1 n

2m

0 1

)
∈ G | n,m ∈ Z

}
.

We leave it as an exercise to check that this is indeed a subgroup of GL2(Q). Note that for
all integers n and m we have

An =

(
1 n
0 1

)
and Bm =

(
2m 0
0 1

)
,

and

B−mAnBm =

(
1 n

2m

0 1

)
∈ H.

Therefore, H is a subgroup of G, and in fact

H = 〈B−mAnBm | n,m ∈ Z〉.

31



While G = 〈A,B〉 is finitely generated by construction, we claim that H is not. The issue is
that (

1 a
2b

0 1

)(
1 c

2d

0 1

)
=

(
1 a

2b
+ c

2d

0 1

)
,

so the subgroup generated by any finite set of matrices in H, say〈(
1 n1

2m1

0 1

)
, . . . ,

(
1 nt

2mt

0 1

)〉
does not contain (

1 1
2N

0 1

)
∈ H

with N = maxi{|mi|}+ 1. Thus H is infinitely generated.

In the previous example, we constructed a group with two generators that has an infinitely
generated subgroup. We will see in the next section that we couldn’t have done this with
less generators; in fact, the subgroups of a cyclic group are all cyclic.

Below we collect some important facts about the relationship between finite groups and
their subgroups, including some explained by the examples above and others which we leave
as an exercise.

Order of the group:

• Every subgroup of a finite group is finite.

• There exist infinite groups with finite subgroups; see Example 3.21.

• Lagrange’s Theorem: If H is a subgroup of a finite group G, then |H| divides |G|.

Orders of elements:

• If H ⊆ G, then the set of orders of elements of H is a subset of the set of orders of
elements of G.

Abelianity:

• Every subgroup of an abelian group is abelian.

• There exist nonabelian groups with abelian subgroups; see Example 3.22.

• Every cyclic (sub)group is abelian.

Generators:

• There exist a finitely generated group G and a subgroup H of G such that H is not
finitely generated; see Example 3.23.

• Every infinitely generated group has finitely generated subgroups.1

• Every subgroup of a cyclic group is cyclic; see Theorem 3.29.

1This one is a triviality: we are just noting that even if the group is infinitely generated, we can always
consider the subgroup generated by our favorite element, which is, by definition, finitely generated.
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3.3 Cyclic groups

Recall the definition of a cyclic group.

Definition 3.24. If G is a group a generated by a single element, meaning that there exists
x ∈ G such that G = 〈x〉, then G is a cyclic group.

Remark 3.25. Given a cyclic group G, we may be able to pick different generators for G.
For example, Z is a cyclic group, and both 1 or −1 are a generator. More generally, for any
element x in a group G

〈x〉 = 〈x−1〉.

Example 3.26. The main examples of cyclic groups, in additive notation, are the following:

• The group (Z,+) is cyclic with generator 1 or -1.

• The group (Z/n,+) of congruences modulo n is cyclic, since it is for example generated
by [1]. Below we will find all the choices of generators for this group.

In fact, we will later prove that up to isomorphism these are the only examples of cyclic
groups.

Let us record some facts important facts about cyclic groups which you have proved in
problem sets:

Lemma 3.27. Every cyclic group is abelian.

Lemma 3.28. Let G be a group and x ∈ G. If xm = e then |x| divides m.

Now we can use these to say more about cyclic groups.

Theorem 3.29. Let G = 〈x〉, where x has finite order n. Then

(a) |G| = |x| = n and G = {e, x, . . . , xn−1}.

(b) For any integer k, then |xk| = n
gcd(k,n)

. In particular,

〈xk〉 = G ⇐⇒ gcd(n, k) = 1.

(c) There is a bijection

{divisors of |G|} oo // {subgroups of G}

d � Ψ // 〈x
|G|
d 〉

|H| H�
Φ

oo

Thus all subgroups of G are cyclic, and there is a unique subgroup of each order.
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Proof. (a) By Lemma 3.14, we know G = {xi | i ∈ Z}. Now we claim that the elements

e = x0, x1, . . . , xn−1

are all distinct. Indeed, if xi = xj for some 0 6 i < j < n, then xj−i = e and
1 6 j − i < n, contradicting the minimality of the order n of x. In particular, this
shows that |G| > n.

Now take any m ∈ Z. By the Division Algorithm, we can write m = qn + r for some
integers q, r with 0 < r 6 n. Then

xm = xnq+r = (xn)qxr = xr.

This shows that every element in G can be written in the form xr with 0 6 r < n, so

G = {x0, x1, . . . , xn−1} and |G| = n.

(b) Let k be any integer. Set y := xk and d := gcd(n, k), and note that n = da, k = db for
some a, b ∈ Z such that gcd(a, b) = 1. We have

ya = xka = xdba = (xn)b = e,

so |y| divides a by Lemma 3.28. On the other hand, xk|y| = y|y| = e, so again by
Lemma 3.28 we have n divides k|y|. Now

da = n divides k|y| = db|y|

and thus
a divides b|y|.

But gcd(a, b) = 1, so we conclude that a divides |y|. Since |y| also divides a and both
a and |y| are positive, we conclude that

|y| = a =
n

gcd(k, n)
.

(c) Consider any subgroup H of G with H 6= {e}, and set

k := min{i ∈ Z | i > 0 and gi ∈ H}.

On the one hand, H ⊇ 〈gk〉, since H 3 gk and H is closed for products. Moreover,
given any other positive integer i, we can again write i = kq + r for some integers q, r
with 0 6 r < k, and

gr = gi−kq = gi(gk)q ∈ H,
so by minimality of r we conclude that r = 0. Therefore, k|r, and thus we conclude
that

H = 〈gk〉.
Now to show that Ψ is a bijection, we only need to prove that Φ is a well-defined
function and a two-sided inverse for Ψ, and this we leave as an exercise.

34



Corollary 3.30. Let G be any finite group and consider x ∈ G. Then |x| divides |G|.

Proof. The subgroup 〈x〉 of G generated by x is a cyclic group, and since G is finite so is
〈x〉. By Theorem 3.29, |x| = |〈x〉|, and by Lagrange’s Theorem 3.20, the order of 〈x〉 divides
the order of G.

There is a sort of quasi-converse to Theorem 3.29:

Exercise 16. Show that if G is a finite group G has a unique subgroup of order d for each
positive divisor d of |G|, then G must be cyclic.

We can say a little more about the bijection in Theorem 3.29. Notice how smaller
subgroups (with respect to containment) correspond to smaller divisors of G. We can make
this observation rigorous by talking about partially ordered sets.

Definition 3.31. An order relation on a set S is a binary relation ≤ that satisfies the
following properties:

• Reflexive: s ≤ s for all s ∈ S.

• Antisymmetric: if a ≤ b and b ≤ a, then a = b.

• Transitive: if a ≤ b and b ≤ c, then a ≤ c.

A partially ordered set or poset consists of a set S endowed with an order relation ≤,
which we might indicate by saying that the pair (S,≤) is a partially ordered set.

Given a poset (S,≤) and a subset T ⊆ S, an upper bound for T is an element s ∈ S
such that t ≤ s for all t ∈ T , while a lower bound is an element s ∈ S such that s ≤ t for
all t ∈ T . An upper bound s for T is called a supremum if s ≤ u for all upper bounds u of
T , while a lower bound t for T is an infimum if l ≤ t for all lower bounds t for T . A lattice
is a poset in which every two elements have a unique supremum and a unique infimum.

Remark 3.32. Note that the word unique can be removed from the definition of lattice. In
fact, if a subset T ⊆ S has a supremum, then that supremum is necessarily unique. Indeed,
given two suprema s and t, then by definition s ≤ t, since s is a supremum and t is an
upper bound for T , but also t ≤ s since t is a supremum and s is an upper bound for T . By
antisymmetry, we conclude that s = t.

Example 3.33. The set of all positive integers is a poset with respect to divisibility, setting
a ≤ b whenever a|b. In fact, this is a lattice: the supremum of a and b is lcm(a, b) and the
infimum of a and b is gcd(a, b).

Example 3.34. Given a set S, the power set of S, meaning the set of all subsets of S, is
a poset with respect to containment, where the order is defined by A ≤ B whenever A ⊆ B.
In fact, this is a lattice: the supremum of A and B is A ∪B and the infimum of A and B is
A ∩B.

Exercise 17. Show that the set of all subgroups of a group G is a poset with respect to
containment, setting A ≤ B if A ⊆ B.
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Lemma 3.35. The set of all subgroups of a group G is a lattice with respect to containment.

Proof. Let A and B be subgroups of G. We need to prove that A and B have an infimum and
a supremum. We claim that A∩B is the infimum and 〈A,B〉 is the supremum. First, these
are both subgroups of G, by Lemma 3.8 in the case A ∩ B and by definition for the other.
Moreover, A ∩B is a lower bound for A and B and 〈A,B〉 is an upper bound by definition.
Finally, if H ≤ A and H ≤ B, then every element of h is in both A and B, and thus it must
be in A ∩B, so H ≤ A ∩B. Similarly, if A ≤ H and B ≤ H, then 〈A,B〉 ⊆ H.

Remark 3.36. The isomorphism Ψ in Theorem 3.29 satisfies the following property: if
d1 | d2 then Ψ(d1) ⊆ Ψ(d2). In other words, Ψ preserves the poset structure. This means
that Ψ is a lattice isomorphism between the lattice of divisors of |G| and the lattice of
subgroups of G. Of course the inverse map Φ = Ψ−1 is also a lattice isomorphism.

Lemma 3.37 (Universal Mapping Property of a Cyclic Group). Let G = 〈x〉 be a cyclic
group and let H be any other group.

(1) If |x| = n < ∞, then for each y ∈ H such that yn = e, there exists a unique group
homomorphism f : G→ H such that f(x) = y.

(2) If |x| =∞, then for each y ∈ H, there exists a unique group homomorphism f : G→ H
such that f(x) = y.

In both cases this unique group homomorphism is given by f(xi) = yi for any i ∈ Z.

Remark 3.38. We will later discuss a universal mapping property of any presentation. This
is a particular case of that universal mapping property of a presentation, since a cyclic group
is either presented by 〈x | xn = e〉 or 〈x | –〉.

Proof. Recall that either G = {e, x, x2, . . . , xn−1} has exactly n elements if |x| = n or
G = {xi | i ∈ Z} with no repetitions if |x| =∞.

Uniqueness: We have already noted that any homomorphism is uniquely determined by
the images of the generators of the domain in Remark 1.74, and that f must then be given
by f(xi) = f(x)i = yi.

Existence: In either case, define f(xi) = yi. We must show this function is a well-defined
group homomorphism. To see that f is well-defined, suppose xi = xj for some i, j ∈ Z.
Then, since xi−j = eG, using Lemma 3.28 we have{

n | i− j if |x| = n

i− j = 0 if |x| =∞
=⇒

{
yi−j = ynk if |x| = n

yi−j = y0 if |x| =∞
=⇒ yi−j = eH =⇒ yi = yj.

Thus, if xi = xj then f(xi) = yi = yj = f(xj). In particular, if xk = e, then f(xk) = e, and
f is well-defined.

The fact that f is a homomorphism is immediate:

f(xixj) = f(xi+j) = yi+j = yiyj = f(xi)f(xj).
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Definition 3.39. The infinite cyclic group is the group

C∞ := {ai|i ∈ Z}

with multiplication aiaj = ai+j.
For any natural number n, the cyclic group of order n is the group

Cn := {ai|i ∈ {0, . . . , n− 1}}

with multiplication aiaj = ai+j (mod n).

Remark 3.40. The presentations for these groups are

C∞ = 〈a | –〉 and Cn = 〈a | an = e〉.

Theorem 3.41 (Classification Theorem for Cyclic Groups). Every infinite cyclic group is
isomorphic to C∞. Every cyclic group of order n is isomorphic to Cn.

Proof. Suppose G = 〈x〉 with |x| = n or |x| =∞, and set

H =

{
Cn if |x| = n

C∞ if |x| =∞.

By Lemma 3.37, there are homomorphisms f : G → H and g : G → H such that f(x) = a
and g(a) = x. Now g ◦ f is an endomorphisms of G mapping x to x. But the identity map
also has this property, and so the uniqueness clause in Lemma 3.37 gives us g ◦ f = idG.
Similarly, f ◦ g = idH . We conclude that f and g are isomorphisms.

Example 3.42. For a fixed n > 1,

µn := {z ∈ C | zn = 1}

is a subgroup of (C\{0}, ·). Since ‖zn‖ = ‖z‖n = 1 for any z ∈ µn, then we can write z = eri

for some real number r. Moreover, the equality 1 = zn = enri implies that nr is an integer
multiple of 2π. It follows that

µn = {1, e2πi/n, e4πi/n, · · · , e(n−1)2πi/n}

and that e2πi/n generates µn. Thus µn is cyclic of order n. This group is therefore isomorphic
to Cn, via the map

Cn // µn

aj � // 2jπi/n.

Exercise 18. Let p > 0 be a prime. Show that every group of order p is cyclic.
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Chapter 4

Quotient groups

Recall from your undergraduate algebra course the construction for the integers modulo n:
one starts with an equivalence relation ∼ on Z, considers the set Z/n of all equivalence
classes with respect to this equivalence relation, and verifies that the operations on Z give
rise to well defined binary operations on the set of equivalence classes.

This idea still works if we replace Z by an arbitrary group, but one has to be somewhat
careful about what equivalence relation is used.

4.1 Equivalence relations on a group and cosets

Let G be a group and consider an equivalence relation ∼ on G. Let G/ ∼ denote the set
of equivalence classes for ∼ and write [g] for the equivalence class that the element g ∈ G
belongs to, that is

[x] := {g ∈ G | g ∼ x}.
When does G/ ∼ acquire the structure of a group under the operation

[x] · [y] := [xy] ?

Right away, we should be worried about whether this operation is well-defined, meaning that
it is independent of our choice of representatives for each class. That is, if [x] = [x′] and
[y] = [y′] then must [xy] = [x′y′]? In other words, if x ∼ x′ and y ∼ y′, must xy ∼ x′y′?

Definition 4.1. We say an equivalence relation ∼ on a group G is compatible with
multiplication if x ∼ y implies xz ∼ yz and zx ∼ zy for all x, y, z ∈ G.

Lemma 4.2. For a group G and equivalence relation ∼, the rule [x]·[y] = [xy] is well-defined
and makes G/ ∼ into a group if and only if ∼ is compatible with multiplication.

Proof. To say that the rule [x] · [y] = [xy] is well-defined is to say that for all x, x′, y, y′ ∈ G
we have

[x] = [x′] and [y] = [y′] =⇒ [x][y] = [x′][y′].

So [xy] = [x′y′] if and only if whenever x ∼ x′ and y ∼ y′, then xy ∼ x′y′.
Assume ∼ is compatible with multiplication. Then x ∼ x′ implies xy ∼ x′y and y ∼ y′

implies x′y ∼ x′y′, hence by transitivity xy ∼ x′y′. Thus [x] · [y] = [xy] is well-defined.
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Conversely, assume the rule [x] · [y] = [xy] is well-defined, so that

[x] = [x′] and [y] = [y′] =⇒ [x][y] = [x′][y′].

Setting y = y′ gives us
x ∼ x′ =⇒ xy ∼ x′y.

Setting x = x′ gives us
y ∼ y′ =⇒ xy ∼ xy′.

Hence ∼ is compatible with multiplication.
So now assume that the multiplication rule is well-defined, which we have now proved is

equivalent to saying that ∼ is compatible with the multiplication in G. We need to prove
that G/ ∼ really is a group. Indeed, since G itself is a group then given any x, y, z ∈ G we
have

[x] · ([y] · [z]) = [x] · [yz] = [x(yz)] = [(xy)z] = [xy][z] = ([x][y])[z]

Moreover, for all x ∈ G we have

[eG][x] = [eGx] = [x] and [x][eG] = [xeG] = [x],

so that [eG] is an identity for G/ ∼. Finally,

[x][x−1] = [eG] = eG/∼,

so that every element in G/ ∼ has an inverse; in fact, this shows that [x]−1 = [x−1].

Definition 4.3. Let G be a group and let ∼ be an equivalence relation on G that is com-
patible with multiplication. The quotient group is the set G/ ∼ of equivalence classes,
with group multiplication [x] · [y] = [xy].

Example 4.4. Let G = Z and fix an integer n > 1. Let ∼ be the equivalence relation given
by congruence modulo n, so ∼=≡ (mod n). Then

(Z,+)/ ∼= (Z/n,+).

But how do we come up with equivalence relations that are compatible with the group
law?

Definition 4.5. Let H be a subgroup of a group G. The left action of H on G is given
by

h · g = hg for h ∈ H, g ∈ G.
The equivalence relation ∼H on G induced by the left action of H is given by

a ∼H b if and only if b = ha for some h ∈ H.

The equivalence class of g ∈ G, also called the orbit of g, and also called the right coset
of H in G containing g, is

Hg := {hg | h ∈ H}.
There is also a left coset of H in G containing g, defined by

gH := {gh | h ∈ H}.
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Example 4.6. Let G = Z and H = 〈n〉 = nZ = {nk | k ∈ Z}. Then

x ∼nZ y ⇐⇒ x = y + nk for some k ∈ Z ⇐⇒ x ≡ y (mod n).

Therefore the equivalence relation ∼nZ is the same as congruence modulo n and the right
and left cosets of nZ in Z are the congruence classes of integers modulo n.

Lemma 4.7. Let H ≤ G. The following facts about left cosets are equivalent for x, y ∈ G:

1. The elements x and y belong to the same left coset of H in G.

2. x = yh for some h ∈ H.

3. y = xh for some h ∈ H.

4. y−1x ∈ H.

5. x−1y ∈ H.

6. xH = yH.

Analogously, the following facts about right cosets are equivalent for all x, y ∈ G:

1. The elements x and y belong to the same right coset of H in G.

2. There exists h ∈ H such that x = hy.

3. There exists h ∈ H such that y = hx.

4. We have yx−1 ∈ H.

5. We have xy−1 ∈ H.

6. We have Hx = Hy.

Proof. We will only prove the statements about left cosets, since the statements about right
cosets are analogous.

(1. ⇒ 2.) Suppose that x and y belong to the same left coset gH of H in G. Then
x = ga and y = gb for some a, b ∈ H, so g = yb−1 and therefore x = yb−1h = ya where
h = b−1a ∈ H.

(2.⇔ 3.) We have x = yh for some h ∈ H if and only if y = xh−1 and h−1 ∈ H.

(2.⇔ 4.) We have x = yh for some h ∈ H if and only if y−1x = h ∈ H.

(4.⇔ 5.) Note that y−1x ∈ H ⇔ (y−1x)−1 ∈ H ⇐⇒ x−1y ∈ H.

(2. ⇒ 6.) Suppose x = ya for some a ∈ H. Then by 2. ⇒ 3. we also have y = xb for
some b ∈ H. Note that for all h ∈ H, we also have ah ∈ h and bh ∈ H. Then

xH = {xh | h ∈ H} = {y(ah)︸︷︷︸
∈H

| h ∈ H} ⊆ yH

and
yH = {yh | h ∈ H} = {x(bh)︸︷︷︸

∈H

| h ∈ H} ⊆ xH.

Therefore, xH = yH.

(6. ⇒ 1.) Since eG = eH ∈ H, we have x = xeG ∈ xH and y = yeG ∈ yH. If xH = yH
then, x and y belong to the same left coset.
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Remark 4.8. Note that Lemma 4.7 says in particular that ∼H is compatible with multipli-
cation.

Lemma 4.9. For H ≤ G, the collection of left cosets of H in G form a partition of G, and
similarly for the collection of right cosets:⋃

x∈G

xH = G

and for all x, y ∈ G, either xH = yH or xH ∩ yH = ∅.
The analogous statement for right cosets also holds. Moreover, all left and right cosets

have the same cardinality: for any x ∈ G,

|xH| = |Hx| = |H|.

Proof. Since the left (respectively, right) cosets are the equivalence classes for an equivalence
relation, the first part of the statement is just a special case of a general fact about equivalence
relation.

Let us nevertheless write a proof for the assertions for right cosets. Every element g ∈ G
belongs to at least one right coset, since e ∈ H gives us g ∈ Hg. Thus⋃

x∈G

xH = G.

Now we need to show any two cosets are either identical or disjoint: if Hx and Hy share an
element, then it follows from 1. ⇒ 6. of Lemma 4.7 that Hx = Hy. This proves that the
right cosets partition G.

To see that all right cosets have the same cardinality as H, consider the function

ρ : H → Hg defined by ρ(h) = hg.

This function ρ is surjective by construction. Moreover, if ρ(h) = ρ(h′) then hg = h′g and
thus h = h′. Thus ρ is also injective, and therefore a bijection, so |Hg| = |H|.

Definition 4.10. The number of left cosets of a subgroup H in a finite group G is denoted
by [G : H] and called the index of H in G. Equivalently, the index [G : H] is the number
of right cosets of H.

We can now write a fancier version of Lagrange’s Theorem 3.20; we leave the proof as an
exercise.

Corollary 4.11 (Lagrange’s Theorem revisited). If G is a finite group and H ≤ G, then

|G| = |H| · [G : H].

In particular, |H| is a divisor of |G|.

Another way to write this: if G is finite and H is any subgroup of G, then

[G : H] =
|G|
|H|

.
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Example 4.12. For G = Dn and H = 〈s〉 = {e, s}, the left cosets gH of H in G are

{e, s}, {r, rs}, {r2, r2s}, · · · , {rn−1, rn−1s}

and the right cosets Hg are

{e, s}, {r, r−1s}, {r2, r−2s}, · · · , {rn−1, r−n+1s}.

Note that these lists are not the same, but they do have the same length. For example, r
is in the left coset {r, rs}, while its right coset is {r, r−1s}. We have |G| = 2n, |H| = 2 and
[G : H] = n.

Keeping G = Dn but now letting K = 〈r〉, the left cosets are K and

sK = {s, sr, . . . , srn−1} = {s, rn−1s, rn−2s, . . . , rs}

and the right cosets are K and

Ks = {s, rn−1s, rn−2s, . . . , rs}.

In this case sK = Ks, and the left and right cosets are exactly the same. We have |G| = 2n,
|H| = n and [G : H] = 2.

4.2 Normal subgroups

Definition 4.13. A subgroup N of a group G is normal in G, written N � G, if

gNg−1 = N for all g ∈ G.

Example 4.14.

(1) The trivial subgroups {e} and G of a group G are always normal.

(2) Any subgroup of an abelian group is normal.

(3) For any group G, Z(G) � G.

Remark 4.15. The relation of being a normal subgroup is not transitive. For example, for

V = {e, (12)(34), (13)(24), (14)(23)}

one can show that V � S4 (see Lemma 4.21 below), and since V is abelian (because you
proved before that all groups with 4 elements are abelian!), the subgroup H = {e, (12)(34)}
is normal in V . But H is not normal in S4, since for example

(13)[(12)(34)](13)−1 = (32)(14) /∈ H.
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Lemma 4.16. Assume N is a subgroup of G. The following conditions are equivalent.

(a) N is a normal subgroup of G, meaning that gNg−1 = N for all g ∈ G.

(b) We have gNg−1 ⊆ N for all g ∈ G, meaning that gng−1 ∈ N for all n ∈ N and g ∈ G.

(c) The right and left cosets of N agree. More precisely, gN = Ng for all g ∈ G.

(d) We have gN ⊆ Ng for all g ∈ G.

(e) We have Ng ⊆ gN for all g ∈ G.

Proof. Note that gNg−1 = N if and only if gN = Ng and hence (1) ⇐⇒ (3).
The implication (a)⇒ (b) is immediate. Conversely, if gNg−1 ⊆ N for all g, then

N = g−1(gNg−1)g ⊆ g−1Ng.

Thus (b) implies (a).
Finally, (b), (d), and (e) are all equivalent since

gNg−1 ⊆ N ⇐⇒ gN ⊆ Ng

and
g−1Ng ⊆ N ⇐⇒ Ng ⊆ gN.

Exercise 19. Kernels of group homomorphisms are normal.

We will see later that, conversely, all normal subgroups are kernels of group homomor-
phisms.

Exercise 20. Any subgroup of index two is normal.

Exercise 21. Preimages of normal subgroups are normal, that is, if f : G → H is a group
homomorphism and K � H, then f−1(K) � G.

Remark 4.17. Let A ≤ B be subgroups of a group G. If A is a normal subgroup of G, then
in particular for all b ∈ B we have

bab−1 ∈ A,

since b ∈ B ⊆ G. Therefore, A is a normal subgroup of B.

Example 4.18. Let us go back to Example 4.12, where we considered the group G = Dn

and the subgroups
H = 〈s〉 = {e, s} and K = 〈r〉.

We showed that the left and right cosets of H are not the same, and thus H is not a normal
subgroup of G. We also showed that the left and right cosets of K are in fact the same,
which proves that K is a normal subgroup of G. Note that H is nevertheless a very nice
group – it is cyclic and thus abelian – despite not being a normal subgroup of G. This
indicates that whether a subgroup H is a normal subgroup of G has a lot more to do about
the relationship between H and G than the properties of H as a group on its own.
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Definition 4.19. The alternating group An is the subgroup of Sn generated by all prod-
ucts of two transpositions.

Remark 4.20. Recall that we proved in Theorem 1.44 that the sign of a permutation is
well-defined. Notice also that the inverse of an even permutation must also be even, and the
product of any two even permutations is even, and thus An can also be described as the set
of all even permutations.

Lemma 4.21. For all n > 2, An � Sn.

Proof. Consider the sign map sign : Sn → Z/2 that takes each permutation to its sign,
meaning

sign(σ) =

{
1 if σ is even

−1 if σ is odd.

This a group homomorphism (exercise!), and by construction the kernel of sign is An. By
Exercise 19, we conclude that An must be a normal subgroup of Sn.

Alternatively, we can prove Lemma 4.21 by showing that An is a subgroup of Sn of index
2, and using Exercise 20.

The last condition in Lemma 4.16 implies that for all g ∈ G and n ∈ N , we have
gn = n′g for some n′ ∈ N , which is precisely what was needed to make the group law on
G/ ∼H well-defined. Recall that

a ∼H b if and only if b = ha for some h ∈ H.

Lemma 4.22. Let G be a group. An equivalence relation ∼ on G is compatible with multi-
plication if and only if ∼=∼N for some normal subgroup N � G.

Proof. (⇒) Suppose ∼ is compatible with multiplication, and set N := {g ∈ G | g ∼ e}.
Then we claim that N � G and ∼=∼N .

To see that N � G, let n ∈ N and g ∈ G. Since n ∈ N , then n ∼ e, and thus since ∼ is
compatible with multiplication we conclude that for all g ∈ G we have

gng−1 ∼ geg−1 = e ∈ N.

This shows that gng−1 ⊆ N for any n ∈ N and any g ∈ G, and thus N is a normal subgroup
of G by Lemma 4.16.

It remains to check that ∼=∼N . Given any a, b ∈ G, since ∼ is compatible with multi-
plication then

a ∼ b =⇒ ab−1 ∼ bb−1 = e =⇒ ab−1 ∈ H.
Thus there exists some h ∈ H such that

ab−1 = h =⇒ a = hb. ⇐⇒ a ∼H b.

(⇐) If ∼=∼N , then in particular ∼ is compatible with multiplication. Let x, y, z ∈ G
such that x ∼N y. Then y = nx for some n ∈ N , so yz = nxz and

zy = znx = zn(z−1z)x = (znz−1)zx = n′zx

for some n′ ∈ N , where the last equality uses the normal subgroup property. We deduce
that yz ∼N xz and zy ∼N zx.

44



4.3 Quotient groups

Definition 4.23. Let N be a normal subgroup of a group G. The quotient group G/N is
the group G/ ∼N , where ∼N is the equivalence relation induced by the left action of N on
G. Thus G/N is the set of left cosets of N in G, and the multiplication is given by

xN · yN := (xy)N.

The identity elements is eGN = N and for each g ∈ G, the inverse of gN is (gN)−1 = g−1N .

Remark 4.24. Note that, by Lemma 4.9, G/N is also the set of right cosets of N in G with
multiplication given by

Nx ·Ny := N(xy).

In order to prove statements about a quotient G/N , it is often useful to rewrite those
statements in terms of elements in the original group G, but one needs to be careful when
translating.

Remark 4.25. Given a group G and a normal subgroup N , equality in the quotient does
not mean that the representatives are equal. By Lemma 4.7,

gN = hN ⇐⇒ gh−1 ∈ N.

In particular, gN = N if and only if g ∈ N .

Remark 4.26. Note that |G/N | = [G : N ]. By Lagrange’s Theorem, if G is finite then

|G/N | = |G|
|N |

.

Example 4.27. We saw in Example 4.18 that the subgroup N = 〈r〉 of Dn is normal. The
quotient Dn/N has just two elements, N and sN , and hence it must be cyclic of order 2,
since that is the only one group of order 2. In fact, note that |N | = n and |Dn| = 2n, so by
Lagrange’s Theorem

|Dn/N | =
2n

n
= 2.

Example 4.28. The infinite dihedral group D∞ is the set

D∞ = {ri, ris | i ∈ Z}

together with the multiplication operation defined by

ri · rj = ri+j, ri · (rjs) = ri+js, (ris) · rj = ri−js, and (ris)(rjs) = ri−j.

One can show that D∞ is the group with presentation

D∞ = 〈r, s | s2 = e, srs = r−1〉.

Then 〈rn〉 � D∞ and D∞/〈rn〉 ∼= Dn via the map r〈rn〉 7→ r and s〈rn〉 7→ s.
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Remark 4.29. In Example 4.28 above, both groups D∞ and 〈rn〉 are infinite, but

[D∞ : 〈rn〉] = |D∞/〈rn〉| = |Dn| = 2n.

This shows that the quotient of an infinite group by an infinite subgroup can be a finite
group.

The quotient of an infinite group by an infinite subgroup can also be infinite. In contrast,
a quotient of any finite group must necessarily be finite.

Lemma 4.30. Let G be a group and consider a normal subgroup N of G. Then the map

G
π // G/N

g � // π(g) = gN

is a surjective group homomorphism with ker(π) = N .

Proof. Surjectivity is immediate from the definition. Now we claim that π is a group homo-
morphism:

π(gg′) = (gg′)N by definition of π

= gN · g′N by definition of the multiplication on G/N

= π(g)π(g′) by definition of π.

Finally, by Lemma 4.7, we have

ker(π) = {g ∈ G | gN = eGN} = N.

Definition 4.31. Let G be any group and N be a normal subgroup of G. The group
homomorphism

G
π // G/N

g � // π(g) = gN

is called the canonical (quotient) map, the canonical surjection, or the canonical
projection of G onto G/N .

The canonical projection is a surjective homomorphism. We might indicate that in our
notation by writing π : G� G/N . More generally

Notation 4.32. If f : A→ B is a surjective function, we might write f : A� B to denote
that surjectivity.

Normal subgroups are precisely those that can be realized as kernels of a group homo-
morphism.

Corollary 4.33. A subgroup N of a group G is normal in G if and only if N is the kernel
of a homomorphism with domain G.

46



Proof. By Exercise 19, the kernel of any group homomorphism is a normal subgroup; we
have just shown in Lemma 4.30 that every normal subgroup can be realized as the kernel of
a group homomorphism.

Definition 4.34. Let G be any group. For x, y ∈ G, the commutator of x and y is the
element

[x, y] := xyx−1y−1.

The commutator subgroup or derived subgroup of G, denoted by G′ or [G,G], is
the subgroup generated by all commutators of elements in G. More precisely,

[G,G] := 〈[x, y] | x, y ∈ G〉.

Remark 4.35. Note that [x, y] = e if and only if xy = yx. More generally, [G,G] = {eG} if
and only if G is abelian.

The commutator subgroup measures how far G is from being abelian: if the commutator
is as small as possible, then G is abelian, so a larger commutator indicates the group is
somehow further from being abelian.

Remark 4.36 (The commutator is a normal subgroup). A typical element of [G,G] has the
form

[x1, y1] · · · [xk, yk] for k > 1 and x1, . . . , xk, y1, . . . , yk ∈ G.

We do not need to explicitly include inverses since

[x, y]−1 = yxy−1x−1 = [y, x].

Exercise 22. Show that [G,G] is a normal subgroup of G.

Definition 4.37. Let G be a group and [G,G] be its commutator subgroup. The associated
quotient group

Gab := G/[G,G]

is called the abelianization of G.

Remark 4.38. In this remark we will write G′ instead of [G,G] for convenience. The
abelianization G/G′ of any group G is an abelian, since

[xG′, yG′] = [x, y]G′ = G′ = eG/G′

for all x, y ∈ G.

Exercise 23. Let G be any group. The abelianization of G is the largest quotient of G that
is abelian, in the sense that if G/N is abelian for some normal subgroup N , then N ⊆ [G,G].

It is now time to prove the famous (and very useful!) Isomorphism Theorems.
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4.4 The Isomorphism Theorems for groups

Theorem 4.39 (Universal Mapping Property (UMP) of a Quotient Group). Let G be a group
and N a normal subgroup. Given any group homomorphism f : G → H with N ⊆ ker(f),
there exists a unique group homomorphism

f : G/N → H

such that the triangle
G

π

}}}}

f

��
G/N

f

// H

commutes, meaning that f ◦ π = f .

Moreover, im(f) = im(f). In particular, if f is surjective, then f is also surjective.
Finally,

ker(f) = ker(f)/N := {gN | f(g) = eH}.

Proof. Suppose that such a homomorphism f exists. Since f = π ◦f , then f has to be given
by

f(gN) = f(π(g)) = f(g).

In particular, f is necessarily unique. To show existence, we just need to show that this
formula determines a well-defined homomorphism. Given xN = yN , we have

y−1x ∈ N ⊆ ker(f)

and so
f(y)−1f(x) = f(y−1x) = e =⇒ f(y) = f(x).

This shows that f is well-defined. Moreover, for any x, y ∈ G, we have

f((xN)(yN)) = f((xy)N) = f(xy) = f(x)f(y) = f(xN)f(yN).

Thus f is a group homomorphism.
The fact that im f = im f is immediate from the formula for f given above, and hence f

is surjective if and only if f is surjective.
Finally, we have

xN ∈ ker(f) ⇐⇒ f(xN) = eH ⇐⇒ f(x) = eH ⇐⇒ x ∈ ker(f).

Therefore, if xN ∈ ker(f) then xN ∈ ker(f)/N . On the other hand, if xN ∈ ker(f)/N
for some x ∈ G, then xN = yN for some y ∈ ker(f) and hence x = yz for some z ∈ N .
Since N ⊆ ker(f), then x, y ∈ ker(f), and thus we conclude that x = yz ∈ ker(f).

In short, the UMP of quotient groups says that to give a homomorphism from a quotient
G/N is the same as to give a homomorphism from G with kernel containing N .

48



Corollary 4.40. Let G be any group and let A be an abelian group. Any group homomor-
phism f : G → A must factor uniquely through the abelianization Gab of G: there exists a
unique homomorphism f such that f factors as the composition

f : G
π−−→ G/[G,G]

f−−→ A.

Proof. Let π : G→ Gab = G/[G,G] be the canonical projection. Since A is abelian, then

f([x, y]) = [f(x), f(y)] = e

for all x, y ∈ G, and thus [G,G] ⊆ ker(f). By Theorem 4.39, the homomorphism f must
uniquely factor as

f : G
π−−→ G/[G,G]

f−−→ A.

The slogan for the previous result is that any homomorphism from a group G to any
abelian group factors uniquely through the abelianization G/[G,G] of G.

We are now ready for the First (and most important) Isomorphism Theorem.

Theorem 4.41 (First Isomorphism Theorem). If f : G→ H is a homomorphism of groups,
then ker(f) � G and the map f defined by

G/ ker(f)
f // H

g · ker(f) � // f(g)

induces an isomorphism

f : G/ ker(f)
∼=−−→ im(f).

In particular, if f is surjective, then f induces an isomorphism f : G/ ker(f)
∼=−−→ H.

Proof. The fact that the kernel is a normal subgroup is Exercise 19. Let us first restrict the
target of f to im(f), so that we can assume without loss of generality that f is surjective.
By Theorem 4.39, there exists a (unique) homomorphism f such that f ◦ π = f , where
π : G → G/ ker(f) is the canonical projection. Moreover, the kernel ker(f)/ ker(f) of f
consists of just one element, the coset ker(f) of the identity, and so f it injective. Moreover,
Theorem 4.39 also says that the image of f equals the image of f . We conclude that f is an
isomorphism.

Example 4.42. Let F be a field and consider G = GLn(F ) for some integer n > 1. We
claim that H = SLn(F ), the square matrices with determinant 1, is a normal subgroup of
G = GLn(F ). Indeed, given A ∈ GLn(F ) and B ∈ SLn(F ), then

det(ABA−1) = det(A)det(B)︸ ︷︷ ︸
1

det(A)−1 = det(A) det(A)−1 = 1,

so ABA−1 ∈ H. The map
det : GLn(F )→ (F×, ·)

is a surjective group homomorphism whose kernel is by definition of SLn(F ). By the First
Isomorphism Theorem,

GLn(F )/ SLn(F ) ∼= (F×, ·).
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Example 4.43. Note that N = ({±1}, ·) is a subgroup of G = (R \ {0}, ·), and N is normal
in G since G is abelian. We claim that G/N is isomorphic to (R>0, ·). To prove this, define

f : R× → R>0

to be the absolute value function, so that f(r) = |r|. Then f is a surjective homomorphism
and its kernel is N . The First Isomorphism Theorem gives

G/N ∼= (R>0, ·).

Example 4.44. We showed in Example 4.27 that Dn/ < r > is isomorphic to the cyclic
group of order 2. Let us now reprove that fact using the First Isomorphism Theorem.

Recall that ({±1}, ·) is a group with · the usual multiplication. Define f : Dn −→ {±1}
by

f(α) =

{
1 if α preserves orientation

−1 if α reverses orientation
=

{
1 if α is a rotation

−1 if α is a reflection.

One can show (exercise!) that this is a surjective homomorphism with kernel ker f = 〈r〉,
and hence by the First Isomorphism Theorem

Dn/〈r〉 ∼= ({±1}, ·).

To set up the Second Isomorphism Theorem, we need some more background first.

Definition 4.45. Given subgroups H and K of a group G, we define the subset HK of G
by

HK := {hk | h ∈ H, k ∈ K}.

Note that HK is in general only a subset of G, not a subgroup.

Remark 4.46. Given subgroups H and K of a group G, note that H and K are both
subgroups of HK. For example, any element h ∈ H is in HK because e ∈ K and h = he ∈
HK.

Exercise 24. Let H and K be subgroups of G.

(1) The subset HK is a subgroup of G if and only if HK = KH.

(2) If at least one of H or K is a normal subgroup of G, then

HK ≤ G and HK = KH = 〈H ∪K〉.

Warning! The identity HK = KH does not mean that every pair of elements from H
and K must commute, as the example below will show; this is only an equality of sets.

Example 4.47. In Dn, consider the subgroups H = 〈s〉 and K = 〈r〉. The work we did in
Example 4.12 shows that

HK = KH = D2,

but r and s do not commute. The fact that HK = KH can also be justified by observing
that K � Dn (see Example 4.18) and using Exercise 24.
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Theorem 4.48 (Second Isomorphism Theorem). Let G be a group, H ≤ G, and N � G.
Then

HN ≤ G, N ∩H � H, N � HN

and there is an isomorphism
H

N ∩H
∼=−−→ HN

N

given by
h · (N ∩H) 7→ hN.

Proof. We leave the facts that HN ≤ G and N ∩H � H as exercises. Since N � G, then
N � HN . Let π : HN → HN

N
be the canonical projection. Define

H
f // HN

N

h // f(h) = hN.

This is a homomorphism, since it is the composition of homomorphisms

f : H ⊆ HN
π−−→ HN

N
,

where the first map is just the inclusion. Moreover, f is surjective since

hnN = hN = f(h)

for all h ∈ H and n ∈ N . The kernel of f is

ker(f) = {h ∈ H | hN = N} = H ∩N.

The result now follows from the First Isomorphism Theorem applied to f .

Corollary 4.49. If H and N are finite subgroups of G and N � G, then

|HN | = |H| · |N |
|H ∩N |

.

Proof. By Theorem 4.48,
H

N ∩H
∼=
HN

N
.

The result now follows from Remark 4.26, which is really just an application of Lagrange’s
Theorem:

|H|
|N ∩H|

=
|HN |
|N |

.

In fact, the corollary is also true without requiring that N is normal.
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Example 4.50. Fix a field F and an integer n > 1. Let G = GLn(F ) and N = SLn(F ),
and recall that we showed in Example 4.42 that N is a normal subgroup of G. Let H be the
set of diagonal invertible matrices, which one can show is also a subgroup of G. One can
show that every invertible matrix A can be written as a product of a diagonal matrix and a
matrix of determinant 1, and thus HN = G. By the Second Isomorphism Theorem,

H/(N ∩H) ∼= G/N

and since we showed in Example 4.42 that

G/N ∼= (F×, ·),

where F× = F \ {0}, we get
H/(N ∩H) ∼= (F×, ·).

Before we prove what is known as the Third Isomorphism Theorem, we need to get a bet-
ter understanding of the subgroups of a quotient group. That is the content of what is known
as the Lattice Isomorphism Theorem, sometimes (rarely?) called the Fourth Isomorphism
Theorem.

Theorem 4.51 (The Lattice Isomorhism Theorem). Let G be a group and N a normal
subgroup of G, and let π : G � G/N be the quotient map. There is an order-preserving
bijection of posets (a lattice isomorphism)

{subgroups of G that contain N}
Ψ // {subgroups of G/N}
Φ

oo

H � // Ψ(H) = H/N

Φ(A) = π−1(A) = {x ∈ G | π(x) ∈ A} A�oo

Then this bijection enjoys the following properties:

(1) Subgroups correspond to subgroups:

H ≤ G ⇐⇒ H/N ≤ G/N.

(2) Normal subgroups correspond to normal subgroups:

H � G ⇐⇒ H/N � G/N.

(3) Indices are preserved:
[G : H] = [G/N : H/N ].

(4) Intersections and unions are preserved:

H/N ∩K/N = (H ∩K)/N and 〈H/N ∪K/N〉 = 〈H ∪K〉/N.
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Proof. We showed in Lemma 4.30 that the quotient map π : G→ G/N is a surjective group
homomorphism. It will be useful to rewrite the maps in the statement of the theorem in
terms of π. Notice that Ψ(H) = H/N = {hN | h ∈ H} = π(H). Note that Ψ does
indeed land in the correct codomain, since by Lemma 3.8 images of subgroups through group
homomorphisms are subgroups, and thus π(H) ≤ G/N for each H ≤ G. Thus Ψ is well-
defined. We claim Φ also lands in the correct codomain. Indeed, by Exercise 13 preimages
of subgroups through group homomorphisms are subgroups, and thus in particular for each
A ≤ G we have π−1(A) ≤ G. Moreover, for any A ≤ G we have {eGN} ⊆ A, hence

N = ker(π) = π−1({eGN}) ⊆ π−1(A) = Φ(A).

Thus Ψ is well-defined.
To show that Ψ is bijective, we will show that Φ and Ψ are mutual inverses. First, note

that since π is surjective, then π(π−1(A)) = A for all subgroups A of G/N , and thus

(Ψ ◦ Φ)(A) = π(π−1(A)) = A.

Moreover,

x ∈ π−1(H/N) ⇐⇒ π(x) ∈ H/N
⇐⇒ xN = hN for some h ∈ H
⇐⇒ x ∈ hN for some h ∈ H
⇐⇒ x ∈ H since N ⊆ H.

Thus
(Φ ◦Ψ)(H) = π−1(π(H)) = π−1(H/N) = H.

Thus, Ψ and Φ are well-defined and inverse to each other. Since π and π−1 both preserve
containments, each of Ψ, Ψ−1 preserves containments as well.

Again by Lemma 3.8 and Exercise 13, images and preimages of subgroups by group
homomorphisms are subgroups, which proves (1). Moreover, if N ≤ H ≤ G and H � G,
then ghg−1 ∈ H for all g ∈ G and all h ∈ G, and thus

(gN)(hN)(gN)−1 = (ghg−1)N ∈ H/N.

Therefore, if N ≤ H � G, then H/N � G/N . Finally, by Exercise 21, the preimage of a
normal subgroup is normal. We have now shown (2).

We leave (3) as an exercise, and (4) is a consequence of the more general fact that lattice
isomorphisms preserve suprema and infima.

We record here what is left to do.

Exercise 25. Let G be a group and N a normal subgroup of G. For all subgroups H of G
with N ≤ H, show that

[G : H] = [G/N : H/N ] and [G : π−1(A)] = [G/N : A].
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Theorem 4.52 (Third Isomorphism Theorem). Let G be a group, M ≤ N ≤ G, M � G
and N � G. Then

M � N, N/M � G/M,

and there is an isomorphism
(G/M)
(N/M)

∼= // G/N

gM � // gN.

Proof. By Remark 4.17, since M is a normal subgroup of G, then it is also a normal subgroup
of N . Similarly, the fact that N is normal in G implies that it is normal in G/M , by
Theorem 4.51.

The kernel of the canonical map π : G� G/N contains M , and so by Theorem 4.39 we
get an induced homomorphism

φ : G/M → G/N

with φ(gM) = π(g) = gN . Moreover, we know

ker(φ) = ker(π)/M = N/M.

Finally, apply the First Isomorphism Theorem to φ.

We can now prove the statement about indices in the Lattice Isomorphism Theorem in
the case of normal subgroups.

Corollary 4.53. Let G be a group and N a normal subgroup of G. For all normal subgroups
H of G with N ≤ H,

[G : H] = [G/N : H/N ] and [G : π−1(A)] = [G/N : A].

Proof. By the Third Isomorphism Theorem,

G/H ∼=
(G/N)

(H/N)

and thus their orders are the same; in particular,

[G : H] = |G/H| =
∣∣∣∣ (G/N)

(H/N)

∣∣∣∣ = [G/N : H/N ] = [G/N : H/N ].
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4.5 Presentations as quotient groups

We can finally define group presentations in a completely rigorous manner.

Definition 4.54. Let A be a set. Consider the new set of symbols

A−1 = {a−1 | a ∈ A}.

Consider the set of all finite words written using symbols in A ∪ A−1, including the empty
word. If a word w contains consecutive symbols aa−1 or a−1a, we can simplify w by erasing
those two consecutive symbols, and we obtain a word that is equivalent to w. If a word
cannot be simplified any further, we say that it is reduced. Given any a ∈ A, a1 denotes a,
to distinguish it from a−1.

The free group on A, denoted F (A), is the set of all reduced words in A ∪ A−1. In
symbols,

F (A) = {ai11 ai22 · · · aimm | m > 0, aj ∈ A, ij ∈ {−1, 1}}.

The set F (A) is a group with the operation in which any two words are multiplied by
concatenation.

Example 4.55. The free group on a singleton set A = x is the infinite cyclic group C∞.

Theorem 4.56 (Universal mapping property for free groups). Let A be a set, let F (A) be
the free group on A, and let H be any group. Given a function g : A→ H, there is a unique
group homomorphism f : F (A)→ H satisfying f(a) = g(a) for all a ∈ A.

Proof. Let f : F (A)→ H be given by

f(ai11 a
i2
2 · · · aimm ) = g(a1)i1g(a2)i2 · · · g(am)am

for any m > 0, aj ∈ A, and ij ∈ {−1, 1}. To check that this is a well-defined function, note
that

f(ai11 a
i2
2 · · · aa−1 · · · aimm ) = g(a1)i1g(a2)i2 · · · g(a)g(a)−1 · · · g(am)am = f(ai11 a

i2
2 · · · aimm )

for any a ∈ G and similarly for inserting a−1a. The fact that f is a group homomorphism
and its uniqueness are left as an exercise.

Definition 4.57. Let G be a group and let R ⊆ G be a set. The normal subgroup of G
generated by R, denoted 〈R〉N , is the set of all products of conjugates of elements of R and
inverses of elements of R. In symbols,

〈R〉N = {g1r
i1
1 g
−1
1 . . . gmr

im
m g
−1
m | m > 0, ij ∈ {1,−1}, rj ∈ R, gj ∈ G}.

Definition 4.58. Let A be a set and let R be a subset of the free group F (A). The group
with presentation

〈A | R〉 = 〈A|{r = e | r ∈ R}〉

is defined to be the quotient group F (A)/〈R〉N .
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Example 4.59. Let A = {x} and consider R = {xn}. Then the group with presentation
〈A | R〉 is the cyclic group of order n:

Cn = 〈x | xn = e〉 =
F ({x})
〈xn〉N

= C∞/〈xn〉.

Example 4.60. Taking A = {r, s} and R = {s2, rn, srsr}, 〈A | R〉 is the usual presentation
for Dn:

Dn = 〈r, s | s2 = e, rn = e, srsr = e〉 =
F ({r, s})

{s2, rn, srsr}N
.

Theorem 4.61 (Universal mapping property of a presentation). Let A be a set, let F (A)
be the free group on A, let R be a subset of F (A), and let H be a group. Let g : A→ H be a
function satisfying the property that whenever r = ai11 · · · aimm ∈ R, with each aj ∈ A, gj ∈ G
and ij ∈ {1,−1}, then

(g(a1))i1 · · · (g(am))im = eH .

Then there is a unique homomorphism f : 〈A|R〉 → H satisfying

f(a〈R〉N) = g(a) for all a ∈ A.

Proof. By Theorem 4.56, there is a unique group homomorphism f̃ : F (A) → H such that
f(a) = g(a) for all a ∈ A. Then for

r = ai11 · · · aimm ∈ R

we have
f(r) = (g(a1))i1 · · · (g(am))im = eH ,

showing that R ⊆ ker(f). Since ker(f) � F (A) and 〈R〉N is the smallest normal sub-
group containing R, it follows that 〈R〉N ⊆ ker(f). By Theorem 4.39, f induces a group
homomorphism f : G/〈R〉N → H. Moreover, for each a ∈ A we have

g(a) = f(a) = f(a〈R〉N).

Remark 4.62. The universal property of a presentation in Theorem 4.61 says that to give
a group homomorphism from a group G with a given presentation to a group H is the same
as picking images for each of the generators that satisfy the same relations in H as those
given in the presentation.

Example 4.63. To find a groups homomorphism Dn → GL2(R), it suffices to pick images
for r and s, say r 7→ R, s 7→ S, and to verify that

S2 = I2, Rn = I2, SRSR = I2.

One can check that this does hold for the matrices

S =

(
cos 2πn − sin 2πn
sin 2πn cos 2πn

)
and R =

(
0 1
1 0

)
.

By the UMP of the presentation there is a unique group homomorphism Dn → GL2(R) that
sends r to R and s to S.
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Presentations of groups are remarkably complex mathematical constructions. What
makes them so complicated is that 〈R〉N is very hard to calculate in general. The fol-
lowing theorem is a negative answer to what is know as the Word Problem, and illustrates
how complicated the story can become:

Theorem 4.64 (Boone-Novikov). There exists a finite set A and a finite subset R of F (A)
such that there exists no algorithm that determines whether a given element of 〈A | R〉 is
equal to the trivial element.
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Chapter 5

Group actions... in action

It is time for some more group actions. We will start with some general facts about group
actions, and then we will focus on some specific actions and use them to prove results about
the structure of finite groups.

5.1 Orbits and Stabilizers

Let G be a group acting on a set S. Let us recall some notation and facts about group
actions. The orbit of an element s ∈ S is

OrbG(s) = {g · s | g ∈ G}.

A permutation representation of a group G is a group homomorphism ρ : G→ Perm(S)
for some set S. By Lemma 2.3, to give an action of G on a set S is equivalent to giving a
permutation representation ρ : G→ Perm(S), which is induced by the action via

ρ(g)(s) = g · s.

An action is faithful if the only element g ∈ G such that g · s = s for all s ∈ S is g = eG.
Equivalently an action is faithful if ker(ρ) = {eG}. An action is transitive if for all p, q ∈ S
there is a g ∈ G such that q = g · p. Equivalently, an action is transitive if OrbG(p) = S for
any p ∈ S.

Definition 5.1. Let G be a group acting on a set S. The stabilizer of an element s in S
is the set of group elements that fix s under the action:

StabG(s) = {g ∈ G | g · s = s}.

Definition 5.2. Let G be a group acting on a set S. An element s ∈ S is a fixed point of
the action if g · s = s for all g ∈ G.

Remark 5.3. Let G be a group acting on a set S. An element s ∈ S is a fixed point if and
only if OrbG(s) = {s}. Moreover, s is a fixed point if and only if StabG(s) = G.

The stabilizer of any element is always a subgroup of G.
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Lemma 5.4. Let G be a group acting on a set S, and let s ∈ S. The stabilizer StabG(s) of
s is a subgroup of G.

Proof. By definition of group action, e · s = s, so e ∈ StabG(e). If x, y ∈ StabG(s), then
(xy)s = x(ys) = xs = s and thus xy ∈ StabG(s). If x ∈ StabG(s), then

xs = s⇒ s = x−1xs = x−1s⇒ x−1 ∈ StabG(s).

The following theorem can easily be remembered by the mnemonic LOIS, which stands
for

LOIS = The Length of the Orbit is the Index of the Stabilizer.

Theorem 5.5 (LOIS). Let G be a group that acts on a set S. For any s ∈ S we have

|OrbG(s)| = [G : StabG(s)].

Proof. Let L be the collection of left cosets of StabG(s) in G. Let α : L → OrbG(s) be given
by

α(x StabG(s)) = x · s.
This function is well-defined and injective:

x StabG(s) = y StabG(s) ⇐⇒ x−1y ∈ StabG(s) ⇐⇒ x−1y · s = s ⇐⇒ y · s = x · s.

The function α is surjective by definition of OrbG(s), and thus it is a bijection. Finally, we
can now conclude that

[G : StabG(s)] = |L| = |OrbG(s)|.

Corollary 5.6 (Orbit-Stabilizer Theorem). Let G be a finite group acting on a set S. For
any s ∈ S we have

|G| = |OrbG(s)| · | StabG(s)].

Proof. This is a direct consequence of LOIS, since by Lagrange’s Theorem

[G : StabG(s)] = |G|/| StabG(s)|.

Remark 5.7. Let G be a group acting on a finite set S. The orbits of the action form a
partition of S. The one-element orbits correspond to the fixed points of the action. Pick one
element s1, . . . , sm in each of the other orbits. This gives us the

The Orbit Formula: |S| = (the number of fixed points) +
m∑
i=1

|OrbG(si)|.

By LOIS, we can rewrite this as

The Stabilizer Formula: |S| = (the number of fixed points) +
m∑
i=1

[G : StabG(si)].

We will later see that these are very useful formulas.
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We can now use these simple facts to do some explicit calculations with groups.

Example 5.8. Let G be the group of rotational (orientation-preserving) symmetries of the
cube. To count the number of elements of G, think about an isometry as picking up a cube
lying on a table, moving it, and placing it back in the same location. To do this, one must
pick a face to place on the table. This can be chosen in 6 ways. Once that face is chosen,
one needs to decide on where each vertex of that face goes and this can be done in 4 ways.
Thus |G| = 24.

We can restrict the action of G to the four lines that join opposite vertices of the cube; the
group of permutations of the four lines is S4, so the corresponding permutation representation
associated to this action is a group homomorphism ρ : G→ S4.

We claim that this homomorphism ρ is actually an isomorphism from G to S4. To see
this, first label each vertex of the cube 1 through 8. Let a, b, c, and d denote each of the
four lines, and let us also label the vertices of the cube a, b, c, or d according to which of
the diagonal lines goes through that vertex.

7 6

3 2

8 5

4 1

a d

c b

b c

d a

Now note that each face corresponds to a unique order on a, b, c, d, read counterclockwise
from the outside of the cube:

The face 1234 corresponds to adcb

The face 1256 corresponds to abdc

The face 1458 corresponds to adbc

The face 5678 corresponds to abcd

The face 2367 corresponds to adbc

The face 3478 corresponds to acdb.

So suppose that g ∈ G fixes all of the four lines a, b, c, d. Then the face at the bottom must
be abcb, which corresponds to 1234, and thus all the vertices of the cube in the bottom face
must be fixed. We conclude that g must fix the entire cube, and thus g must be the identity.

Thus the action is faithful, and hence the permutation representation ρ : G → S4 is
injective. Moreover, we showed above that |G| = 24 = |S4|, and thus ρ is an injective
function between two finite sets of the same size. We conclude that ρ must actually be a
bijection, and thus an isomorphism.

The same group G also acts on the six faces of the cube. This action is transitive, since
we can always pick up the cube and put it back on the table with any face on the top. Thus
the one and only orbit for the action of G on the six faces of the cube has length 6. By LOIS,
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it follows that for any face f of the cube, its stabilizer has index 6 and, since we already
know that |G| = 24, the Orbit-Stabilizer Theorem gives us

| StabG(f)| = |G|
|OrbG(s)|

=
24

6
= 4.

Thus, there are four symmetries that map f to itself. Indeed, they are the 4 rotations by 0,
π
2
, π or 3π

2
about the line of symmetry passing through the midpoint of f and the midpoint

of the opposite face.

Example 5.9. Let X be a regular dodecahedron, with 12 faces, centered at the origin in
R3.

A picture of a Dodecahedron from Wikipedia

Let G be the group of isometries of the cube that preserve orientation:

G := {α : R3 → R3 | α is an isometry, α preserves orientation, and α(X) = X}.

This is a subgroup of the group of all bijections from R3 to R3. Though not obvious, every
element of G is given as rotation about a line of symmetry. There are three kinds of such
lines: those joining midpoints of opposite face, those joining midpoints of opposite edges,
and those joining opposite vertices. To count the number of elements of G informally, think
about an isometry as picking up a dodecaedron that was lying on a table and replacing it
in the same location. To do this, one must first pick one of the twelve faces to place on the
table, and, for each possible face, there are five ways to orient it. Thus

|G| = 12 · 5 = 60.

Let us use LOIS to do this more formally. Note that G act on the collection S of the
12 faces of X. This action is transitive since it is possibly to move one face to any other
via an appropriate rotation. So, the one and only orbit has length 12. Letting F be any
one of the faces, the orientation preserving isometries of X that map F to itself are just
the orientation-preserving elements of D10, of which there are 5. Indeed, these correspond
to the five rotations of X by 2πnj

5
radians for j = 0, 1, 2, 4 about the axis of symmetry

passing through the midpoint of F and the midpoint of the opposite face. Applying the
Orbit-Stabilizer Theorem gives

|G| = |OrbG(F )| · | StabG(F )] = 12 · 5 = 60.
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5.2 The class equation

The main goal of this subsection is to apply the Orbit-Stabilizer Formula to the action of
G on itself by conjugation. Let G be a group. As we saw before, G acts on S = G by
conjugation: the action is defined by g · x = gxg−1.

Definition 5.10. Let G be a group. Two elements g, g′ ∈ G are conjugate if there exists
h ∈ G such that

g′ = hgh−1.

Equivalently, g and g′ are conjugate if they are in the same orbit of the conjugation action.
The conjugacy class of an element g ∈ G is

[g]c := {hgh−1 | h ∈ G}.

Equivalently, the conjugacy class of g is the orbit of g under the conjugation action.

Remark 5.11. Let G be any group. Then geg−1 = e for all g ∈ G, and thus [e]c = e = {e}.

Let us study the conjugacy classes of Sn. You proved in a problem set that two cycles in
Sn are conjugate if and only if they have the same length:

Lemma 5.12. For any σ ∈ Sn and distinct integers i1, . . . , ip, we have

σ(i1 i2 · · · ip)σ−1 = (σ(i1) · · · σ(ip)).

Note that the right-hand cycle is a cycle since σ is injective. This generalizes to the
following:

Theorem 5.13. Two elements of Sn are conjugate if and only if they have the same cycle
type.

Proof. Consider two conjugate elements of Sn, say α and β = σασ−1. By Theorem 1.36, we
may write α as a product of disjoint cycles α = α1 · · ·αm. Then

β = σασ−1 = (σα1σ
−1) · · · (σαmσ−1).

Since α1, . . . , αm are disjoint cycles, then by Lemma 5.12 the elements (σα1σ
−1), · · · , (σαmσ−1)

are also disjoint cycles, and σαiσ
−1 has the same length as αi. We conclude that α and β

must have the same cycle type.
Conversely, consider two elements α and β with the same cycle type. More precisely,

assume α = α1 · · ·αk and β = β1 · · · βk are decompositions into disjoint cycles and that
αi, βi both have length pi > 2 for each i. We need to prove that α and β are conjugate. Let
us start with the case k = 1. Given two cycles of the same length,

α = (i1 . . . ip) and β = (j1 . . . jp).

By Lemma 5.12, any permutation σ such that σ(im) = jm for all 1 6 m 6 p must satisfy
σασ−1 = β.

Note that such σ has no restrictions on what it does to the set {1, . . . , n} \ {i1 . . . ip}:
it can map {1, . . . , n} \ {i1 . . . ip} bijectively to {1, . . . , } \ {j1 . . . jp} in any way possible.
From this observation, the general case follows: since the cycles are disjoint, we can find a
single permutation σ such that σαiσ

−1 = βi for all i.
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We can now classify all the conjugacy classes in Sn based on their cycle type.

Example 5.14. Given Theorem 5.13, we can now write a complete list of the conjugacy
classes of S4:

(1) The conjugacy class of the identity {e}.
(2) The conjugacy class of (12), which is the set of all two cycles and has

(
4
2

)
= 6 elements.

(3) The conjugacy class of (123), which is the set of all three cycles and has 4 · 2 = 8
elements.

(4) The conjugacy class of (1234), which is the set of all four cycles and has 3! = 6 elements.

(5) The conjugacy class of (12)(34), which is the set of all products of two disjoint 2-cycles
and has 3 elements.

We can check our work by recalling that the conjugacy classes partition S4, and indeed we
counted 24 elements.

Example 5.15. Given Theorem 5.13, we can now write a complete list of the conjugacy
classes of S5:

(1) The conjugacy class of the identity {e}.
(2) The conjugacy class of (12), which is the set of all 2-cycles and has

(
5
2

)
= 10 elements.

(3) The conjugacy class of (123), containing all 3-cycles, of size 2! ·
(

5
3

)
= 20 elements.

(4) The conjugacy class of (1234), containing all 4-cycles, of size 5 · 3! = 30 elements.

(5) The conjugacy class of (12345), which is the set of all 5-cycles, and has 4! = 24 elements.

(6) The conjugacy class of (12)(34), which is the set of all products of two disjoint 2-cycles
and has 5 · 3 = 15 elements.

(7) The conjugacy class of (12)(345), which is the set of all products of a 2-cycle by a
3-cycle, and has

(
5
2

)
· 2! = 20 elements.

We can check our work by noting that indeed

1 + 10 + 20 + 30 + 24 + 15 + 20 = 120 = 5!.

Remark 5.16. For any nontrivial group G, since [e]c = {e} and the conjugacy classes
partition G, then [g]c 6= G for all g ∈ G.

Definition 5.17. Let G be a group and a ∈ G. The centralizer of a is the set of elements
of G that commute with a:

CG(a) := {x ∈ G | xa = ax}.

More generally, given a subset S ⊆ G, the centralizer of S is the set

CG(S) := {x ∈ G | xs = sx for all s ∈ S}
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Definition 5.18. Let G be a group and consider a subset S ⊆ G. The normalizer of S is
the set

NG(S) := {g ∈ G | gSg−1 = S}.

Exercise 26. Let G be a group and S ⊆ G. Prove that the centralizer and the normalizer
of S are subgroups of G.

Lemma 5.19. Let S ⊆ G be any subset of a group G. Then CG(S) ⊆ NG(S).

Proof. Let G be a group and S ⊆ G. If x ∈ CG(S), then for all s ∈ S we have

xs = sx =⇒ xsx−1 = s ∈ S and x−1sx = s.

Thus xSx−1 ⊆ S and x−1Sx ⊆ S. Now for any s ∈ S we have x−1sx ∈ S and s can be
written as

s = x(x−1sx)x−1 ∈ xSx−1.

This shows that S ⊆ xSx−1. Thus xSx−1 = S, and therefore x ∈ NG(S).

Remark 5.20. If G is an abelian group, then for any a ∈ G we have CG(a) = G = NG(a).

Exercise 27. Let H be a subgroup of a group G, and S a subset of H. Then

CH(S) = CG(S) ∩H and NH(S) = NG(S) ∩H.

Exercise 28. Let G be a group and let H be a subgroup of G. Show that NG(H)/CG(H)
is isomorphic to a subgroup of the automorphism group Aut(H) of H.

Exercise 29. Let G be a group and H a subgroup of G. Prove that if H is normal in G,
then so is CG(H), and that G/CG(H) is isomorphic to a subgroup of the automorphism
group of H.

Lemma 5.21. Let G be a group. Consider the action of G on G by conjugation, where
g · h = ghg−1. For all g ∈ G,

OrbG(g) = [g]c and StabG(g) = CG(g) and |[g]c| = [G : CG(g)].

Proof. The first statement is the definition of the conjugacy class of g: OrbG(g) = [g]c.
Moreover, by simply following the definitions we see that

h ∈ StabG(g) ⇐⇒ h · g = g ⇐⇒ hgh−1 = g ⇐⇒ hg = gh ⇐⇒ h ∈ CG(G).

Thus, StabG(g) = CG(G), and by the Orbit-Stabilizer Theorem,

|[g]c| = |OrbG(g)| = [G : CG(g)].

Exercise 30. Let G be a group. Consider the action of G on the power set

P (G) = {S | S ⊆ G}

of G by conjugation, meaning g · S = gSg−1. For all S ∈ P (G),

StabG(S) = NG(S) and |OrbG(S)| = [G : NG(S)].
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Corollary 5.22. For a finite group G, the size of any conjugacy class divides |G|.

Proof. Let g ∈ G. By Lemma 5.21, the order of the conjugacy class of g is the index of the
centralizer:

|[g]c| = [G : CG(g)]

By Lagrange’s Theorem, the index of any subgroup must divide |G|, and thus in particular
|[g]c| divides |G|.

We will take the Orbit Equation and apply it to the special case of the conjugation action.
In order to do that, all that remains is to identify the fixed points of the action.

Lemma 5.23. Let G be a group acting on itself by conjugation. An element g ∈ G is a fixed
point of the conjugation action if and only g ∈ Z(G).

Proof. (⇐) Suppose that g ∈ Z(G). Then for all h ∈ G, g commutes with h, and thus

hgh−1 = (hg)h−1 = g(hh−1) = g.

Thus g is conjugate to only itself, meaning it is a fixed point for the conjugation action.
(⇒) Conversely, suppose that g is a fixed point for the conjugation action. Then for all

h ∈ G,
hgh−1 = h · g = g =⇒ hg = gh.

Thus g ∈ Z(G).

We can now write the Orbit Equation for the conjugation action; this turns out to be a
very useful formula.

Theorem 5.24 (The Class Equation). Let G be a finite group. For each conjugacy class of
sizer greater than 1, pick a unique representative, and let g1, . . . gr ∈ G be the list of all the
chosen representatives. Then

|G| = |Z(G)|+
r∑
i

|G : CG(gi)|.

Proof. By Lemma 5.23, the elements of Z(G) are precisely the fixed points of the conjugation
action. In particular, |Z(G)| counts the number of orbits that have only one element. Because
the orbits of the conjugation action partition G, and the conjugacy classes are the orbits,
then as noted in Remark 5.7

|G| = |Z(G)|+
r∑
i

[gi]c.

By LOIS, the index of the stabilizer is the order of the conjugacy class. Thus for each gi as
in the statement we have

[gi]c = [G : CG(gi)].

The class equation follows from substituting this into the equation above:

|G| = |Z(G)|+
r∑
i

|G : CG(gi)|.
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Remark 5.25. The class equation is not very interesting if G is abelian, since there is only
one term on the right hand side: |Z(G)|.

But when G is nonabelian, the class equation can lead us to discover some very interesting
facts, despite its simplicity.

Exercise 31. Prove that if G is a nonabelian group of order 21, then there is only one
possible class equation for G, meaning that the numbers appearing in the class equation are
uniquely determined up to permutation.

Corollary 5.26. If p is a prime number and G is a finite group of order pm for some m > 0,
then Z(G) is not the trivial group.

Proof. Let g1, . . . gr ∈ G be a list of unique representatives of all of the conjugacy classes
of G of size greater than 1, as in the Class Equation. By construction, each gi is not a
fixed point of the action, and thus StabG(gi) 6= G. By Lemma 5.21, CG(gi) = StabG(gi), so
CG(gi) 6= G. In particular, [G : CG(gi)] 6= 1. Since 1 6= [G : CG(gi)] and [G : CG(gi)] divides
|G| = pm, we conclude that p divides [G : CG(gi)] for each i. From the Class Equation, we
can now conclude that p divides |Z(G)|, and in particular |Z(G)| 6= 1.

Exercise 32. Let p be prime and let G be a group of order pm for some m > 1. Show
that if N is a nontrivial normal subgroup of G, then N ∩ Z(G) 6= {e}. In fact, show that
|N ∩ Z(G)| = pj for some j > 1.

Lemma 5.27. Let G be a group and N � G. The conjugation action of G on itself induces
an action by conjugation of G on N . In particular, N is the disjoint union of some of the
conjugacy classes in G.

Proof. Define the conjugation action of G on N by g · n = gng−1 for all g ∈ G and n ∈ N .
Since N � G, this always gives us back an element of N , and thus the action is well-defined.
We can think of this action as a restriction of the action of G on itself by conjugation, and
thus the two properties in the definition of an action hold for the action of G by conjugation
on N . Therefore, this is indeed an action. The orbits of elements n ∈ N under this action are
the conjugacy classes [n]c, and we have just shown that for all n ∈ N , [n]c ⊆ N . But every
element in N belongs to some conjugacy class, thus the conjugacy classes of the elements of
N partition N .

Remark 5.28. Lemma 5.27 says that the orbits of the conjugation action of G on a normal
subgroup N are just the orbits of the conjugation action of G on itself that contain elements
of N (and must thus be completely contained in N). In contrast, if N is a normal subgroup
of G, we can also consider the conjugation action of N on itself. If a and b are elements
of N that are conjugate for the N -conjugation, then they must also be conjugate for the
G-conjugation action, using the same element n ∈ N such that a = nbn−1. However, if a
and b are conjugate for the G-conjugation, they might not necessarily be conjugate for the
N -action, as all the elements g ∈ G such that a = gbg−1 could very well all be in G \N .

We will see examples of this in the next section, where we will study the special case of
the alternating group.
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5.3 The alternating group

Since An ≤ Sn, we know that if two elements of An are conjugate, then they have the same
cycle type, as they are also conjugate elements of Sn, and thus we can apply Theorem 5.13.
But as noted in Remark 5.28, there is no reason for the converse to hold: given α, β ∈ An of
the same cycle type, the elements σ ∈ Sn such that σασ−1 = β might all belong to Sn \An.
Indeed, we will see that this does happen in some cases.

Example 5.29. The two permutations (123) and (132) are not conjugates in A3, despite
having the same cycle type and thus being conjugate in A3 by Theorem 5.13. One can check
this easily, for example, by conjugating (123) by the 3 elements in A3.

Lemma 5.30. Let σ be an m-cycle in Sn. Then

σ ∈ An ⇐⇒ m is odd.

Proof. Recall that by Exercise 6,

(i1 i2 · · · im) = (i1 im)(i1 im−1)(i1 i3)(i1 i2)

is a product of m− 1 transpositions. Thus σ is even if and only if m− 1 is even.

Lemma 5.31 (Conjugacy classes of A5). The conjugacy classes of A5 are given by the
following list:

(1) The singleton {e} is a conjugacy class.

(2) The conjugacy class of (1 2 3 4 5) in A5 has 12 elements.

(3) The conjugacy class of (2 1 3 4 5) in A5 has 12 elements, and it is disjoint from the
conjugacy class of (1 2 3 4 5).

(4) The collection of all three cycles, of which there are 20, forms a conjugacy class in A5.

(5) The collection of all products of two disjoint transpositions, of which there are 15, forms
one conjugacy class in A5.

As a reality check, note that 12 + 12 + 20 + 15 + 1 = 60 = |A5|.

Proof. By Lemma 5.30, the cycle types of elements of A5 are

• five cycles, of which there are 4! = 24,

• three cycles, of which there are
(

5
3

)
2 = 20,

• products of two disjoint transpositions, of which there are 5 · 3 = 15, and

• the unique 1-cycle e, and indeed [e]c = {e}.

By Theorem 5.13, we know that two permutations are conjugate in S5 if and only if they
have the same cycle type. It follows that the conjugacy classes in A5 form a subset of the
cycles types. The statement we are trying to prove asserts that the set of five cycles breaks
apart into two conjugacy classes in A5, whereas in all the other cases, the conjugacy classes
remain whole.
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Claim: Fix a 5-cycle σ. The conjugacy class of σ in A5 has 12 elements.

By Lagrange’s Theorem,

|CS5(σ)| = |S5|
[S5 : CS5(σ)]

.

By Lemma 5.21,
[S5 : CS5(σ)] = |[σ]c|.

By Theorem 5.13, this is the number of 5-cycles in S5, which is 4!. Thus

|CS5(σ)| = 5!

4!
= 5.

Since every power of σ commutes with σ, and there are 5 such elements, we conclude that

CS5(σ) = {e, σ, σ2, σ3, σ4}.

But these are all in A5, and thus by Exercise 27 we conclude that

CA5(σ) = CS5(σ) ∩ A5 = {e, σ, σ2, σ3, σ4}.

By LOIS, Lemma 5.21, and Lagrange’s Theorem,

the size of the conjugacy class of σ in A5 = [A5 : CA5(σ)] =
|A5|
|CA5(σ)|

=
60

5
= 12.

This proves the claim.

We have now shown that the conjugacy class of each 5-cycle has 12 elements, and all
twenty-four 5-cycles are in A5. Thus there are two conjugacy classes of 5-cycles in A5. This
shows that σ is only conjugate in A5 to half of the five cycles. If we pick two 5-cycles σ and
τ that are not conjugate in A5, then τ is conjugate to exactly 12 elements, which must be
exactly the other 5-cycles that σ is not conjugate to.

One can see that in fact (1 2 3 4 5) and (2 1 3 4 5) are not conjugate. While they are
conjugate in S5, it is via the element (1 2), which is not in A5. Suppose that α ∈ S5 is such
that

α(2 1 3 4 5)α−1 = (1 2 3 4 5).

Note that τ = α(1 2) satisfies

τ(1 2 3 4 5) = α(1 2)(1 2 3 4 5)

= α(2 1 3 4 5)

= (2 1 3 4 5)α

= (1 2 3 4 5)(1 2)α

= (1 2 3 4 5)τ.

Thus α(1 2) ∈ CS5(1 2 3 4 5), or equivalently,

α ∈ (1 2) · CS5(2 1 3 4 5).
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But note that we just proved that every element in CS5(2 1 3 4 5) is in A5, and thus even;
this shows that every element in the coset

(1 2) · CS5(2 1 3 4 5)

is odd (as we multiplied by one transposition), and thus there are no such α in A5. This
proves (1) and (2).

Claim: All 20 three cycles are conjugate in A5.

Given two three cycles (a b c) and (d e f) in S5, we already know that they are both in
A5 and that there is a σ ∈ S5 such that

σ(a b c)σ−1 = (d e f).

If σ /∈ A5, let {1, . . . , 5} \ {a, b, c} = {x, y}. Then σ is a product of an odd number of
transpositions, so σ · (x y) ∈ A5. Moreover, since (x y) and (a b c) are disjoint cycles, then by
Lemma 1.35 they must commute, so that

(x y)(a b c)(x y))−1 = (a b c).

Therefore,
(σ · (x y))(a b c)(σ · (x y))−1 = (d e f),

so (a b c) and (d e f) are still conjugate in S5. This proves the claim.

Claim: All products of two disjoint transpositions are conjugate in A5.

Set α = (1 2)(3 4). The conjugacy class of α in S5 consists of all the products of two
disjoint two-cycles, and there are 15 such elements. By lois and Lemma 5.21,

15 = | the conjugacy class of α in S5 | = [S5 : CS5(α)] =
120

|CS5(α)|
.

Thus

|CS5(α)| = 120

15
= 8.

Since α commutes with e, α, (1 3)(2 4) and (1 4)(2 3) and each of these belongs to A5, we
must have |CA5(α)| > 4. Since, by Exercise 27,

CA5(α) = CS5(α) ∩ A5,

it follows that |CA5(α)| must divide both 8 and 60, and so must be 1, 2 or 4. We conclude
that |CA5(α)| = 4. Thus α is conjugate in A5 to 60/4 = 15 elements. Since there are 15
products of disjoint two-cycles, they must all be conjugate to α, and thus the conjugacy class
of α in A5 is still the set of all 2-cycles.

Now that we have completely calculated all the conjugacy classes of A5, our hard work
will pay off: we can now prove a very important result in group theory.
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Definition 5.32. A nontrivial group G is simple if it has no proper nontrivial normal
subgroups.

Exercise 33. Let p be prime. Show that Z/p is a simple group.

Theorem 5.33. The group A5 is a simple group.

Proof. Suppose N � A5. By Lagrange’s Theorem, |N | divides

|A5| =
5!

2
= 60.

By Lemma 5.31, A5 has only four nontrivial conjugacy classes, and they have order 12, 12,
15, and 20. By Lemma 5.27, |N | is a union of conjugacy classes of A5. Thus

|N | = 1 + the sum of a sublist of the list 20, 12, 12, 15.

By checking the relatively small number of cases we see that |N | = 1 or |N | = 60 are the
only possibilities, as the remaining options do not divide 60.

In fact, An is simple for all n > 5, but we will not prove this. In contrast, A4 is not
simple:

Example 5.34. The alternating group A3 is simple and abelian since it has order 3.

Both A1 and A2 are the trivial group.

Exercise 34. Consider the subset of A4 given by

V = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Show that V is a normal subgroup of A4.

Example 5.35. The alternating group A4 is not simple, since it has 12 elements and a
normal subgroup of order 4.

Thus the story goes:

Theorem 5.36. Let n > 3. The alternating group An is simple if and only if n 6= 4.

In fact, one can show that A5 is the smallest nonabelian simple group, having 60 elements.
This we will also not prove.
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5.4 Other group actions with applications

Let’s discuss a couple other group actions that often lead to useful information about the
group doing the acting. The first one arises from the action of a group on the collection of
left cosets of one of its subgroups. More precisely, let G be a group and H a subgroup, and
let L denote the collection of left cosets of H in G:

L = {xH | x ∈ G}.

When H is normal, L is the quotient group L = G/H, but note that we are not assuming
that H is normal. Then G acts on L via the rule

g · (xH) := (gx)H.

This action is transitive: for all x,

xH = x · (eH).

The stabilizer of the element H ∈ L is

StabG(H) = {x ∈ G | xH = H} = H,

which is consistent with LOIS, as indeed

OrbG(H) = L, so |Orb(H)| = |L| = [G : H],

while
StabG(H) = H, so [G : StabG(H)] = [G : H].

As with any group action, this action induces a homomorphism

ρ : G→ Perm(L)

where for any g,

Perm(L)
ρ(g) // Perm(L)

xH � // (gx)H.

If n = [G : H] = |Perm(L)| is finite, then we have a homomorphism ρ : G→ Sn.

Lemma 5.37. Let G be a group and H a subgroup of G. Consider the action of G on the set
L of left cosets of H, and the corresponding permutation representation ρ : G → Perm(L).
Then

ker(ρ) =
⋂
x∈G

xHx−1.

In particular, ker(ρ) ⊆ H.

Note that
⋂
x∈G

xHx−1 is the largest normal subgroup of G contained in H.
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Proof. Note that
g ∈ ker(ρ) ⇐⇒ (gx)H = xH for all x ∈ G

⇐⇒ x−1gx ∈ H for all x ∈ G
⇐⇒ g ∈ xHx−1 for all x ∈ G.

Thus
ker(g) =

⋂
x∈G

xHx−1.

Since eHe−1 = H, we conclude that ker(g) ⊆ H.

Remark 5.38. The action of G on the left cosets of H might be faithful or not. Lemma 5.37
says that the action is faitfull if and only if⋂

x∈G

xHx−1 = {e}.

If H is a normal subgroup of G, then in fact⋂
x∈G

xHx−1 = H,

and thus the action is not faithful unless H = {e}.

Remark 5.39. Consider the subgroup H = 〈(12)〉 of S3. The action of S3 on the left cosets
of H is faithful: for example, taking σ = (13) we have

σHσ−1 = {e, (12)(13)} = {e, (23)},

and thus the permutation representation ρ : S3 → S3 associated with the action has

ker ρ ⊆ σHσ−1 ∩H = {e}.

Theorem 5.40. Let G be a finite group and H a subgroup of index p, where p is the smallest
prime divisor of |G|. Then H is normal.

Proof. The action of G on the set of left cosets of H in G by left multiplication induces a
homomorphism ρ : G → Sp. By Lemma 5.37, its kernel N := ker(ρ) is contained in H. By
the First Isomorphism Theorem,

[G : N ] = |G/N | = | im(f)|.

By Lagrange’s Theorem, since im(f) is a subgroup of Sp then [G : N ] = | im(f)| divides
|Sp| = p!. On the other hand, [G : N ] divides |G| by Lagrange’s Theorem. Since [G : N ]
divides both |G| and p!, it must divide gcd(|G|, p!). Since p is the smallest prime divisor of
G, we must have

gcd(|G|, p!) = p.

It follows that [G : N ] divides p, and hence [G : N ] = 1 or [G : N ] = p. But N ⊆ H, and
H is a proper subgroup of G, so N 6= G, and thus [G : N ] 6= 1. Therefore, we conclude
that [G : N ] = p. Since N ⊆ H and [G : H] = p = [G : N ], we conclude that H = N . In
particular, H must be a normal subgroup of G.

This generalizes Exercise 20, which says that any subgroup of index 2 is normal.
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Another interesting action arises from the following.

Exercise 35. Let H be a subgroup of G.

(a) Fix g ∈ G. Prove that gHg−1 = {ghg−1 | h ∈ H} is a subgroup of G of the same order
as H.

Note: we are not assuming that H is finite, so you must show that there is a bijection
between H and gHg−1.

(b) Show that if H is the unique subgroup of G of order |H|, then H � G.

So we can now define an action. Let G be a group and let

S(G) = {H | H ≤ G}

be the collection of all subgroups of G. Then G acts on S by

g ·H = gHg−1.

Definition 5.41. Two subgroups A and B of a group G are conjugate if there exists g ∈ G
such that A = gBg−1.

Equivalently, two subgroups are conjugate if they are in the same orbit by the following
group action: the action of G on the set of its subgroups by conjugation.

Exercise 36. Let G be a group and let

S(G) = {H | H ≤ G}.

Check that the rule
g ·H = gHg−1

defines an action of G on S(G). Moreover, prove that given any subgroup H of G, the
stabilizer of H is given by NG(H).

The normalizerNG(H) is the largest subgroup ofG that containsH as a normal subgroup,
meaning that H � NG(H).

Exercise 37. Let G be a group and H be a subgroup of G. Show that if K is any subgroup
of G such that H � K, then K ≤ NG(H). In particular, H � G if and only if NG(H) = G.

We can now show that the number of subgroups conjugate to a given subgroup is the
index of its normalizer:

Lemma 5.42. Let G be a group and H be a subgroup of G. The number of subgroups of G
that are conjugate to H is equal to [G : NG(H)].

Proof. The number of subgroups of G that are conjugate to H is just the size of the orbit
of H under the action of G by conjugation on the set of subgroups of G. By LOIS, the
number of elements in the orbit of H is the index of the stabilizer. Finally, by Exercise 36,
the stabilizer of H is NG(H).
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Here is an application of this action:

Lemma 5.43. If G is finite and H is a proper subgroup of G, then

G 6=
⋃
x

xHx−1.

Proof. First, suppose that H is a normal. Then H = xHx−1 for all x ∈ G, so⋃
x

xHx−1 = H 6= G.

Now assume that H is not normal, so that NG(H) 6= G and [G : NG(H)] > 2. By Exercise 35,
we have |H| = |xHx−1| for all x. Since there are [G : NG(H)] conjugates ofH by Lemma 5.42,
and since e ∈ xHx−1 for all x, we get∣∣∣∣∣⋃

x

xHx−1

∣∣∣∣∣ 6 [G : NG(H)] · |H|.

But in fact, this calculation can be improved, as there are at least two distinct conjugates
of H and e is an element of all of them. This gives us∣∣∣∣∣⋃

x

xHx−1

∣∣∣∣∣ 6 [G : NG(H)] · |H| − 1.

But H ⊆ NG(H) and so [G : NG(H)] ≤ [G : H]. We conclude that∣∣∣∣∣⋃
x

xHx−1

∣∣∣∣∣ 6 [G : H] · |H| − 1 = |G| − 1.

Since |H| = |xHx−1| for all x ∈ G, we can fix a natural number n, set

Sn(G) := {H | H ≤ G and |H| = n},

and consider the action of G on Sn(G) by conjugation. This idea will be exploited in the
next section.

Exercise 38. Show that if G is a finite group acting transitively on a set S with at least
two elements, then there exists g ∈ G with no fixed points, meaning g · s 6= s for all s ∈ S.
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Chapter 6

Sylow Theory

Sylow Theory is a very powerful technique for analyzing finite groups of relatively small
order. One aspect of Sylow theory is that it allows us to deduce, in certain special cases,
the existence of a unique subgroup of a given order, and thus it allows one to construct a
normal subgroup.

6.1 Cauchy’s Theorem

We start by proving a very powerful statement: that every finite group whose order is
divisible by p must have an element of order p.

Theorem 6.1 (Cauchy’s Theorem). If G is a finite group and p is a prime number dividing
|G|, then G has an element of order p. In fact, there are at least p− 1 elements of order p.

Proof. Let S denote the set of ordered p-tuples of elements of G whose product is e:

S = {(x1, . . . , xp) | xi ∈ G and x1x2 · · ·xp = e}.

Consider
Gp−1 := G× · · · ×G︸ ︷︷ ︸

p−1 factors

and the map

Gp−1 φ // S

(x1, . . . , xp−1) � // (x1, . . . , xp−1, x
−1
p−1 · · ·x−1

1 ).

Given the definition of S, the map φ does indeed land in S. Moreover, φ is bijective since
the map ψ : S → Gp−1 given by

ψ(x1, . . . , xp) = (x1, . . . , xp−1)

is a two-sided inverse of the map above. Therefore, |S| = |Gp−1| = |G|p−1.
Let Cp denote cyclic subgroup of Sp of order p generated by the p-cycle

σ = (1 2 · · · p).
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The following rule gives an action of Cp on S:

σi · (x1, . . . , xp) := (xσi(1), . . . , xσi(p)) = (x1+i, x2+i, . . . , xp+i),

where the indices are taken modulo p. We should check that this is indeed an action. On
the one hand, σ0 is the identity map, so

e · (x1, . . . , xp) = σ0 · (x1, . . . , xp) = (xσ0(1), . . . , xσ0(p)) = (x1, . . . , xp).

Moreover,

σi ·
(
σj · (x1, . . . , xp)

)
= σi · (x1+j, x2+j, . . . , xp+j) = (x1+j+i, x2+j+i, . . . , xp+j+i),

while
(σiσj) · (x1, . . . , xp) = σi+j · (x1, . . . , xp) = (x1+i+j, x2+i+j, . . . , xp+i+j).

Thus
σi ·

(
σj · (x1, . . . , xp)

)
= (σiσj) · (x1, . . . , xp),

and we have shown that this is indeed an action.

Now let us consider the fixed points of this action. If

σ · (x1, . . . , xp) = (x1, . . . , xp),

then xi+1 = xi for 1 6 i 6 p, so it follows that

x1 = x2 = · · · = xp.

Thus if σ · (x1, . . . , xp) = (x1, . . . , xp), then (x1, . . . , xp) corresponds to an element x such
that xp = x1 · · ·xp = e. On the other hand, if σ fixes (x1, . . . , xp), then so does any element
of Cp. Therefore, a fixed point for this action corresponds to an element x such that xp = e.
The element (e, e, . . . , e) is a fixed point. Any other fixed point, meaning an orbit of size
one, corresponds to an element of G order p, thus we wish to show that there is at least one
fixed point besides (e, . . . , e).

By the Orbit-Stabilizer Theorem, the size of every orbit divides |Cp| = p. Since p is
prime, every orbit for this action has size 1 or p. By the Orbit Equation,

|S| = # fixed points + p ·# orbits of size p

Since p divides |S|, we conclude that p divides the number of fixed points. We already know
that there is at least one fixed point, (e, . . . , e). Thus there must be at least one other fixed
point; in fact, at least p − 1 others, since the number of fixed points must then be at least
p.

We now know that if p divides |G|, then G has an element of order p. However, this is
not true if n divides |G| but n is not prime. In fact, G may not even have any subgroup of
order n.

Exercise 39. Prove that the converse to Lagrange’s theorem is false: find a group G and
an integer d > 0 such that d divides the order of G but G does not have any subgroup of
order d.

76



6.2 The Main Theorem of Sylow Theory

Definition 6.2. Let G be a finite group and p a prime. Write the order of G as |G| = pem
where p - m. A p-subgroup of G is a subgroup of G of order pk for some k. A Sylow
p-subgroup of G is a subgroup H ≤ G such that |H| = pe.

Thus a Sylow p-subgroup of G is a subgroup whose order is the highest conceivable power
of p according to Lagrange’s Theorem.

Definition 6.3. We will denote the collection of all Sylow p-subgroups of G by Sylp(G).

This is, of course, not very interesting unless e > 0. Nevertheless, we allow that case.

Remark 6.4. When p does not divide |G|, we have e = 0 and G has a unique Sylow
p-subgroup, namely {e}, which indeed has order p0 = 1.

Note that even if p does divide |G|, it is a priori possible that np = 0 for some groups
G and primes p. We will prove this is not possible, and that is actually one of the hardest
things to prove to establish Sylow theory.

Example 6.5. Let p > 2 be a prime and consider the group Dp. The subgroup 〈r〉 is a
Sylow p-subgroup, as it has order p and |Dp| = 2p. In fact, this is the only Sylow p-subgroup
of Dp, as by Exercise 18 every group of order p is cyclic, and the only elements of order p in
Dp are r and its powers.

In Dn for n odd, each of the subgroups 〈srj〉, for j = 0, . . . , n− 1 is a Sylow 2-subgroup.
Since n is odd, only the reflections have order 2, and we have listed all the subgroups
generated by reflections, so we conclude that the number of Sylow 2-subgroups is n.

Example 6.6. If G is cyclic of finite order, there is a unique Sylow p-subgroup for each p,
since by Theorem 3.29 there is a unique subgroup of each order that divides |G|: if G = 〈x〉
and |x| = pem with p - m, then the unique Sylow p-subgroup of G is 〈xm〉.

Let G be a finite group and p is a prime that divides |G|. Then G acts on its Sylow
p-subgroups of G via conjugation. As of now, for all we know, this might be the action on
the empty set. Sylow Theory is all about understanding this action very well. Before we can
prove the main theorem, we need a technical lemma.

Lemma 6.7. Let G be a finite group, p a prime, P a Sylow p-subgroup of G, and Q any
p-subgroup of G. Then Q ∩NG(P ) = Q ∩ P .

Proof. (⊆) Since P ≤ NG(P ), then Q ∩ P ≤ Q ∩NG(P ).
(⊇) Let H := Q ∩NG(P ). Since H ⊆ NG(P ), then PH = HP , so by Exercise 24 we get

that PH is a subgroup of G. By Corollary 4.49, we have

|PH| = |P | · |H|
|P ∩H|

and since each of |P |, |H|, and |P ∩H| is a power of p, we conclude that the order of PH
is also a power of p. In particular, PH is a p-subgroup of G. On the other hand, P ≤ PH
and P is already a p-subgroup of the largest possible order, so we must have P = PH. Note
that H ≤ PH always holds. We conclude that H ≤ P and thus H ≤ Q ∩ P .
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Theorem 6.8 (Main Theorem of Sylow Theory). Let p be prime. Assume G is a group of
order pem, where p is prime, e > 0, and gcd(p,m) = 1.

(1) There exists at least one Sylow p-subgroup of G. In short, Sylp(G) 6= ∅.
(2) If P is a Sylow p-subgroup of G and Q ≤ G is any p-subgroup of G, then Q ≤ gPg−1

for some g ∈ G. Moreover, any two Sylow p-subgroups are conjugate and the action of
G on Sylp(G) by conjugation is transitive.

(3) We have
| Sylp(G)| ≡ 1 mod p.

(4) For any P ∈ Sylp(G),
| Sylp(G)| = [G : NG(P )],

and hence
| Sylp(G)| divides m.

Proof. First we will prove G contains a subgroup of order pe by induction on |G| = pem.
When |G| = 1, {e} is a Sylow p-subgroup, as noted in Remark 6.4. In fact, this argument

applies for whenever e = 0, so we may thus assume through the rest of the proof that p does
divide |G|. So suppose that p divides |G| and every group of order n < |G| has a Sylow
p-subgroup. We will consider two cases, depending on whether p divides |Z(G)|.

If p divides |Z(G)|, then by Cauchy’s Theorem there is an element z ∈ Z(G) of order p.
Set N := 〈z〉. Since z ∈ Z(G), then for all g ∈ G we have

gzig−1 = zi ∈ N,

and thus N � G. Since

|G/N | = |G|
|N |

=
pem

p
= pe−1m,

by induction hypothesis G/N has a subgroup of order pe−1, which must then have index
m. By the Lattice Isomorphism Theorem, this subgroup corresponds to a subgroup of G of
index m, hence of order pe.

Now assume p does not divide |Z(G)|, and consider the Class Equation for G: g1, . . . , gk
are a complete list of noncentral conjugacy class representatives, without repetition of any
class, we have

|G| = |Z(G)|+
k∑
i=1

[G : CG(gi)].

Suppose that p divides [G : CG(gi)] for all i. Since p also divides |G|, then this would imply
that p divides |Z(G)|, but we assumed that p does not divide |Z(G)|. We conclude that p
does not divide [G : CG(gi)] for some i.

Note that [G : CG(gi)] divides |G| by Lagrange’s Theorem, and thus it must divide m.
Set

d :=
m

[G : CG(gi)]
.
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Then

|CG(gi)| =
|G|

[G : CG(gi)]
=

pem

[G : CG(gi)]
= ped,

and note that p does not divide d since it does not divide m. Since gi is not central, then
e /∈ CG(gi), and in particular |CG(gi)| < |G|. By induction hypothesis, CG(gi) contains a
subgroup S of order pe. But S is also a subgroup of G, and it has order pe, as desired. This
completes the proof of (1): we have shown that G contains a subgroup of order pe.

To prove (2) and (3), let P be a Sylow p-subgroup and let Q be any p-subgroup. Let SP
denote the collection of all conjugates of P :

SP := {gPg−1 | g ∈ G}.

By definition, G acts transitively on SP by conjugation. Restricting that action to Q, we
get an action of Q on SP , though note that we do now know if that action is transitive. The
key to proving parts (2) and (3) of the Sylow Theorem is to analyze the action of Q on SP .

Let O1, . . . ,Os be the distinct orbits of the action of Q on SP , and for each i pick a
representative Pi ∈ Oi. Note that

StabQ(Pi) = {q ∈ Q | qPiq−1 = Pi} by the definition of the action

= NQ(Pi) by definition of normalizer

= Q ∩NG(Pi) by Exercise 27

= Q ∩ Pi by Lemma 6.7.

By LOIS, we have |Oi| = [Q : Q ∩ Pi], and thus by the Orbit Equation

|SP | =
s∑
i=1

[Q : Q ∩ Pi]. (6.2.1)

This equation 6.2.1 holds for any p-subgroup Q of G. In particular, we can take Q = P1.
In this case, the first term in the sum is [Q : Q ∩ Pi] = 1 and, for all i 6= 1 we have

Q ∩ Pi = P1 ∩ Pi 6= P1 = Q =⇒ [Q : Q ∩ Pi] > 1.

But |Q| is a power of p, so [Q : Q ∩ Pi] must be divisible by p for all i. We conclude that

|SP | ≡ 1 (mod p). (6.2.2)

Note, however, that this does not yet prove part (3), since we do not yet know that SP
consists of all the Sylow p-subgroups. But we do have all the pieces we need to prove part
(2). Suppose, by way of contradiction, that Q is a p-subgroup of G that is not contained in
any of the subgroups in SP . Then Q∩Pi 6= Q for all i, and thus every term on the right-hand
side of

|SP | =
s∑
i=1

[Q : Q ∩ Pi]

is divisible by p, contrary to (6.2.2). We conclude that Q must be contained in at least one
of the subgroups in SP . This proves the first part of (2).
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Moreover, if we take Q to be a Sylow p-subgroup of G, then Q ≤ gPg−1 for some g, but
Q and P are both Sylow p-subgroups of G, so by Exercise 35

|Q| = |P | = |gPg−1|.

We conclude that Q = gPg−1 is conjugate to P . In particular, the conjugation action of G
on Sylp(G) is transitive, and this finishes the proof of (2).

This proves, in particular, that SP in fact does consist of all Sylow p-subgroups, we can
now also conclude part (3) from (6.2.2).

Finally, for any P ∈ Sylp(G), the stabilizer of P for the action of G on Sylp(G) by
conjugation is NG(P ). Since we now know the action is transitive, the Orbit-Stabilizer
Theorem says that

| Sylp(G)| = [G : NG(P )].

Moreover, since P ≤ NG(P ) and |P | = pe, it follows that p divides |NG(P )|, so

|NG(P )| = ped

for some d that divides m. We conclude that

[G : NG(P )] =
|G|
|NG(P )

=
pem

ped
=
m

d
,

so [G : NG(P )] divides m.

Remark 6.9. In general, Cauchy’s Theorem can be deduced from part one of the Sylow The-
orem. However, we used Cauchy’s Theorem to prove the Sylow Theorem, so it is important
to see that Cauchy’s Theorem can be proven independently of Sylow theory.

To see how Cauchy’s Theorem follows from the Main Theorem of Sylow Theory, suppose
that the prime p divides |G|. Then by Theorem 6.8 there exists a Sylow p-subgroup P of
G. Pick any nontrivial element x ∈ P . Then |x| = pj for some j > 1, since by Lagrange’s
Theorem |x| must divide |P | = pe. Then y = xp

j−1
has order p:

yp =
(
xp

j−1
)p

= xp·p
j−1

= xp
j

= e,

Moreover, yi 6= e for 2 6 i < p, as otherwise

|x| 6 ipj−1 < pj.

Remark 6.10. Let G be a group. We saw in Exercise 35 that if H is the unique subgroup
of finite order n, then H is must be a normal subgroup of G. One consequence of the
Main Theorem of Sylow Theory is a sort of converse to this: if G has multiple Sylow p-
subgroups, then G has no normal Sylow p-subgroups, since any two Sylow p-subgroups must
be conjugate to each other.
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6.3 Using Sylow Theory

Using the Main Theorem of Sylow Theory, we can often find the exact number of Sylow
p-subgroups, sometimes leading us to find normal subgroups. In particular, these techniques
can be used to show that there are no normal subgroups of a particular order, as the next
example will illustrate.

Example 6.11 (No simple groups of order 12). Let us prove that there are no simple groups
of order 12. To do that, let G be any group of order 12 = 22 · 3. We will prove that G must
have either a normal subgroup of order 3 or a normal subgroups of oder 4.

First, consider n2 = | Syl2(G)|. By the Main Theorem of Sylow Theory, n2 ≡ 1 (mod 2)
and n2 divides 3. This gives us n2 ∈ {1, 3}. Similarly, n3 = | Syl3(G)| satisfies

n3 ≡ 1 (mod 3) and n3 | 4,

so n3 ∈ {1, 4}. If either of these numbers is 1, we have a unique subgroup of order 4 or of
order 3, and such a subgroup must be normal.

Suppose that n3 6= 1, which leaves us with n3 = 4. Let P1, P2, P3, and P4 be the Sylow
3-subgroups of G. Consider any i 6= j. Since Pi ∩ Pj is a subgroup of Pi, its order must
divide 3. On the other hand, Pi and Pj are distinct groups of order 3, so |Pi ∩ Pj| < 3, and
we conclude that |Pi ∩ Pj| = 1. Therefore, Pi ∩ Pj = {e} for all i 6= j. Thus the set

T :=
4⋃
i=1

Pi

has 9 elements: the identity e and 8 other distinct elements. Since each Pi has order 3, those
8 elements must all have order 3. Note, moreover, that any other potential element of order
3 would generate its own Sylow 3-subgroup, so this is a complete count of all the elements
of order 3. We conclude that there are 8 elements of order 3 in G.

In particular, there are 9 elements in G that are either the identity or have order 3, and
thus there are only 12− 9 = 3 elements in G of order not 3, say a, b, c.

Now consider any Sylow 2-subgroup Q, which has 4 elements. None of its elements has
order 3, so we must have Q = {e, a, b, c}. In particular, this shows that there is a unique
Sylow 2-subgroup, which must then be normal.

Remark 6.12 (Warning!). In Example 6.11, it would not be so easy to count elements of
order 2 and 4. We do know that every element in

S :=
⋃
i

Qi

has order 1, 2, or 4, but the size of this set is harder to calculate. The issue is that Qi ∩Qj

might have order 2 for distinc i and j. The best we can say for sure is that S has at least
4 + 4− 2 = 6 elements.

More generally, if P and Q are both subgroups of G of prime order p, we can say that
P ∩Q = {e} using the same argument we employed in Example 6.11. However, if P and Q
are two subgroups of order pe with e > 2, we can no longer guarantee that P ∩Q = {e}.
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Example 6.13 (No simple groups of order 80). Let G be a group of order 80 = 5 · 16, and
let n2 = | Syl2(G)| and n5 = | Syl5(G)|. By the Main Theorem of Sylow Theory,

n2 ≡ 1 (mod 2) and n2 | 5 =⇒ n2 ∈ {1, 5}

and
n5 ≡ 1 (mod 5) and n5 | 16 =⇒ n5 ∈ {1, 16}.

If either n2 = 1 or n5 = 1, then the unique Sylow 2-subgroup or 5-subgroup would be normal.
If G is a simple group, then we must have

n2 = 5 and n5 = 16.

While the counting trick we used in Example 6.11 would work, let us try on a different tactic
here.

Consider the action of G on Syl2(G) by conjugation, and let

ρ : G→ S5

be the associated permutation representation. The action is transitive by the Main Theorem
of Sylow Theory, so the map ρ is nontrivial. By Lemma 3.8, im(ρ) is a subgroup of S5, and
thus by Lagrange’s Theorem the order of im(ρ) divides |S5|. However, |G| = 80 does not
divide 120 = |S5|, so the image of ρ cannot have 80 elements, and in particular ρ cannot be
injective. It follows that ker(ρ) is a nontrivial, proper normal subgroup of G, a contradiction.
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Chapter 7

Products and finitely generated
abelian groups

In this chapter, we will discuss how to build new groups from old ones, and completely
classify all finitely generated abelian groups.

7.1 Direct products of groups

Definition 7.1. Let I be a set and consider a group Gi for each i ∈ I. The direct product
of the groups {Gi}i∈I , denoted by ∏

i∈I

Gi,

is the group with underlying set the Cartesian product∏
i∈I

Gi

equipped with the operation defined by

(gi)i∈I(hi)i∈I = (gihi)i∈I .

The direct sum of the groups Gi is the subgroup of the direct product of {Gi}i∈I given
by ⊕

i∈i

Gi := {(gi)i∈I ∈
∏
i∈I

Gi | gi = eGi for all but finitely many i ∈ I}.

In particular, the direct sum of {Gi}i∈I has the same operation as the direct product.
When I is finite, say I = {1, . . . , n}, we write

G1 × · · · ×Gn :=
n∏
i=1

Gi.

Remark 7.2. When I is finite, the direct sum and the direct product of {Gi}i∈I coincide.
This is the case we will be most interested in.
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Exercise 40. The direct product of a collection of groups is a group, and the direct sum is
a subgroup of the direct product.

Remark 7.3. If G1, . . . , Gn are all finite groups, then

|G1 × · · · ×Gn| = |G1| · · · |Gn|.

Exercise 41. Let {Gi}i∈I be a collection of abelian groups. Show that∏
i∈I

Gi

is an abelian group.

Exercise 42. Let G and H be groups, and g ∈ G and h ∈ H.

(a) Show that if |g| and |h| are both finite, then |(g, h)| = lcm(|g|, |h|).

(b) Show that if at least one of g or h has infinite order, then (g, h) also has infinite order.

Lemma 7.4 (CRT). If gcd(m,n) = 1, then Z/m× Z/n ∼= Z/mn.

Proof. By Exercise 42,
|(1, 1)| = lcm(m,n) = mn.

But Z/m × Z/n ∼= Z/mn has order mn, so (1, 1) is a generator for the group, which must
then be cyclic. By Theorem 3.41, all cyclic groups of order mn are isomorphic to Z/mn, so

Z/m× Z/n ∼= Z/mn.

Exercise 43. Show that the converse holds: for all integers m,n > 1, if

Z/m× Z/n ∼= Z/mn,

then gcd(m,n) = 1.

Sometimes it is convenient to write the CRT in terms of prime factorization, as follows:

Theorem 7.5 (CRT). Suppose m = pe11 · · · p
el
l for distinct primes p1, . . . , pl. Then there is

an isomorphism
Z/m ∼= Z/(pe11 )× · · · × Z/(pell ).

Recall that we saw in Exercise 24 that given a group G and subgroups H and K, if H is
normal then HK is a subgroup of G. In fact, we can saw more:

Theorem 7.6 (Recognition theorem for direct products). Suppose G is a group with normal
subgroups H � G and K � G such that H ∩ K = {e}. Then HK ∼= H × K via the
isomorphism θ : H ×K → HK given by

θ(h, k) = hk.

Moreover,
H ∼= {(h, e) | h ∈ H} ≤ H ×K

and
K ∼= {(e, k) | k ∈ K} ≤ H ×K.
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Proof. By Exercise 24, the hypothesis implies HK ≤ G. Moreover, consider any h ∈ H and
any k ∈ K. Since H is a normal subgroup,

khk−1 ∈ H, say

so also
[k, h] = khk−1h−1 ∈ H.

But K is also a normal subgroup, so similarly we obtain

[k, h] ∈ K.

Therefore,
[k, h] ∈ H ∩K = {e},

so [k, h] = e. We conclude that

hk = kh for all h ∈ H, k ∈ K.

The function θ defined above must then satisfy

θ((h1, k1)(h2, k2)) = θ(h1h2, k1k2)

= (h1h2)(k1k2) by definition of θ

= h1(h2k1)k2

= (h1k1)(h2k2) since h2k1 = k1h2

= θ(h1, k1)θ(h2, k2) by definition of θ

and thus θ is a homomorphism. Its kernel is

ker(θ) = {(k, h) | k = h−1} = {(e, e)}

since H∩K = {e}. Moreover, θ is surjective, as any element in HK is of the form hk ∈ HK,
and

θ(h, k) = hk.

This proves θ is an isomorphism. Finally, restricting the codomain to any subgroup L of G
and the domain to θ−1(L) gives an isomorphism between L and θ−1(L), so in particular

H ∼= θ−1(H) = {(h, e) | h ∈ H} ≤ H ×K

and
K ∼= θ−1(K) = {(e, k) | k ∈ K} ≤ H ×K.

Remark 7.7. If H � G and K � G are such that H ∩K = {e}, then each elements of HK
is uniquely of the form hk. This is a consequence of the fact that the map θ is a bijection.

Definition 7.8. Let G be a group. If H � G and K � G are such that H ∩K = {e}, then
the subgroup HK of G is called the internal direct product of H and K, while the group
H ×K is called the external direct product of H and K.

Example 7.9. Let G = Dn, H = 〈r〉 and K = 〈s〉. Then H ∩ K = {e}, HK = G,
and H � G, but K is not normal in G. So Theorem 7.6 does not apply to say that G is
isomorphic to H ×K. In fact, G is not isomorphic to H ×K, since H ×K is abelian, while
G is not. As we shall see, G is the semidirect product of H and K.
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7.2 Semidirect products

Remark 7.10. Let G be a group. Suppose we are given subgroups H � G and K ≤ G such
that H∩K = {e} but K is not normal. Then we still have HK ≤ G, but it is not necessarily
true that the map θ : H × K → HK defined by θ(h, k) = hk is a group homomorphism.
The issue is that given h ∈ H and k ∈ K, while

khk−1 ∈ H =⇒ kh = h′k for some h′ ∈ H,

we can no longer guarantee that kh = hk. So given h1, h2 ∈ H and k1, k2 ∈ K, suppose that
k1h1 = h′2k1. For θ to be a homomorphism, we would need the following:

θ(h1, k1)θ(h2, k2) = (h1k1)(h2k2) = h1h
′
2k1k2 = θ(h1h

′
2, k1k2).

This we would need
(h1, k1)(h2, k2) = (h1h

′
2, k1k2).

This motivates the following definition:

Definition 7.11. Let H and K be groups and let ρ : K → Aut(H) be a homomorphism.
The (external) semidirect product induced by ρ is the set H×K equipped with the binary
operation defined by

(h1, k2)(h2, k2) := (h1ρ(k1)(h2), k1k2).

This group is denoted by H oρ K.

The underlying set of H oρ K is the same as the direct product, but it is the operation
that differs.

Remark 7.12. Note in particular that if K and K are finite, then |H oρ K| = |H| · |K|.

The proof that the semidirect product is indeed a group is straightforward but a bit
messy, as we need to check all the group axioms.

Theorem 7.13. If H and K are groups and ρ : K → Aut(H) is a homomorphism, then
H oρ K is a group.

Proof. First, we show that the operation is associative. Indeed,

(y1, x1) ((y2, x2)(y3, x3)) = (y1, x1)(y2ρ(x2)(y3), x2x3)

= (y1ρ(x1) (y2ρ(x2)(y3)) , x1x2x3)

= (y1ρ(x1)(y2)(ρ(x1) ◦ ρ(x2))(y3), x1x2x3)

= (y1ρ(x1)(y2)ρ(x1x2)(y3), x1x2x3)

= (y1ρ(x1)(y2), x1x2)(y3, x3)

= ((y1, x1)(y2, x2)) (y3, x3).

To show that (e, e) is a two-sided identity, consider any h ∈ H and k ∈ K. Since ρ(k) is
a homomorphism, then ρ(k)(e) = e, and thus

(h, k)(e, e) = (hρ(k)(e), ke) = (he, ke) = (h, k).
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Moreover, since ρ is a homomorphism, ρ(e) = idH , and thus ρ(e)(y) = idH(y) = y for any
y ∈ K, so that

(e, e)(h, k) = (eρ(e)(h), ek) = (eh, ek) = (h, k).

Finally, for any x ∈ H and y ∈ K we have

(x, y)(ρ(y−1)(x−1), y−1) = (x ρ(y)
(
ρ(y−1)(x−1)

)
, yy−1)

= (x(ρ(y) ◦ ρ(y−1))(x−1), e)

= (xρ(e)(x−1), e) since ρ is a homomorphism

= (xx−1, e) since ρ(e) = idH

= (e, e),

and similarly,

(ρ(y−1)(x−1), y−1)(x, y) = (ρ(y−1)(x−1)ρ(y−1)(x), y−1y)

= (ρ(y−1)(x−1x), e) since ρ(y−1) is a homomorphism

= (ρ(y−1)(e), e)

= (e, e) since ρ(y−1) is a homomorphism.

Thus (x, y) has an inverse, given by

(x, y)−1 = (ρ(x−1)(y−1), x−1).

This completes the proof that the semidirect product is a group.

Example 7.14. Given any two groups H and K, we can always take ρ to be the trivial
homomorphism. In that case, K oρH is just the usual direct product: for all h ∈ H and all
k ∈ K, ρ(k) = idH , so

(h, k)(h′, k′) = (hρ(k)(h′), kk′) = (hh′, kk′).

Theorem 7.15. Given groups H and K are groups and a homomorphism ρ : K → Aut(H),
H and K are isomorphic to subgroups of H oρ K, as follows:

H ∼= {(h, e) | h ∈ H} � H oρ K and K ∼= {(e, k) | k ∈ K} ≤ H oρ K.

Moreover,
(H oρ K)

{(h, e) | h ∈ H}
∼= K.

Proof. Consider the function i : H → H oρ K given by

i(y) = (y, e).

Then i is a homomorphism:

i(y1)i(y2) = (y1, e)(y2, e) = (y1ρ(e)(y2), ee) = (y1y2, e) = i(y1y2).
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Moreover, i is injective by construction, and hence its image is isomorphic to H by the
First Isomorphism Theorem. We can describe im(i) as the set of all elements whose second
component is e. The image im(i) is normal since the second component of

(h, k)(a, e)(h, k)−1 = (h, k)(a, e)(ρ(k−1)(h−1), h−1)

is
kek−1 = e,

which shows that any for any (a, e) ∈ im(H) and any (h, k) ∈ H oρ K,

(h, k)(a, e)(h, k)−1 ∈ im(i).

Let us write the image of i, which we now know is a normal subgroup of H oρ K, as

H ′ := im(i) = {(y, e) | y ∈ H} � H oρ K.

Similarly, the function

j : K → H oρ K given by j(x) = (e, x)

is also an injective homomorphism (exercise!), and thus its image

K ′ := {(e, x) | x ∈ H} ≤ H oρ K

is isomorphic to K. Finally, given any (h, k) ∈ H oρ K, we can write

(h, k) = (hρ(e)(e), k) = (h, e)(e, k) ∈ H ′K ′,

so H ′K ′ = H oρ K.
Consider the projection onto the second factor

π2 : H oρ K → K,

which is the map given by
π2(x, y) = y.

This is a group homomorphism, since the second component of (x1, y1)(x2, y2) is y1y2, and
thus

π2((x1, y1)(x2, y2)) = y1y2 = π2(y1)π2(y2).

Moreover, π2 is surjective by definition. Finally,

ker(π2) = {(y, eK) | y ∈ H} = H ′ ∼= H.

By the First Isomorphism Theorem, we conclude that

(H oρ K)/H ′ ∼= K.
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In Theorem 7.15, we showed that {(h, e) | h ∈ H} is a normal subgroup of H oρ K.
However, {(e, k) | k ∈ K} is typically not a normal subgroup of H oρ K. We will see a
concrete example of this below in Example 7.22.

Studying semidirect products is a great motivation to studying automorphism groups.

Exercise 44. Let Cn denote the cyclic group of order n > 2, and consider the group

(Z/n)× = {[j]n | gcd(j, n) = 1}

with the binary operation given by the usual multiplication. Prove that

Aut(Cn) ∼= (Z/n)×.

Remark 7.16. We can now count the number of elements in Aut(Cn), since it is the number
of integers 1 6 i < n that are coprime with n. This number is given by what is know as the
Euler ϕ function,

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Equivalently, if n = pa11 · · · p
ak
k , where p1, . . . , pk are distinct primes and each ai > 1, then

ϕ(n) =
k∏
i=1

(
pai−1
i (pi − 1)

)
.

In particular, if p is prime then |Aut(Z/p)| = p− 1.

The next fact is very useful, but we will hold off until next semester to prove it. For now,
we record this fact so we can use it to construct nonabelian groups of a given order.

Exercise 45. If p is prime, then Aut(Cp) ∼= Z/p× is cyclic of order p− 1.

Exercise 46. Let p be a prime integer. Show that

Aut(Z/p× · · · × Z/p︸ ︷︷ ︸
n factors

) ∼= GLn(Z/p)

and that these groups have order (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1).

To better understand semidirect products, we should also better understand what it
means to have a homomorphism K → Aut(H).

Definition 7.17. Let G and H be groups. A (left) action of G on H via automorphisms
is a pairing G×H → H, written as (g, h) 7→ g · h, such that

• For all g1, g2 ∈ G and h ∈ H, g1 · (g2 · h) = (g1 ·G g2) · h .

• For all h ∈ H, eG · h = h.

• For all g ∈ G and all h1, h2 ∈ H, g · (h1 ·H h2) = (g · h1) ·H (g · h2).
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Remark 7.18. Note that the first two axioms are just the axioms for a group action. So
given a group action of G on H, let ρ : G → Perm(H) be the corresponding permutation
representation. If the action satisfies the third axiom in Definition 7.17, then that means
that for each g ∈ G, ρ(g) satisfies

ρ(g)(h1 ·H h2) = ρ(g)(h1) ρ(g)(h2).

This condition simply says that ρ(g) must be a homomorphism. Since ρ(g) is already a
bijection, we conclude that ρ(g) must be an automorphism of H. Conversely, given any
homomorphism ρ : K → Aut(H), we can define a group action of K on H via automorphisms
by setting

k · h := ρ(k)(h).

Since Aut(H) ⊆ Perm(H), we can extend ρ to a homomorphism K → Perm(H), which we
saw in Lemma 2.3 is equivalent to the action of K on H we just defined. That action satisfies

k · (h1 ·H h2) = ρ(k)(h1 ·H h2)

= ρ(k)(h1) ·H ρ(k)(h2) since ρ is a homomorphism

= (k · h1) ·H (k · h2)

In conclusion, we can now say that to give an action of G on H via automorphisms is to
give a group homomorphism

ρ : G→ Aut(H).

Moreover, given a group K acting on a group H by automorphisms, we get an induced
semidirect product H oρ K, where ρ : K → Aut(H) is the corresponding homomorphism.

Here is an important example of an action by automorphisms.

Exercise 47 (Conjugation action by automorphisms). Fix a group G, a normal subgroup
H � G and a subgroup K ≤ G. Show that the rule

k · h = khk−1

for k ∈ K and h ∈ H determines an action of K on H via automorphisms, and the associated
homomorphism ρ : K → Aut(H) is given by

ρ(k)(h) = khk−1.

So now that we have a bit more context, let us now look at some examples of semidirect
products.

Example 7.19. Let K = 〈x〉 be the cyclic of order 2 and H = 〈y〉 be the cyclic of order n
for some n > 2. By the UMP for cyclic groups, to give a homomorphism out of K is to pick
the image i of the generator x, which must satisfy i2 = e. In particular, i must be either the
identity or an element of order 2.
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Since H is abelian, the inverse map f : H −→ H given by f(a) = a−1 is an automorphism
of H; we showed this in Problem Set 2.1 This automorphism f is not the identity but it
is its own inverse, so it has order 2. Therefore, by the UMP for cyclic groups, there is a
homomorphism

ρ : K → Aut(H) with ρ(x)(y) = y−1.

Consider the semidirect product H oρK. The elements of H oρK are the tuples (yi, xj) for
0 6 i 6 n− 1 and 0 6 j 6 1. In particular, |H oρ K| = 2n. Set

ỹ = (y, eK) ∈ G and x̃ = (eH , x) ∈ G.

Then ỹn = (y, eK)n = (yn, eK) = (eH , eK) = eG and x̃2 = (eH , x)2 = (eH , x
2) = (eH , eK) = eG.

Moreover,

x̃ỹx̃ỹ = (eH , x)(y, eK)(eH , x)(y, eK) = (ρ(x)(y), x)(ρ(x)(y), x) = (y−1, x)(y−1, x) = (y−1y, e) = eG.

Looks familiar? Indeed, using our presentation for Dn from Theorem 1.66 and the UMP for
presentations from Theorem 4.61, we have a homomorphism

θ : Dn −→ G given by θ(r) = (y, eK) and θ(s) = (x, eH).

Moreover, θ is surjective since

θ(risj) = (yi, xj) for all 0 6 i 6 n− 1, 0 6 j 6 1.

Since |Dn| = |G| = 2n, this surjection must also be a bijection, and we conclude that θ is an
isomorphism. So the dihedral group is a semidirect product of the cyclic of order n and the
cyclic group of order 2 respectively:

Dn
∼= 〈y〉oρ 〈x〉

where ρ is the inverse map as described above.

So given any group, how can we recognize it is in fact a semidirect product?

Theorem 7.20 (Recognition theorem for internal semidirect products). Let G be a group.
Suppose we are given subgroups H and K of G such that

H � G HK = G and H ∩K = {e}.

Let ρ : K → Aut(H) be the permutation representation of the action of K on H via auto-
morphisms given by conjugation in G, meaning that

ρ(k)(h) = khk−1.

Then
G ∼= H oρ K

via the isomorphism θ : H oρ K → G given by θ(x, y) = xy. Moreover,

H ∼= {(h, e) ∈ H oρ K | h ∈ H} and K ∼= {(e, k) ∈ H oρ K | k ∈ K}.
1In fact, we can say more: By Exercise 44, Aut(H) ∼= (Z/n)×. In particular, −1 is an element of (Z/n)×,

and the associated automorphism sends y to y−1.
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Proof. First, we show that θ is a group homomorphism. Indeed,

θ((y1, x1)(y2, x2)) = θ(y1ρ(x1)(y2), x1x2)

= y1(x1y2x
−1
1 )x1x2

= y1x1y2x2

= θ(y1, x1)θ(y2, x2).

Since H ∩K = {e}, the kernel of θ is

ker(θ) = {(y, x) ∈ H oρ K | y = x−1} = {e}.

By construction, the image of θ is KH = G. Therefore, θ is an isomorphism. Finally,

θ−1(H) = {(h, e) | h ∈ H} and θ−1(K) = {(e, k) | k ∈ K}.

Definition 7.21. Given subgroups H and K of G such that H � G, HK = G, and
H ∩K = {e}, we say that G is the internal semidirect product of H and K.

Example 7.22. Consider G = Dn and its subgroups H = 〈r〉 and K = 〈s〉. Then H � G,
K ≤ G, HK = G and H∩K = {e}. By Theorem 7.20, G ∼= HoρK, where ρ : K → Aut(H)

ρ(s)(ri) = sris−1 = rn−i.

The last equality is Exercise 10. Note in particular that K is not a normal subgroup of G.
We had already seen in Example 7.9 that G is not the internal direct product of H and K,
but now know it is their internal semidirect product. We also already knew that Dn is a
semidirect product by Example 7.19.

For a fixed pair of groups H and K, different actions of K on H via automorphisms can
result in isomorphic semidirect products. Indeed, determining when K oρ H ∼= K oρ′ H is
in general a tricky business. Here is an example of this:

Example 7.23. Let n > 3 and consider G = Sn, H = An, and K = 〈(1 2)〉. Then H � G,
K ≤ G, HK = G and K ∩H = {e}. Note that H ∼= C2 is the cyclic group with 2 elements.
By Theorem 7.20,

Sn ∼= An oρ C2

where ρ : C2 −→ Aut(An) sends x to conjugation by (1 2). Similarly, we can also consider
the subgroup H ′ = 〈(1 3)〉 = (1 2 3)〈(1 2)〉(1 2 3)−1 of Sn, and we also have

Sn ∼= An oρ′ C2

where ρ′ : C2 → Aut(An) sends x to conjugation by (1 3).
However, the actions determined by ρ and ρ′ are not identical. For example,

ρ(x)(1 2 3) = (1 2 3) and ρ′(x)(1 2 3) = (2 1 3).

Yet
An oρ H ∼= Sn ∼= An oρ′ H

′.
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One good reason why this happened in this case is that H and H ′ are conjugate in Sn.

Exercise 48. Let K be a finite cyclic group and let H be an arbitrary group. Suppose
φ : K → Aut(H) and θ : K → Aut(H) are homomorphisms whose images are conjugate
subgroups of Aut(H); that is, suppose there is σ ∈ Aut(H) such that σφ(K)σ−1 = θ(K).
Then H oφ K ∼= H oθ K.

Example 7.24. Let K be a cyclic group of prime order p and H be a group such that
Aut(H) has a unique subgroup of order p. Suppose φ : K → Aut(H) and θ : K → Aut(H)
are any two nontrivial maps. Then φ and θ are injective, since K is simple and the kernel
would be a proper normal subgroup. Hence, the images of φ and θ are both the unique
subgroup of Aut(H) of order p, and in particular they must be equal. Thus Exercise 48
applies to give H oφ K ∼= H oθ K.

Remark 7.25. If ρ : K −→ Aut(H) is a nontrivial homomorphism, then the semidirect
product H oρ K is never abelian. Indeed, all we need is to consider any k ∈ K such that
ρ(k) 6= idH , so that ρ(k)(h) 6= h for some h ∈ H, and note that

(e, k)(h, e) = (ρ(k)(h), k) while (h, e)(e, k) = (hρ(e)(e), k) = (h, k).

Thus we can use semidirect products to construct nonabelian groups. Given an integer
n > 2, to construct a nonabelian group we might set out to find groups K and H such that

|K||H| = n

and such that there exists a nontrivial homomorphism

ρ : K → Aut(H).

7.3 Finitely generated groups

Recall that a group G is finitely generated if it G = 〈A〉, where A is a finite set.

Remark 7.26. Any finite group G is finitely generated, since we can take A = G. However,
a finitely generated group need not be finite: for example Z is even cyclic but infinite.

The main theorem of this section is a special case of a much more general theorem we
will prove in the Spring: the classification of finitely generated modules over PIDs. Thus we
leave the proof for next semester.

Theorem 7.27 (Fundamental Theorem of Finitely Generated Abelian Groups: Invariant
Factor Form). Let G be a finitely generated abelian group. There exist integers r > 0, t > 0,
and ni > 2 for 1 6 i 6 t, satisfying n1 | n2 | · · · | nt such that

G ∼= Zr × Z/n1 × · · · × Z/nt.

Moreover, the list r, s, n1, . . . , nt is uniquely determined by G.
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Definition 7.28. In Theorem 7.27, the number r is the rank of G, the numbers n1, . . . , nt
are the invariant factors of G, and the decomposition of G in this form is the invariant
factor decomposition of G.

Remark 7.29. A finitely generated abelian group is finite if and only if its rank is 0. A
special case of the classification theorem is that if G is a finite abelian group then

G ∼= Z/n1 × · · · × Z/nt

for a unique list of integers ni > 2 such that n1|n2| · · · |nt.

Here is another version of the classification theorem:

Theorem 7.30 (Fundamental Theorem of Finitely Generated Abelian Groups: Elementary
Divisor Form). Let G be a finitely generated abelian group. Then there exist integers r > 0
and s > 0, not necessarily distinct positive prime integers p1, · · · , ps, and integers ai > 1 for
1 6 i 6 s such that

G ∼= Zr × Z/pa11 × · · · × Z/pass .
Moreover, r and s are uniquely determined by G, and the list of prime powers pa11 , . . . , p

as
s is

unique up to the ordering.

Definition 7.31. In Theorem 7.30, the number r is the rank of G, the paii are the ele-
mentary divisors of G, and the decomposition of G is called the elementary divisor
decomposition of G.

The two forms of the classification theorem are equivalent, which we can prove using
the CRT. Rather than a careful proof that the two versions of the classification theorem
are equivalent, we will now see in examples how the CRT allows us to go between invariant
factors and elementary divisors.

Example 7.32 (Converting elementary divisors to invariant factors ). Suppose G is a finitely
generated abelian group of rank 3 with elementary divisors 4, 8, 9, 27, 25. This means that

G ∼= Z3 × Z/4× Z/8× Z/9× Z/27× Z/25.

By the CRT,

Z/8× Z/27× Z/25 ∼= Z/(8 · 27 · 25) and Z/4× Z/9 ∼= Z/(4 · 9),

so that
G ∼= Z3 × Z/(8 · 27 · 25)× Z/(4 · 9) = Z3 × Z/5400× Z/36.

Since 36 | 5400, we conclude that G has rank 3 and invariant factors 5400 and 36.

Example 7.33 (Converting invariant factors to elementary divisors). Let

G ∼= Z4 × Z/6× Z/36× Z/180.

Then by the CRT,

G ∼= Z4 × Z/2× Z/3× Z/4× Z/9× Z/4× Z/5× Z/9,

is the elementary divisor form for G.
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Example 7.34. Let G = Z/60 × Z/50. This group is finite and abelian, and thus r = 0,
but not in either invariant factor nor elementary divisor factorization.

Applying the CRT to 60 = 12 · 5 = 22 · 3 · 5 and 50 = 2 · 52, we have

Z/60 ∼= Z/4× Z/3× Z/5 and Z/50 ∼= Z/2× Z/25

so
G ∼= Z/2× Z/4× Z/3× Z/5× Z/25.

This gives the elementary divisor decomposition: G has rank 0 and elementary divisors 2,
4, 3, 5, and 25. Applying the CRT again, in a different way, gives

G ∼= Z/(4 · 3 · 25)× Z/(2 · 5) = Z/300× Z/10.

This is the invariant factor decomposition: G has rank 0 and invariant factors 10 and 300.

This classification makes the classification of finite abelian groups a very quick matter.

Example 7.35. Let us classify the abelian groups of order 75. First, note that 75 = 52 · 3.
The two possible elementary divisor decompositions are

Z/25× Z/3 and Z/5× Z/5× Z/3.

Note that the two groups above are not isomorphic. This is part of the theorem, but to see
this directly, note that there is an element of order 25 in Z/25 × Z/3, namely ([1]25, [0]3)
whereas every element (a, b, c) ∈ Z/5× Z/5× Z/3 has order

|(a, b, c)| = lcm(|a|, |b|, |c|) 6 3 · 5 = 15,

since |a|, |b| ∈ {1, 5} and |c| ∈ {1, 3}.
Alternatively, the two possible invariant factor decompositions are

Z/75 or Z/15× Z/5.

They are also not isomorphic, as the second option has no elements of order 75.

Remark 7.36. Let n = pe11 · · · p
ek
k for distinct positive prime integers p1, . . . , pk and inte-

gers ei > 1. The classification of finitely generated abelian groups implies that there are
p(e1) · · · p(ek) isomorphism classes of abelian groups of order n, where p(m) is the number
of partitions of m. For example, for n = 24 · 35 · 52 there are

p(4)p(6)p(2) = 5 · 7 · 2 = 70

abelian groups of order n up to isomorphism.
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7.4 Classifying finite groups of a given order

We can now combine the ideas from Sylow theory, (semi)direct products and the classification
theorem for finitely generated abelian groups to classify the isomorphism classes of groups
of a given order. You have already done some examples of this kind, such as the following
problem set question:

Exercise 49. Show that any group of order 6 is isomorphic either to Z/6 or to D6.

Here is an example of the type of classification theorem we can prove.

Theorem 7.37. Let p < q be primes.

(1) If p does not divide q − 1, there is a unique group of order pq up to isomorphism, the
cyclic group Cpq.

(2) If p divides q− 1, there are exactly two groups of order pq up to isomorphism, the cyclic
group Cpq and a nonabelian group.

Proof. Let G be a group of order pq and let nq = | Sylq(G)|. Since nq ≡ 1 (mod q), nq | p, p
is prime, and q > p, we must have nq = 1. Thus by Exercise 35, the unique Sylow q-subgroup
H is a normal subgroup.2

Now let K be a Sylow subgroups of order p. Since H is normal, by Corollary 4.49 we
know that HK is a subgroup of G. By Lagrange’s theorem, |H ∩K| divides |H| and |H ∩K|
divides |K|. Therefore, H ∩K = {eG}. By Exercise 24.

|HK| = |H||K|
|H ∩K|

=
q · p

1
= pq = |G|

and so HK = G. The recognition theorem for semidirect products thus yields that

G ∼= H oρ K

for some homomorphism ρ : K −→ Aut(H). Note that H and K are cyclic, since they have
prime order (see Exercise 18). Let us identify H with Cq = 〈x | xq〉 and K with Cp = 〈y | yp〉.
Then

G ∼= Cq oρ Cp for some homomorphism ρ : Cp → Aut(Cq).

We just need to classify all such semidirect products up to isomorphism. By the UMP of
cyclic groups, the homomorphism ρ : Cp −→ Aut(Cq) is uniquely determined by the image
of the generator x, which must be an element α ∈ Aut(Cq) with αp = id. Given such an α,
we have ρ(y) = α and more generally ρ(yi) = αi.

By Exercise 45, Aut(Cq) is cyclic of order q− 1. On the other hand, im(ρ) is a subgroup
of both Cp and Aut(Cq), so its order must divide both p and q − 1. In particular, there is a
nontrivial automorphism ρ if and only if p | q − 1.

If p does not divide q − 1, then ρ is trivial, and by Example 7.14 and the CRT we have

G ∼= Cq × Cq ∼= Cpq.

2Alternatively, H is normal since [G : H] = p is the smallest prime that divides |G|.
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If p does divide q − 1, there is at least one nontrivial ρ. We still have G ∼= Cpq if ρ is
trivial. When ρ is nontrivial, G is not abelian, giving us at least two isomorphism classes.
It remains to show that if ρ1 and ρ2 are any two nontrivial homomorphisms from Cp to
Aut(Cq), then the resulting semidirect products are isomorphic.

Since Aut(Cq) is a cyclic group and p divides its order, it has a unique subgroup of order
p. Thus, we conclude that im(ρ1) = im(ρ2), so that by Exercise 48 we have

Cq oρ1 Cp
∼= Cq oρ2 Cp.

Example 7.38. If p = 2 and q is any odd prime, then there are two groups of order 2q up
to isomorphism: C2q and Dq.
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Part II

Rings
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Chapter 8

An introduction to ring theory

8.1 Definitions and examples

Definition 8.1. A ring is a set R equipped with two binary operations, + and ·, satisfying:

• (R,+) is an abelian group. We use additive notation: the identity element for + is
denoted by 0 and the inverse of an element r for + is written as −r.

• The operation · is associative, making (R, ·) a semigroup.

• There is a multiplicative identity element, written as 1, such that

1 · a = a = a · 1

for all a ∈ R, and thus (R, ·) is a monoid.

• Distributivity: For all a, b, c ∈ R, we have

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

• We also require 0 6= 1.

We sometimes write 0R and 1R if we need to emphasize what ring these elements live in.

Definition 8.2. An object satisfying just the first three conditions, but without a multi-
plicative identity, is a nonunital ring or a rng. To emphasize that R has a multiplicative
identity, one might say that a ring is unital.

While some authors consider nonunital rings, in this class all our rings will be unital.

Remark 8.3. If we drop the requirement that 0 6= 1, we may consider the zero ring, which
is the set {0} together with the only possible operations on it. Conversely, if 1 = 0 in a ring,
then R = {0}, since in this case all a ∈ R satisfy a · 0 = 0 and hence a = a · 1 = a · 0 = 0.

Example 8.4. The integers with the usual addition and multiplication form a ring (Z,+, ·).

Remark 8.5. The last condition, asking that 1 6= 0, is not universal: some authors allow
the zero ring, which is the ring with only one element. Requiring 0 6= 1 is really asking that
R should have at least two elements.
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Lemma 8.6 (Ring arithmetic). The following hold for any ring R and all a, b ∈ R:

(1) a · 0 = 0 = 0 · a,

(2) (−a)b = −(ab) = a(−b),

(3) (−a)(−b) = ab.

(4) 1 is unique, and

(5) (−1)a = −a.

Proof. (1) Note that
a · 0 = a · (0 + 0) = a · 0 + a · 0.

By subtracting a · 0 on both sides, we conclude that

a · 0 = a · (0 + 0) = 0.

Analogously, 0 · a = 0.

(2) By distributivity,
ab+ (−a)b = (a− a)b = 0 · b = 0.

Thus (−a)b = −ab. Analogously, a(−b) = −ab.
(3) Applying the previous property twice, and noting that −(−x) = x by Exercise 2 (3),

we get
(−a)(−b) = −(a(−b)) = −(−ab) = ab.

(4) Note that (R, ·) is a monoid, and thus the identity 1 is unique by Lemma 1.7.

(5) We have (−1)a = −1 · a = −a.

There are some additional conditions we might ask for a ring to satisfy, and that are so
important they have their own names:

Definition 8.7. A ring R is

• a commutative ring if · is commutative, meaning that for all a, b ∈ R 1

a · b = b · a.

• a noncommutative ring if it is not commutative.

• a division ring if (R − {0}, ·) is a group, meaning that every nonzero element has a
multiplicative inverse.

• a field if it is a commutative division ring.

We are now ready to see many examples of rings.

1The word abelian is never used in the context of rings, except to say things like “the additive group
(R,+) is abelian”.
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Example 8.8. (1) The ring Z is a commutative ring.

(2) Let n > 2. The set Z/n of integers modulo n is a commutative ring under addition and
multiplication modulo n. Note that Z/n is a field if any only if n is prime.

(3) The familiar sets of numbers Q, R, C are fields.

(4) (Matrix ring) If R is any ring, not necessarily commutative, then the set Matn(R)
of n × n matrices with entries in R is a ring with the usual rules for addition and
multiplication of square matrices.

(5) (The endomorphism ring of an abelian group) Let A = (A,+) be any abelian
group, and set EndAb(A) to be the collection of endomorphisms of A — that is, the
set of group homomorphisms f : A −→ A from A to itself. This set of endomorphisms
EndAb(A) is a ring with pointwise addition

(f + g)(a) := f(a) + g(a)

and multiplication given by composition of functions

f · g := f ◦ g.

The additive identity is the 0-map and the multiplicative identity is the identity map.
This is almost always a noncommutative ring.

(6) (The real Hamiltonian quaternion ring) Let i, j, k be formal symbols and set
H to be the four dimensional R-vector space consisting of all expressions of the form
a+ bi+ cj + dk with a, b, c, d ∈ R. We claim that this can be given a ring structure, as
follows. Addition is vector space addition:

(a+ bi+ cj + dk) + (a′ + b′i+ c′j + d′k) = (a+ a′) + (b+ b′)i+ (c+ c′)j + (d+ d′)k.

Moreover, multiplication is uniquely determined by the axioms of a ring together with
the rules

i2 = j2 = k2 = −1,−ji = ij = k,−kj = jk = i,−ik = ki = j.

and the fact that the real coefficients commute with each other and i, j, k.

It is not obvious that the multiplication defined in this way satisfies associativity, but in
fact it does, and this amounts to conditions very similar to the associativity of the group
Q8, which we discussed in Section 1.4.

This ring H is a division ring, since one can check that

(a+ bi+ cj + dk)−1 =
a− bi− cj − dk
‖a+ bi+ cj + dk‖

where
‖a+ bi+ cj + dk‖ := a2 + b2 + c2 + d2.

In the equation above, ‖a+bi+cj+dk‖ is a nonzero real number if a+bi+cj+dk is not
the zero element. The quantity ‖a+ bi+ cj + dk‖ is called the norm of the quaternion
a+ bi+ cj + dk.
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Just like with groups, there are constructions that allow us to take old rings and build
new ones.

Definition 8.9 (Direct product of rings). Let R and S be two rings. The cartesian product
R×S has a natural ring structure with addition and multiplication defined componentwise:

(a, b) + (c, d) = (a+ c, b+ d) and (a, b) · (c, d) = (a · c, b · d).

The additive identity is 0R×S = (0R, 0S) and the multiplicative identity is 1R×S = (1R, 1S).

Exercise 50. Check that the direct product of two rings is a ring. Moreover, prove that
R× S is a commutative ring if and only if R and S are both commutative.

Exercise 51. Show that the direct product of two fields is never a field.

Definition 8.10 (Polynomial ring). If R is any ring and x is a “variable”, then R[x] denotes
the collection of R-linear combination of powers of x — i.e., formal expressions of the form

r0 + r1x+ r2x
2 + · · ·+ rnx

n

with n > 0 and ri ∈ R, and two such expressions are deemed equal if their coefficients are
the same.

We make R[x] into a ring by the usual rule for adding and multiplying polynomial ex-
pressions, treating x as commuting with all elements of R. So

(r0 + r1x+ r2x
2 + · · ·+ rnx

n) + (r′0 + r′1x+ r′2x
2 + · · ·+ r′mx

m) = (r0 + r′0) + (r1 + r′1)x+ · · ·

or more precisely, setting ri = 0 for i > n and r′i = 0 for i > m,

(r0 + r1x+ r2x
2 + · · ·+ rnx

n) + (r′0 + r′1x+ r′2x
2 + · · ·+ r′mx

m) =

maxm,n∑
i=0

(ri + r′i)x
i,

while

(r0 + r1x+ r2x
2 + · · ·+ rnx

n) · (r′0 + r′1x+ r′2x
2 + · · ·+ r′mx

m) =
∑
k

( ∑
a+b=k

rar
′
b

)
xk.

This ring R[x] is the polynomial ring in one variable over R. One can also talk about poly-
nomial rings in many variables. For a finite set of variables x1, . . . , xn, the ring R[x1, . . . xn]
can be constructed inductively by setting

R[x1, . . . xn] = R[x1, . . . , xn−1][xn].

More generally, given an infinite set of variables X, an element in the polynomial ring R[X]
can be obtained by formally adding finitely many monomials in X with coefficients in R,
which are terms of the form rxa

1

1 · · ·xann with xi ∈ X and integers ai > 0. Each polynomial
in R[X] uses only finitely many variables, and thus sums and products of two elements are
obtained as in the polynomial ring in that finite set of variables.

Exercise 52. Check that if R is a ring then so is R[x]. Moreover, show that if R is commu-
tative, then so is R[x].

We will later discuss polynomial rings in more detail. For now, we note that in many
circumstances when one says a polynomial ring, one often means a polynomial ring over a
field.
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8.2 Units and zerodivisors

Elements in a ring might have certain special properties:

Definition 8.11. An element a of a ring is called a unit if there exists b ∈ R such that
ab = 1 and ba = 1. The set of all units of a ring R is denoted R×.

Exercise 53. Show that if a is a unit in a ring R, then there is a unique b ∈ R such that
ab = 1 and ba = 1.

Definition 8.12. Let a be a unit in a ring R. The unique b ∈ R such that ab = 1 = ba is
called the inverse of a, denoted by a−1.

Exercise 54. Show that the set of units in a ring R forms a group (R×, ·) with respect to
multiplication.

Example 8.13.

(1) The units in Z are Z× = {±1}.
(2) For all n > 2,

Z/n× = {[j]n | gcd(j, n) = 1}.

(3) For all n > 1 and any field F ,

Matn(F )× = GLn(F ).

Exercise 55. Let R be a ring. Find all the units of R[x].

Definition 8.14. A zerodivisor in a ring R is an element x ∈ R such that x 6= 0 but either
xy = 0 or yx = 0 for some y 6= 0.

Example 8.15. The ring Mat2(R) has lots of zerodivisors: for example,

A =

[
0 1
0 0

]
is a zerodivisor since A2 = 0.

Example 8.16. In the ring Z/6, the element [2]6 is a zerodivisor since [2]6[3]6 = 0.

Lemma 8.17. Let R be any ring. There is no element r ∈ R that is both a unit and a
zerodivisor.

Proof. Suppose that a is both a zerodivisor and a unit. Then there exists b 6= 0 such that
ab = 0 or ba = 0. Multiplying either of these equations by a−1 gives b = 0, which is a
contradiction.

Definition 8.18. A ring R is an integral domain, often shortened to domain, if R is
commutative and has no zerodivisors.
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Remark 8.19. If one allows the zero ring, then in the definition of a domain we should
explicitly require 1 6= 0. Moreover, if one allows for nonunital rings, then we should also
require all domains to be unital.

Remark 8.20. Any domain R satisfies what is know as the cancellation rule: given any
nonzero element a ∈ R,

ab = ac =⇒ b = c.

Indeed, the equality
ab = ac =⇒ a(b− c) = 0,

but since a is not a zerodivisor we must have b− c = 0.
The cancellation rule does not hold if R is not a domain: if a and b are nonzero and

ab = 0, then ab = a · 0 even though b 6= 0.

Corollary 8.21. Every field is a domain.

Proof. If R is a field, then every nonzero r ∈ R is a unit, and thus by Lemma 8.17 r is not
a zerodivisor. Thus R has no zerodivisors, and must be a domain.

In contrast, not every domain must be a field.

Example 8.22. The ring Z is a domain but not a field.

Example 8.23. Fix an integer n > 2 and consider the ring Z/n. If n is composite, say n = ab
with 1 < a, b < n, then [a]n[b]n = 0 in Z/n. In particular, [a]n and [b]n are zerodivisors and
Z/n is not a domain.

In contrast, if n is prime then Z/n is a field, and thus in particular it is a domain. Putting
all this together, we see that

Z/n is a domain ⇐⇒ n is prime ⇐⇒ Z/n is a field.

In fact, this is a special case of a more general fact:

Exercise 56. Show that every finite domain is a field.

Definition 8.24. An element a in a ring R is nilpotent if an = 0 for some integer n > 1.

Exercise 57. Show that if a is a nonzero nilpotent element, then a is a zerodivisor.

Thus there are no nontrivial nilpotent elements in a domain.

Exercise 58. Show that is a is a nilpotent element in a ring R, then 1− a is a unit.

Exercise 59. Given an integer n > 1, describe all the nilpotent elements in Z/n.

Definition 8.25. An element a in a ring R is idempotent if a2 = a.

Exercise 60. Show that if e is an idempotent element in a ring R, then 1 − e is also an
idempotent element.

Exercise 61. Show that if F is a field, then 0 and 1 are the only idempotent elements.
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8.3 Subrings

Definition 8.26. A subring of a ring R is a subset S ⊆ R such that S is a ring under the
operations of R and 1S = 1R. When R is a field, a subring of R that is also a field is called
a subfield of R.

Some authors do not include the condition that 1S = 1R in their definition of subring.
However, we think of the identity as part of the basic data of the ring, and thus it is desirable
for it to be shared with any subring. As we will see later when we define ideals, this will
make our definition of ideal quite different in practice from what we would get if we allowed
a subring to not be unital, or not share the multiplicative identity with the original ring.

Exercise 62. Prove that for a ring R, a subset S of R is a subring if and only if 1R ∈ S and
for all x, y ∈ S we have x− y ∈ S and xy ∈ S.

Exercise 63. Any subring of a commutative ring is a commutative ring. Any subring of a
domain is a domain.

Exercise 64. Prove that the set of R-linear combinations of[
1 0
0 1

]
,

[√
−1 0
0 −

√
−1

]
,

[
0 1
−1 0

]
,

[
0

√
−1√

−1 0

]
.

forms a subring of Mat2(C).

We will later defined what it means for two rings to be isomorphic. The ring in Exercise 64
is isomorphic to the quaternions ring H.

Remark 8.27. Let F be a ring and R = Matn(F ) with n > 2. Let S be the subset of R
consisting of matrices whose only nonzero element is in the upper left corner. Then S is a
ring under same operations as R, and in fact S ∼= R, but S is not a subring of S according
to our definition, since 1S 6= 1R.

Example 8.28. • The following is a chain of subrings:

Z ⊆ Q ⊆ R ⊆ C ⊆ H.

In the last containment, we think of C as those elements a + bi + cj + dk of H with
c = d = 0.

• For any ring R and integer n > 1, the set of scalar matrices

{rIn | r ∈ R}

is a subring of Matn(R).

• For any ring R and integer n > 1, the set of all diagonal matrices is a subring of
Matn(R).

• The set
Z[i] = {a+ bi | a, b ∈ Z}

is a subring of C called the ring of Gaussian integers.
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Definition 8.29. The center of a ring R is the set

Z(R) := {z ∈ R | zr = rz for all r ∈ R}.
An element in R is called central if it is in the center of R.

Exercise 65. Show that the center Z(R) is a subring of R.

Example 8.30. If R is commutative, then Z(R) = R.

The center measures how far R is from being commutative.

Exercise 66. Show that the center of H is R.

Exercise 67. Show that for any commutative ring R, the center of Matn(R) is the collection
of scalar matrices.

Lemma 8.31. Let d be a squarefree integer, meaning that the prime factorization of d has
no repeated primes. Then

Q(
√
d) := {a+ b

√
d | a, b ∈ Q}

is a subfield of the field C. Moreover,

Z[
√
d] := {a+ b

√
d | a, b ∈ Z}

is a subring of Q(
√
d).

Proof. We leave is as an exercise to prove that Q(
√
d) and Z[

√
d] are closed under subtrac-

tions and products and contain 1, and thus are subrings of C by Exercise 62.
It remains to show that Q(

√
d) is a field, which amounts to the claim that Q(

√
d) is also

closed inside C under taking inverses of nonzero elements. Suppose r + q
√
d 6= 0. Then its

inverse in C is

(r + q
√
d)−1 =

r − q
√
d

r2 − dq2
∈ Q(

√
d).

A slightly subtle point here is that the fraction above makes sense. To see that, note that if
r2− dq2 = 0, then either r = q = 0 or d = (r/q)2. But r = q = 0 contradicts the assumption
that r+q

√
d 6= 0, so that’s impossible. If d = (r/q)2, since d is an integer then q2 must divide

r2, and thus q divides r. Therefore, d = (r/q)2 is a square, contradicting our assumption
that d is squarefree.

Remark 8.32. In Lemma 8.31, note that we do allow d to be negative. For instance,
Lemma 8.31 applies to Q(

√
−5) and Z[

√
−5]. Indeed, this is a somewhat interesting example,

as Z[
√
−5] is a classic example of a ring that is not UFD, something we will discuss alter.

It does make sense to speak of Q(
√
d) and Z[

√
d] when d has repeated prime factors, but

it just leads to redundant examples. For instance, if d = 12, then Q(
√

12) = Q(
√

3) and
Z[
√

12] = Z[
√

3].

Example 8.33. The ring Z[
√
d] is an integral domain: it is a subring of C, and C is a

domain and thus a field by Corollary 8.21.

Remark 8.34. The difference in notation (more precisely, in the parenthesis) between Z[
√
d]

and Q(
√
d) will be explained next semester. In short, if R is a subring of S and s ∈ S, then

R[s] is the smallest subring of S that contains both R and s, which for a subfield F of a
field L and an element a ∈ L, F (a) denotes the smallest subfield of L containing F and a.
In this case, it just happens that the sets Z[

√
d] and Q(

√
d) look surprisingly similar.
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8.4 Ideals

Notation 8.35. Given a ring R and a subset S ⊆ R, we write

RS := {ra | a ∈ S, r ∈ R} and SR := {ar | a ∈ S, r ∈ R}.

If S = {a}, then we Ra instead of R{a} and aR instead of {a}R. Finally, given a, b ∈ R, we
write

Ra+Rb := {ra+ sb | r, s ∈ R}.

Definition 8.36. For a ring R, an ideal (or a two sided ideal) of R is a nonempty subset
I such that

• Closure under addition: (I,+) is a subgroup of (R,+).

• Absorption:2 for all r ∈ R and a ∈ I, we have ra ∈ I and ar ∈ I. More concisely:
RI ⊆ I and IR ⊆ I.

For noncommutative rings, one speaks also about left ideals and right ideals.

Definition 8.37. A left ideal of a ring R is a subgroup I of (R,+) which satisfies RI ⊆ I,
while a right ideal is a subgroup I of (R,+) which satisfies IR ⊆ I.

Our definition of rings, or more precisely our insistence that all rings have 1, makes ideals
and subrings very different beasts.

Remark 8.38. If an ideal I contains 1, then by the absorption property we must have
I = R, since for all a ∈ R we have

a = a · 1 ∈ I.
Thus the only subset of R that is both an ideal and a subring is R itself.

Here are some examples of ideals:

Example 8.39. (1) Every ring R has at least two ideals: {0} and R itself.

(2) The ideals of Z are of the form Z · n for various n, but we will prove this later.

One can show (exercise!) that

Z · 6 + Z · 10 = {m · 6 + n · 10 | m,n ∈ Z}

is also an ideal, and so it must have the form Z · n for some n. Indeed,

Z · 6 + Z · 10 = Z · 2.

(3) The sets Ri =




0 0 · · · 0
· · · · · · · · · · · ·
ai1 ai2 · · · ain
· · · · · · · · · · · ·
0 0 · · · 0


 and Lj =




0 · · · aj1 · · · 0
· · · · · · · · · · · ·
0 · · · aji · · · 0
· · · · · · · · · · · ·
0 · · · ajn · · · 0


 are a

right ideal and a left ideal of Matn(R) respectively. Neither of these are two-sided
ideals if n > 2.

2One might even write RIR ⊆ I.
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Definition 8.40. An ideal I in a ring R is a proper ideal if I 6= R, and nontrivial if
I 6= {0}.

Some authors might say an ideal is nontrivial to mean it is proper and nontrivial.

Exercise 68. Prove that an ideal I is proper if and only if I contains no units.

Exercise 69. Let R be a commutative ring. Show that R is a field if and only if R has only
two ideals, {0} and R.

Definition 8.41. A ring R is a simple ring if it has no proper nontrivial ideals, meaning
that the only ideals of R are R and {0}.

Exercise 70. If F is a field or, more generally, a division ring, and n > 1 is an integer,
prove that Matn×n(F ) is a simple ring.

Here are some operations that one can perform with ideals.

Lemma 8.42. Let R be a ring and let I and J be ideals of R. Then

(1) The sum of ideals
I + J := {a+ b | a ∈ I, b ∈ J}

is an ideal.

(2) The intersection of ideals is an ideal: I ∩ J is an ideal, and more generally the inter-
section ⋂

α∈J

Iα

of any collection of ideals Iα of R is an ideal.

(3) The product of ideals is an ideal:

IJ :=

{
n∑
i=1

aibi | n > 0, ai ∈ I, bj ∈ J

}

is an ideal such that IJ ⊆ I ∩ J .

The set of all ideals of a ring R is a lattice with respect to the partial order given by contain-
ment. In this lattice, the supremum of a pair of ideals I and J is I + J and the infimum is
I ∩ J .

Exercise 71. Prove Lemma 8.42.

Remark 8.43. However, the union of ideals is typically not an ideal. For example, in Z,
the sets of even integers I = 2Z and multiples of 3 J = 3Z are both ideals, but I ∪ J is not
ideal since it contains 2 and 3 but it does not contain

1 = 3− 2.

However, the union of nested ideals is an ideal.
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Exercise 72. Let {Iλ}λ∈Λ be a chain of ideals, meaning that for all α, β ∈ Λ we have Iα ⊆ Iβ
or Iβ ⊆ Iα. Show that ⋃

λ∈Λ

Iλ

is an ideal.

Definition 8.44. Let R be a ring and consider a subset S ⊆ R. The ideal generated by S,
denoted (S), is the intersection of all the ideals of R that contain S. When S = {a1, . . . an},
we may write (a1, . . . , an) instead of ({a1, . . . , an}).

Remark 8.45. Let S be a subset of a ring R. By Lemma 8.42, the ideal generated by S is
indeed an ideal.

The ideal generated by S is the smallest ideal of R that contains S.

Exercise 73. Let A be any subset A of a ring R. The ideal generated by A is given by

(A) =

{
n∑
i=1

xiaiyi

∣∣∣∣∣n > 0, ai ∈ A, xi, yi ∈ R

}
.

If R is commutative and A is any subset, then we can simplify this to

(A) =

{
n∑
i=1

riai | n > 0, ri ∈ R, ai ∈ A

}
.

Definition 8.46. Let R be a ring. Given an ideal I and a subset S of R, we say that S
generates I if (S) = I, and we call the elements of S generators of I.

Remark 8.47. Suppose that R is a commutative ring. Given generators for I and J , say

I = (S) and J = (T ),

the set {st | s ∈ S, t ∈ T} generates IJ , while the set S ∪ T generates I + J .

Definition 8.48. We say an ideal I is finitely generated if I = (S) for some finite subset
S of R.

Remark 8.49. Note that if A = {a1, . . . , an} and R is commutative, then

(a1, . . . , an) = Ra1 + · · ·+Ran = {r1a1 + · · ·+ rnan | ri ∈ R}.

Definition 8.50. An ideal of R is principal if it can be generated by one element, meaning
that I = (a) for some a ∈ R.

Example 8.51. In R = Z[x], we have

I = (2, x) = {2f(x) + xg(x) | f(x), g(x) ∈ Z[x]}.

Thus I is the set of polynomials with integer coefficients whose constant term is even. One
can show that this ideal cannot be generated by a single element, so it is not a principal
ideal.
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We will primarily use this notion when R is commutative.

Remark 8.52. Note that if R is commutative and I = (a), then

I = Ra = {ra | r ∈ R}

by Exercise 73, since an expression of the form

r1a+ · · ·+ rma

can be rewritten as ra with r = r1 + · · · + rm. Note, however, that this does not work for
noncommutative rings.

Example 8.53.

(1) We will later show that every ideal of Z is principal, so all ideals in Z are of the form
I = (n) = Z · n for some n ∈ Z.

(2) We will later show that for any field F , every ideal of F [x] is principal.

(3) For any field F , every ideal in F [x1, . . . , xn] is finitely generated, but not necessarily
principal when n > 2. This fact is the Hilbert Basis Theorem, an elementary result in
Commutative Algebra which we will not prove in the class.

8.5 Homomorphisms

A homomorphism of rings is a function between two rings that preserves the ring structure:
the addition, multiplication, and 1.

Definition 8.54. For rings R and S, a ring homomorphism (aka, a ring map) from R
to S is a function f : R→ S that satisfies the following properties:

(1) f(x+ y) = f(x) + f(y) for all x, y ∈ R,

(2) f(x · y) = f(x) · f(y) for all x, y ∈ R, and

(3) f(1R) = 1S.

Remark 8.55. Equivalently, f is a ring homomorphisms if f is a homomorphism of abelian
groups (R,+) −→ (S,+) and a homomorphism of monoids from (R, ·) to (S, ·).3

We really must require f(1R) = 1S, since this is not a consequence of the first two
conditions.

Example 8.56. The map from R to Mat2(R) sending

r 7→
[
r 0
0 0

]
preserves addition and multiplication, but it does not sent 1 to 1.

3By definition, a homomorphism of monoids preserves the binary operations and sends the identity to
the identity.
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Example 8.57. The map R→ Matn×n(R) sending r to rIn is a ring homomorphism.

Exercise 74 (Z is an initial object in the category of rings). Prove that for any ring S there
is a unique ring homomorphism f : Z→ S given by sending n to n · 1S.

Example 8.58. Fix a commutative ring R, an element a ∈ R, and an indeterminant x. The
evaluation at a map is the function f : R[x]→ R given by e

f

(∑
i

rix
i

)
=
∑
i

ria
i

This is a ring homomorphism.

Exercise 75. Prove that for any commutative ring R and any element a ∈ R, there is a
unique ring homomorphism Z[x]→ R that sends x to a.

Definition 8.59. Let f : R −→ S be a ring homomorphism. The kernel of f is

ker(f) := {x ∈ R | f(x) = 0}.

Lemma 8.60. If f : R→ S is a ring homomorphism, then the following properties hold:

(1) f(0R) = 0S,

(2) f(−x) = −f(x),

(3) If u ∈ R× then f(u) ∈ S× and f(u−1) = f(u)−1.

(4) The image im(f) is a subring of S.

(5) The kernel ker(f) is an ideal of R.

(6) The map f is injective if and only if ker(f) = {0}.

Proof. By definition, f is a homomorphism of additive groups, and thus

f(0R) = 0S and f(−x) = −f(x)

are an application of Lemma 1.73.
The fact that units must be sent to units is actually a general property of homomorphisms

of monoids. Indeed, since f sends 1 to 1 by assumption, we have

1 = f(1) = f(uu−1) = f(u)f(u−1)

and similarly
f(u−1)f(u) = f(u−1u) = f(1) = 1.

Thus f(u−1) = f(u)−1 by the uniqueness of two-sided inverses of units.
To show that the image of f is a subring, first note that 1S = f(1R) ∈ im(f). Moreover,

given a, b ∈ im(f), say a = f(x) and b = f(y), we have

a− b = f(x)− f(y) = f(x− y) ∈ im(f) and ab = f(x)f(y) = f(xy) ∈ im(f).
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By Exercise 62, im(f) must be a subring of S.
The kernel ker(f) is already known to be a subgroup under + by Lemma 3.8. Moreover,

for a ∈ ker(f) and r ∈ R, we have

f(ra) = f(r)f(a) = f(r) · 0 = 0,

so that ra ∈ ker(f) and similarly ar ∈ ker(f).
Finally, (7) follows immediately from Lemma 1.78, which is the corresponding fact about

group homomorphisms, since f is in particular a homomorphism between the additive groups
of R and S.

Remark 8.61. In fact, we will later show that a subset I of a ring R is an ideal if and only
if it is the kernel of some ring homomorphism with source R.

Definition 8.62. Given rings R and S, a ring isomorphism from R to S is a ring homo-
morphism f : R→ S such that there exists a ring homomorphism g : S → R with

f ◦ g = idS and g ◦ f = idR .

In that case, we write f−1 to denote the homomorphism g. Two rings R and S are isomorphic,
written R ∼= S, if there is an isomorphism from R to S.

Exercise 76. Show that if f : R → S is a bijective ring homomorphism, then f is an
isomorphism. Moreover, show that he composition of two ring homomorphisms (respectively,
isomorphisms) is again a ring homomorphism (respectively, isomorphism).

Exercise 77. Fix a ring R and integer n > 1. Recall that the collection S of all diagonal
matrices in Matn(R) is a subring of Matn(R). Prove that

S ∼= R× · · · ×R︸ ︷︷ ︸
n times

.

Exercise 78. Show that the following are ring isomorphism invariants:

(1) All group isomorphism invariants of the additive group, including the isomorphism
class, meaning that if R ∼= S then (R,+) ∼= (S,+).

(2) The properties of being commutative, a division ring, a field, or an integral domain.

(3) The cardinality of the set of zero divisors.

(4) All group isomorphism invariants of the group of units, including the isomorphism
class, that is, if R ∼= S then (R×, ·) ∼= (S×, ·).

(5) The isomorphism type of the center: if R ∼= S then Z(R) ∼= Z(S).

Exercise 79. Let f : R→ S be a ring homomorphism. Show the following:

(1) Let I be an ideal in R. Then f(I) is an ideal of f(R).

(2) Let I be an ideal of S. Then f−1(I) is an ideal of R.
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Warning! The image of an ideal by a ring homomorphism is however not necessarily an
ideal of the target ring.

Example 8.63. Let k be a field and x be an indeterminate. Consider the subring of S = k[x]
of polynomials where all the terms have even degree, given by

R = k[x2] := {r0 + r1x
2 + · · · rnx2n | ri ∈ R}.

The inclusion map i : R→ S is a ring homomorphism. Moreover, consider the ideal I = (x2)
of R. Its image J = i(I) under i is not an ideal of S: for example, because x2 ∈ J but
x · x2 = x3 /∈ J .

One might however consider the expansion of I into S:

Definition 8.64. LetR and S be commutative rings. Given a ring homomorphism f : R→ S
and an ideal I in R, the expansion of I into S is the ideal of S given by Sf(I), sometimes
denoted simply by SI.

8.6 Quotient rings

We should think of a two-sided ideal as analogous to a normal subgroup of a group, for two
related reasons:

• They are the things that occur as kernels of homomorphisms.

• They are the things you are allowed to mod out by.

Suppose I is a proper ideal of a ring R. Recall this includes the fact that I is a subgroup
of (R,+), and hence it is a normal subgroup since (R,+) is abelian. Thus, R/I is an abelian
group under +. Since we use additive notation, a typical element of this group is of the form
r + I for r ∈ R, and

a+ I = b+ I ⇐⇒ a− b ∈ I.

This quotient group also inherits a ring structure from R:

Theorem 8.65. If R is a ring and I is a proper (two-sided) ideal, then the binary operation

(r + I) · (s+ I) := rs+ I

on R/I is well-defined and makes (R/I,+, ·) into a ring, where + is the operation induced
by addition on R. The one in this ring is 1 + I. Moreover, the map π : R → R/I with
π(r) = r + I is a ring homomorphism .

Proof. The main point is the well-definedness of the operation. To show that, suppose

r + I = r′ + I and s+ I = s′ + I.

Then r = r′ + a and s = s′ + b for a, b ∈ I, and hence

rs = r′s′ + r′b+ as′ + ab.
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Since I is a two-sided ideal, r′b, as′, and ab all belong to I and thus so does their sum. It
follows that rs+ I = r′s′ + I. This proves that the operation is well-defined.

To show that R/I is a ring, note that we already know it is an abelian group under
addition. The fact that multiplication is associative follows from the formula and the fact
that multiplication is associative in R. Moreover, from the formula that 1 + I is a multi-
plicative identity, since 1 is one for R. Likewise, the distributive laws are consequences of
the distributive laws in R.

To show that π is a group homomorphism, note that

π(1) = 1 + I

by definition, and we already know that π is a group homomorphism, so we only need to
prove it preserves products. But indeed, that follows from the definition of the product on
R/I.

Definition 8.66. The ring R/I with the operations + and · induced from R is the quotient
ring of R modulo I. The ring homomorphism π : R→ R/I sending r to r + I is called the
canonical surjection, canonical map, or the quotient map.

Remark 8.67. In the quotient ring R/I, the zero element is 0 + I and the one is 1 + I.

Example 8.68. Given an ideal I = (n) in the ring Z, the quotient ring Z/(n) is the familiar
ring Z/n .

Example 8.69. Let R = R[x] and I = (x2 + 1). Then we may form the quotient ring

R/I = R[x]/(x2 + 1).

Intuitively, we are starting with R, adjoined an element x, and then dictated that x2 = −1,
and so we should be getting C. We will prove this carefully in Example 8.74.

Example 8.70. More generally, let R be any commutative ring, let x be an indeterminants,
and suppose f(x) is a monic polynomial, say

f(x) = xn + rn−1x
n−1 + · · ·+ r1x+ r0

for some r0, . . . , rn ∈ R. Set S = R[x]/(f(x)). One should think of this as adjoining a new
ring element x to S and imposing the relation given by f :

xn = −rn−1x
n−1 + · · ·+ r1x+ r0.

In fact, the elements of S are in bijective correspondence with the collection of polynomials
of degree at most n− 1: the function

{a0 + · · ·+ an−1x
n−1 | a0, . . . , an−1 ∈ R} −→ S

sending g to g + I is a bijection of sets.
For instance, the ring

S = Q[x]/(x4 + x3 + x2 + x+ 1)
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can be thought of taking the ring Q and adjoining an element ζ5 such that

ζ4
5 + ζ4

5 + ζ3
5 + ζ2

5 + ζ5 + 1 = 0 =⇒ −ζ5(ζ4
5 + ζ3

5 + ζ2
5 + ζ5 + 1) = 1.

Thus this new element ζ5 is invertible; in fact, one can show that S is a field and is isomorphic
to Q(ζ5), the the smallest subfield of C containing both Q and ζ5 = e2πi/5 ∈ C.

Example 8.71. Many rings of interest in commutative algebra arise from the construction

F [x1, . . . , xn]/I

for some field F , some integer n > 1, and some ideal I in F [x1, . . . , xn]. By the Hilbert Basis
Theorem, every such ideal is finitely generated, so that such a ring has the form

F [x1, . . . , xn]/(f1, . . . , fm)

where each fj is a polynomial expression in x1, . . . , xn. You should think of this as starting
with F , adjoining n new elements, and the imposing m relations on these elements. Though
keep in mind that in the setting of commutative rings, relations involve both addition and
multiplication.

8.7 The Isomorphism Theorems for rings

Theorem 8.72 (Universal Mapping Property for Quotient Rings). Let R be a ring and I
a (two-sided) ideal in R, and let π : R → R/I be the canonical surjection. If f : R → S
is a ring homomorphism such that I ⊆ ker(f), there exists a unique ring homomorphism
f : R/I → S such that the following diagram commutes:

R

π

��

f // S

R/I
f

==

meaning that
f ◦ π = f.

Proof. Ignoring the multiplication operation, we already know from Theorem 4.39 that there
is a unique group homomorphism f of abelian groups from (R/I,+) to (S,+) such that

f ◦ π = f.

It remains only to check that f preserves multiplication and sends 1 to 1. Given elements
r + I, s+ I ∈ R/I, we have

f((r + I)(s+ I)) = f(rs+ I) = f(rs) = f(r)f(s) = f(r + I)f(s+ I),

since f preserves multiplication. Finally,

f(1R/I) = f(1R + I) = f(1R) = 1S

since f sends 1R to 1S.
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Theorem 8.73 (First Isomorphism Theorem for Rings). If f : R → S is a ring homomor-
phism, there is an isomorphism

f : R/ ker(f)
∼= // im(f)

r + ker(f) � // f(r).

In particular, if f is surjective, then

R/ ker(f) ∼= S.

Proof. Taking I = ker(f) in the UMP for quotient rings, we have a ring homomorphism
f : R/ ker(f)→ S. By the formula for f we immediately get that im(f) = im(f). Its kernel
is

{r + I | f(r) = 0} = {0R/I}

and hence f is injective. The result follows.

Here is a nice application of the First Isomorphism Theorem:

Example 8.74. Recall that R[x]/(x2 + 1) ought to be C. To prove this, we define a map

φ : R[x] −→ C

sending f(x) to f(i), the evaluation of f at i. It is easy to check φ is a ring homomorphism,
but we leave the details as an exercise. This map is surjective since elements of the form
a+ bx in the source map to all possible complex numbers under φ.

We claim the kernel of φ is (x2 + 1). Note that

x2 + 1 ∈ ker(φ)

and it follows that
(x2 + 1) ⊆ ker(φ),

since ker(φ) is a two-sided ideal.
Suppose φ(f(x)) = 0. By the Division Algorithm in the polynomial ring R[x], which we

will cover in more detail later, we can write

f(x) = (x2 + 1)q(x) + r(x)

with the degree of r(x) at most 1. So r(x) = a + bx for real numbers a and b. If r(x) 6= 0,
so that at least one of a or b is nonzero, then

r(i) = a+ bi 6= 0

since a complex number is 0 only if both components are, which would contradict the fact
that f(i) = 0. So we must have r(x) = 0 and hence f(x) ∈ (x2 + 1).

Applying the First Isomorphism Theorem for rings, we get

R[x]/(x2 + 1) ∼= C

via the map sending f(x) + (x2 + 1) to f(i).
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Example 8.75. Similarly, we may define φ : Q[x]→ C by φ(p(x)) = p(ζ5). We will skip the
details, but its image of Q(ζ5) and its kernel is (x4 + x3 + x2 + x+ 1) and hence we declared
in Example 8.70 Q[x]/(x4 + x3 + x2 + x+ 1) ∼= Q(ζ5).

Exercise 80. Let S be a subring of a ring R and let I be an ideal of R. Show that Show
that

S + I = {s+ i | s ∈ S, i ∈ I}
is a subring of R and S ∩ I is an ideal of S.

Theorem 8.76 (Second Isomorphism Theorem for rings). Let S be a subring of a ring R
and let I be an ideal of R. Then

S + I = {s+ i | s ∈ S, i ∈ I}

is a subring of R, S ∩ I is an ideal of S, and

S + I

I
∼=

S

S ∩ I
.

Proof. The first two facts are Exercise 80 The map f : S + I → S
S∩I sending s + i to

s+ i+I = s+I is a homomorphism of rings since it is the composition of a subring inclusion
with the canonical quotient map. It is surjective by definition, and the kernel is

ker(f) = {s+ i | s ∈ S, i ∈ I, s+ I = I} = I.

The result now follows from the First Isomorphism Theorem for rings.

Theorem 8.77 (Third Isomorphism Theorem for rings). If R is a ring and I ⊆ J are two
ideals of R, then J/I is an ideal of R/I and

R/I

J/I
∼= R/J via (r + I) + J/I 7−→ r + J.

Proof. If we ignore multiplication, we know that (J/I,+) is a subgroup of (R/I,+) and that
there is an isomorphism of abelian groups

(R/I)/(J/I) ∼= R/J

given by
(r + I) + J/I 7→ r + J.

One just needs to check that J/I is a two-sided ideal of R/I and the indicated bijection
preserves multiplication, which we leave as an elementary exercise.

The following will be helpful in discussing some interesting examples:

Exercise 81 (Reduction homomorphism). Given a ring map φ : R→ S between commuta-
tive rings, there is an induced ring map

ρ : R[x]→ S[x] given by ρ

(∑
i

rix
i

)
=
∑
i

φ(ri)x
i.

That is, ρ consists of by applying φ to the coefficients of each polynomials.
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The proof is just a tedious check of the axioms, and so we leave it as an exercise.

Example 8.78. In particular, for I an ideal of R, taking S = R/I and φ to be the canonical
homomorphism, Exercise 81 implies that there is a ring homomorphism

ρ : R[x]→ R

I
[x]

given by

ρ

(∑
i

rix
i

)
=
∑
i

(ri + I)xi

Thus ρ is given by modding out the coefficients by I. In this case, the kernel of ρ is the
collection of polynomials with coefficient in I, which we denote by I[x]. By the 8.73First
Isomorphism Theorem, we conclude that

R[x]

I[x]
∼=
R

I
[x].

Example 8.79. Consider the ideal J = (2, x2 +x+ 1) of Z[x]. Explicitly, by Exercise 73 we
have

J = {p(x) · 2 + q(x)(x2 + x+ 1) | p(x), q(x) ∈ Z[x]}.
Suppose we want to understand Z[x]/J . Then the Third Isomorphism Theorem is our friend.
Set I = (2) = Z[x] · 2 and note that I ⊆ J , and so by the Third Isomorphism Theorem we
have

Z[x]

J
∼=
Z[x]/I

J/I
.

By the example above,
Z[x]

I
∼=
Z
2

[x].

As we did for groups, we will write J/I to denote the image of J under the quotient map
π : Z[x] → Z[x]/I. Since J is generated by 2 and x2 + x + 1 and I is generated by 2, one
can show that J/(2) is the principal ideal of Z[x]/(2) generated by the coset represented by
x2 + x+ 1. Under the identification

Z[x]/(2) ∼= (Z/2)[x],

this ideal J/(2) corresponds to the principal ideal of (Z/2)[x] generated by x2 + x + 1 ∈
(Z/2)[x]. We obtain a ring isomorphism

Z[x]/J ∼=
(Z/2)[x]

(x2 + x+ 1)
.

Looking ahead a bit, we note that the quadratic polynomial x2 + x + 1 has no roots in
the field Z/2, as the only possibilities are 0 and 1, and neither is a root. As we will prove in
soon, this implies (Z/2)[x]/(x2 + x+ 1) is a field, and thus Z[x]/J is a field.

As discussed before Lemma 8.42, the set of all all ideals in a ring R is a partially ordered
set with respect to the order given by containment.
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Theorem 8.80 (Lattice Theorem for Quotient Rings). Suppose R is a ring and I is a
two-sided ideal of R, and write π : R→ R/I for the quotient map. There is a bijection

{ideals of R containing I} oo // {ideals of R/I}

J � // π(J) = J/I

π−1(L) L�oo

.

Proof. By Theorem 4.51, we know that there is a bijection of subgroups (under +) of R that
contain I and subgroups of R/I, given by these formulas. It remains to pprove that this
correspondence preserves the property of being an ideal, which we leave as an exercise.

Example 8.81. We claimed in Example 8.79 that Z[x]/(2, x2 + x + 1) is a field. Since a
field has only two ideals, {0} and the field itself, we deduce, using the Lattice Isomorphism
Theorem, that there are only two ideals in Z[x] that contain (2, x2 + x+ 1), namely

(2, x2 + x+ 1) = π−1(0) and Z/[x] = π−1(F ).

8.8 Prime and maximal ideals in commutative rings

Definition 8.82. A maximal ideal of a ring R is an ideal that is maximal with respect to
containment among all proper ideals of R. More precisely, an ideal M is maximal if M 6= R
and for all ideals I in R,

M ⊆ I =⇒ M = I or I = R.

Thus the only ideals of R containing M are M and R.
Let R be a commutative ring. A prime ideal of R is a proper ideal P such that

xy ∈ P =⇒ x ∈ P or y ∈ P.

Example 8.83. In Z, the prime ideals are (0) and the ideals generated by prime integers
P = (p), where p is a prime integer. The maximal ideals are the ideals generated by prime
integers. In particular, (0) is prime but not maximal.

Example 8.84. In Z[i], we claim that the ideal (13) is not prime. On the one hand,

13 = (3 + 2i)(3− 2i) ∈ (13)

but we claim that
3 + 2i /∈ (13) and 3− 2i /∈ (13).

To see this, let N be the square of the complex norm function, meaning that N(a + bi) =
a2 + b2 for any a, b ∈ R. Now note that if 3± 2i = 13α for some α ∈ Z[i], then

N(3± 2i) = N(13)N(α),

so it would follow that
13 = N(3± 2i) = 132N(α)

with N(α) ∈ Z, which is impossible.
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Theorem 8.85. Let R be a commutative ring and let Q be an ideal of R.

(1) The ideal Q is maximal if and only if R/Q is a field.

(2) The ideal Q is prime if and only if R/Q is a domain.

(3) Every maximal ideal of R is prime.

Proof. By the Lattice Isomorphism Theorem, the ideals of R/Q are of the form I/Q, where
I is an ideal in R containing Q.

By Exercise 69, R/Q is a field if and only if R/Q has only two ideals, {0} = Q/Q and
R/Q. Thus R/Q is a field if and only if the only ideals that contain Q are Q and R.

Now suppose Q is prime. If

(r + I)(r′ + I) = 0 + I,

then rr′ ∈ I and hence either r ∈ I or r′ ∈ I, so that either

r + I = 0 or r′ + I = 0.

Since R is commutative, then R/I is also commutative, and since Q is a proper, then R/I
is not the zero ring. This proves that R/Q is a domain.

Conversely, suppose that R/Q is a domain. Since R/Q is not the zero ring, Q is proper.
If x, y ∈ R satisfy xy ∈ I, then

(x+ I)(y + I) = 0

in R/Q, and hence either x + Q = 0 or y + Q = 0. It follows x ∈ Q or y ∈ Q. This proves
that Q is prime.

If Q is maximal, then R/Q is a field, which in particular implies that R/Q is a domain,
and thus Q is prime.

Exercise 82. Show that the ideal (2, x) in Z[x] is maximal (and thus prime). In contrast,
the ideals (2) and (x) are prime but not maximal.

Example 8.86. For a field F , the ideal I = (x1 − a1, . . . , xn − an) of the polynomial
ring F [x1, . . . , xn] is maximal. This holds because I is the kernel of the surjective ring
homomorphism F [x1, . . . , xn]→ F given by evalating polynomials at (a1, . . . , an).

Exercise 83. Show that f : R −→ S is a ring homomorphism and S is a domain, then
ker(f) is a prime ideal.

Theorem 8.87. Every commutative ring has a maximal ideal.

Fun fact: this is actually equivalent to the Axiom of Choice. We will prove it (but not
its equivalence to the Axiom of Choice!) using Zorn’s Lemma, another equivalent version of
the Axiom of Choice. Zorn’s Lemma is a statement about partially ordered sets. Given a
partially ordered set S, a chain in S is a totally ordered subset of S.

Theorem 8.88 (Zorn’s Lemma). Let S be a nonempty partially ordered set S such that
every chain in S has an upper bound in S. Then S contains at least one maximal element.

We can now prove every ring has a maximal ideal; in fact, we will prove something
stronger:

Theorem 8.89. Given a commutative ring R, every proper ideal I 6= R is contained in some
maximal ideal.
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Chapter 9

Nice domains

In this chapter, all rings in this chapter are commutative. We will introduce three special
classes of domains: Euclidean domains, PIDs, and UFDs. We will also show that

Fields ( Euclidean Domains ( PIDs ( UFDs ( Domains.

9.1 Euclidean domains

An Euclidean domain is a domain with some additional structure, designed to mimic the
parallel facts that there is a notion of division with remainder in both Z and F [x], with F
a field.

Definition 9.1. An Euclidean domain is an integral domain R together with a function

N : R \ {0} → Z>0

satisfying the following property: for any two elements a, b ∈ R with b 6= 0, there are elements
q and r of R such that

a = bq + r and r = 0 or N(r) < N(b).

The function N is an Euclidean function for R. If N satisfies N(ab) = N(a)N(b), then N
is called a norm function.

One sometimes says that an Euclidean domain has a division algorithm, but that is
misleading: there need not be an algorithm to find q and r given a and b, and neither q nor
r need to be unique. Finally, the Euclidean function N is not required to satisfy any sort of
multiplicative property, but in some examples it does, and in those examples it is called a
norm function.

Example 9.2. A degenerate example of an Euclidean domain is a field F equipped with
the trivial norm N(x) = 0 for all x 6= 0, or really any function N : F \ {0} → Z>0. Indeed,
given a, b ∈ F with b 6= 0, we have

a = b(ab−1) + 0,

thus q = ab−1 and r = 0 satisfy the definition.
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This calculation shows, more generally, that if b is a unit, then for all a there exists an
equation a = bq + r with r = 0, not matter what N we use.

The canonical example of an Euclidean domain is Z.

Theorem 9.3 (Division Algorithm for Z). For any two integers a, b with b 6= 0, there are
(unique) integers integers q and r such that

a = qb+ r and 0 6 r < |b|.

Example 9.4. Let R = Z with N(m) = |m| for all m 6= 0. This ring is an Euclidean Domain
because of the familiar Division Algorithm for integers. Notice however that the Division
Algorithm gives us something stronger: if we add in the additional requirement that when
dividing a by b the remainder r must satisfy 0 6 r < |b|, then that remainder is unique.

However, this uniqueness is not part of the abstract theory since it does not generalize
to all cases well. And in fact, even in this case there is no uniqueness: following only the
definition, we have nonunique remainders, as for example when a = 12 and b = 5, then both

12 = 2 · 5 + 2 and 12 = 3 · 5 + (−3)

are equally acceptable, since | − 3| < 5.

Definition 9.5. Let R be a commutative ring with 1 6= 0. Consider a nonzero polynomial

f =
n∑
i=0

aix
i ∈ R[x]

with an 6= 0. The degree of f is deg(f) = n, and the leading coefficient of f is lc(f) = an.
The 0 polynomial does not have a degree nor a leading coefficient.

Lemma 9.6. Let R be an integral domain and f, g ∈ R[x] be nonzero polynomials. Then:

(1) The product fg is nonzero and lc(f · g) = lc(f) · lc(g). In particular, R[x] is a domain.

(2) We have deg(fg) = deg(f) + deg(g).

(3) The units of R[x] are the constant polynomials given by units of R: R[x]× = R×.

Proof. If f = anx
n + lower order terms, with an 6= 0 and g = bmx

m+ lower order terms with
bm 6= 0, then fg = anbmx

m+n+ lower order terms. Since R is a domain, anbm 6= 0, so

fg 6= 0, lc(f · g) = lc(f) · lc(g), and deg(fg) = deg(f) + deg(g).

If r ∈ R is a unit, then the constant polynomial r is also a unit in R[x]. Conversely, suppose
that f ∈ R[x]× has inverse g. Then

0 = deg(1) = deg(fg) = deg(f) + deg(g) =⇒ deg(f) = deg(g) = 0.

Corollary 9.7. If F is a field, then f ∈ F [x] is a unit if and only if f 6= 0 and deg(f) = 0.

There is also a well-known Division Algorithm for polynomials in one variable.
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Theorem 9.8 (Division Algorithm for polynomials). Let F be a field and consider R = F [x].
Given polynomials f and g in F [x] with g 6= 0, there exist unique polynomials q and r such
that

f = gq + r and r = 0 or deg(r) < deg(g).

Proof. Fix f and g 6= 0. If deg(g) = 0, then by Corollary 9.7 g must be a unit, so consider
q = g−1f and r = 0, and note that

f = g(g−1f) = qf + r.

Now when deg(g) > 0, let g = anx
n+ lower order terms, with an 6= 0 and n > 0. If f = 0,

then q = r = 0 works, so we might as well assume f = bmx
m+ lower order terms, with

bm 6= 0 and m > 0. We proceed by complete induction on m = deg(f). If m < n, we may
take q = 0 and r = f . Assume m > n, and consider

h := f − g · (bm/am)xm−n = (bm − am(bm/am))xm + lower order terms.

We have deg(h) < m, and thus by induction, h = g · q′ + r with r = 0 or deg(r) < deg(g).
Thus

f = h+ g · (bm/am)xm−n = g · q′ + r′ + g · (bm/am)xm−n = gq + r

where q = q′ + (bm/am)xm−n.

Corollary 9.9. Given a field F , F [x] is an Euclidean domain. In particular, the function
N : F [x] \ {0} −→ Z>0 given by N(f(x)) := deg(f(x)) is an Euclidean function.

Proof. Apply the Division Algorithm for polynomials.

Theorem 9.10. The ring R = Z[i] of Gaussian integers is a Euclidean domain with N the
usual complex (Euclidean) square norm N(a+ bi) = a2 + b2.

Proof. Let α, β ∈ Z[i]. Note that

Z[i] ⊆ Q(i) = {a+ bi | a, b ∈ Q},

and consider
α

β
= p+ qi ∈ Q(i).

Now pick s, t ∈ Z so that |p− s| 6 1
2

and |q − t| 6 1
2
. We have

α = β(s+ ti) + β(p+ qi)− β(s+ ti).

Set q = s+ ti ∈ Z[x], and

r = β(p+ qi)− β(s+ ti) = β(s+ ti− (p+ qi)) ∈ Z[i].

Moreover, note that
α = β(s+ ti) + r.

If r = 0, then we are done. If r 6= 0, we need to check that N(r) < N(β). Using that N is
multiplicative, the Pythagorean Theorem, and the choice for s, t, we have

N(r) = N(β(s+ ti− (p+ qi))) = N(β)N(s+ ti− (p+ qi)) 6 N(β) ·
(

1

4
+

1

4

)
< N(β).

Thus the norm function N makes Z[i] into a Euclidean domain.
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9.2 Principal ideal domains (PIDs)

One of the key features of Euclidean domains is that they are examples of PIDs:

Definition 9.11. A principal ideal domain, often shortened to PID, is a domain R where
all ideals are principal, meaning that for every ideal I there exists a ∈ R such that I = (a).

Theorem 9.12. If R is an Euclidean domain, then R is a PID.

Proof. Let N be a norm function making R into a Euclidean domain. Pick an ideal I. If I
is the zero ideal, then I = (0) is principal. Otherwise, pick a nonzero element b ∈ I with
N(b) as small as possible. Note that such b exists by the Well-Ordering Principle. We claim
that I = (b). On the one hand, since b ∈ I then (b) ⊆ I. On the other hand, given a ∈ I,

a = bq + r

and either r = 0 or N(r) < N(b). But note that r = a − bq ∈ I, and we cannot have both
r 6= 0 and N(r) < N(b) since b was chosen to have smallest possible norm among elements
of I. So it must be that r = 0, and hence a ∈ (b).

Corollary 9.13. Let F be a field. The rings Z, Z[i], and F [x] are all PIDs.

Proof. As we saw in the previous section, all of these rings are Euclidean domains.

Exercise 84. Show that Z[
√
−2] is a PID.

Example 9.14. Z[x] is not a Euclidean domain. This follows from Theorem 9.12, since it
is not a PID — for example, the ideal (2, x) is not principal. Similarly, the ring F [x, y] is
not a Euclidean domain since it is not a PID (e.g., (x, y) is not principal).

The converse of Theorem 9.12 is false:

Example 9.15 (A PID that is not an Euclidean domain). The ring

Z
[

1 +
√
−19

2

]
=

{
a+ b

1 +
√
−19

2
| a, b ∈ Z

}
is a PID, but not a Euclidean domain. This is the simplest example of such a ring, but the
proofs of these claims are not easy, so we will not discuss them in this class.

Definition 9.16. Let R be a commutative ring and let a, b ∈ R.

• The element b is a divisor of a, and a is a multiple of b, written b | a, if there is an
element x ∈ R with a = bx. Equivalently, b | a iff a ∈ (b).

• We say a and b are associates if a = ub for some unit u ∈ R. Note that this condition is
symmetric, since if a = ub then b = u−1a and u−1 is also a unit.

• A greatest common divisor, or gcd, of a and b is an element d ∈ R satisfying d | a,
d | b, and

e | a and e | b =⇒ e | d.
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• A least common multiple, or lcm, of a and b is an element m ∈ R satisfying a | m,
b | m, and whenever a | m′ and b | m′ then m | m′.

Lemma 9.17. Assume R is a domain and x, y ∈ R. The following are equivalent:

(1) x and y are associates,

(2) (x) = (y), and

(3) x and y divide each other, meaning that x | y and y | x.

Proof. The equivalence of the latter two is clear (and does not require that R be a domain),
since x | y if and only if y ∈ (x) if and only if (y) ⊆ (x).

Assume (3) holds. Then x ∈ (y) and so x = yu for some u ∈ R. Similarly y = xs and
hence y = yus, which implies y(1− us) = 0. Since R is a domain, either y = 0 or su = 1. If
y = 0, then x = yu = 0 = y. If y 6= 0 then u is a unit (with inverse s).

Conversely, suppose (1) holds, so that x = uy for some unit u. Then y | x, and since we
also have y = u−1x, it follows that x | y.

Remark 9.18. Greatest common divisors and least common multiples are not uniquely
defined. For example, in Z, both 2 and −2 are greatest common divisors of 4 and 6. But, at
least in a domain, they are unique up to associates. That is, if g and g′ are both gcds of the
same pair of elements in a domain R, then g and g′ are associates, and similarly for lcms.
This follows from Lemma 9.17 since, by definition, g and g′ would have to divide each other.

Gcds (and lcms) need not exist, in general, but here is a situation in which they do:

Lemma 9.19. If R is a PID and a, b ∈ R, then (a, b) = (g) for some g ∈ R, and any such
g is a gcd of a and b.

Proof. The existence of g is granted by the definition in a PID: the ideal (a, b) must be
principal. Now since a, b ∈ (g), we have g | a and g | b, so g is a common divisor of a and b.
Given any other h such that h | a and h | b, we have a, b ∈ (h), so (g) = (a, b) ⊆ (h) since
(h) is an ideal. As a consequence, g ∈ (h), and hence h | g. We conclude that g is a greatest
common divisor of a and b.

Remark 9.20. Let R be a PID. Using Lemma 9.17 we may describe all the ideals that
contains a given ideal (a) ⊆ R: they are given by the collection of divisors of a up to
associates. For instance, in Q[x] there are 8 ideals that contain (x4 − 1), since

x4 − 1 = (x2 + 1)(x− 1)(x+ 1)

has 8 divisors (including 1 and x4 − 1 itself).

Remark 9.21. If R is not only a PID but also an Euclidean domain, then the Euclidean
algorithm can be used to compute a gcd of any two nonzero a, b ∈ R. This is slightly
misleading, since the “division algorithm” in the definition of an Euclidean domain is not
really an algorithm. But for Z and F [x] it is truly an algorithm, and you probably used it
to find gcds before in your life.
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Definition 9.22. Let R be a domain.

(1) An element p ∈ R is a prime element if p 6= 0, p is not a unit, and

p | ab =⇒ p | a or p | b.

(2) An element r ∈ R is irreducible if r 6= 0, r is not a unit, and for all x, y ∈ R

r = xy =⇒ x is a unit or y is a unit.

Remark 9.23. The condition that a nonzero nonunit element p ∈ R is a prime element can
be rephrased as follows:

ab ∈ (p) =⇒ a ∈ (p) or b ∈ (p).

That is, p is a prime element if and only if (p) is a nonzero prime ideal

Example 9.24.

(1) The prime elements of Z are the prime integers (where we allow both positive and
negative primes); these are also the irreducible elements.

(2) Any element a ∈ Z[i] with N(a) a prime integer is irreducible (exercise!). For example,
1 + 2i is irreducible.

(3) The element 13 = (2 + 3i)(2− 3i) is not irreducible in Z[i].

(4) We claim that the polynomial x2 + x+ 1 ∈ (Z/2)[x] is irreducible. Indeed, if it factors
nontrivially, it must factor as a product of two linear polynomials, say

x2 + x+ [1] = (x+ [a])(x+ [b]).

Then −[b] is a root for x2 +x+[1]. But neither [0] nor [1] are roots for this polynomial,
which is a contradiction.

Theorem 9.25. Let R be a domain and let r ∈ R.

(1) If r is a prime element, then r is irreducible.

(2) Assume R is a PID. The following are equivalent:

(a) r is prime,

(b) r is irreducible, and

(c) the ideal (r) generated by r is a maximal ideal.

Proof. Suppose R is a domain and that r is prime. Then by definition r 6= 0 and r is not a
unit. Suppose r = yz. Then yz ∈ (r) and hence by definition either y ∈ (r) or z ∈ (r). If
y ∈ (r), we have y = rt for some t and so y = yzt. Since r 6= 0, y 6= 0, and R is a domain,
we must have zt = 1, showing that z is a unit.
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Assume R is a PID. We just showed that (a) implies (b). To show that (b) implies (c),
assume r is irreducible. Then by definition r is not a unit, and hence (r) is a proper ideal. It
therefore is contained in a maximal ideal M by Theorem 8.89. We will show that (r) = M ,
and hence (r) is a maximal ideal. Since R is a PID, M = (y) for some y. So x = yt for
some t. But x is irreducible and y is not a unit, which forces t to be a unit and hence
(x) = (y) = M .

Finally, (c) implies (a) since, by Theorem 8.85, all maximal ideals are prime. In particular,
(r) is a prime ideal and hence r is a prime element.

Corollary 9.26. In any PID, every nonzero prime ideal is maximal.

Proof. Let Q be a nonzero prime ideal in the PID R. Since R is a PID, Q = (r) for some
nonzero element r ∈ R, and in particular r is a prime element. By Theorem 9.25, Q = (r)
must be a maximal ideal.

Example 9.27. Let F be a field and let p ∈ F [x] be a nonzero polynomial. Since F [x] is a
PID, by Corollary 9.26 the quotient F [x]/(p) is a field if and only if p is irreducible.

If p is quadratic, then it is irreducible if and only if it has no roots. For example, we
deduce from these observations that the ring (Z/2)[x]/(x2+x+1) is a field, which we claimed
in Example 8.79.

9.3 Unique factorization domains (UFDs)

Definition 9.28. A ring R is called a unique factorization domain, or UFD for short,
if R is an integral domain and the following hold:

(1) For every nonzero element r ∈ R we have

r = up1 · · · pn

for some unit u, some integer n > 0, and some (not necessarily distinct) irreducible
elements p1, . . . , pn ∈ R.

(2) Such factorizations are unique up to ordering and associates: if

r = vq1 · · · qm

is another such factorization with v a unit and each qi irreducible, then m = n and
there is a permutation σ such that, for all i, the elements pi and qσ(i) are associates.

Remark 9.29. Note that units admit irreducible factorizations according to this definition
by taking n = 0.

Example 9.30. (1) The ring Z is a UFD by the Fundamental Theorem of Arithmetic.

(2) Given a field F , F [x] is a UFD: F [x] is an Euclidean domain and we will soon show
that all Euclidean domains are UFDs.
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(3) It follows that F [x1, . . . , xn] is a UFD for all n. Note that if n > 1, this ring is not a
PID and hence not a Euclidean domain.

Theorem 9.31. If R is a UFD, then R[x] is also a UFD.

We will give a proof of this theorem later, time permitting.

Example 9.32 (A UFD that is not a PID). Let F be a field and fix an integer n > 1. Since
F [x] is a UFD, by applying Theorem 9.31 repeatedly we conclude that F [x1, . . . , xn] is also
a UFD. However, F [x1, . . . , xn] is not a PID when n > 1, as one can show that (x1, . . . , xn)
is not a principal ideal.

Example 9.33 (Another UFD that is not a PID). The ideal (2, x) in Z[x] is not principal.
Thus Z[x] is not a PID, and therefore it is also not an Euclidean domain. On the other hand,
Z is a UFD and thus by Theorem 9.31 Z[x] must also be a UFD.

Example 9.34 (A domain that is not a UFD). We claim that the ring Z[
√
−5] is a domain

that is not a UFD. Note that

6 = (1 +
√
−5)(1−

√
−5) = 2 · 3,

and one can show that each of 1 +
√
−5, 1−

√
−5, 2, and 3 are irreducible by checking their

norms (exercise!). Moreover, recall the only units in this ring are ±1, so these elements are
not associates of each other.

Notice also that Z[
√
−5] contains elements that are irreducible but not prime: for exam-

ple, 2 is irreducible but not prime. Compare with Theorem 9.35 below.

Exercise 85. Let R be a UFD. Given a, b ∈ R, let

a = upe11 · · · pemm and b = vpf11 · · · pfmm

for irreducible elements p1, . . . , pm such that pi and pj are not associates for all i 6= j, integers
ei > 0, fj > 0 and units u and v. Show that:

(1) We have a | b if and only if ei 6 fi for all i.

(2) The gcd of a and b exists and is given by

gcd(a, b) = ph11 · · · phmm

with
hi = min{ei, fi}

for all i (or any associate of this).

(3) The lcm of a and b exists and is given by

lcm(a, b) = pg11 · · · pgmm

with
gi = max{ei, fi}

for all i (or any associate of this).
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Theorem 9.35. If R is a UFD, then an element of R is irreducible if and only if it is prime.

Proof. By Theorem 9.25, every prime element in R is irreducible. Suppose r ∈ R is irre-
ducible and that r | ab for some a, b ∈ R. We must show that r | a or r | b. Let

a = up1 · · · ps and b = vq1 · · · qt

with u and v units, each pi and qj irreducible, and s, t > 0. Since r is irreducible,

r = uva1 · · · asb1 · · · bt

gives two irreducible factorization of the same element. So we must have either

s = 0 and r · (uv)−1 = b

or
t = 0 and r · (uv)−1 = a.

Thus r | b or r | a. This proves that r is prime.

Our next goal is to show that every PID is a UFD. First, we show the following partial
converse to Theorem 9.35.

Theorem 9.36 (Uniqueness of factorizations under certain conditions). Assume R is a
domain such that every irreducible element is a prime element. Given a nonzero r ∈ R, if

r = up1 · · · pn = vq1 · · · qm

are two different irreducible factorization of r, then n = m and there is a permutation σ such
that, for all i, the elements pi and qσ(i) are associates.

Proof. Without loss of generality, assume n 6 m. We will use induction on m.
If m = 0, since we assume n 6 m, we must have n = 0 too, and we are done. So assume

m > 0 and that all irreducible factorizations with at most m − 1 irreducible factors are
unique up to reordering and taking associates.

Since we are assuming that all irreducible elements are prime elements, in particular qm
is prime. Since qm divides r = vp1 · · · pn, we must have that qm divides pj for some j. Note
that qm cannot divide a unit or else it would be a unit. In particular, n > 1. After reordering,
we may assume j = n. Thus pn = qmw for some w ∈ R. Since pn is irreducible and qm is
not a unit, w must be a unit and hence pn and qm are associates. We get

vq1 · · · qm = (uw)p1 · · · pn−1qm

with uw ∈ R×. Since R is a domain, we may divide by qm to obtain

vq1 · · · qm−1 = (uw)p1 · · · pn−1

By the induction hypothesis, n−1 = m−1, and hence n = m, and p1, . . . , pn−1 are associates
of q1, . . . , qm−1 in some order. Since pn and qm are associates, this completes our proof.
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Theorem 9.37. Every PID is a UFD.

Proof. Let R be a PID. By Theorem 9.25, every irreducible element is a prime element. By
Theorem 9.36, irreducible factorizations are unique when they exist. It remains to show
that every nonzero element r ∈ R has at least one irreducible factorization. Suppose this
is not the case. Then r must not be a unit and it must not be irreducible, and so r must
factor nontrivially as r = x1y1 with neither x1 nor y1 a unit. Likewise, both x1 and y1

cannot be irreducible. Without loss of generality, say it is y1, so that y1 admits a nontrivial
factorization y1 = x2y2. At least one of these is not irreducible, say it is y2 so that y2 = x3y3

and r = x1x2x3y3. Continuing in this way, we construct an infinite sequence of elements
y1, y2, · · · . Since yi = yi+1xi+1 we have (yi) ⊆ (yi+1), and since xi+1 is not a unit (yi) ( (yi+1)
for all i. That is, we have constructed an infinite, strictly ascending chain of ideals

(y1) ( (y2) ( (y3) ( · · · .

I claim this is not possible. To show that, let

I =
⋃
i

(yi).

While the union of ideals is not usually an ideal, the union of any nested chain of ideals is in
fact an ideal, by Exercise 72. Since R is a PID, we must have I = (z) for some z. But then
z ∈ (yi) for some i, and it follows that

(yi) = (yi+1) = · · · .

This is a contradiction, and thus we conclude that R is in fact a UFD.

Remark 9.38. The proof of Theorem 9.37 works just as well if R is a noetherian domain. In
a noetherian ring, every ideal is finitely generated. In fact, as long as the ideal I constructed
in the proof is finitely generated, say by z1, . . . , zm, there is an i such that z1, . . . , zm ∈ (yi)
and hence I ⊆ (yi), which leads to a contradiction.

Thus, every noetherian integral domain having the property that all irreducible elements
are prime elements must be a UFD.

Remark 9.39. There exist UFDs that are not noetherian. For instant, any polynomial ring

R = F [x1, x2, · · · ]

in a countably infinite list of variables with coefficients in a field F is a UFD but it is not
noetherian, because the ideal

(x1, x2, . . .)

generated by all the variables is not finitely generated.
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Chapter 10

Polynomial Rings

10.1 Fractions

Definition 10.1. Let R be a domain. A multiplicatively closed subset of R is a subset
W ⊆ R such that

(1) 1 ∈ W ,

(2) W is closed under multiplication: if x, y ∈ S, then xy ∈ S.

(3) 0 /∈ W .

Here are some important examples of multiplicatively closed subsets:

Example 10.2. Let R be a domain.

(1) For any nonzero f ∈ R, the set W = {1, f, f 2, f 3, . . . } is a multiplicative set.

(2) If P ⊆ R is a prime ideal, the set W = R \ P is multiplicative: this is an immediate
translation of the definition of a prime ideal.

Definition 10.3 (Localization). Let R be a domain and W be a multiplicative set. The
localization of R at W is the ring

W−1R :=
{ r
w

∣∣∣ r ∈ R,w ∈ W} / ∼
where ∼ is the equivalence relation given by

r

w
∼ r′

w′
if rw′ = r′w.

The operations are given by

r

v
+
s

w
=
rw + sv

vw
and

r

v

s

w
=

rs

vw
.

The zero in W−1R is 0
1

and the identity is 1
1
. There is a canonical ring homomorphism

R //W−1R

r � // r
1

.
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Note that we write elements in W−1R in the form r
w

even though they are equivalence
classes of such expressions.

Exercise 86. Check that W−1R is indeed a commutative ring and that the canonical map
is indeed a ring homomorphism.

Lemma 10.4. Let R be any domain and let W = R \{0}. The localization W−1R is a field.

Proof. Note that a
b

is nonzero if and only if a 6= 0. So, when a 6= 0, we have

a

b
· b
a

=
ab

ab
∼ 1

1
= 1F .

This proves every nonzero element is a unit and thus F is a field.

Definition 10.5. If R is a domain and W = R \ {0}, the field W−1R is called the field of
fractions of R. We denote this field of fractions by Frac(R).

Example 10.6. For R = Z, the construction of the field of fractions of Z recovers Q.

Example 10.7. The field of fractions of R = R[x] is the field of rational functions.

Example 10.8. We may identify the field of fractions of R = Z[i] with Q[i].

Exercise 87. Establish the following universal mapping property for the field of fractions
construction:

Let R be an integral domain and F is field of fractions. Given an injective ring homo-
morphism f : R → E where E is a field, there is a unique ring homomorphism f̃ : F → E
such that f̃ ◦ ι = f . Moreover, f̃ is also injective. In fact,

f̃
(a
b

)
=

f(a)

f(b))
.

Exercise 88. Show that given any domain R, the canonical map R→ Frac(R) is injective.

10.2 Gauss’ Lemma

Lemma 10.9. Suppose R is an integral domain, f, g ∈ R[x], and that p is a prime element
of R. If p divides all of the coefficients of fg, then p divides all of the coefficients of f or all
the coefficients of g.

Proof. Let R[x]→ (R/(p))[x] be the map h(x) 7→ h(x) that mods out the coefficients by p.
Since this is a ring homomorphism, we have

fg(x) = f(x)g(x).

Since we assume p divides every coefficient of f , we have

f(x)g(x) = f · g(x) = 0

in (R/(p))[x]. Since p is prime, R/(p) is an integral domain and thus, as we proved before,
R/(p)[x] is also an integral domain. We must therefore have f(x) = 0 or g(x) = 0; that is,
either p divides every coefficient of f or it divides every coefficient of g.
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Theorem 10.10 (Gauss’ Lemma). Let R be a UFD with field of fractions F . Regard R as
a subring of F (via the canonical map) and view elements in R[x] as also being elements of
F [x] via the induced map R[x] ↪→ F [x]. If f is irreducible in R[x], then f remains irreducible
when regarded as an element of F [x].

Remark 10.11. This result is at least a tiny bit surprising. Note that there are many
irreducible polynomials in R[x] that do not remain irreducible in the larger ring C[x], such
as x2 + 1. So, in general, one might think that passing to a larger ring of coefficients would
cause some irreducible polynomial to become reducible. Gauss’ Lemma says that this is not
the case if the larger ring is the field of fractions of the smaller one (provided the smaller
one is a UFD).

Proof. We will prove the contrapositive, so we will show that if f ∈ R[x] is reducible in F [x],
then it is also reducible in R[x]. Suppose f factors nontrivially as f = AB in F [x]. Since F
is a field, the units of F [x] are the nonzero constant polynomials, and so having a nontrivial
factorization means deg(A), deg(B) > 0. All the coefficients of A and B are fractions, and
so we may clear denominators — that is, we can find nonzero elements r, s ∈ R (e.g., by
taking the product of all the denominators) such that a := rA and b := sB both belong to
R[x]. Set d = rs and observe that we have

df = ab

with d ∈ R and f, a, b ∈ R[x].
If d is a unit in R, then we are done since then

f = (d−1a)b

is a nontrivial factorization in R[x], given that R[x]× = R× and that deg(a), deg(b) > 0.
Since R is a UFD, we have d = p1 · · · pm, for some m > 1, with each pi irreducible and

hence prime. Since pm divides every coefficient of df , by Lemma 10.9 pm must also either
divide every coefficient of a or divide every coefficient of b. So, upon dividing through by p1

we obtain
d1f = a1b1

with a1, b1 ∈ R[x] and d1 = p1 · · · pm−1 ∈ R. More precisely, if p divides a then a1 = a/p and
b1 = b and if p divides b then a1 = a and b1 = b/p.

By the same reasoning, we may divide by pm−1 toobtain

d2f = a2b2

with a2, b2 ∈ R[x] and d3 = p1 · · · pm−3 ∈ R. Continuing in this way, we arrive at an equation
of the form

f = ambm

in R[x] with deg(am) = deg(A) > 0 and deg(bm) = deg(B) > 0. This proves f is reducible
in R[x].
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Theorem 10.12. Let R be a UFD with field of fractions F . Regard R as a subring of F
(via the canonical map) and view elements in R[x] as also being elements of F [x] via the
induced map R[x] ↪→ F [x]. Let f ∈ R[x]. If f is irreducible when regarded as an element in
F [x] and the gcd of the coefficients of f is a unit in R, then f is irreducible as an element
of R[x].

Remark 10.13. This is false if the gcd of the coefficients of f is not a unit. To see this,
note that 2x + 6 is irreducible in Q[x] but not in Z[x], since it factors as 2(x + 3). In Q[x],
however, this factorization is trivial because 2 is a unit.

Proof. We again prove the contrapositive: we will show that if f is reducible in R[x] then
either the gcd of the coefficients of f is not a unit or f remains reducible in F [x].

Suppose f factors nontrivially in R[x] as f = gh with g and h nonunits. If both g and h
have positive degree, then they remain nonunits in F [x], and so f is reducible in that ring
too. Otherwise, suppose g is the constant polynomial c. Then, since c is a nonunit in R and
f = ch, the gcd of the coefficients of f is not a unit.

Example 10.14. Let us use Gauss’s Lemma to show that the polynomial

f = x4 + 7x3 + 18x2 + 31

is irreducible in Q[x]. First, one can check that f has no roots in Q by the Rational Root
Test, but that does not mean it does not factor as a product of two irreducible quadratics.

By Gauss’s Lemma, if f is irreducible in Z[x] then it is irreducible in Q[x]. Working in
Z[x] has the advantage that we can mod out by a prime:

Suppose f did factor nontrivially in Z[x]. Then, since f is monic, it would factor as
f = gh with g and h monic polynomials in Z[x] each of degree at least one. For any prime
integer p, we would have

f = gh

in (Z/p)[x] with deg(g) = deg(g) and deg(h) = deg(h), since g and h are monic.
Let p = 2. We have

f = x4 + x3 + 1 ∈ (Z/2)[x].

This polynomial does not have a root, as the only possibilities are 0 and 1, and hence it
has no linear factors. Therefore, g and h must be irreducible of degree 2. But the only
irreducible polynomial of degree 2 in (Z/2)[x] is q = x2 + x + 1, since we can check one by
one and see that all the other three quadratic polynomials have roots. Since

q2 = x4 + x2 + 1 6= f,

we have reached a contradiction. We conclude that f is irreducible in Q[x].
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nilpotent element, 104
noncommutative ring, 100
nontrivial subgroup, 27
norm, 101
norm function, 121
normal subgroup, 42
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orbit (of an action), 24
Orbit Formula, 59
Orbit-Stabilizer Theorem, 59
order of a group, 2
order relation, 35

parity of a permutation, 11
partially ordered set, 35
permutation group of a set X, 6
permutation on n symbols, 6
permutation representation, 24
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polynomial ring, 102
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power set, 35
preimage of a homomorphism, 29
presentation (of a group), 55
presentation of a group, 5
prime element, 126
prime ideal, 119
principal ideal, 109
principal ideal domain, 124
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quaternion group, 17
quaternion ring, 101
quotient group, 39, 45
quotient map, 114
quotient ring, 114

rank, 94
rank of a group, 94
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relations for a group, 5
right coset, 39

right ideal, 107
right inverse, 3
ring, 99
ring homomorphism, 110
ring isomorphism, 112
ring map, 110
rng, 99
rotations of Dn, 13

Second Isomorphism Theorem, 51
semidirect product, 86
semigroup, 3
simple group, 70
simple ring, 108
special linear group, 29
stabilizer, 58
subfield, 105
subgroup, 27
subgroup generated by a set, 29
subring, 105
supremum, 35
Sylow p-subgroup, 77
symmetry, 12

transitive action, 25
transposition, 7
trivial action, 26
trivial center, 5
trivial group, 4
trivial homomorphism, 18
trivial subgroups, 27
two sided ideal, 107

UFD, 127
unique factorization domain, 127
unit, 103
unital ring, 99
upper bound, 35

zero ring, 99
zerodivisor, 103
Zorn’s Lemma, 120

137


	I Groups
	Groups: an introduction
	Definitions and first examples
	Permutation groups
	Dihedral groups
	The quaternions
	Group homomorphisms

	Group actions: a first look
	What is a group action?
	Examples of group actions

	Subgroups
	Definition and examples
	Subgroups vs isomorphism invariants
	Cyclic groups

	Quotient groups
	Equivalence relations on a group and cosets
	Normal subgroups
	Quotient groups
	The Isomorphism Theorems for groups
	Presentations as quotient groups

	Group actions... in action
	Orbits and Stabilizers
	The class equation
	The alternating group
	Other group actions with applications

	Sylow Theory
	Cauchy's Theorem
	The Main Theorem of Sylow Theory
	Using Sylow Theory

	Products and finitely generated abelian groups
	Direct products of groups
	Semidirect products
	Finitely generated groups
	Classifying finite groups of a given order


	II Rings
	An introduction to ring theory
	Definitions and examples
	Units and zerodivisors
	Subrings
	Ideals
	Homomorphisms
	Quotient rings
	The Isomorphism Theorems for rings
	Prime and maximal ideals in commutative rings

	Nice domains
	Euclidean domains
	Principal ideal domains (PIDs)
	Unique factorization domains (UFDs)

	Polynomial Rings
	Fractions
	Gauss' Lemma

	Index


