Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 10 solutions

Problem 1. Let F' C L be a field extension and let S C L be an arbitrarily subset of L whose
elements are all algebraic over F. Show that F' C F(S) is algebraic.

Proof. Given a € F(S), we want to show that « is algebraic over F. First, note that a can
be written as a polynomial in S with coefficients in F', which means it uses only finitely many
elements aq,...,a, € S, s0 a € F(aq,...,a,). Since ai,...,a, € S are all algebraic over F', the
extensions F' C F(ay), F(an) € F(ag,a2),...,F(ai,...,an—1) C F(aq,...,qay) are all algebraic.
We showed in class that the composition of algebraic extensions is algebraic; thus the tower of
algebraic extensions

FCF(w) CFlag,a2),...,Flag,...,an—1) C F(ag,...,ay)

implies that F C F(aq,...,qy) is algebraic. In particular, a € F(ayq,..., ;) is algebraic over F.
We conclude that F' C F(5) is algebraic. O

Problem 2. Suppose FF C L and F C L’ be two field extensions. Let S be the set of pairs (E,1)
where F' is a subfield of L that contains F and i : E < L’ is a ring map with i|p = idp. Make S
into a poset by declaring that (E,i) < (E’,i') if and only if E C E’ and i'|g = i. Show that the
poset (5, <) satisfies the hypothesis of Zorn’s Lemma.

Proof. First, we show that S is nonempty. Let ¢: F — L’ be the inclusion of F' in L’. Then
FCFCL, Fisafield, and i: FF — L' is a ring homomorphism with i|p = idp, so (F,i) € S.

Now we need to check that given any chain C = {(Ej,i;)}; of elements in S, there is an upper
bound for C'in S. Note that in particular the set {E;} is totally ordered by inclusion. In Problem
Set 9, we essentially showed that E := |J E; is a subfield of L containing F:

e Since F; C L for all i, £ C L.
e 0,1 € E; for all i, s0 0,1 € E. In particular, F is nonempty.

e Given a,b € F, there exist j, k such that a € F; and b € Ej,. Assume without loss of generality
that E; C Ei. Then a,b € E}, and since F}, is a field, a + b,ab € E, C E.

e For any nonzero a € E, there exists some j such that a € E;. Since Fj is a field, ale E; CE.

Moreover, consider the function i: E — L’ defined as follows: for any a € E, consider k such that
a € Ej, and define i(a) = ix(a). This is well-defined: if j is another index such that a € E;, then
Ey, C Ejor Ej C Ey; if E, C Ej, then a € Ej, C Ej, so ij(a) = ij|g, (a) = ix(a). Moreover, we
claim that ¢ is a ring homomorphism:

e Since 1 € Fj, for all k and ¢, is a ring homomorphism for all &, i(1) = (1) = 1.

e Given a,b € F, there exist j, k such that ¢ € F; and b € Ej,. Assume without loss of generality
that E; C Eg. Then a,b € Ej, and since 1 is a ring homomorphism,

i(a+b) = ig(a+b) = ir(a) + ix(d) = i(a) +i(b) and i(ab) = ix(ab) = ir(a)ix(b) = i(a)i(b).

Finally, since F' C E}, for all k, i|p = ig|F = idp. We conclude that (F,i) € S. Moreover, E, C FE
and i|p, = i for all k£ by construction, so (E,) is an upper bound for C. O
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Problem 3. For any prime p, the pth cyclotomic polynomial
fl@)y=a?""+aP 2+ ...+ 2+ +1€ L]
is irreducible in Q[x].

Proof. We cannot apply Eisenstein directly, but we can apply it after a linear change of variables.
Consider the ring homomorphism ¢ : Q[z] — Q[y] given by ¢(h(x)) = h(y + 1). We claim that

O(f) =y~ + oy + (g)y”_?’ + (g)yp_“ +o (pf 1>y +p.

To see this, we note that f(z)(z — 1) = 2P — 1 and by the binomial theorem we have

$a? —1) = (y+1)F =1 =y" +py~ + (g

>yp—2 + oy
Since ¢(aP — 1) = ¢(f)p(x — 1) = ¢(f)y, the claim follows.

By Eisenstein’s Criterion, ¢(f) is irreducible in Z[y]: p divides all coefficients of ¢(f) except
for the coefficeint of highest degree, and p? does not divide the coefficient of ¢(f) of degree 0. By
Gauss’ Lemma, ¢(f) is irreducible over Q. Finally, we claim that this implies that f is irreducible
in Q[x]. Indeed, if f was reducible, then we would be able to write f = gh for some nonconstant
polynomials g, h, and thus ¢(f) = ¢(g)¢(h) would factor. By construction, ¢|g = idg, and if ¢ is a
polynomial of degree n, then ¢(q) also has degree n. In particular, ¢(g) and ¢(h) are nonconstant
polynomials, and thus ¢(f) would also be reducible. O

Problem 4. Let ¢ be a quadratic polynomial with coefficients in R. Show that the splitting field
of q is either R or C.

Proof. If q is reducible, then it must factor as a product of two linear factors, and thus all of its
roots are in R. In that case, the splitting field of ¢ must be R.

Now suppose that ¢ is irreducible. Since C is algebraically closed, we know that g completely
splits as a product of linear factors over C, and thus the splitting field of ¢ is contained in C. Let
a + bi be one of the complex roots of ¢.! Since g is irreducible over R, then we must have b # 0.
Now consider F' = R(a + bi). Since a,b € R, then a + bi € R(i) = C. On the other hand,

i=b"1(a+bi)—b'acRa+bi).

We conclude that R(a + bi) = C. Thus adjoining any complex number to C gives us C. We showed
in class that the splitting field of g is obtained by adjoining the two complex roots of ¢ to R.
Therefore, the splitting field of ¢ is C. O

Problem 5. Determine, with justification, the splitting field K of the polynomial 2% — 4 over Q
and the degree [K : Q.

Proof. Let b := /4 be the unique positive real root of 2% — 4, and let ¢ := e2mi/6 5 primitive 6th
root of 1. Then the roots of 2° — 4 in C are b(7 for j € {0,1,2,3,4,5}, and the splitting field K of
28 — 4 over Q is K = Q(b,b(, ..., bC?).

Since ¢ = (b)~}(B¢) € K, then Q(b,¢) C K. Since b’ € Q(b, () for all j, the reverse containment
also holds. Therefore K = Q(b, ().

'In fact, the two roots of ¢ must be of the form a =+ bi, but we won’t need that fact here.
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Now Q C Q(b) C Q(b,¢) = K and Q C Q(¢) € Q(b,¢) = K, and so the Degree Formula says
that

and

(K : Q] = [K: Q(OIQ(C) : Q] ().
Since b = 41/6 = (22)1/6 = 21/3 = 2, then b is a root of the polynomial z* — 2 over Q. Since
23 — 2 is a monic polynomial in Z[z] satisfying that all nonleading coefficients are divisible by the
prime number 2 and the constant term is not divisible by 22, then Eisenstein’s Criterion says that
23 — 2 is irreducible in Z[x]. Then Gauss’ Lemma says that 2% — 2 is irreducible in Q[z]. Therefore,
x> —2= my,@ by definition of minimal polynomial. Now a theorem from class says that

[Q(b) : Q] = deg(mypq) = deg(z® — 2) = 3.
Hence Equation (*) says that 3 | [K : Q].

Since (3 = 3(27/6) = ¢™ — _1 then ( is aroot of z3+1 over Q. Since 2341 = (z+1)(z2—z+1)
and ¢ # —1, then ( is a root of 22 — x + 1 over Q. Then deg(m¢ g) < 2, and so again by the same
theorem from class we have [Q(¢) : Q] < 2. Now ¢ ¢ R, and hence ¢ ¢ Q and [Q(¢) : Q] # 1.
Therefore [Q(¢) : Q] = 2. Hence Equation (**) says that 2 | [K : Q]. Combining this with the
result of the previous paragraph, since 2 and 3 are relatively prime, then 6 | [K : Q].

Equation (*) also says that

(K : Q] = [(Q(b))(C) - Q(b)] - 3.
Since ( is also a root of the polynomial 2 — x + 1 in Q(b), then the minimum polynomial of ¢ over
Q(b) has degree at most 2, and so

[(@Q(0))(C) - Q)] < 2.

Hence [K : Q] < 2-3 = 6. Combining this with the result of the previous paragraph shows that
[K : Q] =6. O
Problem 6. Let L be the splitting field of 2P — 2 € Q[z] over Q where p is an odd prime integer.
Find [L : Q).
Hint: Consider both chains Q C Q(¥/2) C L and Q C Q(ezm/p) C L.
Proof. We have [Q({/2) : Q] = p since 2P —2 is irreducible (over Z by Eisenstein’s Criterion applied
to the prime p, over Q by Gauss’ Lemma; complete the details as we have done in many similar
problems). By the degree formula, it follows that p divides [L : Q]. We have
Q) : QI =p—1

since 2P~1 + 2P~2 4 ... 4+ z + 1 has €2™/P as a root and is irreducible over Q by Problem 3, so
it must be the minimal polynomial of e2™/P. By the degree formula, it follows that p — 1 divides
[L : Q]. Since p and p — 1 are relatively prime, we conclude that p(p — 1) divides [L : Q]. On the
other hand, we have

L=Q(¥2,e™P) and [L:Q(e*™P)] <p—1,

since {/2 is a root of zP~1 4+ 2P~2 + ... + 2 + 1. By the Degree Formula, we conclude that

[L:Q] <(p—1)p.
Thus
[L:Q] =p(p—1).
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