Problem Set 13 Solutions

Problem 1.

a) Show that the polynomial $x^{4}+x+1 \in \mathbb{Z} / 2[x]$ is irreducible.
b) Give an explicit construction of a field with 16 elements.

Proof.

a) Let $f=x^{2}+x^{2}+1 \in \mathbb{Z} / 2[x]$. First, note that f has no roots over $\mathbb{Z} / 2$, since $f(1)=1$ and $f(0)=1$. If f were reducible, it would then have to be a product of two degree 2 polynomials, say

$$
f=\left(x^{2}+a x+c\right)\left(x^{2}+b x+d\right) .
$$

Then $c d=1$, so $c=d=1$, and

$$
f=\left(x^{2}+a x+1\right)\left(x^{2}+b x+1\right) .
$$

Moreover, $a+b=1$, so we without loss of generality we can assume $a=1$ and $b=0$, so

$$
f=\left(x^{2}+x+1\right)\left(x^{2}+1\right)
$$

But

$$
f=\left(x^{2}+x+1\right)\left(x^{2}+1\right)=x^{4}+x^{2}+x^{3}+x+x^{2}+1=x^{4}+x^{3}+1 .
$$

But that is not f, so we conclude that f is in fact irreducible.
b) Let $L=\mathbb{Z} / 2[x] /\left(x^{4}+x+1\right)$. By Problem Set 6 , the elements $1+(f), x+(f), x^{2}+(f), x^{3}+(f)$ form a basis for L as a vector space over $\mathbb{Z} /(2)$. Since there are 2 elements in $\mathbb{Z} /(2), L$ has a total of $2^{4}=16$ elements.

On the other hand, if F is any field and $f \in F[x]$ is an irreducible polynomial, then (f) is a maximal ideal in $F[x]$, and thus $F[x] /(f)$ is a field. In particular, L is a field with 4 elements.

Problem 2. Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}}) / \mathbb{Q}$ is a Galois extension of degree 4 with Galois group that is a cyclic group of order 4.

Proof. Let $\alpha=\sqrt{2+\sqrt{2}}$ and $L=\mathbb{Q}(\alpha)$. This element α is a root of $f=x^{4}-4 x^{2}+2$, which is irreducible. ${ }^{1}$ So $m_{\alpha, \mathbb{Q}}=f$ and Moreover, using the quadratic formula, the roots of this polynomial f are

$$
\pm \sqrt{2 \pm \sqrt{2}}
$$

Note that $\alpha^{2}=2+\sqrt{2}$, and so $\sqrt{2} \in L$. Set $\beta=\sqrt{2-\sqrt{2}}$. Note that $\beta=\frac{\sqrt{2}}{\alpha}$, and, since $\sqrt{2} \in L$, it follows that $\beta \in L$. Thus f splits into linear factors in L, and so the splitting field of f is contained in L. But since the splitting field of f contains the roots of f, and in particular α, then $L=\mathbb{Q}(\alpha)$ is contained in the splitting field of f, and hence L is the splitting field of f. Since \mathbb{Q} is a perfect field, then any irreducible polynomial is separable over \mathbb{Q}, so L is Galois over \mathbb{Q}.

Let $G=\operatorname{Gal}(L / \mathbb{Q})$. By definition of Galois extension, $|G|=[L: \mathbb{Q}]=4$. Such a group G is either cyclic of order 4 or isomorphic to the Klein 4 -group $\mathbb{Z} / 2 \times \mathbb{Z} / 2$.

[^0]Let $\tau \in \operatorname{Gal}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$ be an automorphism sending $\sqrt{2}$ to $-\sqrt{2}$, which exists since $\mathbb{Q}(\sqrt{2})$ is the splitting field of the irreducible polynomial $x^{2}-2$ over \mathbb{Q}. Since $\mathbb{Q}(\sqrt{2})$ is Galois over \mathbb{Q}, by the Fundamental Theorem of Galois Theory we have an isomorphism

$$
\operatorname{Gal}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q}) \cong \operatorname{Gal}(L / \mathbb{Q}) / \operatorname{Gal}(L / \mathbb{Q}(\sqrt{2}))
$$

with the isomorphism induced by $\left.\sigma \mapsto \sigma\right|_{\mathbb{Q}(\sqrt{2})}$. In particular, there exists a $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$ such that $\left.\sigma\right|_{\mathbb{Q}(\sqrt{2})}=\tau$, or, in other words, $\sigma(\sqrt{2})=-\sqrt{2}$. We claim σ must have order 4 .

We know $\sigma(\alpha)$ is one of $\alpha,-\alpha, \beta,-\beta$. If either $\sigma(\alpha)=\alpha$ or $\sigma(\alpha)=-\alpha$, then we would get $\sigma\left(\alpha^{2}\right)=\alpha^{2}$ and hence $\sigma(2+\sqrt{2})=2+\sqrt{2}$. This implies $\sigma(\sqrt{2})=\sqrt{2}$, which is a contradiction. Thus $\sigma(\alpha)= \pm \beta$. If $\sigma(\alpha)=\beta$, then since $\sigma(\sqrt{2})=-\sqrt{2}$ and $\beta=\sqrt{2} / \alpha$, we have $\sigma(\beta)=-\alpha$. It follows that $\sigma^{2} \neq$ id and hence σ has order 4. Likewise, if $\sigma(\alpha)=-\beta$, then $\sigma(-\beta)=-\alpha$ and σ has order 4. This shows that $G \cong C_{4}=\langle\sigma\rangle$.

Problem 3. Let L be the splitting field of $x^{3}-2$ over \mathbb{Q}.
a) Prove that there is a unique intermediate field K such that $[K: \mathbb{Q}]=2$.
b) Find, with justification, a primitive element for K over \mathbb{Q}, that is, find an explicit α such that $K=\mathbb{Q}(\alpha)$.

Solution.

a) Let $\zeta_{3}=e^{2 \pi i / 3}$. Note that $x^{3}-2$ has three distinct roots $\alpha=\sqrt[3]{2}, \zeta_{3} \alpha$, and $\zeta_{3}^{2} \alpha$. In particular, $x^{3}-2$ is separable. Since L is the splitting field of an irreducible polynomial over \mathbb{Q}, then the extension $\mathbb{Q} \subseteq L$ is Galois. In particular, $|\operatorname{Gal}(L / \mathbb{Q})|=[L: \mathbb{Q}]$. We have shown in Problem Set 12 that $|\operatorname{Gal}(L / \mathbb{Q})|=[L: \mathbb{Q}]=6$. On the other hand, since f has 6 roots, $\operatorname{Gal}(L / \mathbb{Q})$ is a subgroup of S_{3}. Since the only subgroup of S_{3} with 6 elements is S_{3}, we conclude that $\operatorname{Gal}(L / \mathbb{Q}) \cong S_{3}$.
By the Fundamental Theorem of Galois Theory, an intermediate field K with $[K: \mathbb{Q}]=2$ corresponds to a subgroup $N=\operatorname{Gal}(L / K)$ of $G=\operatorname{Gal}(L / \mathbb{Q}) \cong S_{3}$ with index 2 . But S_{3} has a unique subgroup of order 2 , which is A_{3}. Thus there is a unique intermediate field with $[K: \mathbb{Q}]=2$.
b) By the Fundamental Theorem of Galois Theory, our intermediate field K is the fixed field of

$$
A_{3}=\left\langle\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right\rangle=\left\{e,\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\}
$$

Also by the Fundamental Theorem of Galois Theory,

$$
K=L^{A_{3}}
$$

Let $\tau_{\left(\begin{array}{ll}1 & 2\end{array}\right)} \in \operatorname{Gal}(L / \mathbb{Q})$ be the element corresponding to $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and $\tau_{\left(\begin{array}{ll}1 & 3\end{array}\right)} \in \operatorname{Gal}(L / \mathbb{Q})$ be the element corresponding to (1 32). Here 1 corresponds to $\alpha, 2$ to $\zeta_{3} \alpha$, and 3 to $\zeta_{3}^{2} \alpha$. Then

$$
\tau_{\left(\begin{array}{ll}
123)
\end{array}\right.}\left(\zeta_{3}\right)=\frac{\tau_{(123)}\left(\zeta_{3} \alpha\right)}{\tau_{(123)}(\alpha)}=\frac{\zeta_{3}^{2} \alpha}{\zeta_{3} \alpha}=\zeta_{3}
$$

and

$$
\tau_{\left(\begin{array}{ll}
13 & 2
\end{array}\right)}\left(\zeta_{3}\right)=\frac{\tau_{\left(\begin{array}{ll}
13
\end{array}\right)}\left(\zeta_{3} \alpha\right)}{\tau_{\left(\begin{array}{ll}
13 & 2
\end{array}\right)}(\alpha)}=\frac{\alpha}{\zeta_{3}^{2} \alpha}=\zeta_{3}^{-2}=\zeta_{3}
$$

In particular, $\zeta_{3} \in L^{A_{3}}=K$. On the other hand, ζ_{3} satisfies the polynomial $x^{3}-1=(x-$ 1) $\left(x^{2}+x+1\right)$, and since $\zeta_{3} \neq 1$, then ζ_{3} must satisfy the polynomial $x^{2}+x+1$. By Problem Set 10 Problem $3, x^{2}+x+1$ is irreducible, since $2=3-1$ and 3 is prime. Therefore, $x^{2}+x+1$ is the minimal polynomial of ζ_{3}. In particular, $\left[\mathbb{Q}\left(\zeta_{3}\right): \mathbb{Q}\right]=2$.
But now we have $\mathbb{Q} \subseteq \mathbb{Q}\left(\zeta_{3}\right) \subseteq K$ and

$$
\left[\mathbb{Q}\left(\zeta_{3}\right): \mathbb{Q}\right]=2=[K: \mathbb{Q}] .
$$

By the Degree Formula, we conclude that $\left[K: \mathbb{Q}\left(\zeta_{3}\right)\right]=1$, and thus $K=\mathbb{Q}\left(\zeta_{3}\right)$.
Problem 4. Let L be the splitting field of $x^{4}-2022$ over \mathbb{Q}. Prove that there exists a unique intermediate field $\mathbb{Q} \subseteq K \subseteq L$ such that $[K: \mathbb{Q}]=4$ and $\mathbb{Q} \subseteq K$ is Galois.
Proof. First, note that 2022 is even but not divisible by $2^{2}=4$, so $f=x^{4}-2022$ is irreducible over \mathbb{Z} by Eisenstein's Criterion, and thus irreducible over \mathbb{Q} by Gauss' Lemma. Consider the four distinct roots

$$
\alpha=\alpha_{1}=\sqrt[4]{2022}, \quad \alpha_{2}=i \sqrt[4]{2022}, \quad \alpha_{3}=-\alpha_{1}, \quad \alpha_{4}=-i \sqrt[4]{2022}=-\alpha_{2}
$$

of f. In particular, f is separable, and thus $\mathbb{Q} \subseteq L$ is Galois. Moreover, $L=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \subseteq$ $\mathbb{Q}(\alpha, i)$, while

$$
\zeta=\frac{\alpha_{2}}{\alpha_{1}} \in L
$$

Thus $L=\mathbb{Q}(\alpha, i)$. Since f is irreducible and monic, it must be the minimal polynomial of α, α_{2}, α_{3}, and α_{4}. In particular, $[\mathbb{Q}(\alpha): \mathbb{Q}]=4$. On the other hand, $\alpha \in \mathbb{R}$ and $\zeta \notin \mathbb{R}$, so $\mathbb{Q}(\alpha) \subsetneq L$ and $[L: \mathbb{Q}(\alpha)] \geqslant 2$. On the other hand, i satisfies the polynomial $x^{2}+1$. In particular, this shows that

$$
[L: \mathbb{Q}(\alpha)] \leqslant 2 \quad \text { and thus } \quad[L: \mathbb{Q}(\alpha)]=2
$$

By the Degree Formula,

$$
[L: \mathbb{Q}]=[L: \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}]=2 \cdot 4=8
$$

Since $\mathbb{Q} \subseteq L$ is Galois, we now know that $|\operatorname{Gal}(L / \mathbb{Q})|=8$.
Our polynomial f has 4 distinct roots, so $\operatorname{Gal}(L / \mathbb{Q})$ is a subgroup of S_{4}, and we know it must have order 8 . We identify α_{i} with i, so that an element of S_{4} that sends i to j corresponds to an automorphism sending α_{i} to α_{j}.

Complex conjugation induces a bijection $L \rightarrow L$, so it gives an element $s \in \operatorname{Gal}(L / \mathbb{Q})$ corresponding to the permutation (24), since $s\left(\alpha_{2}\right)=\alpha_{4}$ and s fixes α_{1} and α_{3}.

Now consider the field extension $\mathbb{Q}(i) \subseteq L$. Since $[L: \mathbb{Q}]=8$ and $[\mathbb{Q}(i): \mathbb{Q}]=2$, by the Degree Formula we must have $[L: \mathbb{Q}(i)]=4$. Since $L=\mathbb{Q}(i)\left(\alpha_{1}\right)$, the degree of $m_{\alpha_{1}, \mathbb{Q}(i)}$ must be 4. In particular, this shows that $x^{4}-2$ remains irreducible as a polynomial in $\mathbb{Q}(i)[x]$. So L is the splitting field of the irreducible polynomial $x^{4}-2$ over $\mathbb{Q}(i)$, and $\operatorname{Aut}(L / \mathbb{Q}(i))$ acts transitively on the roots of f. In particular, there is an element $\tau \in \operatorname{Aut}(L / \mathbb{Q}(i))$ such that $\tau\left(\alpha_{1}\right)=\alpha_{2}$. We may regard τ as an element of $\operatorname{Aut}(L / \mathbb{Q})$ too. Such a τ satisfies $\tau(i)=i$, so

$$
\tau\left(\alpha_{2}\right)=\tau\left(i \alpha_{1}\right)=i \tau\left(\alpha_{1}\right)=i \alpha_{2}=\alpha_{3}
$$

We also get $\tau\left(\alpha_{3}\right)=\alpha_{4}$ and $\tau\left(\alpha_{4}\right)=\alpha_{1}$, so τ corresponds to the permutation (1234).
The proves that G is isomorphic to a subgroup of S_{4} of order 8 that contains (24) and (1234). We proved in class that the only such subgroup is $\rangle\left(\begin{array}{ll}24\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array} 34\right)\langle$, and that it is isomorphic to the group D_{8} of permutations of the square.

Now since the extension $\mathbb{Q} \subseteq L$ is Galois, by the Fundamental Theorem of Galois Theory we know that any intermediate field K such that $[K: \mathbb{Q}]=4$ corresponds to a subgroup H of $\operatorname{Gal}(L / \mathbb{Q}) \cong D_{8}$ of index 4 . In particular, note that

$$
|H|=\frac{|\operatorname{Gal}(L / \mathbb{Q})|}{[\operatorname{Gal}(L / \mathbb{Q}): H]}=\frac{8}{4}=2
$$

On the other hand, the Fundamental Theorem of Galois Theory says that such an intermediate field K is Galois over \mathbb{Q} if and only if H is a normal subgroup of $\operatorname{Gal}(L / \mathbb{Q}) \cong D_{8}$. Thus to show that there exists a unique such K, it suffices to show that D_{8} has a unique normal subgroup of order 2 .

Problem 5. Let $F \subseteq L$ be Galois field extension of degree 45. Prove there exists a unique intermediate field E such that $[E: F]=5$.

Solution. Since $F \subseteq L$ is Galois, then $G:=\operatorname{Gal}(L / F)=\operatorname{Aut}(L / F)$ is a group of order $[L: F]=45$. By the Fundamental Theorem of Galois Theory, an intermediate field E with $[E: F]=5$ would correspond to a subgroup H of G of index 5 . Thus

$$
|H|=\frac{|G|}{[G: H]}=\frac{45}{5}=9
$$

Since $9=3^{2}, 3$ is prime, $\operatorname{gcd}(5,9)=1$, and $|G|=5 \cdot 3^{2}$, by the Main Theorem of Sylow Theory we know there exists a Sylow 3 -subgroup of G. By definition, such a subgroup has order 9. Then indeed, there does exist a subgroup of G of order 9 . Moreover, the Main Theorem of Sylow Theory also says that the number n of Sylow 3 -subgroups of G must satisfy the following properties:

- $n \equiv 1(\bmod 3)$, and
- $n \mid 5$.

Since $n \mid 5$, we must have $n=1$ or $n=5$. On the other hand, $5 \not \equiv 1(\bmod 3)$, so we must have $n=1$. Therefore, there exists a unique subgroup of G of order 9. By the Fundamental Theorem of Galois Theory, there exist a unique intermediate field E with $[E: F]=5$.

[^0]: ${ }^{1}$ Insert here the usual argument using Eisenstein's criterion and Gauss's lemma.

