
Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 12 solutions

Problem 1. Prove that if F is a field, then any finite subgroup G of (F×, ·) is cyclic.
Hint: Use the classification of Finitely Generated Modules over PIDs to find a polynomial of the
form p = xn − 1 ∈ F [x] such that every element of G is a root for p. Compare the number of roots
of p to deg(p).

Proof. By the Classification of Finitely Generated Modules over PIDs, since abelian groups are
Z-modules and Z is a PID, there is a group isomorphism

G ∼= Zt × Z/d1 × · · ·× Z/ds

for unique r  0, 1 < d1 | d2 | · · · | ds. Since Zr is infinite whenever r > 0, but G is finite, we have
r = 0. From Problem Set 5, we also have that

ann(G) = ann(Z/d1 × · · ·× Z/ds) = (ds).

This means that dsx = 0 for any x ∈ Z/d1 × · · ·× Z/ds, or in multiplicative notation xds = 1G for
any x ∈ (G, ·). This can be written as

xds − 1 = 0 for all x ∈ G ⊆ F,

which means that the polynomial xds − 1 ∈ F [x] has |G| = d1 · · · ds roots in F . Since a polynomial
has at most as many roots as its degree, we conclude that d1 · · · ds  ds, but since di > 1 for all
1  i  s, the previous inequality can only hold if s = 1. Therefore, G ∼= Z/d1 is cyclic.

Problem 2. Let p be a prime number and let L be the splitting field of xp− 2 over Q. In Problem
Set 10, you showed that L = Q(b, ζ) for b = p

√
2 and ζ = e2πi/p, and [L : Q] = p(p− 1).

a) Determine all the elements of Aut(L/Q), assuming that |Aut(L/Q)| = [L : Q].

Hint: we will prove shortly that indeed |Aut(L/Q)| = [L : Q] since char(Q) = 0 and L is the
splitting field of an irreducible polynomial over Q.

Proof. We showed in problem set 10 that [L : Q(b)] = p−1, and ζ is a root of xp−1+ · · ·+x+1.
Therefore, the minimum polynomial of ζ over Q(b) must be

mζ,Q(b) = xp−1 + · · ·+ x+ 1.

Then 1, ζ, . . . , ζp−2 is a basis for L as a Q(b)-vector space. Combining this with the basis for
Q(b)/Q above shows as in the proof of the Degree Formula that

B := {bmζj | 0  m  p− 1, 0  j  p− 2}

is a basis for L as a vector space over Q.

Let σ be any element of G = Aut(K/Q). Then by a theorem from class, σ(b) must be another
root of xp − 2, so σ(b) = bζrσ for some 0  rσ  p − 1. Likewise, σ maps the root ζ of
the polynomial Φp(x) = xp−1 + · · · + 1 ∈ Q[x] to another root σ(ζ) = ζsσ of Φp for some
1  sσ  p− 1. Hence for each element bmζj of the basis B above, we have

σ(bmζj) = σ(b)mσ(ζ)j = (bζrσ)m(ζsσ)j = bmζmrσ+jsσ .
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Since σ fixes Q, then σ is a Q-linear transformation, so the numbers rσ ∈ {0, ..., p − 1} and
sσ ∈ {1, ..., p− 1} completely determine the automorphism σ of K.

Moreover, if σ, τ ∈ Aut(K/Q) satisfy rσ = rτ and sσ = sτ , then σ and τ fix both Q and have the
same action on the basis B of K/Q, so σ = τ . Hence, there are at most p(p−1) automorphisms
of K/Q, each one associated to a pair of numbers 0  r  p− 1 and 1  s  p− 1.

Note that xp − 2 is a polynomial of degree p with p distinct roots, so it is separable. Thus K is
the splitting field of a separable polynomial over Q, and thus Q ⊆ K is Galois. Therefore,

|G| = |Aut(K/Q)| = [K : Q] = p(p− 1).

Hence for each 0  r  p − 1 and 1  s  p − 1 there is an automorphism τr,s : K → K that
fixes Q and satisfies

τr,s(b
mζj) = bmζmr+js for all bmζj ∈ B.

Therefore,
Aut(K/Q) = {τr,s | 0  r  p− 1, 1  s  p− 1}.

b) Decide, with justification, whether G = Aut(L/Q) is abelian.

Proof. First, we have

τr,s ◦ τr′,s′(bmζj) = τr,s(b
mζmr′+js′)

= bmζmr+(mr′+js′)s

= bmζmr+mr′s+js′s

and thus, interchanging the roles of r, s and r′, s′ we have

τr,s ◦ τr′,s′(bmζj) = bmζmr′+mrs′+js′s.

This shows that

τr,s ◦ τr′,s′ = τr,′s′ ◦ τr,s ⇐⇒ mr +mr′s+ js′s ≡ mr′ +mrs′ + js′s (mod p) for all m, j

⇐⇒ m(r − r′ + r′s− rs′) ≡ 0 (mod p) for all 0  m  p− 1

⇐⇒ r − r′ + r′s− rs′ ≡ 0 (mod p).

If p = 2 then s = s′ = 1 and the above shows that G is abelian. In fact, note that when
p = 2 then |Gal(K/Q)| = 2, and since there is only one group of order 2, we conclude that
Gal(K/Q) ∼= Z/2 is abelian.

However, if p > 2, then taking for example r = 0, r′ = 1, and s = 2 shows that that

τ0,2 ◦ τ1,s′ ∕= τ1,s′ ◦ τ0,2,

since
1 ∕≡ 0 (mod p).

Thus G is not abelian for p > 2.
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Problem 3. Let L be the splitting field of x6 − 4 over Q. Let α = 3
√
2 be the unique positive real

root of x6 − 4, and ζ = e2πi/6. You showed in Problem Set 10 that K = Q(α, ζ) and [K : Q] = 6.

a) Give, with justification, an explicit basis of K as a vector space over Q.

Proof. From Problem Set 10, we have K = Q(α, ζ) and:

• [Q(α) : Q] = 3 and mb,Q = x3 − 2, thus a basis for Q(α) as a Q-vector space is given by
A = {1,α,α2}.

• [Q(α, ζ) : Q(b)] = 2 and mζ,Q(α) = x2 − x + 1, thus a basis for Q(α, ζ) as a Q(α)-vector
space is given by B = {1, ζ}.

By the proof of the degree formula, a basis for K as a Q-vector space is

AB = {1,α,α2, ζ,αζ,α2ζ}.

Alternative proof. Alternatively, we can first show that K = Q(α, ζ3), where ζ3 = e2πi/3, and
following the same argument as above we can then prove that

{1,α,α2, ζ3,αζ3,α
2ζ3}

is a basis for K over Q.

b) Let g ∈ Aut(K/Q) be an automorphism that maps g(α) = αζ2 and g(αζ2) = α. Determine all
the possibilities for g by describing where g maps each element of your basis for K and checking
that the resulting Q-linear transformation g is also a field automorphism.

Proof. First, note that ζ3 = −1, which will we use a few times below. Moreover, we showed in
Problem Set 10 that ζ satisfies x2 − x+ 1, so

ζ2 = ζ − 1 ⇐⇒ ζ = ζ2 + 1.

Using the multiplicative property of g, we have

g(ζ2) =
g(αζ2)

g(α)
=

α

αζ2
= ζ−2 = ζ4 = −ζ.

Thus
g(ζ) = g(ζ2 + 1) = 1 + g(ζ2) = 1− ζ.

Moreover,
g(α2) = g(α)2 = (αζ2)2 = α2ζ4 = −α2ζ.

It will be convenient to rewrite all the images in terms of our chosen basis; note that

g(α) = αζ2 = α(ζ − 1) = αζ − α.

Finally,
g(αζ) = g(α)g(ζ) = (αζ2)(1− ζ) = αζ2 − αζ3 = α(ζ − 1) + α = αζ

and
g(α2ζ) = (−α2ζ)(1− ζ) = α2ζ2 − α2ζ = α2(ζ − 1)− α2ζ = −α2.

Summarizing, on the basis AB for K given above, g acts as follows:
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x 1 α α2 ζ αζ α2ζ

g(x) 1 αζ − α −α2ζ 1− ζ αζ −α2

By the UMP of the Q-vector space K, there is a unique linear transformation of K that acts
on the basis AB as shown above. To check that this unique g is also multiplicative, hence an
automorphism, it is sufficient check that g is multiplicative when restricted to just the basis
elements in AB, since g is defined on a general element by extending it linearly from the basis
elements. I will skip that check here, but this would be sufficient to show that the Q-linear map
g we described in the map above is a ring homomorphism K → K.

Finally, we have to show that g is an isomorphism, and for that it is sufficient to show that its
image has dimension 6 as a Q-vector space. And indeed,

span{αζ − α,αζ} = span{αζ,α} and span{1, 1− ζ} = span{1, ζ},

so

im g = span{1,αζ − α,−α2ζ, 1− ζ,αζ,−α2} = span{1,α,αζ,α2ζ, ζ,αζ,α2} = K.

Alternative Proof. Alternatively, one can show that K = Q(α, ζ3), where ζ3 = e
2πi
3 , and use this

to give the following alternative basis for K over Q:

{1,α,α2, ζ3,αζ3,α
2ζ3}.

Under this basis, similar calculations as the ones above give us the following:

x 1 α α2 ζ3 αζ3 α2ζ3
g(x) 1 αζ3 α2ζ23 ζ23 α α2ζ3

.

To rewrite this in our chosen basis, it helps to note that ζ3 is a root of x3−1 = (x−1)(x2+x+1),
and thus of x2 + x+ 1, so

ζ23 = −ζ3 − 1.

Thus

x 1 α α2 ζ3 αζ3 α2ζ3
g(x) 1 αζ3 −α2ζ3 − α2 −ζ3 − 1 α α2ζ3

.

The remaining details are similar to what we described in the other situation.

c) Let h ∈ Aut(K/Q) be the restriction of the complex conjugation map to K. Determine the
subfield K〈h〉 := {k ∈ K | h(k) = k} explicitly.

Proof. We will use without proof that h is indeed an element of Aut(K/Q).

Notice that the complex numbers fixed by conjugation are precisely the reals, therefore K〈h〉 =
K ∩ R. Since α ∈ R, we have α ∈ K〈h〉 and in fact Q(α) ⊆ K〈h〉 by minimality of the field
generated by α. Notice that ζ ∕∈ R so K ∕= K〈h〉 and thus [K : K〈h〉]  2. By the degree formula
we have

2 = [K : Q(α)] = [K : K〈h〉][K〈h〉 : Q(α)]  2[K〈h〉 : Q(α)].

This is only possible if [K〈h〉 : Q(α)] = 1 and so we conclude that K〈h〉 = Q(α).
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Alternatively, we can show that K〈h〉 = Q(α) using the Fundamental Theorem of Galois Theory.
First, we note that Q ⊆ K is Galois since K is the splitting field of the separable polynomial
x6 − 4. Moreover, h2 = 2, |〈h〉| = 2, so

[Gal(K/Q) : 〈h〉] = |Gal(K/Q)|
|〈h〉| =

6

2
= 3.

By the Fundamental Theorem of Galois Theory, the fixed field L〈h〉| has degree 3 over Q. Since
Q(α) ⊆ L〈h〉| and [Q(α) : Q] = 3, we conclude that L〈h〉| = Q(α).

Problem 4. Let F be a perfect field. Prove that if L is the splitting field over F of a (not
necessarily separable) polynomial in f ∈ F [x], then F ⊆ L is a Galois extension.

Proof. Let L be the splitting field over F of a polynomial q ∈ F [x]. Since F [x] is a UFD, we can
write

q = cp1 · · · pm
such that each pi ∈ F [x] is irreducible and monic and c ∈ F .

Let b be any root of q. Then there exists an index i such that b is a root of pi. Since pi ∈ F [x] is
a monic irreducible polynomial with root b, then pi = mb,F . Conversely for any pi there is a root b
of q (in fact any root of pi will do) such that pi = mb,F . If pi ∕= pj then pi and pj have no common
roots, since the existence of a common root b would imply pi = mb,F = pj .

Let t1, . . . , tr be the distinct monic irreducible factors of q. The pi are all separable, since they
are irreducible over F and F is perfect. Then f =

r
i=1 ti is also a separable polynomial, since

the roots of distinct pi are also all distinct. Furthermore, f has the same roots as q, say b1, . . . , bn,
so the splitting fields of f and q are both F (b1, . . . , bn). Therefore, L is the splitting field of the
separable polynomial f over F .

We showed in class that if L is the splitting field of a separable polynomial, then F ⊆ L is
Galois. Therefore, F ⊆ L is Galois.

Problem 5. Assume F ⊆ L is a finite extension of fields and that the characteristic of F is p,
where p is a prime. Suppose there exists an element a ∈ L such that a /∈ F but ap ∈ F .

a) Prove σ(a) = a for all σ ∈ Aut(L/F ).

Proof. Let ap = b ∈ F . Since a is a root of the polynomial xp− b, all of whose coefficients are in
F , we know σ(a) must also be root of this polynomial. But, by the Freshman’s Dream, xp − b
factors as (x−a)b in F [x], and so this polynomial has just one root, which is a. So σ(a) = a.

b) Prove that F ⊆ L is not Galois.

Proof. By part (a), every element of Aut(L/F ) fixes a and thus also fixes F (a). That is,
Aut(L/F ) = Aut(L/F (a)). Since F ∕= F (a), [L : F (a)] < [L : F ]. Then

|Aut(L/F )| = |Aut(L/F (a))|  [L : F (a)] < [L : F ].

In particular, |Aut(L/F )| < [L : F ], so the extension is not Galois.

Problem 6. Let f(x) ∈ Q[x] be an irreducible cubic (degree 3) polynomial having exactly one real
root. Let L be the splitting field of f over Q. Show that Aut(L/Q) ∼= S3.
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We give two alternative proofs.

Proof 1. Let a be the real root of f , and let b, c be the other two roots. Note that b and c are
complex conjugates. In particular, a, b, and c are all distinct. Thus f is separable, and thus Q ⊆ L
is Galois, so |Aut(L/Q)| = [L : Q].

Since f has three distinct roots, Gal(L/Q) is a subgroup of S3, and thus |Gal(L/Q)|  |S3| = 6.
Since f is irreducible, it is the minimal polynomial of a, b, and c. In particular, [L : Q] = [Q(a) :
Q] = 3. Applying the Degree Formula to Q ⊆ Q(a) ⊆ L, we conclude that 3|[L : Q]. Moreover,
b, c /∈ R, so b, c /∈ Q(a). In particular, [L : Q(a)]  2. Thus by the Degree Formula we have
[L : Q]  2 · 3 = 6, and we conclude that [L : Q] = 6. The only subgroup of S3 of order 6 is S3, so
Aut(L/Q) ∼= S3.

Proof 2. Let a be the real root of f , and let b, c be the other two roots. Note that b and c are
complex conjugates. Since f has three distinct roots, Gal(L/Q) is a subgroup of S3. The complex
conjugation map σ satisfies σ|Q = idQ, σ(a) = a, σ(b) = c, and σ(c) = b, so σ ∈ Gal(L/Q).
Identifying a with 1, b with 2, and c with 3, σ corresponds to (2 3) ∈ §3.

Since L is the splitting field of the irreducible polynomial f , we know that Gal(L/Q) acts
transitively on the roots of f . In particular, there exists an element τ ∈ Gal(L/Q) such that
τ(a) = b. Such τ must send roots of f to roots of f , so we must have τ(b) = c or τ(b) = a. If
τ(b) = c, then τ(c) = a, and τ would correspond to (1 2 3) ∈ S3. If τ(b) = a, then τ(c) = c, and τ
would correspond to (1 2) ∈ S3. Since

〈(2 3), (1 2 3)〉 = S3 and 〈(2 3), (1 2)〉 = S3,

in either case we have Gal(L/Q) ∼= S3.
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