Hath 818 Lecture 24
March 24 - Zoom

Announcements and reminders:

- Problem Set 6 due today
- Problem Let 7 posted
- Class on Monday back to normal (in person)
- On canvas, you can see your cunent grade in the class\&
- Coming up: anonymous feedloack form. (canvas)
- Math 125 : on Friday, April 28 , class is CANCELED so you can attend the Math 125 events!
therem (Jordan cononical form) F feld $A \in M_{n}(F)$
Assume the characterstic polynomeal c of A factas complately into linear factors there is an unvertible matux $P \in M_{n}(F)$ st

$$
P A P^{-1}=\left[\begin{array}{llll}
\partial_{e_{1}}\left(x_{1}\right) & & & \\
& \ddots & \\
& & J_{e_{n}}\left(x_{n}\right)
\end{array}\right] \stackrel{\text { sumlan to }}{\sim}
$$

each $r_{i} \in F$ is a root of $c, e_{i} \geqslant 1$
$\left(x-r_{1}\right)^{h_{1}}, \ldots,\left(x-x_{n}\right)^{e_{n}}$ are the elementary divisors $O_{Z} V_{t}\left(v=F^{n}\right)$ and thes Jordan conomical form for A is uneque up to order of the blocks
A is diagonalizable if there exits P st $P A P^{-1}$ is diagonal
$v \xrightarrow{t} V$ is diagonalizable if $[t]_{B}^{B}$ is diagonal for some basis B
therem $V \xrightarrow{t} V$ linear transformation $\operatorname{dim}_{F}(v)=n<\infty$
TFAE:
(1) t is diagenalizable
(2) I has a JCF, and it is dogonol
(3) t has a JCF and the elementary divrsors are all of the form $x-x$
(4) Each invoreont factor is a puoduct of distinct linear formes
(5) the menemal polynomial of t is a puoduct of distenct lenear forms.

Proof $(1) \Longleftrightarrow$ (2) because $\partial C F$ are unique
(2) \Leftrightarrow (3) by defution of $\partial C F$
havong a $\partial C F \Longrightarrow$ invarent factors factor completly
ebmentany diveros come from invarount factos
(3) \Rightarrow (4) $\quad g_{i}=\left(x-r_{1}\right) \cdots\left(x-r_{n}\right) \quad \Rightarrow$ elemaitayy dersas $x-x_{i}$
$m=\operatorname{lcm}\left(i n v\right.$ factors) $\stackrel{r_{i} \neq n_{j}}{=} \operatorname{lcm}$ (elementany dursas
(4) \Leftrightarrow (5)
every invariant factor slides m

$$
\underbrace{g_{1}|\cdots| g_{k}}_{m v \text { factors }}=m
$$

m distinct linear factors \Rightarrow every g;

Remark A and B matrices with ICEs
A and B avo similar $\Leftrightarrow \partial C F(A)=\partial C F(B)$

$$
\left(A=P B P^{-1}\right)
$$

Similar
Hoover, if $A \sim B$, then
A has a JCF $\Longleftrightarrow B$ has a JCF

New Chapter:

Facts from 817 :
Theorem 5.1 (Eisenstein's Criterion). Suppose R is a domain and let $n \geqslant 1$, and consider the monic polynomial

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in R[x] .
$$

If there exists a prime ideal P of R such that $a_{0}, \ldots, a_{n-1} \in P$ and $a_{0} \notin P^{2}$, then f is irreducible in $R[x]$.
Theorem 5.2 (Gauss' Lemma). Let R be a UFD with field of fractions F. Regard R as a subring of F and $R[x]$ as a subring of $F[x]$ via the induced map $R[x] \hookrightarrow F[x]$. If $f(x) \in R[x]$ is irreducible in $R[x]$, then $f(x)$ remains irreducible as an element of $F[x]$.
Theorem 5.3. Let R be a UFD with field of fractions F. Regard R as a subring of F and $R[x]$ as a subring of $F[x]$ via the induced map $R[x] \hookrightarrow F[x]$. If $f(x) \in R[x]$ is irreducible in $F[x]$ and the gd of the coefficients of $f(x)$ is a unit, then $f(x)$ remains irreducible as an element of $R[x]$.

Subbed: F is a subfield ot $<$
A fold extension $F \subseteq L$ is an inducaon of folds F inside L.
Note Given a feed extension $F \subseteq L, L$ is a vector space over F via

$$
a \cdot v={\underset{\text { pidect in } L}{a v}}_{c_{\text {pin }}}^{c}
$$

Notation $F S L$ or L / F (Lover $F)$
the degree of $F \subseteq L$ is $[L: F]:=\operatorname{dim}_{F}(L)$. A fold extension is forte if tho degree is forte.

Ex: $\mathbb{R} \subseteq \mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\{\quad$ ba isis $\{1, i\}$

$$
[\mathbb{C}: \mathbb{R}]=2 .
$$

Ex: $[\mathbb{R}: \mathbb{Q}]=\infty$

F foed, $p \in F[x]$ ineducible, obg $p \geqslant 2$ $\Rightarrow L=F[x] /(p)$ is a fold.
thm F foed, $p \in F[x]$ ineducible $\operatorname{deg} p \geqslant 2$

$$
L=F[x] /(p)
$$

(1) $F \longrightarrow L$

is an inclusion.
of folds
(2) $[L: F]=\operatorname{deg}(p)$
(3) $\bar{x}=x+(p) \in L$ is a root of $p \in L[x]$

Def $F \subseteq L, \alpha \in L$
$F(\alpha):=$ smallest subfeld oq L containeng α, F

$$
F(\alpha)=\bigcap_{\substack{E \text { pold } \\ F \subseteq E \subseteq L \\ \alpha \in E}} E
$$

