Problem Set 12 solutions

Problem 1. Prove that if F is a field, then any finite subgroup G of $\left(F^{\times}, \cdot\right)$ is cyclic.
Hint: Use the classification of Finitely Generated Modules over PIDs to find a polynomial of the form $p=x^{n}-1 \in F[x]$ such that every element of G is a root for p. Compare the number of roots of p to $\operatorname{deg}(p)$.

Proof. By the Classification of Finitely Generated Modules over PIDs, since abelian groups are \mathbb{Z}-modules and \mathbb{Z} is a PID, there is a group isomorphism

$$
G \cong \mathbb{Z}^{t} \times Z / d_{1} \times \cdots \times \mathbb{Z} / d_{s}
$$

for unique $r \geqslant 0,1<d_{1}\left|d_{2}\right| \cdots \mid d_{s}$. Since \mathbb{Z}^{r} is infinite whenever $r>0$, but G is finite, we have $r=0$. From Problem Set 5 , we also have that

$$
\operatorname{ann}(G)=\operatorname{ann}\left(\mathbb{Z} / d_{1} \times \cdots \times \mathbb{Z} / d_{s}\right)=\left(d_{s}\right)
$$

This means that $d_{s} x=0$ for any $x \in \mathbb{Z} / d_{1} \times \cdots \times \mathbb{Z} / d_{s}$, or in multiplicative notation $x^{d_{s}}=1_{G}$ for any $x \in(G, \cdot)$. This can be written as

$$
x^{d_{s}}-1=0 \quad \text { for all } x \in G \subseteq F,
$$

which means that the polynomial $x^{d_{s}}-1 \in F[x]$ has $|G|=d_{1} \cdots d_{s}$ roots in F. Since a polynomial has at most as many roots as its degree, we conclude that $d_{1} \cdots d_{s} \leqslant d_{s}$, but since $d_{i}>1$ for all $1 \leqslant i \leqslant s$, the previous inequality can only hold if $s=1$. Therefore, $G \cong \mathbb{Z} / d_{1}$ is cyclic.

Problem 2. Let p be a prime number and let L be the splitting field of $x^{p}-2$ over \mathbb{Q}. In Problem Set 10 , you showed that $L=\mathbb{Q}(b, \zeta)$ for $b=\sqrt[p]{2}$ and $\zeta=e^{2 \pi i / p}$, and $[L: \mathbb{Q}]=p(p-1)$.
a) Determine all the elements of $\operatorname{Aut}(L / \mathbb{Q})$, assuming that $|\operatorname{Aut}(L / \mathbb{Q})|=[L: \mathbb{Q}]$.

Hint: we will prove shortly that indeed $|\operatorname{Aut}(L / \mathbb{Q})|=[L: \mathbb{Q}]$ since $\operatorname{char}(\mathbb{Q})=0$ and L is the splitting field of an irreducible polynomial over \mathbb{Q}.

Proof. We showed in problem set 10 that $[L: \mathbb{Q}(b)]=p-1$, and ζ is a root of $x^{p-1}+\cdots+x+1$. Therefore, the minimum polynomial of ζ over $\mathbb{Q}(b)$ must be

$$
m_{\zeta, \mathbb{Q}(b)}=x^{p-1}+\cdots+x+1
$$

Then $1, \zeta, \ldots, \zeta^{p-2}$ is a basis for L as a $\mathbb{Q}(b)$-vector space. Combining this with the basis for $\mathbb{Q}(b) / \mathbb{Q}$ above shows as in the proof of the Degree Formula that

$$
B:=\left\{b^{m} \zeta^{j} \mid 0 \leqslant m \leqslant p-1,0 \leqslant j \leqslant p-2\right\}
$$

is a basis for L as a vector space over \mathbb{Q}.
Let σ be any element of $G=\operatorname{Aut}(K / \mathbb{Q})$. Then by a theorem from class, $\sigma(b)$ must be another root of $x^{p}-2$, so $\sigma(b)=b \zeta^{r_{\sigma}}$ for some $0 \leqslant r_{\sigma} \leqslant p-1$. Likewise, σ maps the root ζ of the polynomial $\Phi_{p}(x)=x^{p-1}+\cdots+1 \in \mathbb{Q}[x]$ to another root $\sigma(\zeta)=\zeta^{s_{\sigma}}$ of Φ_{p} for some $1 \leqslant s_{\sigma} \leqslant p-1$. Hence for each element $b^{m} \zeta^{j}$ of the basis B above, we have

$$
\sigma\left(b^{m} \zeta^{j}\right)=\sigma(b)^{m} \sigma(\zeta)^{j}=\left(b \zeta^{r_{\sigma}}\right)^{m}\left(\zeta^{s_{\sigma}}\right)^{j}=b^{m} \zeta^{m r_{\sigma}+j s_{\sigma}} .
$$

Since σ fixes \mathbb{Q}, then σ is a \mathbb{Q}-linear transformation, so the numbers $r_{\sigma} \in\{0, \ldots, p-1\}$ and $s_{\sigma} \in\{1, \ldots, p-1\}$ completely determine the automorphism σ of K.
Moreover, if $\sigma, \tau \in \operatorname{Aut}(K / \mathbb{Q})$ satisfy $r_{\sigma}=r_{\tau}$ and $s_{\sigma}=s_{\tau}$, then σ and τ fix both \mathbb{Q} and have the same action on the basis B of K / \mathbb{Q}, so $\sigma=\tau$. Hence, there are at most $p(p-1)$ automorphisms of K / Q, each one associated to a pair of numbers $0 \leqslant r \leqslant p-1$ and $1 \leqslant s \leqslant p-1$.
Note that $x^{p}-2$ is a polynomial of degree p with p distinct roots, so it is separable. Thus K is the splitting field of a separable polynomial over \mathbb{Q}, and thus $\mathbb{Q} \subseteq K$ is Galois. Therefore,

$$
|G|=|\operatorname{Aut}(K / \mathbb{Q})|=[K: \mathbb{Q}]=p(p-1) .
$$

Hence for each $0 \leqslant r \leqslant p-1$ and $1 \leqslant s \leqslant p-1$ there is an automorphism $\tau_{r, s}: K \rightarrow K$ that fixes \mathbb{Q} and satisfies

$$
\tau_{r, s}\left(b^{m} \zeta^{j}\right)=b^{m} \zeta^{m r+j s} \quad \text { for all } \quad b^{m} \zeta^{j} \in B
$$

Therefore,

$$
\operatorname{Aut}(K / \mathbb{Q})=\left\{\tau_{r, s} \mid 0 \leqslant r \leqslant p-1,1 \leqslant s \leqslant p-1\right\} .
$$

b) Decide, with justification, whether $G=\operatorname{Aut}(L / \mathbb{Q})$ is abelian.

Proof. First, we have

$$
\begin{aligned}
\tau_{r, s} \circ \tau_{r^{\prime}, s^{\prime}}\left(b^{m} \zeta^{j}\right) & =\tau_{r, s}\left(b^{m} \zeta^{m r^{\prime}+j s^{\prime}}\right) \\
& =b^{m} \zeta^{m r+\left(m r^{\prime}+j s^{\prime}\right) s} \\
& =b^{m} \zeta^{m r+m r^{\prime} s+j s^{\prime} s}
\end{aligned}
$$

and thus, interchanging the roles of r, s and r^{\prime}, s^{\prime} we have

$$
\tau_{r, s} \circ \tau_{r^{\prime}, s^{\prime}}\left(b^{m} \zeta^{j}\right)=b^{m} \zeta^{m r^{\prime}+m r s^{\prime}+j s^{\prime} s} .
$$

This shows that

$$
\begin{aligned}
\tau_{r, s} \circ \tau_{r^{\prime}, s^{\prime}}=\tau_{r, s^{\prime}} \circ \tau_{r, s} & \Longleftrightarrow m r+m r^{\prime} s+j s^{\prime} s \equiv m r^{\prime}+m r s^{\prime}+j s^{\prime} s(\bmod p) \text { for all } m, j \\
& \Longleftrightarrow m\left(r-r^{\prime}+r^{\prime} s-r s^{\prime}\right) \equiv 0(\bmod p) \text { for all } 0 \leqslant m \leqslant p-1 \\
& \Longleftrightarrow r-r^{\prime}+r^{\prime} s-r s^{\prime} \equiv 0(\bmod p) .
\end{aligned}
$$

If $p=2$ then $s=s^{\prime}=1$ and the above shows that G is abelian. In fact, note that when $p=2$ then $|\operatorname{Gal}(K / \mathbb{Q})|=2$, and since there is only one group of order 2 , we conclude that $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 2$ is abelian.
However, if $p>2$, then taking for example $r=0, r^{\prime}=1$, and $s=2$ shows that that

$$
\tau_{0,2} \circ \tau_{1, s^{\prime}} \neq \tau_{1, s^{\prime}} \circ \tau_{0,2},
$$

since

$$
1 \not \equiv 0(\bmod p)
$$

Thus G is not abelian for $p>2$.

Problem 3. Let L be the splitting field of $x^{6}-4$ over \mathbb{Q}. Let $\alpha=\sqrt[3]{2}$ be the unique positive real root of $x^{6}-4$, and $\zeta=e^{2 \pi i / 6}$. You showed in Problem Set 10 that $K=\mathbb{Q}(\alpha, \zeta)$ and $[K: \mathbb{Q}]=6$.
a) Give, with justification, an explicit basis of K as a vector space over \mathbb{Q}.

Proof. From Problem Set 10, we have $K=\mathbb{Q}(\alpha, \zeta)$ and:

- $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$ and $m_{b, \mathbb{Q}}=x^{3}-2$, thus a basis for $\mathbb{Q}(\alpha)$ as a \mathbb{Q}-vector space is given by $A=\left\{1, \alpha, \alpha^{2}\right\}$.
- $[\mathbb{Q}(\alpha, \zeta): \mathbb{Q}(b)]=2$ and $m_{\zeta, \mathbb{Q}(\alpha)}=x^{2}-x+1$, thus a basis for $\mathbb{Q}(\alpha, \zeta)$ as a $\mathbb{Q}(\alpha)$-vector space is given by $B=\{1, \zeta\}$.

By the proof of the degree formula, a basis for K as a \mathbb{Q}-vector space is

$$
A B=\left\{1, \alpha, \alpha^{2}, \zeta, \alpha \zeta, \alpha^{2} \zeta\right\} .
$$

Alternative proof. Alternatively, we can first show that $K=\mathbb{Q}\left(\alpha, \zeta_{3}\right)$, where $\zeta_{3}=e^{2 \pi i / 3}$, and following the same argument as above we can then prove that

$$
\left\{1, \alpha, \alpha^{2}, \zeta_{3}, \alpha \zeta_{3}, \alpha^{2} \zeta_{3}\right\}
$$

is a basis for K over \mathbb{Q}.
b) Let $g \in \operatorname{Aut}(K / \mathbb{Q})$ be an automorphism that maps $g(\alpha)=\alpha \zeta^{2}$ and $g\left(\alpha \zeta^{2}\right)=\alpha$. Determine all the possibilities for g by describing where g maps each element of your basis for K and checking that the resulting \mathbb{Q}-linear transformation g is also a field automorphism.

Proof. First, note that $\zeta^{3}=-1$, which will we use a few times below. Moreover, we showed in Problem Set 10 that ζ satisfies $x^{2}-x+1$, so

$$
\zeta^{2}=\zeta-1 \Longleftrightarrow \zeta=\zeta^{2}+1
$$

Using the multiplicative property of g, we have

$$
g\left(\zeta^{2}\right)=\frac{g\left(\alpha \zeta^{2}\right)}{g(\alpha)}=\frac{\alpha}{\alpha \zeta^{2}}=\zeta^{-2}=\zeta^{4}=-\zeta .
$$

Thus

$$
g(\zeta)=g\left(\zeta^{2}+1\right)=1+g\left(\zeta^{2}\right)=1-\zeta
$$

Moreover,

$$
g\left(\alpha^{2}\right)=g(\alpha)^{2}=\left(\alpha \zeta^{2}\right)^{2}=\alpha^{2} \zeta^{4}=-\alpha^{2} \zeta .
$$

It will be convenient to rewrite all the images in terms of our chosen basis; note that

$$
g(\alpha)=\alpha \zeta^{2}=\alpha(\zeta-1)=\alpha \zeta-\alpha .
$$

Finally,

$$
g(\alpha \zeta)=g(\alpha) g(\zeta)=\left(\alpha \zeta^{2}\right)(1-\zeta)=\alpha \zeta^{2}-\alpha \zeta^{3}=\alpha(\zeta-1)+\alpha=\alpha \zeta
$$

and

$$
g\left(\alpha^{2} \zeta\right)=\left(-\alpha^{2} \zeta\right)(1-\zeta)=\alpha^{2} \zeta^{2}-\alpha^{2} \zeta=\alpha^{2}(\zeta-1)-\alpha^{2} \zeta=-\alpha^{2}
$$

Summarizing, on the basis AB for K given above, g acts as follows:

x	1	α	α^{2}	ζ	$\alpha \zeta$	$\alpha^{2} \zeta$
$g(x)$	1	$\alpha \zeta-\alpha$	$-\alpha^{2} \zeta$	$1-\zeta$	$\alpha \zeta$	$-\alpha^{2}$

By the UMP of the \mathbb{Q}-vector space K, there is a unique linear transformation of K that acts on the basis $A B$ as shown above. To check that this unique g is also multiplicative, hence an automorphism, it is sufficient check that g is multiplicative when restricted to just the basis elements in $A B$, since g is defined on a general element by extending it linearly from the basis elements. I will skip that check here, but this would be sufficient to show that the \mathbb{Q}-linear map g we described in the map above is a ring homomorphism $K \rightarrow K$.
Finally, we have to show that g is an isomorphism, and for that it is sufficient to show that its image has dimension 6 as a \mathbb{Q}-vector space. And indeed,

$$
\operatorname{span}\{\alpha \zeta-\alpha, \alpha \zeta\}=\operatorname{span}\{\alpha \zeta, \alpha\} \quad \text { and } \quad \operatorname{span}\{1,1-\zeta\}=\operatorname{span}\{1, \zeta\}
$$

so

$$
\operatorname{im} g=\operatorname{span}\left\{1, \alpha \zeta-\alpha,-\alpha^{2} \zeta, 1-\zeta, \alpha \zeta,-\alpha^{2}\right\}=\operatorname{span}\left\{1, \alpha, \alpha \zeta, \alpha^{2} \zeta, \zeta, \alpha \zeta, \alpha^{2}\right\}=K
$$

Alternative Proof. Alternatively, one can show that $K=\mathbb{Q}\left(\alpha, \zeta_{3}\right)$, where $\zeta_{3}=e^{\frac{2 \pi i}{3}}$, and use this to give the following alternative basis for K over \mathbb{Q} :

$$
\left\{1, \alpha, \alpha^{2}, \zeta_{3}, \alpha \zeta_{3}, \alpha^{2} \zeta_{3}\right\}
$$

Under this basis, similar calculations as the ones above give us the following:

x	1	α	α^{2}	ζ_{3}	$\alpha \zeta_{3}$	$\alpha^{2} \zeta_{3}$
$g(x)$	1	$\alpha \zeta_{3}$	$\alpha^{2} \zeta_{3}^{2}$	ζ_{3}^{2}	α	$\alpha^{2} \zeta_{3}$

To rewrite this in our chosen basis, it helps to note that ζ_{3} is a root of $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, and thus of $x^{2}+x+1$, so

$$
\zeta_{3}^{2}=-\zeta_{3}-1
$$

Thus

$$
\begin{array}{c|cccccc}
x & 1 & \alpha & \alpha^{2} & \zeta_{3} & \alpha \zeta_{3} & \alpha^{2} \zeta_{3} \\
\hline g(x) & 1 & \alpha \zeta_{3} & -\alpha^{2} \zeta_{3}-\alpha^{2} & -\zeta_{3}-1 & \alpha & \alpha^{2} \zeta_{3}
\end{array}
$$

The remaining details are similar to what we described in the other situation.
c) Let $h \in \operatorname{Aut}(K / \mathbb{Q})$ be the restriction of the complex conjugation map to K. Determine the subfield $K^{\langle h\rangle}:=\{k \in K \mid h(k)=k\}$ explicitly.

Proof. We will use without proof that h is indeed an element of $\operatorname{Aut}(K / \mathbb{Q})$.
Notice that the complex numbers fixed by conjugation are precisely the reals, therefore $K^{\langle h\rangle}=$ $K \cap \mathbb{R}$. Since $\alpha \in \mathbb{R}$, we have $\alpha \in K^{\langle h\rangle}$ and in fact $\mathbb{Q}(\alpha) \subseteq K^{\langle h\rangle}$ by minimality of the field generated by α. Notice that $\zeta \notin \mathbb{R}$ so $K \neq K^{\langle h\rangle}$ and thus $\left[K: K^{\langle h\rangle}\right] \geqslant 2$. By the degree formula we have

$$
2=[K: \mathbb{Q}(\alpha)]=\left[K: K^{\langle h\rangle}\right]\left[K^{\langle h\rangle}: \mathbb{Q}(\alpha)\right] \geqslant 2\left[K^{\langle h\rangle}: \mathbb{Q}(\alpha)\right] .
$$

This is only possible if $\left[K^{\langle h\rangle}: \mathbb{Q}(\alpha)\right]=1$ and so we conclude that $K^{\langle h\rangle}=\mathbb{Q}(\alpha)$.

Alternatively, we can show that $K^{\langle h\rangle}=\mathbb{Q}(\alpha)$ using the Fundamental Theorem of Galois Theory. First, we note that $\mathbb{Q} \subseteq K$ is Galois since K is the splitting field of the separable polynomial $x^{6}-4$. Moreover, $h^{2}=2,|\langle h\rangle|=2$, so

$$
[\operatorname{Gal}(K / \mathbb{Q}):\langle h\rangle]=\frac{|\operatorname{Gal}(K / \mathbb{Q})|}{|\langle h\rangle|}=\frac{6}{2}=3 .
$$

By the Fundamental Theorem of Galois Theory, the fixed field $L^{\langle h\rangle \mid}$ has degree 3 over \mathbb{Q}. Since $\mathbb{Q}(\alpha) \subseteq L^{\langle h\rangle \mid}$ and $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$, we conclude that $L^{\langle h\rangle \mid}=\mathbb{Q}(\alpha)$.

Problem 4. Let F be a perfect field. Prove that if L is the splitting field over F of a not necessarily separable) polynomial in $f \in F[x]$, then $F \subseteq L$ is a Galois extension.

Proof. Let L be the splitting field over F of a polynomial $q \in F[x]$. Since $F[x]$ is a UFD, we can write

$$
q=c p_{1} \cdots p_{m}
$$

such that each $p_{i} \in F[x]$ is irreducible and monic and $c \in F$.
Let b be any root of q. Then there exists an index i such that b is a root of p_{i}. Since $p_{i} \in F[x]$ is a monic irreducible polynomial with root b, then $p_{i}=m_{b, F}$. Conversely for any p_{i} there is a root b of q (in fact any root of p_{i} will do) such that $p_{i}=m_{b, F}$. If $p_{i} \neq p_{j}$ then p_{i} and p_{j} have no common roots, since the existence of a common root b would imply $p_{i}=m_{b, F}=p_{j}$.

Let t_{1}, \ldots, t_{r} be the distinct monic irreducible factors of q. The p_{i} are all separable, since they are irreducible over F and F is perfect. Then $f=\prod_{i=1}^{r} t_{i}$ is also a separable polynomial, since the roots of distinct p_{i} are also all distinct. Furthermore, f has the same roots as q, say b_{1}, \ldots, b_{n}, so the splitting fields of f and q are both $F\left(b_{1}, \ldots, b_{n}\right)$. Therefore, L is the splitting field of the separable polynomial f over F.

We showed in class that if L is the splitting field of a separable polynomial, then $F \subseteq L$ is Galois. Therefore, $F \subseteq L$ is Galois.

Problem 5. Assume $F \subseteq L$ is a finite extension of fields and that the characteristic of F is p, where p is a prime. Suppose there exists an element $a \in L$ such that $a \notin F$ but $a^{p} \in F$.
a) Prove $\sigma(a)=a$ for all $\sigma \in \operatorname{Aut}(L / F)$.

Proof. Let $a^{p}=b \in F$. Since a is a root of the polynomial $x^{p}-b$, all of whose coefficients are in F, we know $\sigma(a)$ must also be root of this polynomial. But, by the Freshman's Dream, $x^{p}-b$ factors as $(x-a)^{b}$ in $\bar{F}[x]$, and so this polynomial has just one root, which is a. So $\sigma(a)=a$.
b) Prove that $F \subseteq L$ is not Galois.

Proof. By part (a), every element of $\operatorname{Aut}(L / F)$ fixes a and thus also fixes $F(a)$. That is, $\operatorname{Aut}(L / F)=\operatorname{Aut}(L / F(a))$. Since $F \neq F(a),[L: F(a)]<[L: F]$. Then

$$
|\operatorname{Aut}(L / F)|=|\operatorname{Aut}(L / F(a))| \leqslant[L: F(a)]<[L: F]
$$

In particular, $|\operatorname{Aut}(L / F)|<[L: F]$, so the extension is not Galois.
Problem 6. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible cubic (degree 3) polynomial having exactly one real root. Let L be the splitting field of f over \mathbb{Q}. Show that $\operatorname{Aut}(L / \mathbb{Q}) \cong S_{3}$.

We give two alternative proofs.
Proof 1. Let a be the real root of f, and let b, c be the other two roots. Note that b and c are complex conjugates. In particular, a, b, and c are all distinct. Thus f is separable, and thus $\mathbb{Q} \subseteq L$ is Galois, so $|\operatorname{Aut}(L / \mathbb{Q})|=[L: \mathbb{Q}]$.

Since f has three distinct roots, $\operatorname{Gal}(L / \mathbb{Q})$ is a subgroup of S_{3}, and thus $|\operatorname{Gal}(L / \mathbb{Q})| \leqslant\left|S_{3}\right|=6$. Since f is irreducible, it is the minimal polynomial of a, b, and c. In particular, $[L: \mathbb{Q}]=[\mathbb{Q}(a)$: $\mathbb{Q}]=3$. Applying the Degree Formula to $\mathbb{Q} \subseteq \mathbb{Q}(a) \subseteq L$, we conclude that $3 \mid[L: \mathbb{Q}]$. Moreover, $b, c \notin \mathbb{R}$, so $b, c \notin \mathbb{Q}(a)$. In particular, $[L: \mathbb{Q}(a)] \geqslant 2$. Thus by the Degree Formula we have $[L: \mathbb{Q}] \geqslant 2 \cdot 3=6$, and we conclude that $[L: \mathbb{Q}]=6$. The only subgroup of S_{3} of order 6 is S_{3}, so $\operatorname{Aut}(L / \mathbb{Q}) \cong S_{3}$.

Proof 2. Let a be the real root of f, and let b, c be the other two roots. Note that b and c are complex conjugates. Since f has three distinct roots, $\operatorname{Gal}(L / \mathbb{Q})$ is a subgroup of S_{3}. The complex conjugation map σ satisfies $\left.\sigma\right|_{\mathbb{Q}}=\operatorname{id}_{Q}, \sigma(a)=a, \sigma(b)=c$, and $\sigma(c)=b$, so $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$. Identifying a with $1, b$ with 2 , and c with $3, \sigma$ corresponds to $(23) \in \S_{3}$.

Since L is the splitting field of the irreducible polynomial f, we know that $\operatorname{Gal}(L / \mathbb{Q})$ acts transitively on the roots of f. In particular, there exists an element $\tau \in \operatorname{Gal}(L / \mathbb{Q})$ such that $\tau(a)=b$. Such τ must send roots of f to roots of f, so we must have $\tau(b)=c$ or $\tau(b)=a$. If $\tau(b)=c$, then $\tau(c)=a$, and τ would correspond to $(123) \in S_{3}$. If $\tau(b)=a$, then $\tau(c)=c$, and τ would correspond to $(12) \in S_{3}$. Since

$$
\langle(23),(123)\rangle=S_{3} \quad \text { and } \quad\langle(23),(12)\rangle=S_{3},
$$

in either case we have $\operatorname{Gal}(L / \mathbb{Q}) \cong S_{3}$.

