Extra Problems Solutions

Problem 1. Let $q(x)=x^{4}-2 x^{2}-2 \in \mathbb{Q}[x]$.
a) Show that q is irreducible in $\mathbb{Q}[x]$.

Proof. Applying Eisenstein's criterion for the prime 2 gives that q is irreducible in $\mathbb{Z}[x]$ and Gauss' Lemma then says that q is irreducible in $\mathbb{Q}[x]$ as well.
b) The roots of q are

$$
b_{1}=\sqrt{1+\sqrt{3}}, \quad b_{2}=\sqrt{1-\sqrt{3}}, \quad b_{3}=-\sqrt{1+\sqrt{3}}, \quad \text { and } b_{4}=-\sqrt{1-\sqrt{3}} .
$$

Let $K_{1}=\mathbb{Q}\left(b_{1}\right), K_{2}=\mathbb{Q}\left(b_{2}\right)$, and $F=\mathbb{Q}(\sqrt{3})$. Show that $K_{1} \neq K_{2}$ and $K_{1} \cap K_{2}=F$.
Proof. If $K_{1}=K_{2}=K$ then K also contains $b_{1} b_{2}=\sqrt{1+\sqrt{3}} \sqrt{1-\sqrt{3}}=\sqrt{-2}=\sqrt{2} i$. However, $K_{1}, K_{2} \subseteq \mathbb{R}$, so $K \subseteq \mathbb{R}$ cannot contain $\sqrt{2} i$.
Since $\sqrt{3}=b_{1}^{2}-1 \in K_{1}$, then $F \subseteq K_{1}$. Similarly, $\sqrt{3}=1-b_{2}^{2} \in K_{2}$ implies $F \subseteq K_{2}$. Thus $F \subseteq K_{1} \cap K_{2}$. To show the converse inclusion, note that since q is irreducible and monic it is the minimum polynomial for each one of its roots over \mathbb{Q}, so we have

$$
\left[Q\left(b_{i}\right): F\right][F: \mathbb{Q}]=\left[\mathbb{Q}\left(b_{i}\right): \mathbb{Q}\right]=\operatorname{deg}\left(m_{b_{i}, \mathbb{Q}}\right)=4 \text { for } i=1,2 .
$$

Since

$$
[F: \mathbb{Q}]=\operatorname{deg} m_{\sqrt{3}, \mathbb{Q}}=\operatorname{deg}\left(x^{2}-3\right)=2,
$$

we deduce that $\left[Q\left(b_{i}\right): F\right]=2$. Moreover, since $K_{1} \neq K_{2}$ and $K_{1} \cap K_{2} \neq K_{i}$, then

$$
\left[K_{i}: K_{1} \cap K_{2}\right]=\left[\mathbb{Q}\left(b_{i}\right): K_{1} \cap K_{2}\right] \geqslant 2
$$

Putting everything together we have

$$
2=\left[Q\left(b_{i}\right): F\right]=\left[Q\left(b_{i}\right): K_{1} \cap K_{2}\right]\left[K_{1} \cap K_{2}: F\right] \geqslant 2\left[K_{1} \cap K_{2}: F\right] .
$$

Therefore, $\left[K_{1} \cap K_{2}: F\right]=1$ and thus $F=K_{1} \cap K_{2}$. Note in particular that we showed that $\left[K_{i}: F\right]=2$.
c) Prove that K_{1}, K_{2}, and $K_{1} K_{2}$ are Galois over F.

Proof. Let $q_{1}=x^{2}-(1+\sqrt{3}) \in \mathbb{Q}(\sqrt{3})[x]=F[x]$. Then the two roots of q_{1} in \mathbb{C} are b_{1} and $b_{3}=-b_{1}$, and so q_{1} is a separable polynomial and $K_{1}=F\left(b_{1}\right)$ is the splitting field of q_{1} over F. The splitting field of a separable polynomial over F is Galois over F, so K_{1} / F is Galois.
Similarly, $\sqrt{3}=-\left(b_{1}^{2}-1\right)$, and so $F \subseteq K_{2}$. The polynomial $q_{2}=x^{2}-(1-\sqrt{3}) \in F[x]$ is separable, with distinct roots b_{2} and $b_{4}=-b_{2}$, and $K_{2}=F\left(b_{2}\right)$ is the splitting field of q_{2} over F. $K_{1}=F\left(b_{1}\right)$ is the splitting field of q_{1} over F. The splitting field of a separable polynomial over F is Galois over F, so K_{2} / F is Galois.
Finally, $K_{1} K_{2}=K\left(b_{1}, b_{2}\right)$. Since $b_{1}, b_{2}, b_{3}, b_{4}$ are the four roots of the polynomial q and $b_{3}=-b_{1}$ and $b_{4}=-b_{2}$ are also in $K_{1} K_{2}$, then $K_{1} K_{2}$ is the splitting field of q. Moreover, q is separable (since the b_{i} are distinct complex numbers), and so again $K_{1} K_{2} / \mathbb{Q}$ is Galois. In particular, $K_{1} K_{2} / \mathbb{Q}$ is finite. Since $\mathbb{Q} \subseteq F \subseteq K_{1} K_{2}$, then $K_{1} K_{2} / F$ is also Galois.
d) Let $G=\operatorname{Gal}\left(K_{1} K_{2} / F\right)$. Show that G is isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 2$, and write out explicitly how this group acts on the roots of q.

Proof. Let $G=\operatorname{Gal}\left(K_{1} K_{2} / F\right)$. Consider the sucessive field extensions $\mathbb{Q} \subseteq F \subseteq K_{i} \subseteq K_{1} K_{2}$ for $i \in\{1,2\}$. We already showed that $\left[K_{i}: F\right]=2$ for $i \in\{1,2\}$. Since

$$
K_{1} K_{2}=F\left(b_{1}, b_{2}\right)=\left(F\left(b_{1}\right)\right)\left(b_{2}\right)=K_{1}\left(b_{2}\right)
$$

and b_{2} satisfies the polynomial $q_{2}=x^{2}-(1-\sqrt{3}) \in K_{1}[x]$, then

$$
\left[K_{1} K_{2}: K_{1}\right] \leqslant 2 .
$$

Since K_{2} is not contained in K_{1}, then $K_{1} K_{2} \neq K_{1}$, and so $\left[K_{1} K_{2}: K_{1}\right] \geqslant 2$. We conclude that $\left[K_{1} K_{2}: K_{1}\right]=2$.
The Degree Formula applies to give

$$
\left[K_{1} K_{2}: F\right]=\left[K_{1} K_{2}: K_{1}\right]\left[K_{1}: F\right]=4 .
$$

By definition of Galois, $|G|=\left|\operatorname{Gal}\left(K_{1} K_{2} / F\right)\right|=\left[K_{1} K_{2}: F\right]=4$.
We have shown that b_{1} is a root of the monic polynomial $q_{1}=x^{2}-(1+\sqrt{3}) \in F[x]$, and since we have $\left[K_{1}: F\right]=2$ it follows that $q_{1}=m_{b_{1}, F}$ and q_{1} is irreducible in $F[x]$. Similarly, $q_{2}=x^{2}-(1-\sqrt{3})=m_{b_{2}, F}$ is irreducible in $F[x]$. Now $q=q_{1} q_{2}$ and from the proof of (c-ii) $K_{1} K_{2}$ is the splitting field of q.
By a theorem from class, the orbits of the action of G on the roots of q are the sets of roots of the same irreducible factors; that is, the orbits are $\left\{b_{1}, b_{3}\right\}$ and $\left\{b_{2}, b_{4}\right\}$. Then the elements of G either swap b_{1} and b_{3} or fix both of them, and similarly they either swap b_{2} and b_{4} or fix both of them. Hence $G \cong C_{2} \times C_{2}$, and the images of the elements of G in S_{4} are $e,(13),(24)$, and (13)(24).
e) Determine all of the subgroups $H \leq G$ and determine their corresponding fixed subfields $\left(K_{1} K_{2}\right)^{H}$.

Proof. Let $g_{(13)} \in G$ be the element that swaps b_{1} and b_{3} and fixes b_{2} and b_{4}, meaning it corresponds to the permutation (13) $\in S_{4}$. Similarly, let $g_{(24)}, g_{(13)(24)} \in G$ be the elements corresponding to (24) and (13)(24). The subgroups of G are: $H_{1}=\{e\}, H_{2}=\left\{e, g_{(13)}\right\}$, $H_{3}=\left\{e, g_{(24)}\right\}, H_{4}=\left\{e, g_{(13)(24)}\right\}$, and $H_{5}=G$.
Since q_{1} is irreducible in $F[x]$ with degree 2 and root b_{1}, then $\left\{1, b_{1}\right\}$ is a basis for the F-vector space K_{1}. Similarly, q_{2} is irreducible in $K_{1}[x]$ with degree 2 and root b_{2}, and so $\left\{1, b_{2}\right\}$ is a basis for the K_{1}-vector space $K_{1} K_{2}$. Then $\left\{1, b_{1}, b_{2}, b_{1} b_{2}\right\}$ is a basis for the F-vector space $K_{1} K_{2}$ as shown in the proof of the Degree Formula.
Let $k \in K_{1} K_{2}$; then $k=r+s b_{1}+t b_{2}+u b_{1} b_{2}$ for some $r, s, t, u \in F$. Since $e(k)=k$, then $\left(K_{1} K_{2}\right)^{H_{1}}=K_{1} K_{2}$.
Next

$$
g_{(13)}(k)=r+s b_{3}+t b_{2}+u b_{3} b_{2}=r-s b_{1}+t b_{2}-u b_{1} b_{2},
$$

and so $g_{(13)}(k)=k$ iff $s=u=0$ and $k=r+t b_{2} \in K_{2}$. Therefore, $\left(K_{1} K_{2}\right)^{H_{2}}=K_{2}$.
Similarly

$$
g_{(24)}(k)=r+s b_{1}+t b_{4}+u b_{1} b_{4}=r+s b_{1}-t b_{2}-u b_{1} b_{2},
$$

and so $g_{(24)}(k)=k$ if and only if $t=u=0$ and $k=r+s b_{1} \in K_{1}$. Therefore, $\left(K_{1} K_{2}\right)^{H_{3}}=K_{1}$. Also

$$
g_{(13)(24)}(k)=r+s b_{3}+t b_{4}+u b_{3} b_{4}=r-s b_{1}-t b_{2}+u b_{1} b_{2},
$$

and so $g_{(13)(24)}(k)=k$ if and only if $s=t=0$ and $k=r+u b_{1} b_{2}$. This shows that $\left(K_{1} K_{2}\right)^{H_{4}} \subseteq$ $F\left(b_{1} b_{2}\right)$. Note that $b_{1} b_{2}=\sqrt{1+\sqrt{3}} \sqrt{1-\sqrt{3}}=\sqrt{-2}$ has minimal polynomial $x^{2}+2$ over the subfield $F=\mathbb{Q}(\sqrt{3})$ and so

$$
\left[F\left(b_{1} b_{2}\right): F\right]=2=\left[G: H_{4}\right]=\left[\left(K_{1} K_{2}\right)^{H_{4}}: F\right],
$$

where the last equality follows from the Fundamental Theorem of Galois Theory. Now the Degree Formula gives

$$
2=\left[F\left(b_{1} b_{2}\right): F\right]=\left[F\left(b_{1} b_{2}\right):\left(K_{1} K_{2}\right)^{H_{4}}\right]\left[\left(K_{1} K_{2}\right)^{H_{4}}: F\right]=\left[F\left(b_{1} b_{2}\right):\left(K_{1} K_{2}\right)^{H_{4}}\right] 2
$$

and forces $\left(K_{1} K_{2}\right)^{H_{4}}=F\left(b_{1} b_{2}\right)$.
Finally, the element $k \in K_{1} K_{2}$ lies in $\left(K_{1} K_{2}\right)^{H_{5}}=\left(K_{1} K_{2}\right)^{G}$ if and only if $s=t=u=0$ and $k=r \in F$. Therefore, $\left(K_{1} K_{2}\right)^{H_{5}}=\left(K_{1} K_{2}\right)^{G}=F$.
f) Prove that the splitting field L of q over \mathbb{Q} satisfies $[L: \mathbb{Q}]=8$, and $\operatorname{Gal}(L / Q)$ is isomorphic to the dihedral group of order 8 .

Hint: D_{8} is the only non Hamiltonian group of order 8 , meaning that D_{8} is the only group of order 8 that has nonnormal subgroups.

Proof. Recall that $L=K_{1} K_{2}$ from the arguments above. Notice that $K_{1}=\mathbb{Q}\left(b_{1}\right)$ is not Galois over \mathbb{Q} because for example it does not contain all the roots of the minimal polynomial $q=m_{\beta_{1}, \mathbb{Q}}$ contradicting Corollary 4.74. It follows by the FTGT that the subgroup $H=\operatorname{Gal}\left(L / K_{1}\right)$ is a non normal subgroup of G, hence using the tip $G \cong D_{8}$.

