## Extra Problems Solutions

Problem 1. Let $q(x)=x^{4}-2 x^{2}-2 \in \mathbb{Q}[x]$.
a) Show that $q$ is irreducible in $\mathbb{Q}[x]$.
b) The roots of $q$ are

$$
b_{1}=\sqrt{1+\sqrt{3}}, \quad b_{2}=\sqrt{1-\sqrt{3}}, \quad b_{3}=-\sqrt{1+\sqrt{3}}, \quad \text { and } b_{4}=-\sqrt{1-\sqrt{3}} .
$$

Let $K_{1}=\mathbb{Q}\left(b_{1}\right), K_{2}=\mathbb{Q}\left(b_{2}\right)$, and $F=\mathbb{Q}(\sqrt{3})$. Show that $K_{1} \neq K_{2}$ and $K_{1} \cap K_{2}=F$.
c) Prove that $K_{1}, K_{2}$, and $K_{1} K_{2}$ are Galois over $F$.
d) Let $G=\operatorname{Gal}\left(K_{1} K_{2} / F\right)$. Show that $G$ is isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 2$, and write out explicitly how this group acts on the roots of $q$.
e) Determine all of the subgroups $H \leq G$ and determine their corresponding fixed subfields $\left(K_{1} K_{2}\right)^{H}$.
f) Prove that the splitting field $L$ of $q$ over $\mathbb{Q}$ satisfies $[L: \mathbb{Q}]=8$, and $\operatorname{Gal}(L / Q)$ is isomorphic to the dihedral group of order 8 .
Hint: $D_{8}$ is the only non Hamiltonian group of order 8 , meaning that $D_{8}$ is the only group of order 8 that has nonnormal subgroups.

