Problem Set 11 solutions

Problem 1. Let *n* be a positive integer and let *p* be a prime integer. Let $q(x) = x^{p^n} - x \in (\mathbb{Z}/p)[x]$, and let *K* be the splitting field of *q* over \mathbb{Z}/p .

- a) Show that the subset $E \subseteq K$ consisting of all roots of q in K is a subfield of K.
- b) Show that $|E| = p^n$ and E = K.
- c) Let L be any field with $|L| = p^n$, and let F be the prime field of L. Show that $F \cong \mathbb{Z}/p$ and that L is the splitting field of the polynomial $q_F(x) = x^{p^n} x \in F[x]$ over F. Hint: Consider the multiplicative group (L^{\times}, \cdot) .
- d) Show that any two fields of order p^n are isomorphic.

Proof.

a) Since $\mathbb{Z}/p[x]$ has prime characteristic p, the Frobenius map $h_n \colon K \to K$ defined by $h_n(a) \coloneqq a^{p^n}$ for all $a \in K$ is a ring homomorphism.

Note that

$$q(0) = 0^{p_n} - 0 = 0 - 0 = 0$$
 and $q(1) = 1^{p^n} - 1 = 1 - 1 = 0$,

so $0, 1 \in E$, so E is nonempty. Suppose that $e, e' \in E$. Using the fact that h_n is a homomorphism gives

$$q(e-e') \stackrel{def}{=} {}^{q} (e-e')^{p^{n}} - (e-e') \stackrel{def}{=} {}^{h_{n}} h_{n}(e-e') - e + e'$$
$$\stackrel{h_{n}}{=} {}^{hom} h_{n}(e) - h_{n}(e') - e + e' \stackrel{def}{=} {}^{h_{n}} e^{p^{n}} - (e')^{p^{n}} - e + e' = q(e) - q(e') = 0 - 0 = 0;$$

hence $e - e' \in K$ is another root of q, and so $e - e' \in E$. We also have $q(ee') = (ee')^{p^n} - ee' = e^{p^n}(e')^{p^n} - ee' = e^{p^n}(e')^{p^n} - e^{p^n}e' + e^{p^n}e' - ee'$ $= e^{p^n}q(e') + q(e)e' = e^{p^n}(0) = (0)e' = 0;$

hence $ee' \in K$ is a root of q, and so $ee' \in E$. Since E is closed under subtraction and multiplication, E is a subring of K. Since $q(e^{-1}) = (e^{-1})^{p^n} - e^{-1} = (e^{p^n})^{-1} - e^{-1} = e^{-1} - e^{-1} = 0$ $e^{-1} \in K$ is a root of q, and so $e^{-1} \in E$. Therefore, since E is also closed under taking inverses, E is a subfield of K.

b) Since q has degree p^n and it splits into linear factors in K[x], then q has p^n roots in K, counting multiplicity. Since the derivative is $q'(x) = p^n x^{p^n-1} - 1 = -1$, q' has no roots. Since any root of q of multiplicity ≥ 2 is also a root of q', we deduce that q has only roots of multiplicity 1. Thus all of the roots of q are distinct and so q has exactly p^n distinct roots. By definition, E is precisely the set of these p^n distinct roots of q, hence $|E| = p^n$.

Since E contains all of the roots of q, then q splits completely into linear factors in E[x]. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Since $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a group of order p-1, Lagrange's Theorem gives that |a| divides $|(\mathbb{Z}/p\mathbb{Z})^x| = p-1$. Then $a^p = a \cdot a^{p-1} = a \cdot 1 = a$. Now an inductive argument shows that $a^{p^n} = a$ for all $n \ge 1$, since $a^{p^n} = (a^{p^{n-1}})^p$. Hence

$$q(a) = a^{p^n} - a = a - a = 0.$$

Hence $\mathbb{Z}/p\mathbb{Z} \subseteq E$. Then *E* is a subfield of the splitting field *K* of *q* over $\mathbb{Z}/p\mathbb{Z}$ that contains the base field $\mathbb{Z}/p\mathbb{Z}$, and *q* splits linearly over *E*. By the minimality condition in the definition of splitting field, it follows that *E* cannot be a proper subfield of *K*, so E = K.

c) Since F is a subfield of L, and L is a finite set, then L is a vector space of finite dimension m over F', for some some $m \ge 1$. Therefore, $p^n = |L| = |F|^m$. Hence |F| is a power of p. In a previous problem set and in class, we gave a classification of prime fields that tells us that if |F| is finite then |F| must be a prime number; hence |F| = p and therefore $F \cong \mathbb{Z}/p\mathbb{Z}$.

Note that $q_F(0) = 0^{p^n} - 0 = 0$, and so the element 0 of L is a root of q_F . Since L^{\times} is a group of order $p^n - 1$, then Lagrange's Theorem again shows that for any $a \in L^{\times}$ we have $a^{p^n-1} = 1$. Therefore,

$$q_F(a) = a^{p^n} - a = aa^{p^n-1} - a = a - a = 0.$$

Thus the p^n elements of L are p^n distinct roots of q_F , and so all of the roots of q_F lie in L. Hence L is a field containing F such that q_F splits completely into linear factors in L[x]. Moreover, any subfield $K \subsetneq L$ of L is necessarily missing at least one of the p^n distinct roots of q. By definition of splitting field, we conclude that L is a splitting field for q_F over F.

d) Suppose that L and L' are fields of order p^n , and let F and F' be their respective prime fields. By part (c), we must have

 $F' \cong \mathbb{Z}/p\mathbb{Z} \cong F,$

Also by c), L is the splitting field of the polynomial $q_F(x) = x^{p^n} - x \in F[x]$ over F and L' is the splitting field of the polynomial $q_{F'}(x) = x^{p^n} - x \in F'[x]$ over F'. Let $j: F \to F'$ be an isomorphism and let $\hat{j}: F[x] \to F'[x]$ be the induced isomorphism of polynomial rings.

Notice that there is an inclusion of F' into L given by composing j with the inclusion of F' into L', as follows:

$$F \xrightarrow{\jmath} F' \subseteq L'.$$

Therefore, L' is an extension of F. We claim that L' is a splitting field of q_F over F. Indeed, the image of q_F in L'[x] is $\hat{j}(q_F) = q_{F'}$, which splits into linear factors over L', but not in any proper subfield of L.

Now the uniqueness of the splitting field gives that $L \cong L'$ since they are both splitting fields for $q_{F'}$. Therefore, any two fields of order p^n are isomorphic.

Problem 2. Show that every algebraic field extension of a finite field is separable.

Proof. Let F be a finite field. Then its prime subfield is also finite and hence isomorphic to \mathbb{Z}/p for some prime integer p, thus ch(F) = p. By a result from class, we just need to prove that the Frobenius endomorphism $\phi : F \to F$ defined by $\phi(c) = c^p$ is surjective. But by the Freshman's Dream, ϕ is a ring homomorphism and, since F is a field, and $\phi \neq 0$, it is injective. Since $|F| < \infty$, ϕ must be a bijection by the Pigeonhole Principle.

Problem 3. Assume F is field and let $f \in F[x]$.

- a) Assume char(F) = 0. Prove that f is not separable if and only if the prime factorization of f in F[x] admits a repeated factor.
- b) Give a counterexample to the previous part when the assumption char(F) = 0 is omitted.

Proof.

a) Suppose f is not separable; say $\alpha \in \overline{F}$ is a repeated root of f. Then $m_{\alpha,F}$ is irreducible and $m_{\alpha,F} \mid f$, so that f = gh for some $h \in F[x]$. Moreover, since $\operatorname{char}(F) = 0$ and $m_{\alpha,F}$ is irreducible, we know that $m_{\alpha,F}$ is separable and hence α is not a repeated root of $m_{\alpha,F}$. That is, in $\overline{F}[x]$

we have $g = (x - \alpha)l$ with $l(\alpha) \neq 0$. Since $f = (x - \alpha)^2 j$, we must have that $x - \alpha$ divides h in $\overline{F}[x]$. That is, we must have $h(\alpha) = 0$. But then g divides h too and so $f = g^2 q$ for some q. So g is a repeated prime (irreducible) factor of f.

Assume now that $f = g^2 m$ for some prime (irreducible) g. Then for any root α of g in \overline{F} , we have that $f = (x - \alpha)^2 l$ in $\overline{F}[x]$ and hence f is not separable.

b) Let $F = (\mathbb{Z}/p)(y)$, the field of fractions of the polynomial ring $(\mathbb{Z}/p)[y]$, and let $f(x) = x^p - y$. Since $(\mathbb{Z}/p)[y]$ is a PID and y is a prime element, then f is irreducible by Eisenstein's Criterion. If α is any root of f in \overline{F} , then $f(x) = (x - \alpha)^p$ by the Freshman's Dream. Since $p \ge 2$, f is not separable. But since f is irreducible over F, it doesn't have a repeated factor in its prime factorization over F.

Problem 4. Let *L* be the splitting field of $f = x^5 - 11 \in \mathbb{Q}[x]$.

a) Find the degree of $[L:\mathbb{Q}]$.

b) Let $F = \mathbb{Q}(\xi)$, where $\xi = e^{\frac{2\pi i}{5}}$ is a primitive 5th root of unity. Show that f is irreducible over F.

Proof.

a) First, we claim that $L = \mathbb{Q}(\xi, \sqrt[5]{11})$. On the one hand, the roots of f are $\sqrt[5]{11}\xi^i$ for i = 0, 1, 2, 3, 4, so $L = \mathbb{Q}(\sqrt[5]{11}\xi^i \mid 0 \le i \le 4) \subseteq \mathbb{Q}(\xi, \sqrt[5]{11})$. On the other hand,

$$\xi = \frac{\sqrt[5]{11}\xi}{\sqrt[5]{11}} \in L,$$

so $L = \mathbb{Q}(\xi, \sqrt[5]{11}).$

We claim that f is irreducible over \mathbb{Q} : indeed, 11 divides all the coefficients of f of nonmaximal degree but the coefficient of maximal degree, 11^2 does not divide the degree 0 coefficient of f, and 11 is prime, so Eisenstein's Criterion says that f is irreducible over \mathbb{Z} . By Gauss' Lemma, f is irreducible over \mathbb{Q} . Since $\sqrt[5]{11}$ is a root of the monic irreducible polynomial f, we conclude that f is the minimal polynomial of $\sqrt[5]{11}$ over \mathbb{Q} . Thus $[\mathbb{Q}(\sqrt[5]{11}) : \mathbb{Q}] = 5$.

By Problem Set 10, $g = x^4 + x^3 + x^2 + x + 1$ is irreducible, since 5 is prime. Note that ξ is a root of $(x-1)g = x^5 - 1$ but not a root of x-1, so $g(\xi) = 0$. Since g is irreducible, we conclude that g is the minimal polynomial of ξ over \mathbb{Q} . Thus $[\mathbb{Q}(\xi) : \mathbb{Q}] = 4$.

By the Degree Formula,

$$[L:\mathbb{Q}] = [L:\mathbb{Q}(\xi)][\mathbb{Q}(\xi):\mathbb{Q}] = 4[L:\mathbb{Q}(\xi)]$$

and

$$[L:\mathbb{Q}] = [L:\mathbb{Q}(\sqrt[5]{11})][\mathbb{Q}(\sqrt[5]{11}):\mathbb{Q}] = 5[L:\mathbb{Q}(\sqrt[5]{11})].$$

Thus $4|[L:\mathbb{Q}]$ and $5|[L:\mathbb{Q}]$. Since gcd(4,5) = 1, we conclude that $20|[L:\mathbb{Q}]$.

Now ξ still satisfies g over $F = \mathbb{Q}(\sqrt[5]{11})$, so $m_{\xi,F}|g$. Thus the degree of $m_{\xi,F}$ is at most 4, and $[L:\mathbb{Q}(\sqrt[5]{11})] \leq 4$. Therefore,

$$[L:\mathbb{Q}] = 5[L:\mathbb{Q}(\sqrt[5]{11})] \leq 20$$

But $20|[L:\mathbb{Q}]$, so $[L:\mathbb{Q}] = 20$.

 $[L:\mathbb{Q}] = 20.$ Moreover, $L = F(\sqrt[5]{2}.$ By the Degree Formula,

$$[F(\sqrt[5]{2}:F][F:\mathbb{Q}] = [L:\mathbb{Q}] = 20.$$

Thus $[F(\sqrt[5]{2} : F] = 4$, so $m_{\sqrt[5]{2},F}$ has degree 5. Since $f(\sqrt[5]{2}) = 0$ and $f \in F[x]$ is monic, we conclude that f is the minimal polynomial of $\sqrt[5]{2}$ over F. In particular, f must be irreducible over F.

Problem 5. Let F be a field, let a_1, \ldots, a_n be elements of an extension of F, and $L = F(a_1, \ldots, a_n)$.

a) Show that

$$F(a_1, \dots, a_n) = \left\{ \frac{f(a_1, \dots, a_n)}{g(a_1, \dots, a_n)} \mid f, g \in F[x_1, \dots, x_n], g \neq 0 \right\}.$$

Proof. We will use induction on n.

<u>Base case</u>: n = 1 was shown in Problem Set 7, Problem 5.

Induction Step: Let $n \ge 2$, and assume that

$$F(a_1,\ldots,a_{n-1}) = \left\{ \frac{f(a_1,\ldots,a_{n-1})}{g(a_1,\ldots,a_{n-1})} \mid f,g \in F[x_1,\ldots,x_{n-1}], g \neq 0 \right\}.$$

We showed in Problem Set 9 Problem 2 that

$$F(a_1,\ldots,a_n) = F(a_1,\ldots,a_{n-1})(a_n)$$

Combining these statements gives

$$F(a_1, \dots, a_n) = F(a_1, \dots, a_{n-1})(a_n)$$

= $\left\{ \frac{u(a_n)}{v(a_n)} \mid u, v \in F(a_1, \dots, a_{n-1})[x] \right\}$
= $\left\{ \frac{s(a_n)}{t(a_n)} \mid x, t \in F[a_1, \dots, a_{n-1}][x] \right\}$

where the last equality follows by clearing the denominators of the coefficients of u, v. The last set is the same as

$$\left\{\frac{f(a_1,\ldots,a_{n-1})}{g(a_1,\ldots,a_{n-1})} \mid f,g \in F[x_1,\ldots,x_{n-1}], g \neq 0\right\}. \quad \Box$$

 $F[a_1, \ldots, a_n] := \{ f(a_1, \ldots, a_n) \mid f \in F[x_1, \ldots, x_n] \}.$

Prove that if a_1, \ldots, a_n are algebraic over F, then $L = F[a_1, \ldots, a_n]$.

Proof. By induction on n.

<u>Base case</u>: the case n = 1 was proven in class.

Induction Step: Assume $F(a_1, \ldots, a_{n-1}) = F[a_1, \ldots, a_{n-1}]$. We showed in Problem Set 9 Problem 2 that

$$F(a_1,\ldots,a_n)=F(a_1,\ldots,a_{n-1})(a_n).$$

Combining this with the inductive hypothesis and the base case gives

$$F(a_1, \dots, a_n) = F(a_1, \dots, a_{n-1})(a_n) = F[a_1, \dots, a_{n-1}][a_n] = F[a_1, \dots, a_n].$$

c) Prove that if $\sigma \in \operatorname{Aut}(L/F)$ and $f \in L[x_1, \ldots, x_n]$, then

$$\sigma(f(a_1,\ldots,a_n)) = f^{\sigma}(\sigma(a_1),\ldots,\sigma(a_n)),$$

where f^{σ} denotes the polynomial obtained from f by applying σ to its coefficients and leaving the variables unchanged.

Proof. This follows since σ preserves sums and products:

$$\sigma\left(\sum c_{i_1,\dots,i_n}a_1^{i_1}\cdots a_n^{i_n}\right) = \sum \sigma(c_{i_1,\dots,i_n})\sigma(a_1)^{i_1}\cdots\sigma(a_n)^{i_n}.$$

d) Prove that if $\sigma \in \operatorname{Aut}(L/F)$, then σ is uniquely determined by $\sigma(a_1), \ldots, \sigma(a_n)$.

Proof. By part (a), a typical element of L is $\ell = \frac{f(a_1,...,a_n)}{g(a_1,...,a_n)}$ for $f,g \in F[x_1,\ldots,x_n]$. By part (c),

$$\sigma(\ell) = \frac{f^{\sigma}(\sigma(a_1), \dots, \sigma(a_n))}{g^{\sigma}(\sigma(a_1), \dots, \sigma(a_n))} = \frac{f(\sigma(a_1), \dots, \sigma(a_n))}{g(\sigma(a_1), \dots, \sigma(a_n))},$$

where the last inequality takes into account that the coefficients of f and g are in L, so they are fixed by σ . Now

$$\frac{f(\sigma(a_1),\ldots,\sigma(a_n))}{g(\sigma(a_1),\ldots,\sigma(a_n))}$$

above only depends on $\sigma(a_1), \ldots, \sigma(a_n)$ so we get the desired conclusion.