Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 11 solutions

Problem 1. Let n be a positive integer and let p be a prime integer. Let ¢(z) = 2P" —x € (Z/p)[z],
and let K be the splitting field of ¢ over Z/p.

a) Show that the subset £ C K consisting of all roots of ¢ in K is a subfield of K.

b) Show that |E| =p™ and E = K.

c) Let L be any field with |L| = p™, and let F' be the prime field of L. Show that F' = Z/p and
that L is the splitting field of the polynomial ¢r(z) = 2?" — x € F[x] over F.
Hint: Consider the multiplicative group (L*,-).

d) Show that any two fields of order p™ are isomorphic.

Proof.

a) Since Z/p[z] has prime characteristic p, the Frobenius map h,,: K — K defined by hy,(a) := a?"
for all @ € K is a ring homomorphism.

Note that
q0) =0 -0=0-0=0and ¢(1)=1"" —1=1-1=0,

s00,1 € E, so E is nonempty. Suppose that e, e’ € E. Using the fact that h,, is a homomorphism
gives
ale—¢) ‘Ll e—e)" — (e —¢)

"L () = hal€) — e+ EM e — (" — et el = g(e) — g(¢') =0~ 0= 0;
hence e — ¢/ € K is another root of ¢, and so e — ¢’ € E. We also have
qlee’) = (e )P" —ee = eP" (e/)P" —ee! = eP" (/)P — eP"e/ + eP"e! — ee

— @ q(¢') + qle)e’ = e (0) = (0)e’ = O;
hence e¢/ € K is a root of ¢, and so ee/ € E. Since E is closed under subtraction and multi-
plication, E is a subring of K. Since g(e™!) = (e })P" —e = (eP") L —el=el -1 =0

el € K is a root of ¢, and so e~! € E. Therefore, since E is also closed under taking inverses,
FE is a subfield of K.

def_hn hn(e —€')—e+¢€

b) Since ¢ has degree p™ and it splits into linear factors in K[z], then ¢ has p™ roots in K, counting
multiplicity. Since the derivative is ¢/(z) = p"z?"~! — 1 = —1, ¢/ has no roots. Since any root
of ¢ of multiplicity > 2 is also a root of ¢/, we deduce that ¢ has only roots of multiplicity 1.
Thus all of the roots of g are distinct and so ¢ has exactly p™ distinct roots. By definition, FE is
precisely the set of these p™ distinct roots of ¢, hence |E| = p™.

Since E contains all of the roots of ¢, then g splits completely into linear factors in E[x]. Let
a € (Z/pZ)*. Since (Z/pZ)* is a group of order p— 1, Lagrange’s Theorem gives that |a| divides
(Z/pZ)*| = p—1. Then a’? = a-a?~! = a-1 = a. Now an inductive argument shows that
a?" = a for all n > 1, since a?" = (a”"~ " )P. Hence

qga)=ad”" —a=a—-a=0.

Hence Z/pZ C E. Then E is a subfield of the splitting field K of q over Z/pZ that contains the
base field Z/pZ, and q splits linearly over E. By the minimality condition in the definition of
splitting field, it follows that F cannot be a proper subfield of K, so £ = K.
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c¢) Since F' is a subfield of L, and L is a finite set, then L is a vector space of finite dimension m
over F’ for some some m > 1. Therefore, p” = |L| = |F|™. Hence |F| is a power of p. In a
previous problem set and in class, we gave a classification of prime fields that tells us that if | F|
is finite then |F| must be a prime number; hence |F'| = p and therefore F' = Z/pZ.

Note that ¢r(0) = 0" — 0 = 0, and so the element 0 of L is a root of qr. Since L* is a group
of order p" — 1, then Lagrange’s Theorem again shows that for any a € L* we have a?" 1 = 1.
Therefore,

1

qr(a) =ad” —a=ad” ' —a=a—a=0.

Thus the p” elements of L are p™ distinct roots of g, and so all of the roots of gz lie in L. Hence
L is a field containing F' such that g splits completely into linear factors in L[z]. Moreover,
any subfield K C L of L is necessarily missing at least one of the p™ distinct roots of q. By
definition of splitting field, we conclude that L is a splitting field for qr over F'.

d) Suppose that L and L’ are fields of order p”, and let F and F’ be their respective prime fields.

By part (c), we must have
F' 2 7/pZ = F,
Also by c), L is the splitting field of the polynomial qr(z) = 2P — 2 € F[z] over F and L' is
the splitting field of the polynomial ¢p/(x) = 2P" — 2 € F'[z] over F'. Let j: F — F' be an
isomorphism and let j: F[z] — F’'[z] be the induced isomorphism of polynomial rings.
Notice that there is an inclusion of F” into L given by composing j with the inclusion of F” into
L', as follows:
FLFCL.

Therefore, L’ is an extension of F. We claim that L’ is a splitting field of ¢r over F. Indeed,
the image of gp in L'[x] is j(qr) = qps, which splits into linear factors over L', but not in any
proper subfield of L.

Now the uniqueness of the splitting field gives that L = L’ since they are both splitting fields
for gpr. Therefore, any two fields of order p™ are isomorphic. O

Problem 2. Show that every algebraic field extension of a finite field is separable.

Proof. Let F be a finite field. Then its prime subfield is also finite and hence isomorphic to Z/p
for some prime integer p, thus ch(F') = p. By a result from class, we just need to prove that the
Frobenius endomorphism ¢ : F' — F defined by ¢(c¢) = ¢P is surjective. But by the Freshman’s
Dream, ¢ is a ring homomorphism and, since F is a field, and ¢ # 0, it is injective. Since |F| < oo,
¢ must be a bijection by the Pigeonhole Principle. O

Problem 3. Assume F' is field and let f € F[z].

a) Assume char(F') = 0. Prove that f is not separable if and only if the prime factorization of f
in F[x] admits a repeated factor.

b) Give a counterexample to the previous part when the assumption char(F') = 0 is omitted.
Proof.

a) Suppose f is not separable; say a € F is a repeated root of f. Then Mq,F is irreducible and
mq,r | f,sothat f = gh for some h € F[z]. Moreover, since char(F') = 0 and m,, r is irreducible,
we know that m, g is separable and hence « is not a repeated root of mg p. That is, in Fx]
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we have g = (z — a)l with [(a) # 0. Since f = (z — a)?j, we must have that x — o divides h in
Flz]. That is, we must have h(a) = 0. But then g divides h too and so f = g2q for some ¢. So
g is a repeated prime (irreducible) factor of f.

Assume now that f = g?m for some prime (irreducible) g. Then for any root « of g in F, we
have that f = (z — «)?l in F[z] and hence f is not separable.

Let F = (Z/p)(y), the field of fractions of the polynomial ring (Z/p)[y], and let f(z) = 2P — y.
Since (Z/p)ly] is a PID and y is a prime element, then f is irreducible by Eisenstein’s Criterion.
If o is any root of f in F, then f(x) = (z — a)P by the Freshman’s Dream. Since p > 2, f is
not separable. But since f is irreducible over F', it doesn’t have a repeated factor in its prime
factorization over F'. O

Problem 4. Let L be the splitting field of f = 2% — 11 € Q[z].

a)
b)

Find the degree of [L : Q).

Let FF = Q(§), where £ = % isa primitive 5th root of unity. Show that f is irreducible over F'.

Proof.

a)

First, we claim that L = Q(&, v/11). On the one hand, the roots of f are ¥/11¢* fori = 0,1, 2, 3, 4,
so L =Q(v11€ |0 <i<4) CQ(& v/11). On the other hand,

=Ty

V11
so L = Q(&, V/11).

We claim that f is irreducible over QQ: indeed, 11 divides all the coefficients of f of nonmaximal
degree but the coefficient of maximal degree, 112 does not divide the degree 0 coefficient of f,
and 11 is prime, so Eisenstein’s Criterion says that f is irreducible over Z. By Gauss’ Lemma,
f is irreducible over Q. Since v/11 is a root of the monic irreducible polynomial f, we conclude
that f is the minimal polynomial of v/11 over Q. Thus [Q(+/11) : Q] = 5.

By Problem Set 10, g = 2* + 23 + 22 + 2 + 1 is irreducible, since 5 is prime. Note that ¢ is a
root of (z —1)g = z° — 1 but not a root of x — 1, so g(¢) = 0. Since g is irreducible, we conclude
that ¢ is the minimal polynomial of £ over Q. Thus [Q(§) : Q] = 4.

By the Degree Formula,

and
L:Q) = [L: QUVIDIQ(VID) : Q] = 5[L : Q(VIT)].
Thus 4|[L : Q] and 5|[L : Q]. Since gecd(4,5) = 1, we conclude that 20|[L : QJ.

Now ¢ still satisfies g over F' = Q(v/11), so mg¢ p|g. Thus the degree of m¢ g is at most 4, and
[L : Q(V/11)] < 4. Therefore,

But 20|[L : Q], so [L : Q] = 20.
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b) In the proof of part a) we showed that [Q(v/11) : Q] = 5, [F : Q] = [Q(¢) : Q] = 4, and
[L : Q] = 20. Moreover, L = F(+/2. By the Degree Formula,

[F(V/2: F][F: Q] =[L: Q] = 20.

Thus [F(v/2 : F] = 4, so m 35 - has degree 5. Since f(¥/2) = 0 and f € F[z] is monic, we
conclude that f is the minimal polynomial of /2 over F. In particular, f must be irreducible
over F. m

Problem 5. Let F' be a field, let aq, ..., a, be elements of an extension of F, and L = F(ay,...,ay).

a) Show that
flay,...,an)

g(al,...,an) |f’g€ F[xl,-..,xn],g?ﬁo}‘

th”wmgz{

Proof. We will use induction on n.
Base case: n = 1 was shown in Problem Set 7, Problem 5.

Induction Step: Let n > 2, and assume that

flay,...;an-1)

g(a17 ce 7an—1)

F(al,...,an_l):{ ]f,geF[xl,...,a:n_l],gyéO}.

We showed in Problem Set 9 Problem 2 that
F(ai,...,an) = F(a1,...,an—1)(an).
Combining these statements gives
F(ay,...,an) = F(a,...,an—1)(ay)

{283|%veth”w%4nﬂ}
)

{%Z;]%teth“wm%ﬂmq

where the last equality follows by clearing the denominators of the coefficients of u,v. The last
set is the same as

{f(a]_,..-,a/n—l)’f,geF[xl,---,xn—ng%O}' -

g(ala"'7an—1)
b) Let
Flay,...,an] :={f(a1,...,a,) | f € Flz1,...,25]}.
Prove that if a1, ..., a, are algebraic over F, then L = Flaq,...,a,].

Proof. By induction on n.
Base case: the case n = 1 was proven in class.

Induction Step: Assume F(aq,...,an—1) = Flai,...,an—1]. We showed in Problem Set 9 Prob-
lem 2 that
F(ay,...,an) = F(ay,...,an—1)(ay).
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Combining this with the inductive hypothesis and the base case gives

F(ay,...,an) = F(a1,...,an-1)(an) = Flay,...,an—1]lan] = Flay,. .., ay)].

c) Prove that if o € Aut(L/F) and f € L[z1,...,x,], then

o(flar,...,an)) = fo(o(ar),...,o(an)),

where f? denotes the polynomial obtained from f by applying o to its coefficients and leaving
the variables unchanged.

Proof. This follows since o preserves sums and products:
7 (X eininal - alr) = Y olen,. o) - olan). O
d) Prove that if o € Aut(L/F), then o is uniquely determined by o(a1),...,o(ay,).

Proof. By part (a), a typical element of L is £ = H for f,g € Flz1,...,x,). By part (c),

O'(f) _ fU(U(al), s 7U(an)) _ f(O'((ll), .. .,O’(an))
gU(U(al),...,U(an)) g(U(al),...,a(an))

)

where the last inequality takes into account that the coefficients of f and g are in L, so they are

fixed by 0. Now
flo(ay),...,o(ay))
g(o(ar),...,o(an))

above only depends on o(ay),...,o0(ay) so we get the desired conclusion. O
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