
Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 10 solutions

Problem 1. Let F ⊆ L be a field extension and let S ⊆ L be an arbitrarily subset of L whose
elements are all algebraic over F . Show that F ⊆ F (S) is algebraic.

Proof. Given α ∈ F (S), we want to show that α is algebraic over F . First, note that α can
be written as a polynomial in S with coefficients in F , which means it uses only finitely many
elements α1, . . . ,αn ∈ S, so α ∈ F (α1, . . . ,αn). Since α1, . . . ,αn ∈ S are all algebraic over F , the
extensions F ⊆ F (α1), F (α1) ⊆ F (α1,α2), . . . , F (α1, . . . ,αn−1) ⊆ F (α1, . . . ,αn) are all algebraic.
We showed in class that the composition of algebraic extensions is algebraic; thus the tower of
algebraic extensions

F ⊆ F (α1) ⊆ F (α1,α2), . . . , F (α1, . . . ,αn−1) ⊆ F (α1, . . . ,αn)

implies that F ⊆ F (α1, . . . ,αn) is algebraic. In particular, α ∈ F (α1, . . . ,αn) is algebraic over F .
We conclude that F ⊆ F (S) is algebraic.

Problem 2. Suppose F ⊆ L and F ⊆ L′ be two field extensions. Let S be the set of pairs (E, i)
where E is a subfield of L that contains F and i : E ↩→ L′ is a ring map with i|F = idF . Make S
into a poset by declaring that (E, i) ≤ (E′, i′) if and only if E ⊆ E′ and i′|E = i. Show that the
poset (S,≤) satisfies the hypothesis of Zorn’s Lemma.

Proof. First, we show that S is nonempty. Let i : F → L′ be the inclusion of F in L′. Then
F ⊆ F ⊆ L, F is a field, and i : F → L′ is a ring homomorphism with i|F = idF , so (F, i) ∈ S.

Now we need to check that given any chain C = {(Ej , ij)}j of elements in S, there is an upper
bound for C in S. Note that in particular the set {Ej} is totally ordered by inclusion. In Problem
Set 9, we essentially showed that E :=

󰁖
Ei is a subfield of L containing F :

• Since Ei ⊆ L for all i, E ⊆ L.

• 0, 1 ∈ Ei for all i, so 0, 1 ∈ E. In particular, E is nonempty.

• Given a, b ∈ E, there exist j, k such that a ∈ Ei and b ∈ Ek. Assume without loss of generality
that Ei ⊆ Ek. Then a, b ∈ Ek, and since Ek is a field, a± b, ab ∈ Ek ⊆ E.

• For any nonzero a ∈ E, there exists some j such that a ∈ Ej . Since Ej is a field, a
−1 ∈ Ej ⊆ E.

Moreover, consider the function i : E → L′ defined as follows: for any a ∈ E, consider k such that
a ∈ Ek, and define i(a) = ik(a). This is well-defined: if j is another index such that a ∈ Ej , then
Ek ⊆ Ej or Ej ⊆ Ek; if Ek ⊆ Ej , then a ∈ Ek ⊆ Ej , so ij(a) = ij |Ek

(a) = ik(a). Moreover, we
claim that i is a ring homomorphism:

• Since 1 ∈ Ek for all k and ik is a ring homomorphism for all k, i(1) = ik(1) = 1.

• Given a, b ∈ E, there exist j, k such that a ∈ Ei and b ∈ Ek. Assume without loss of generality
that Ei ⊆ Ek. Then a, b ∈ Ek, and since ik is a ring homomorphism,

i(a+ b) = ik(a+ b) = ik(a) + ik(b) = i(a) + i(b) and i(ab) = ik(ab) = ik(a)ik(b) = i(a)i(b).

Finally, since F ⊆ Ek for all k, i|F = ik|F = idF . We conclude that (E, i) ∈ S. Moreover, Ek ⊆ E
and i|Ek

= ik for all k by construction, so (E, i) is an upper bound for C.
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Problem 3. For any prime p, the pth cyclotomic polynomial

f(x) = xp−1 + xp−2 + · · ·+ x2 + x+ 1 ∈ Z[x]

is irreducible in Q[x].

Proof. We cannot apply Eisenstein directly, but we can apply it after a linear change of variables.
Consider the ring homomorphism φ : Q[x] → Q[y] given by φ(h(x)) = h(y + 1). We claim that

φ(f) = yp−1 + pyp−2 +

󰀕
p

2

󰀖
yp−3 +

󰀕
p

3

󰀖
yp−4 + · · ·+

󰀕
p

p− 1

󰀖
y + p.

To see this, we note that f(x)(x− 1) = xp − 1 and by the binomial theorem we have

φ(xp − 1) = (y + 1)p − 1 = yp + pyp−1 +

󰀕
p

2

󰀖
yp−2 + · · ·+ py.

Since φ(xp − 1) = φ(f)φ(x− 1) = φ(f)y, the claim follows.
By Eisenstein’s Criterion, φ(f) is irreducible in Z[y]: p divides all coefficients of φ(f) except

for the coefficeint of highest degree, and p2 does not divide the coefficient of φ(f) of degree 0. By
Gauss’ Lemma, φ(f) is irreducible over Q. Finally, we claim that this implies that f is irreducible
in Q[x]. Indeed, if f was reducible, then we would be able to write f = gh for some nonconstant
polynomials g, h, and thus φ(f) = φ(g)φ(h) would factor. By construction, φ|Q = idQ, and if q is a
polynomial of degree n, then φ(q) also has degree n. In particular, φ(g) and φ(h) are nonconstant
polynomials, and thus φ(f) would also be reducible.

Problem 4. Let q be a quadratic polynomial with coefficients in R. Show that the splitting field
of q is either R or C.

Proof. If q is reducible, then it must factor as a product of two linear factors, and thus all of its
roots are in R. In that case, the splitting field of q must be R.

Now suppose that q is irreducible. Since C is algebraically closed, we know that q completely
splits as a product of linear factors over C, and thus the splitting field of q is contained in C. Let
a + bi be one of the complex roots of q.1 Since q is irreducible over R, then we must have b ∕= 0.
Now consider F = R(a+ bi). Since a, b ∈ R, then a+ bi ∈ R(i) = C. On the other hand,

i = b−1(a+ bi)− b−1a ∈ R(a+ bi).

We conclude that R(a+ bi) = C. Thus adjoining any complex number to C gives us C. We showed
in class that the splitting field of q is obtained by adjoining the two complex roots of q to R.
Therefore, the splitting field of q is C.

Problem 5. Determine, with justification, the splitting field K of the polynomial x6 − 4 over Q
and the degree [K : Q].

Proof. Let b := 6
√
4 be the unique positive real root of x6 − 4, and let ζ := e2πi/6, a primitive 6th

root of 1. Then the roots of x6 − 4 in C are bζj for j ∈ {0, 1, 2, 3, 4, 5}, and the splitting field K of
x6 − 4 over Q is K = Q(b, bζ, ..., bζ5).

Since ζ = (b)−1(bζ) ∈ K, then Q(b, ζ) ⊆ K. Since bζj ∈ Q(b, ζ) for all j, the reverse containment
also holds. Therefore K = Q(b, ζ).

1In fact, the two roots of q must be of the form a± bi, but we won’t need that fact here.
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Now Q ⊆ Q(b) ⊆ Q(b, ζ) = K and Q ⊆ Q(ζ) ⊆ Q(b, ζ) = K, and so the Degree Formula says
that

[K : Q] = [K : Q(b)][Q(b) : Q] (∗)
and

[K : Q] = [K : Q(ζ)][Q(ζ) : Q] (∗∗).
Since b = 41/6 = (22)1/6 = 21/3 = 3

√
2, then b is a root of the polynomial x3 − 2 over Q. Since

x3 − 2 is a monic polynomial in Z[x] satisfying that all nonleading coefficients are divisible by the
prime number 2 and the constant term is not divisible by 22, then Eisenstein’s Criterion says that
x3−2 is irreducible in Z[x]. Then Gauss’ Lemma says that x3−2 is irreducible in Q[x]. Therefore,
x3 − 2 = mb,Q by definition of minimal polynomial. Now a theorem from class says that

[Q(b) : Q] = deg(mb,Q) = deg(x3 − 2) = 3.

Hence Equation (*) says that 3 | [K : Q].
Since ζ3 = e3(2πi/6) = eπi = −1, then ζ is a root of x3+1 over Q. Since x3+1 = (x+1)(x2−x+1)

and ζ ∕= −1, then ζ is a root of x2 − x+ 1 over Q. Then deg(mζ,Q) 󰃑 2, and so again by the same
theorem from class we have [Q(ζ) : Q] 󰃑 2. Now ζ /∈ R, and hence ζ /∈ Q and [Q(ζ) : Q] ∕= 1.
Therefore [Q(ζ) : Q] = 2. Hence Equation (**) says that 2 | [K : Q]. Combining this with the
result of the previous paragraph, since 2 and 3 are relatively prime, then 6 | [K : Q].

Equation (*) also says that

[K : Q] = [(Q(b))(ζ) : Q(b)] · 3.
Since ζ is also a root of the polynomial x2 − x+1 in Q(b), then the minimum polynomial of ζ over
Q(b) has degree at most 2, and so

[(Q(b))(ζ) : Q(b)] 󰃑 2.

Hence [K : Q] 󰃑 2 · 3 = 6. Combining this with the result of the previous paragraph shows that
[K : Q] = 6.

Problem 6. Let L be the splitting field of xp − 2 ∈ Q[x] over Q where p is an odd prime integer.
Find [L : Q].
Hint: Consider both chains Q ⊆ Q( p

√
2) ⊆ L and Q ⊆ Q(e2πi/p) ⊆ L.

Proof. We have [Q( p
√
2) : Q] = p since xp−2 is irreducible (over Z by Eisenstein’s Criterion applied

to the prime p, over Q by Gauss’ Lemma; complete the details as we have done in many similar
problems). By the degree formula, it follows that p divides [L : Q]. We have

[Q(e2πi/p) : Q] = p− 1

since xp−1 + xp−2 + · · · + x + 1 has e2πi/p as a root and is irreducible over Q by Problem 3, so
it must be the minimal polynomial of e2πi/p. By the degree formula, it follows that p − 1 divides
[L : Q]. Since p and p − 1 are relatively prime, we conclude that p(p − 1) divides [L : Q]. On the
other hand, we have

L = Q(
p
√
2, e2πi/p) and [L : Q(e2πip)] 󰃑 p− 1,

since p
√
2 is a root of xp−1 + xp−2 + · · ·+ x+ 1. By the Degree Formula, we conclude that

[L : Q] 󰃑 (p− 1)p.

Thus
[L : Q] = p(p− 1).
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