Hoth 818 secture 24 Monch 24 - ZODU

Announce monto and remunders:

- Problem Set 6 due today
- · Problem Set 7 pested
- · Class on Monday back to normal (in person)
- · On convas, you can see your current grade in the class
- · Coming up: anony mous feedback form. (Canvas)
- Hath 125: On Friday April 28, Class is CANCELED so you can attend the Hath 125 events!

theorem (Jordan Canonical form) 7 field AENn(F)

Assume the characteristic polynomial C Q A factors completely into linear factors there is an invortible matux PEMn(F) st similar to

$$\mathcal{P}A \mathcal{P}^{-\prime} = \begin{bmatrix} \overline{\partial_{e_1}(x_1)} & & \\ & \overline{\partial_{e_n}(x_n)} \end{bmatrix} \sim A$$

each $\mathfrak{R}_i \in F$ is a vot $\mathfrak{Q}_{\mathcal{L}_i} \mathfrak{R}_i \ge 1$ $(\mathfrak{X}-\mathfrak{R}_i)^{\mathfrak{R}_i}, \ldots, (\mathfrak{X}-\mathfrak{R}_n)^{\mathfrak{R}_n}$ are the elementary divisors $\mathfrak{Q}_i \vee_{\mathfrak{L}_i} (\vee = F^n)$ and this Fordan canonical form for A is unique up to order \mathfrak{Q}_i the blocks

$$V \stackrel{t}{\rightarrow} V$$
 is diagonalizable if $[t_1]_B^B$ is diagonal for some basis B
theorem $V \stackrel{t}{\rightarrow} V$ linear transformation $\dim_F(v) = n < \infty$

theorem
$$V \xrightarrow{t} V$$
 linear transformation $\dim_F(v) = n < \infty$
TFAE:

Proof (1
$$\Leftrightarrow$$
 2) because $\exists CF$ are unique
(2) (=) (3) by definition of $\exists CF$
having a $\exists CF \implies$ invariant factors factor completely
elementary diverses come from invariant factors
(3) = (4) $g_i = (x - y_i) \cdots (x - y_n) \implies$ elementary diverses $x - y_i$
 $m = lem(inv factors) \stackrel{n}{=} lem(elementary diverses)$
(4) = (5)

Remark A and B matrices with $\exists CF_s$ A and B are similar $\iff \exists CF(A) = \exists CF(B)$ $(A = PBP^1)$ However, $\int A \sim B$, then A has a $\exists CF \iff B$ has a $\exists CF$.

New Chapter

Faits from 817:

.

Theorem 5.1 (Eisenstein's Criterion). Suppose R is a domain and let $n \ge 1$, and consider the monic polynomial

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} \in R[x].$$

If there exists a prime ideal P of R such that $a_0, \ldots, a_{n-1} \in P$ and $a_0 \notin P^2$, then f is irreducible in R[x].

Theorem 5.2 (Gauss' Lemma). Let R be a UFD with field of fractions F. Regard R as a subring of F and R[x] as a subring of F[x] via the induced map $R[x] \hookrightarrow F[x]$. If $f(x) \in R[x]$ is irreducible in R[x], then f(x) remains irreducible as an element of F[x].

Theorem 5.3. Let R be a UFD with field of fractions F. Regard R as a subring of F and R[x] as a subring of F[x] via the induced map $R[x] \hookrightarrow F[x]$. If $f(x) \in R[x]$ is irreducible in F[x] and the gcd of the coefficients of f(x) is a unit, then f(x) remains irreducible as an element of R[x].

Subfield: F is a subfield
$$Q \ L$$

A field extension $F \subseteq L$ is an induction Q fields \mp inside L .
Note Given a field extension $F \subseteq L$, L is a vector space over F transvert $P = av$ and F , $v \in L$
 $a \cdot v = av$ and $a \in F$, $v \in L$
product in L
Notation $F \subseteq L$ or L/F (L over F)
Here degrees Q $F \subseteq L$ is $[L:F] := dvm_F(L)$.
A field extension is finite if the degree is finite.
 $Ex: R \subseteq C = \frac{2}{3}a + bi | a, b \in R$
 $[C:R] = Q$.

 $E_{X} : [R: Q] = \infty$ $F food , p \in F[X] moducible , deg p \ge 2$ $\Rightarrow L = F[X] / (p) is a fold.$ $\frac{Him}{L} = food , p \in F[X] moducible deg p \ge 2$ L = F[X] / (p) $(1) \quad F \longrightarrow L \qquad is an inclusion.$ $a \longmapsto a + (p) \qquad of folds$ $(2) \quad [L:F] = deg (p)$ $(3) \quad \overline{x} = x + (p) \in L \quad is a not of p \in L[X]$

$$\frac{2ef}{F(\alpha)} = \frac{1}{2} + \frac{1}{2} +$$