Extra Problems Solutions

Problem 1. Let $q(x) = x^4 - 2x^2 - 2 \in \mathbb{Q}[x]$.

- a) Show that q is irreducible in $\mathbb{Q}[x]$.
- b) The roots of q are

$$b_1 = \sqrt{1 + \sqrt{3}}, \quad b_2 = \sqrt{1 - \sqrt{3}}, \quad b_3 = -\sqrt{1 + \sqrt{3}}, \quad \text{and } b_4 = -\sqrt{1 - \sqrt{3}}.$$

Let $K_1 = \mathbb{Q}(b_1)$, $K_2 = \mathbb{Q}(b_2)$, and $F = \mathbb{Q}(\sqrt{3})$. Show that $K_1 \neq K_2$ and $K_1 \cap K_2 = F$.

- c) Prove that K_1, K_2 , and K_1K_2 are Galois over F.
- d) Let $G = \text{Gal}(K_1K_2/F)$. Show that G is isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$, and write out explicitly how this group acts on the roots of q.
- e) Determine all of the subgroups $H \leq G$ and determine their corresponding fixed subfields $(K_1K_2)^H$.
- f) Prove that the splitting field L of q over \mathbb{Q} satisfies $[L : \mathbb{Q}] = 8$, and $\operatorname{Gal}(L/Q)$ is isomorphic to the dihedral group of order 8.

Hint: D_8 is the only non Hamiltonian group of order 8, meaning that D_8 is the only group of order 8 that has nonnormal subgroups.