Problem Set 10 solutions

Problem 1. Let $F \subseteq L$ be a field extension and let $S \subseteq L$ be an arbitrarily subset of L whose elements are all algebraic over F. Show that $F \subseteq F(S)$ is algebraic.

Proof. Given $\alpha \in F(S)$, we want to show that α is algebraic over F. First, note that α can be written as a polynomial in S with coefficients in F, which means it uses only finitely many elements $\alpha_{1}, \ldots, \alpha_{n} \in S$, so $\alpha \in F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Since $\alpha_{1}, \ldots, \alpha_{n} \in S$ are all algebraic over F, the extensions $F \subseteq F\left(\alpha_{1}\right), F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{1}, \alpha_{2}\right), \ldots, F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \subseteq F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ are all algebraic. We showed in class that the composition of algebraic extensions is algebraic; thus the tower of algebraic extensions

$$
F \subseteq F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{1}, \alpha_{2}\right), \ldots, F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \subseteq F\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

implies that $F \subseteq F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is algebraic. In particular, $\alpha \in F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is algebraic over F. We conclude that $F \subseteq F(S)$ is algebraic.

Problem 2. Suppose $F \subseteq L$ and $F \subseteq L^{\prime}$ be two field extensions. Let S be the set of pairs (E, i) where E is a subfield of L that contains F and $i: E \hookrightarrow L^{\prime}$ is a ring map with $\left.i\right|_{F}=\mathrm{id}_{F}$. Make S into a poset by declaring that $(E, i) \leq\left(E^{\prime}, i^{\prime}\right)$ if and only if $E \subseteq E^{\prime}$ and $\left.i^{\prime}\right|_{E}=i$. Show that the poset (S, \leq) satisfies the hypothesis of Zorn's Lemma.

Proof. First, we show that S is nonempty. Let $i: F \rightarrow L^{\prime}$ be the inclusion of F in L^{\prime}. Then $F \subseteq F \subseteq L, F$ is a field, and $i: F \rightarrow L^{\prime}$ is a ring homomorphism with $\left.i\right|_{F}=\mathrm{id}_{F}$, so $(F, i) \in S$.

Now we need to check that given any chain $C=\left\{\left(E_{j}, i_{j}\right)\right\}_{j}$ of elements in S, there is an upper bound for C in S. Note that in particular the set $\left\{E_{j}\right\}$ is totally ordered by inclusion. In Problem Set 9 , we essentially showed that $E:=\bigcup E_{i}$ is a subfield of L containing F :

- Since $E_{i} \subseteq L$ for all $i, E \subseteq L$.
- $0,1 \in E_{i}$ for all i, so $0,1 \in E$. In particular, E is nonempty.
- Given $a, b \in E$, there exist j, k such that $a \in E_{i}$ and $b \in E_{k}$. Assume without loss of generality that $E_{i} \subseteq E_{k}$. Then $a, b \in E_{k}$, and since E_{k} is a field, $a \pm b, a b \in E_{k} \subseteq E$.
- For any nonzero $a \in E$, there exists some j such that $a \in E_{j}$. Since E_{j} is a field, $a^{-1} \in E_{j} \subseteq E$.

Moreover, consider the function $i: E \rightarrow L^{\prime}$ defined as follows: for any $a \in E$, consider k such that $a \in E_{k}$, and define $i(a)=i_{k}(a)$. This is well-defined: if j is another index such that $a \in E_{j}$, then $E_{k} \subseteq E_{j}$ or $E_{j} \subseteq E_{k}$; if $E_{k} \subseteq E_{j}$, then $a \in E_{k} \subseteq E_{j}$, so $i_{j}(a)=\left.i_{j}\right|_{E_{k}}(a)=i_{k}(a)$. Moreover, we claim that i is a ring homomorphism:

- Since $1 \in E_{k}$ for all k and i_{k} is a ring homomorphism for all $k, i(1)=i_{k}(1)=1$.
- Given $a, b \in E$, there exist j, k such that $a \in E_{i}$ and $b \in E_{k}$. Assume without loss of generality that $E_{i} \subseteq E_{k}$. Then $a, b \in E_{k}$, and since i_{k} is a ring homomorphism,

$$
i(a+b)=i_{k}(a+b)=i_{k}(a)+i_{k}(b)=i(a)+i(b) \quad \text { and } \quad i(a b)=i_{k}(a b)=i_{k}(a) i_{k}(b)=i(a) i(b)
$$

Finally, since $F \subseteq E_{k}$ for all $k,\left.i\right|_{F}=i_{k} \mid F=\operatorname{id}_{F}$. We conclude that $(E, i) \in S$. Moreover, $E_{k} \subseteq E$ and $\left.i\right|_{E_{k}}=i_{k}$ for all k by construction, so (E, i) is an upper bound for C.

Problem 3. For any prime p, the p th cyclotomic polynomial

$$
f(x)=x^{p-1}+x^{p-2}+\cdots+x^{2}+x+1 \in \mathbb{Z}[x]
$$

is irreducible in $\mathbb{Q}[x]$.
Proof. We cannot apply Eisenstein directly, but we can apply it after a linear change of variables. Consider the ring homomorphism $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}[y]$ given by $\phi(h(x))=h(y+1)$. We claim that

$$
\phi(f)=y^{p-1}+p y^{p-2}+\binom{p}{2} y^{p-3}+\binom{p}{3} y^{p-4}+\cdots+\binom{p}{p-1} y+p .
$$

To see this, we note that $f(x)(x-1)=x^{p}-1$ and by the binomial theorem we have

$$
\phi\left(x^{p}-1\right)=(y+1)^{p}-1=y^{p}+p y^{p-1}+\binom{p}{2} y^{p-2}+\cdots+p y .
$$

Since $\phi\left(x^{p}-1\right)=\phi(f) \phi(x-1)=\phi(f) y$, the claim follows.
By Eisenstein's Criterion, $\phi(f)$ is irreducible in $\mathbb{Z}[y]: p$ divides all coefficients of $\phi(f)$ except for the coefficeint of highest degree, and p^{2} does not divide the coefficient of $\phi(f)$ of degree 0 . By Gauss' Lemma, $\phi(f)$ is irreducible over \mathbb{Q}. Finally, we claim that this implies that f is irreducible in $\mathbb{Q}[x]$. Indeed, if f was reducible, then we would be able to write $f=g h$ for some nonconstant polynomials g, h, and thus $\phi(f)=\phi(g) \phi(h)$ would factor. By construction, $\left.\phi\right|_{\mathbb{Q}}=\mathrm{id}_{\mathbb{Q}}$, and if q is a polynomial of degree n, then $\phi(q)$ also has degree n. In particular, $\phi(g)$ and $\phi(h)$ are nonconstant polynomials, and thus $\phi(f)$ would also be reducible.

Problem 4. Let q be a quadratic polynomial with coefficients in \mathbb{R}. Show that the splitting field of q is either \mathbb{R} or \mathbb{C}.

Proof. If q is reducible, then it must factor as a product of two linear factors, and thus all of its roots are in \mathbb{R}. In that case, the splitting field of q must be \mathbb{R}.

Now suppose that q is irreducible. Since \mathbb{C} is algebraically closed, we know that q completely splits as a product of linear factors over \mathbb{C}, and thus the splitting field of q is contained in \mathbb{C}. Let $a+b i$ be one of the complex roots of $q .^{1}$ Since q is irreducible over \mathbb{R}, then we must have $b \neq 0$. Now consider $F=\mathbb{R}(a+b i)$. Since $a, b \in \mathbb{R}$, then $a+b i \in \mathbb{R}(i)=\mathbb{C}$. On the other hand,

$$
i=b^{-1}(a+b i)-b^{-1} a \in \mathbb{R}(a+b i)
$$

We conclude that $\mathbb{R}(a+b i)=\mathbb{C}$. Thus adjoining any complex number to \mathbb{C} gives us \mathbb{C}. We showed in class that the splitting field of q is obtained by adjoining the two complex roots of q to \mathbb{R}. Therefore, the splitting field of q is \mathbb{C}.

Problem 5. Determine, with justification, the splitting field K of the polynomial $x^{6}-4$ over \mathbb{Q} and the degree $[K: \mathbb{Q}]$.

Proof. Let $b:=\sqrt[6]{4}$ be the unique positive real root of $x^{6}-4$, and let $\zeta:=e^{2 \pi i / 6}$, a primitive 6 th root of 1 . Then the roots of $x^{6}-4$ in \mathbb{C} are $b \zeta^{j}$ for $j \in\{0,1,2,3,4,5\}$, and the splitting field K of $x^{6}-4$ over \mathbb{Q} is $K=\mathbb{Q}\left(b, b \zeta, \ldots, b \zeta^{5}\right)$.

Since $\zeta=(b)^{-1}(b \zeta) \in K$, then $\mathbb{Q}(b, \zeta) \subseteq K$. Since $b \zeta^{j} \in \mathbb{Q}(b, \zeta)$ for all j, the reverse containment also holds. Therefore $K=\mathbb{Q}(b, \zeta)$.

[^0]Now $\mathbb{Q} \subseteq \mathbb{Q}(b) \subseteq \mathbb{Q}(b, \zeta)=K$ and $\mathbb{Q} \subseteq \mathbb{Q}(\zeta) \subseteq \mathbb{Q}(b, \zeta)=K$, and so the Degree Formula says that

$$
[K: \mathbb{Q}]=[K: \mathbb{Q}(b)][\mathbb{Q}(b): \mathbb{Q}] \quad(*)
$$

and

$$
[K: \mathbb{Q}]=[K: \mathbb{Q}(\zeta)][\mathbb{Q}(\zeta): \mathbb{Q}] \quad(* *) .
$$

Since $b=4^{1 / 6}=\left(2^{2}\right)^{1 / 6}=2^{1 / 3}=\sqrt[3]{2}$, then b is a root of the polynomial $x^{3}-2$ over \mathbb{Q}. Since $x^{3}-2$ is a monic polynomial in $\mathbb{Z}[x]$ satisfying that all nonleading coefficients are divisible by the prime number 2 and the constant term is not divisible by 2^{2}, then Eisenstein's Criterion says that $x^{3}-2$ is irreducible in $\mathbb{Z}[x]$. Then Gauss' Lemma says that $x^{3}-2$ is irreducible in $\mathbb{Q}[x]$. Therefore, $x^{3}-2=m_{b, \mathbb{Q}}$ by definition of minimal polynomial. Now a theorem from class says that

$$
[\mathbb{Q}(b): \mathbb{Q}]=\operatorname{deg}\left(m_{b, \mathbb{Q}}\right)=\operatorname{deg}\left(x^{3}-2\right)=3 .
$$

Hence Equation $\left({ }^{*}\right)$ says that $3 \mid[K: \mathbb{Q}]$.
Since $\zeta^{3}=e^{3(2 \pi i / 6)}=e^{\pi i}=-1$, then ζ is a root of $x^{3}+1$ over \mathbb{Q}. Since $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$ and $\zeta \neq-1$, then ζ is a root of $x^{2}-x+1$ over \mathbb{Q}. Then $\operatorname{deg}\left(m_{\zeta, \mathbb{Q}}\right) \leqslant 2$, and so again by the same theorem from class we have $[\mathbb{Q}(\zeta): \mathbb{Q}] \leqslant 2$. Now $\zeta \notin \mathbb{R}$, and hence $\zeta \notin \mathbb{Q}$ and $[Q(\zeta): \mathbb{Q}] \neq 1$. Therefore $[Q(\zeta): \mathbb{Q}]=2$. Hence Equation $\left({ }^{* *}\right)$ says that $2 \mid[K: \mathbb{Q}]$. Combining this with the result of the previous paragraph, since 2 and 3 are relatively prime, then $6 \mid[K: \mathbb{Q}]$.

Equation $\left({ }^{*}\right)$ also says that

$$
[K: \mathbb{Q}]=[(\mathbb{Q}(b))(\zeta): \mathbb{Q}(b)] \cdot 3
$$

Since ζ is also a root of the polynomial $x^{2}-x+1$ in $\mathbb{Q}(b)$, then the minimum polynomial of ζ over $\mathbb{Q}(b)$ has degree at most 2 , and so

$$
[(\mathbb{Q}(b))(\zeta): \mathbb{Q}(b)] \leqslant 2
$$

Hence $[K: \mathbb{Q}] \leqslant 2 \cdot 3=6$. Combining this with the result of the previous paragraph shows that $[K: \mathbb{Q}]=6$.

Problem 6. Let L be the splitting field of $x^{p}-2 \in \mathbb{Q}[x]$ over \mathbb{Q} where p is an odd prime integer. Find $[L: \mathbb{Q}]$.
Hint: Consider both chains $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[p]{2}) \subseteq L$ and $\mathbb{Q} \subseteq \mathbb{Q}\left(e^{2 \pi i / p}\right) \subseteq L$.
Proof. We have $[\mathbb{Q}(\sqrt[p]{2}): \mathbb{Q}]=p$ since $x^{p}-2$ is irreducible (over \mathbb{Z} by Eisenstein's Criterion applied to the prime p, over \mathbb{Q} by Gauss' Lemma; complete the details as we have done in many similar problems). By the degree formula, it follows that p divides $[L: \mathbb{Q}]$. We have

$$
\left[\mathbb{Q}\left(e^{2 \pi i / p}\right): \mathbb{Q}\right]=p-1
$$

since $x^{p-1}+x^{p-2}+\cdots+x+1$ has $e^{2 \pi i / p}$ as a root and is irreducible over \mathbb{Q} by Problem 3 , so it must be the minimal polynomial of $e^{2 \pi i / p}$. By the degree formula, it follows that $p-1$ divides $[L: \mathbb{Q}]$. Since p and $p-1$ are relatively prime, we conclude that $p(p-1)$ divides $[L: \mathbb{Q}]$. On the other hand, we have

$$
L=\mathbb{Q}\left(\sqrt[p]{2}, e^{2 \pi i / p}\right) \quad \text { and } \quad\left[L: \mathbb{Q}\left(e^{2 \pi i p}\right)\right] \leqslant p-1
$$

since $\sqrt[p]{2}$ is a root of $x^{p-1}+x^{p-2}+\cdots+x+1$. By the Degree Formula, we conclude that

$$
[L: \mathbb{Q}] \leqslant(p-1) p .
$$

Thus

$$
[L: \mathbb{Q}]=p(p-1)
$$

[^0]: ${ }^{1}$ In fact, the two roots of q must be of the form $a \pm b i$, but we won't need that fact here.

