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Extra Problems Solutions

Problem 1. Let q(x) = x4 − 2x2 − 2 ∈ Q[x].

a) Show that q is irreducible in Q[x].

Proof. Applying Eisenstein’s criterion for the prime 2 gives that q is irreducible in Z[x] and
Gauss’ Lemma then says that q is irreducible in Q[x] as well.

b) The roots of q are

b1 =


1 +

√
3, b2 =


1−

√
3, b3 = −


1 +

√
3, and b4 = −


1−

√
3.

Let K1 = Q(b1), K2 = Q(b2), and F = Q(
√
3). Show that K1 ∕= K2 and K1 ∩K2 = F .

Proof. If K1 = K2 = K then K also contains b1b2 =


1 +
√
3


1−
√
3 =

√
−2 =

√
2i.

However, K1,K2 ⊆ R, so K ⊆ R cannot contain
√
2i.

Since
√
3 = b21 − 1 ∈ K1, then F ⊆ K1. Similarly,

√
3 = 1 − b22 ∈ K2 implies F ⊆ K2. Thus

F ⊆ K1 ∩K2. To show the converse inclusion, note that since q is irreducible and monic it is
the minimum polynomial for each one of its roots over Q, so we have

[Q(bi) : F ][F : Q] = [Q(bi) : Q] = deg(mbi,Q) = 4 for i = 1, 2.

Since
[F : Q] = degm√

3,Q = deg(x2 − 3) = 2,

we deduce that [Q(bi) : F ] = 2. Moreover, since K1 ∕= K2 and K1 ∩K2 ∕= Ki, then

[Ki : K1 ∩K2] = [Q(bi) : K1 ∩K2]  2.

Putting everything together we have

2 = [Q(bi) : F ] = [Q(bi) : K1 ∩K2][K1 ∩K2 : F ]  2[K1 ∩K2 : F ].

Therefore, [K1 ∩K2 : F ] = 1 and thus F = K1 ∩K2. Note in particular that we showed that
[Ki : F ] = 2.

c) Prove that K1,K2, and K1K2 are Galois over F .

Proof. Let q1 = x2 − (1 +
√
3) ∈ Q(

√
3)[x] = F [x]. Then the two roots of q1 in C are b1 and

b3 = −b1, and so q1 is a separable polynomial and K1 = F (b1) is the splitting field of q1 over F .
The splitting field of a separable polynomial over F is Galois over F , so K1/F is Galois.

Similarly,
√
3 = −(b21 − 1), and so F ⊆ K2. The polynomial q2 = x2 − (1 −

√
3) ∈ F [x] is

separable, with distinct roots b2 and b4 = −b2, and K2 = F (b2) is the splitting field of q2 over
F . K1 = F (b1) is the splitting field of q1 over F . The splitting field of a separable polynomial
over F is Galois over F , so K2/F is Galois.

Finally, K1K2 = K(b1, b2). Since b1, b2, b3, b4 are the four roots of the polynomial q and b3 = −b1
and b4 = −b2 are also in K1K2, then K1K2 is the splitting field of q. Moreover, q is separable
(since the bi are distinct complex numbers), and so again K1K2/Q is Galois. In particular,
K1K2/Q is finite. Since Q ⊆ F ⊆ K1K2, then K1K2/F is also Galois.
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d) Let G = Gal(K1K2/F ). Show that G is isomorphic to Z/2× Z/2, and write out explicitly how
this group acts on the roots of q.

Proof. Let G = Gal(K1K2/F ). Consider the sucessive field extensions Q ⊆ F ⊆ Ki ⊆ K1K2

for i ∈ {1, 2}. We already showed that [Ki : F ] = 2 for i ∈ {1, 2}. Since

K1K2 = F (b1, b2) = (F (b1))(b2) = K1(b2)

and b2 satisfies the polynomial q2 = x2 − (1−
√
3) ∈ K1[x], then

[K1K2 : K1]  2.

Since K2 is not contained in K1, then K1K2 ∕= K1, and so [K1K2 : K1]  2. We conclude that
[K1K2 : K1] = 2.

The Degree Formula applies to give

[K1K2 : F ] = [K1K2 : K1][K1 : F ] = 4.

By definition of Galois, |G| = |Gal(K1K2/F )| = [K1K2 : F ] = 4.

We have shown that b1 is a root of the monic polynomial q1 = x2 − (1 +
√
3) ∈ F [x], and

since we have [K1 : F ] = 2 it follows that q1 = mb1,F and q1 is irreducible in F [x]. Similarly,
q2 = x2 − (1 −

√
3) = mb2,F is irreducible in F [x]. Now q = q1q2 and from the proof of (c-ii)

K1K2 is the splitting field of q.

By a theorem from class, the orbits of the action of G on the roots of q are the sets of roots of
the same irreducible factors; that is, the orbits are {b1, b3} and {b2, b4}. Then the elements of G
either swap b1 and b3 or fix both of them, and similarly they either swap b2 and b4 or fix both
of them. Hence G ∼= C2 ×C2, and the images of the elements of G in S4 are e, (1 3), (2 4), and
(1 3)(2 4).

e) Determine all of the subgroups H ≤ G and determine their corresponding fixed subfields
(K1K2)

H .

Proof. Let g(1 3) ∈ G be the element that swaps b1 and b3 and fixes b2 and b4, meaning it
corresponds to the permutation (1 3) ∈ S4. Similarly, let g(2 4), g(1 3)(2 4) ∈ G be the elements
corresponding to (2 4) and (1 3)(2 4). The subgroups of G are: H1 = {e}, H2 = {e, g(1 3)},
H3 = {e, g(2 4)}, H4 = {e, g(1 3)(2 4)}, and H5 = G.

Since q1 is irreducible in F [x] with degree 2 and root b1, then {1, b1} is a basis for the F -vector
space K1. Similarly, q2 is irreducible in K1[x] with degree 2 and root b2, and so {1, b2} is a basis
for the K1-vector space K1K2. Then {1, b1, b2, b1b2} is a basis for the F -vector space K1K2 as
shown in the proof of the Degree Formula.

Let k ∈ K1K2; then k = r + sb1 + tb2 + ub1b2 for some r, s, t, u ∈ F . Since e(k) = k, then
(K1K2)

H1 = K1K2.

Next
g(1 3)(k) = r + sb3 + tb2 + ub3b2 = r − sb1 + tb2 − ub1b2,

and so g(1 3)(k) = k iff s = u = 0 and k = r + tb2 ∈ K2. Therefore, (K1K2)
H2 = K2.

Similarly
g(2 4)(k) = r + sb1 + tb4 + ub1b4 = r + sb1 − tb2 − ub1b2,
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and so g(2 4)(k) = k if and only if t = u = 0 and k = r + sb1 ∈ K1. Therefore, (K1K2)
H3 = K1.

Also
g(1 3)(2 4)(k) = r + sb3 + tb4 + ub3b4 = r − sb1 − tb2 + ub1b2,

and so g(1 3)(2 4)(k) = k if and only if s = t = 0 and k = r+ub1b2. This shows that (K1K2)
H4 ⊆

F (b1b2). Note that b1b2 =


1 +
√
3


1−
√
3 =

√
−2 has minimal polynomial x2 + 2 over the

subfield F = Q(
√
3) and so

[F (b1b2) : F ] = 2 = [G : H4] = [(K1K2)
H4 : F ],

where the last equality follows from the Fundamental Theorem of Galois Theory. Now the
Degree Formula gives

2 = [F (b1b2) : F ] = [F (b1b2) : (K1K2)
H4 ][(K1K2)

H4 : F ] = [F (b1b2) : (K1K2)
H4 ]2

and forces (K1K2)
H4 = F (b1b2).

Finally, the element k ∈ K1K2 lies in (K1K2)
H5 = (K1K2)

G if and only if s = t = u = 0 and
k = r ∈ F . Therefore, (K1K2)

H5 = (K1K2)
G = F .

f) Prove that the splitting field L of q over Q satisfies [L : Q] = 8, and Gal(L/Q) is isomorphic to
the dihedral group of order 8.

Hint: D8 is the only non Hamiltonian group of order 8, meaning that D8 is the only group of
order 8 that has nonnormal subgroups.

Proof. Recall that L = K1K2 from the arguments above. Notice that K1 = Q(b1) is not Galois
over Q because for example it does not contain all the roots of the minimal polynomial q = mβ1,Q
contradicting Corollary 4.74. It follows by the FTGT that the subgroup H = Gal(L/K1) is a
non normal subgroup of G, hence using the tip G ∼= D8.
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