Problem Set 11 solutions

Problem 1. Let n be a positive integer and let p be a prime integer. Let $q(x)=x^{p^{n}}-x \in(\mathbb{Z} / p)[x]$, and let K be the splitting field of q over \mathbb{Z} / p.
a) Show that the subset $E \subseteq K$ consisting of all roots of q in K is a subfield of K.
b) Show that $|E|=p^{n}$ and $E=K$.
c) Let L be any field with $|L|=p^{n}$, and let F be the prime field of L. Show that $F \cong \mathbb{Z} / p$ and that L is the splitting field of the polynomial $q_{F}(x)=x^{p^{n}}-x \in F[x]$ over F.
Hint: Consider the multiplicative group $\left(L^{\times}, \cdot\right)$.
d) Show that any two fields of order p^{n} are isomorphic.

Proof.

a) Since $\mathbb{Z} / p[x]$ has prime characteristic p, the Frobenius map $h_{n}: K \rightarrow K$ defined by $h_{n}(a):=a^{p^{n}}$ for all $a \in K$ is a ring homomorphism.
Note that

$$
q(0)=0^{p_{n}}-0=0-0=0 \text { and } q(1)=1^{p^{n}}-1=1-1=0,
$$

so $0,1 \in E$, so E is nonempty. Suppose that $e, e^{\prime} \in E$. Using the fact that h_{n} is a homomorphism gives

$$
\begin{aligned}
& q\left(e-e^{\prime}\right) \stackrel{\operatorname{def} q}{=} q\left(e-e^{\prime}\right)^{p^{n}}-\left(e-e^{\prime}\right) \stackrel{\operatorname{def} h_{n}}{=} h_{n}\left(e-e^{\prime}\right)-e+e^{\prime} \\
& h_{n} \stackrel{\text { hom }}{=} h_{n}(e)-h_{n}\left(e^{\prime}\right)-e+e^{\prime} \stackrel{\text { def }}{=} h_{n} e^{p^{n}}-\left(e^{\prime}\right)^{p^{n}}-e+e^{\prime}=q(e)-q\left(e^{\prime}\right)=0-0=0 ;
\end{aligned}
$$

hence $e-e^{\prime} \in K$ is another root of q, and so $e-e^{\prime} \in E$. We also have

$$
\begin{aligned}
& \left.q\left(e e^{\prime}\right)=\left(e e^{\prime}\right)^{p^{n}}-e e^{\prime}=e^{p^{n}}\left(e^{\prime}\right)\right)^{p^{n}}-e e^{\prime}=e^{p^{n}}\left(e^{\prime}\right)^{p^{n}}-e^{p^{n}} e^{\prime}+e^{p^{n}} e^{\prime}-e e^{\prime} \\
& \quad=e^{p^{n}} q\left(e^{\prime}\right)+q(e) e^{\prime}=e^{p^{n}}(0)=(0) e^{\prime}=0
\end{aligned}
$$

hence $e e^{\prime} \in K$ is a root of q, and so $e e^{\prime} \in E$. Since E is closed under subtraction and multiplication, E is a subring of K. Since $q\left(e^{-1}\right)=\left(e^{-1}\right)^{p^{n}}-e^{-1}=\left(e^{p^{n}}\right)^{-1}-e^{-1}=e^{-1}-e^{-1}=0$ $e^{-1} \in K$ is a root of q, and so $e^{-1} \in E$. Therefore, since E is also closed under taking inverses, E is a subfield of K.
b) Since q has degree p^{n} and it splits into linear factors in $K[x]$, then q has p^{n} roots in K, counting multiplicity. Since the derivative is $q^{\prime}(x)=p^{n} x^{p^{n}-1}-1=-1, q^{\prime}$ has no roots. Since any root of q of multiplicity $\geqslant 2$ is also a root of q^{\prime}, we deduce that q has only roots of multiplicity 1 . Thus all of the roots of q are distinct and so q has exactly p^{n} distinct roots. By definition, E is precisely the set of these p^{n} distinct roots of q, hence $|E|=p^{n}$.
Since E contains all of the roots of q, then q splits completely into linear factors in $E[x]$. Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$. Since $(\mathbb{Z} / p \mathbb{Z})^{\times}$is a group of order $p-1$, Lagrange's Theorem gives that $|a|$ divides $\left|(\mathbb{Z} / p \mathbb{Z})^{x}\right|=p-1$. Then $a^{p}=a \cdot a^{p-1}=a \cdot 1=a$. Now an inductive argument shows that $a^{p^{n}}=a$ for all $n \geqslant 1$, since $a^{p^{n}}=\left(a^{p^{n-1}}\right)^{p}$. Hence

$$
q(a)=a^{p^{n}}-a=a-a=0 .
$$

Hence $\mathbb{Z} / p \mathbb{Z} \subseteq E$. Then E is a subfield of the splitting field K of q over $\mathbb{Z} / p \mathbb{Z}$ that contains the base field $\mathbb{Z} / p \mathbb{Z}$, and q splits linearly over E. By the minimality condition in the definition of splitting field, it follows that E cannot be a proper subfield of K, so $E=K$.
c) Since F is a subfield of L, and L is a finite set, then L is a vector space of finite dimension m over F^{\prime}, for some some $m \geqslant 1$. Therefore, $p^{n}=|L|=|F|^{m}$. Hence $|F|$ is a power of p. In a previous problem set and in class, we gave a classification of prime fields that tells us that if $|F|$ is finite then $|F|$ must be a prime number; hence $|F|=p$ and therefore $F \cong \mathbb{Z} / p \mathbb{Z}$.
Note that $q_{F}(0)=0^{p^{n}}-0=0$, and so the element 0 of L is a root of q_{F}. Since L^{\times}is a group of order $p^{n}-1$, then Lagrange's Theorem again shows that for any $a \in L^{\times}$we have $a^{p^{n}-1}=1$. Therefore,

$$
q_{F}(a)=a^{p^{n}}-a=a a^{p^{n}-1}-a=a-a=0 .
$$

Thus the p^{n} elements of L are p^{n} distinct roots of q_{F}, and so all of the roots of q_{F} lie in L. Hence L is a field containing F such that q_{F} splits completely into linear factors in $L[x]$. Moreover, any subfield $K \subsetneq L$ of L is necessarily missing at least one of the p^{n} distinct roots of q. By definition of splitting field, we conclude that L is a splitting field for q_{F} over F.
d) Suppose that L and L^{\prime} are fields of order p^{n}, and let F and F^{\prime} be their respective prime fields. By part (c), we must have

$$
F^{\prime} \cong \mathbb{Z} / p \mathbb{Z} \cong F,
$$

Also by c), L is the splitting field of the polynomial $q_{F}(x)=x^{p^{n}}-x \in F[x]$ over F and L^{\prime} is the splitting field of the polynomial $q_{F^{\prime}}(x)=x^{p^{n}}-x \in F^{\prime}[x]$ over F^{\prime}. Let $j: F \rightarrow F^{\prime}$ be an isomorphism and let $\hat{j}: F[x] \rightarrow F^{\prime}[x]$ be the induced isomorphism of polynomial rings.
Notice that there is an inclusion of F^{\prime} into L given by composing j with the inclusion of F^{\prime} into L^{\prime}, as follows:

$$
F \xrightarrow{j} F^{\prime} \subseteq L^{\prime} .
$$

Therefore, L^{\prime} is an extension of F. We claim that L^{\prime} is a splitting field of q_{F} over F. Indeed, the image of q_{F} in $L^{\prime}[x]$ is $\hat{j}\left(q_{F}\right)=q_{F^{\prime}}$, which splits into linear factors over L^{\prime}, but not in any proper subfield of L.
Now the uniqueness of the splitting field gives that $L \cong L^{\prime}$ since they are both splitting fields for $q_{F^{\prime}}$. Therefore, any two fields of order p^{n} are isomorphic.

Problem 2. Show that every algebraic field extension of a finite field is separable.
Proof. Let F be a finite field. Then its prime subfield is also finite and hence isomorphic to \mathbb{Z} / p for some prime integer p, thus $\operatorname{ch}(F)=p$. By a result from class, we just need to prove that the Frobenius endomorphism $\phi: F \rightarrow F$ defined by $\phi(c)=c^{p}$ is surjective. But by the Freshman's Dream, ϕ is a ring homomorphism and, since F is a field, and $\phi \neq 0$, it is injective. Since $|F|<\infty$, ϕ must be a bijection by the Pigeonhole Principle.

Problem 3. Assume F is field and let $f \in F[x]$.
a) Assume char $(F)=0$. Prove that f is not separable if and only if the prime factorization of f in $F[x]$ admits a repeated factor.
b) Give a counterexample to the previous part when the assumption $\operatorname{char}(F)=0$ is omitted.

Proof.
a) Suppose f is not separable; say $\alpha \in \bar{F}$ is a repeated root of f. Then $m_{\alpha, F}$ is irreducible and $m_{\alpha, F} \mid f$, so that $f=g h$ for some $h \in F[x]$. Moreover, since $\operatorname{char}(F)=0$ and $m_{\alpha, F}$ is irreducible, we know that $m_{\alpha, F}$ is separable and hence α is not a repeated root of $m_{\alpha, F}$. That is, in $\bar{F}[x]$
we have $g=(x-\alpha) l$ with $l(\alpha) \neq 0$. Since $f=(x-\alpha)^{2} j$, we must have that $x-\alpha$ divides h in $\bar{F}[x]$. That is, we must have $h(\alpha)=0$. But then g divides h too and so $f=g^{2} q$ for some q. So g is a repeated prime (irreducible) factor of f.
Assume now that $f=g^{2} m$ for some prime (irreducible) g. Then for any root α of g in \bar{F}, we have that $f=(x-\alpha)^{2} l$ in $\bar{F}[x]$ and hence f is not separable.
b) Let $F=(\mathbb{Z} / p)(y)$, the field of fractions of the polynomial ring $(\mathbb{Z} / p)[y]$, and let $f(x)=x^{p}-y$. Since $(\mathbb{Z} / p)[y]$ is a PID and y is a prime element, then f is irreducible by Eisenstein's Criterion. If α is any root of f in \bar{F}, then $f(x)=(x-\alpha)^{p}$ by the Freshman's Dream. Since $p \geqslant 2, f$ is not separable. But since f is irreducible over F, it doesn't have a repeated factor in its prime factorization over F.

Problem 4. Let L be the splitting field of $f=x^{5}-11 \in \mathbb{Q}[x]$.
a) Find the degree of $[L: \mathbb{Q}]$.
b) Let $F=\mathbb{Q}(\xi)$, where $\xi=e^{\frac{2 \pi i}{5}}$ is a primitive 5 th root of unity. Show that f is irreducible over F.

Proof.

a) First, we claim that $L=\mathbb{Q}(\xi, \sqrt[5]{11})$. On the one hand, the roots of f are $\sqrt[5]{11} \xi^{i}$ for $i=0,1,2,3,4$, so $L=\mathbb{Q}\left(\sqrt[5]{11} \xi^{i} \mid 0 \leqslant i \leqslant 4\right) \subseteq \mathbb{Q}(\xi, \sqrt[5]{11})$. On the other hand,

$$
\xi=\frac{\sqrt[5]{11} \xi}{\sqrt[5]{11}} \in L
$$

so $L=\mathbb{Q}(\xi, \sqrt[5]{11})$.
We claim that f is irreducible over \mathbb{Q} : indeed, 11 divides all the coefficients of f of nonmaximal degree but the coefficient of maximal degree, 11^{2} does not divide the degree 0 coefficient of f, and 11 is prime, so Eisenstein's Criterion says that f is irreducible over \mathbb{Z}. By Gauss' Lemma, f is irreducible over \mathbb{Q}. Since $\sqrt[5]{11}$ is a root of the monic irreducible polynomial f, we conclude that f is the minimal polynomial of $\sqrt[5]{11}$ over \mathbb{Q}. Thus $[\mathbb{Q}(\sqrt[5]{11}): \mathbb{Q}]=5$.
By Problem Set $10, g=x^{4}+x^{3}+x^{2}+x+1$ is irreducible, since 5 is prime. Note that ξ is a root of $(x-1) g=x^{5}-1$ but not a root of $x-1$, so $g(\xi)=0$. Since g is irreducible, we conclude that g is the minimal polynomial of ξ over \mathbb{Q}. Thus $[\mathbb{Q}(\xi): \mathbb{Q}]=4$.
By the Degree Formula,

$$
[L: \mathbb{Q}]=[L: \mathbb{Q}(\xi)][\mathbb{Q}(\xi): \mathbb{Q}]=4[L: \mathbb{Q}(\xi)]
$$

and

$$
[L: \mathbb{Q}]=[L: \mathbb{Q}(\sqrt[5]{11})][\mathbb{Q}(\sqrt[5]{11}): \mathbb{Q}]=5[L: \mathbb{Q}(\sqrt[5]{11})]
$$

Thus $4 \mid[L: \mathbb{Q}]$ and $5 \mid[L: \mathbb{Q}]$. Since $\operatorname{gcd}(4,5)=1$, we conclude that $20 \mid[L: \mathbb{Q}]$.
Now ξ still satisfies g over $F=\mathbb{Q}(\sqrt[5]{11})$, so $m_{\xi, F} \mid g$. Thus the degree of $m_{\xi, F}$ is at most 4 , and $[L: \mathbb{Q}(\sqrt[5]{11})] \leqslant 4$. Therefore,

$$
[L: \mathbb{Q}]=5[L: \mathbb{Q}(\sqrt[5]{11})] \leqslant 20
$$

But $20 \mid[L: \mathbb{Q}]$, so $[L: \mathbb{Q}]=20$.
b) In the proof of part a) we showed that $[\mathbb{Q}(\sqrt[5]{11}): \mathbb{Q}]=5,[F: \mathbb{Q}]=[\mathbb{Q}(\xi): \mathbb{Q}]=4$, and $[L: \mathbb{Q}]=20$. Moreover, $L=F(\sqrt[5]{2}$. By the Degree Formula,

$$
[F(\sqrt[5]{2}: F][F: \mathbb{Q}]=[L: \mathbb{Q}]=20 .
$$

Thus $\left[F(\sqrt[5]{2}: F]=4\right.$, so $m_{\sqrt[5]{2}, F}$ has degree 5. Since $f(\sqrt[5]{2})=0$ and $f \in F[x]$ is monic, we conclude that f is the minimal polynomial of $\sqrt[5]{2}$ over F. In particular, f must be irreducible over F.

Problem 5. Let F be a field, let a_{1}, \ldots, a_{n} be elements of an extension of F, and $L=F\left(a_{1}, \ldots, a_{n}\right)$.
a) Show that

$$
F\left(a_{1}, \ldots, a_{n}\right)=\left\{\left.\frac{f\left(a_{1}, \ldots, a_{n}\right)}{g\left(a_{1}, \ldots, a_{n}\right)} \right\rvert\, f, g \in F\left[x_{1}, \ldots, x_{n}\right], g \neq 0\right\} .
$$

Proof. We will use induction on n.
Base case: $n=1$ was shown in Problem Set 7, Problem 5.
Induction Step: Let $n \geqslant 2$, and assume that

$$
F\left(a_{1}, \ldots, a_{n-1}\right)=\left\{\left.\frac{f\left(a_{1}, \ldots, a_{n-1}\right)}{g\left(a_{1}, \ldots, a_{n-1}\right)} \right\rvert\, f, g \in F\left[x_{1}, \ldots, x_{n-1}\right], g \neq 0\right\} .
$$

We showed in Problem Set 9 Problem 2 that

$$
F\left(a_{1}, \ldots, a_{n}\right)=F\left(a_{1}, \ldots, a_{n-1}\right)\left(a_{n}\right) .
$$

Combining these statements gives

$$
\begin{aligned}
F\left(a_{1}, \ldots, a_{n}\right) & =F\left(a_{1}, \ldots, a_{n-1}\right)\left(a_{n}\right) \\
& =\left\{\left.\frac{u\left(a_{n}\right)}{v\left(a_{n}\right)} \right\rvert\, u, v \in F\left(a_{1}, \ldots, a_{n-1}\right)[x]\right\} \\
& =\left\{\left.\frac{s\left(a_{n}\right)}{t\left(a_{n}\right)} \right\rvert\, x, t \in F\left[a_{1}, \ldots, a_{n-1}\right][x]\right\}
\end{aligned}
$$

where the last equality follows by clearing the denominators of the coefficients of u, v. The last set is the same as

$$
\left\{\left.\frac{f\left(a_{1}, \ldots, a_{n-1}\right)}{g\left(a_{1}, \ldots, a_{n-1}\right)} \right\rvert\, f, g \in F\left[x_{1}, \ldots, x_{n-1}\right], g \neq 0\right\} .
$$

b) Let

$$
F\left[a_{1}, \ldots, a_{n}\right]:=\left\{f\left(a_{1}, \ldots, a_{n}\right) \mid f \in F\left[x_{1}, \ldots, x_{n}\right]\right\} .
$$

Prove that if a_{1}, \ldots, a_{n} are algebraic over F, then $L=F\left[a_{1}, \ldots, a_{n}\right]$.
Proof. By induction on n.
Base case: the case $n=1$ was proven in class.
Induction Step: Assume $F\left(a_{1}, \ldots, a_{n-1}\right)=F\left[a_{1}, \ldots, a_{n-1}\right]$. We showed in Problem Set 9 Problem 2 that

$$
F\left(a_{1}, \ldots, a_{n}\right)=F\left(a_{1}, \ldots, a_{n-1}\right)\left(a_{n}\right)
$$

Combining this with the inductive hypothesis and the base case gives

$$
F\left(a_{1}, \ldots, a_{n}\right)=F\left(a_{1}, \ldots, a_{n-1}\right)\left(a_{n}\right)=F\left[a_{1}, \ldots, a_{n-1}\right]\left[a_{n}\right]=F\left[a_{1}, \ldots, a_{n}\right]
$$

c) Prove that if $\sigma \in \operatorname{Aut}(L / F)$ and $f \in L\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\sigma\left(f\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\sigma}\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)\right)
$$

where f^{σ} denotes the polynomial obtained from f by applying σ to its coefficients and leaving the variables unchanged.

Proof. This follows since σ preserves sums and products:

$$
\sigma\left(\sum c_{i_{1}, \ldots, i_{n}} a_{1}^{i_{1}} \cdots a_{n}^{i_{n}}\right)=\sum \sigma\left(c_{i_{1}, \ldots, i_{n}}\right) \sigma\left(a_{1}\right)^{i_{1}} \cdots \sigma\left(a_{n}\right)^{i_{n}}
$$

d) Prove that if $\sigma \in \operatorname{Aut}(L / F)$, then σ is uniquely determined by $\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)$.

Proof. By part (a), a typical element of L is $\ell=\frac{f\left(a_{1}, \ldots, a_{n}\right)}{g\left(a_{1}, \ldots, a_{n}\right)}$ for $f, g \in F\left[x_{1}, \ldots, x_{n}\right]$. By part (c),

$$
\sigma(\ell)=\frac{f^{\sigma}\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)\right)}{g^{\sigma}\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)\right)}=\frac{f\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)\right)}{g\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)\right)}
$$

where the last inequality takes into account that the coefficients of f and g are in L, so they are fixed by σ. Now

$$
\frac{f\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)\right)}{g\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)\right)}
$$

above only depends on $\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)$ so we get the desired conclusion.

