
Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 13 Solutions

Problem 1.

a) Show that the polynomial x4 + x+ 1 ∈ Z/2[x] is irreducible.

b) Give an explicit construction of a field with 16 elements.

Proof.

a) Let f = x2 + x2 + 1 ∈ Z/2[x]. First, note that f has no roots over Z/2, since f(1) = 1 and
f(0) = 1. If f were reducible, it would then have to be a product of two degree 2 polynomials,
say

f = (x2 + ax+ c)(x2 + bx+ d).

Then cd = 1, so c = d = 1, and

f = (x2 + ax+ 1)(x2 + bx+ 1).

Moreover, a+ b = 1, so we without loss of generality we can assume a = 1 and b = 0, so

f = (x2 + x+ 1)(x2 + 1).

But
f = (x2 + x+ 1)(x2 + 1) = x4 + x2 + x3 + x+ x2 + 1 = x4 + x3 + 1.

But that is not f , so we conclude that f is in fact irreducible.

b) Let L = Z/2[x]/(x4 + x+1). By Problem Set 6, the elements 1+ (f), x+ (f), x2 + (f), x3 + (f)
form a basis for L as a vector space over Z/(2). Since there are 2 elements in Z/(2), L has a
total of 24 = 16 elements.

On the other hand, if F is any field and f ∈ F [x] is an irreducible polynomial, then (f) is a
maximal ideal in F [x], and thus F [x]/(f) is a field. In particular, L is a field with 4 elements.

Problem 2. Show that Q(


2 +
√
2)/Q is a Galois extension of degree 4 with Galois group that

is a cyclic group of order 4.

Proof. Let α =


2 +
√
2 and L = Q(α). This element α is a root of f = x4 − 4x2 + 2, which is

irreducible.1 So mα,Q = f and Moreover, using the quadratic formula, the roots of this polynomial
f are

±


2±
√
2.

Note that α2 = 2+
√
2, and so

√
2 ∈ L. Set β =


2−

√
2. Note that β =

√
2

α , and, since
√
2 ∈ L, it

follows that β ∈ L. Thus f splits into linear factors in L, and so the splitting field of f is contained
in L. But since the splitting field of f contains the roots of f , and in particular α, then L = Q(α)
is contained in the splitting field of f , and hence L is the splitting field of f . Since Q is a perfect
field, then any irreducible polynomial is separable over Q, so L is Galois over Q.

Let G = Gal(L/Q). By definition of Galois extension, |G| = [L : Q] = 4. Such a group G is
either cyclic of order 4 or isomorphic to the Klein 4-group Z/2× Z/2.

1Insert here the usual argument using Eisenstein’s criterion and Gauss’s lemma.
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Let τ ∈ Gal(Q(
√
2)/Q) be an automorphism sending

√
2 to −

√
2, which exists since Q(

√
2) is

the splitting field of the irreducible polynomial x2 − 2 over Q. Since Q(
√
2) is Galois over Q, by

the Fundamental Theorem of Galois Theory we have an isomorphism

Gal(Q(
√
2)/Q) ∼= Gal(L/Q)/Gal(L/Q(

√
2))

with the isomorphism induced by σ → σ|Q(
√
2). In particular, there exists a σ ∈ Gal(L/Q) such

that σ|Q(
√
2) = τ , or, in other words, σ(

√
2) = −

√
2. We claim σ must have order 4.

We know σ(α) is one of α,−α,β,−β. If either σ(α) = α or σ(α) = −α, then we would get
σ(α2) = α2 and hence σ(2 +

√
2) = 2 +

√
2. This implies σ(

√
2) =

√
2, which is a contradiction.

Thus σ(α) = ±β. If σ(α) = β, then since σ(
√
2) = −

√
2 and β =

√
2/α, we have σ(β) = −α. It

follows that σ2 ∕= id and hence σ has order 4. Likewise, if σ(α) = −β, then σ(−β) = −α and σ has
order 4. This shows that G ∼= C4 = 〈σ〉.

Problem 3. Let L be the splitting field of x3 − 2 over Q.

a) Prove that there is a unique intermediate field K such that [K : Q] = 2.

b) Find, with justification, a primitive element for K over Q, that is, find an explicit α such that
K = Q(α).

Solution.

a) Let ζ3 = e2πi/3. Note that x3 − 2 has three distinct roots α = 3
√
2, ζ3α, and ζ23α. In particular,

x3 − 2 is separable. Since L is the splitting field of an irreducible polynomial over Q, then the
extension Q ⊆ L is Galois. In particular, |Gal(L/Q)| = [L : Q]. We have shown in Problem
Set 12 that |Gal(L/Q)| = [L : Q] = 6. On the other hand, since f has 6 roots, Gal(L/Q)
is a subgroup of S3. Since the only subgroup of S3 with 6 elements is S3, we conclude that
Gal(L/Q) ∼= S3.

By the Fundamental Theorem of Galois Theory, an intermediate field K with [K : Q] = 2
corresponds to a subgroup N = Gal(L/K) of G = Gal(L/Q) ∼= S3 with index 2. But S3 has
a unique subgroup of order 2, which is A3. Thus there is a unique intermediate field with
[K : Q] = 2.

b) By the Fundamental Theorem of Galois Theory, our intermediate field K is the fixed field of

A3 = 〈(1 2 3)〉 = {e, (1 2 3), (1 3 2)}.

Also by the Fundamental Theorem of Galois Theory,

K = LA3 .

Let τ(1 2 3) ∈ Gal(L/Q) be the element corresponding to (1 2 3) and τ(1 3 2) ∈ Gal(L/Q) be the
element corresponding to (1 3 2). Here 1 corresponds to α, 2 to ζ3α, and 3 to ζ23α. Then

τ(1 2 3)(ζ3) =
τ(1 2 3)(ζ3α)

τ(1 2 3)(α)
=

ζ23α

ζ3α
= ζ3

and

τ(1 3 2)(ζ3) =
τ(1 3 2)(ζ3α)

τ(1 3 2)(α)
=

α

ζ23α
= ζ−2

3 = ζ3.
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In particular, ζ3 ∈ LA3 = K. On the other hand, ζ3 satisfies the polynomial x3 − 1 = (x −
1)(x2 + x + 1), and since ζ3 ∕= 1, then ζ3 must satisfy the polynomial x2 + x + 1. By Problem
Set 10 Problem 3, x2+x+1 is irreducible, since 2 = 3− 1 and 3 is prime. Therefore, x2+x+1
is the minimal polynomial of ζ3. In particular, [Q(ζ3) : Q] = 2.

But now we have Q ⊆ Q(ζ3) ⊆ K and

[Q(ζ3) : Q] = 2 = [K : Q].

By the Degree Formula, we conclude that [K : Q(ζ3)] = 1, and thus K = Q(ζ3).

Problem 4. Let L be the splitting field of x4 − 2022 over Q. Prove that there exists a unique
intermediate field Q ⊆ K ⊆ L such that [K : Q] = 4 and Q ⊆ K is Galois.

Proof. First, note that 2022 is even but not divisible by 22 = 4, so f = x4 − 2022 is irreducible
over Z by Eisenstein’s Criterion, and thus irreducible over Q by Gauss’ Lemma. Consider the four
distinct roots

α = α1 =
4
√
2022, α2 = i

4
√
2022, α3 = −α1, α4 = −i

4
√
2022 = −α2

of f . In particular, f is separable, and thus Q ⊆ L is Galois. Moreover, L = Q(α1,α2,α3,α4) ⊆
Q(α, i), while

ζ =
α2

α1
∈ L.

Thus L = Q(α, i). Since f is irreducible and monic, it must be the minimal polynomial of α, α2,
α3, and α4. In particular, [Q(α) : Q] = 4. On the other hand, α ∈ R and ζ /∈ R, so Q(α) ⊊ L and
[L : Q(α)]  2. On the other hand, i satisfies the polynomial x2 + 1. In particular, this shows that

[L : Q(α)]  2 and thus [L : Q(α)] = 2.

By the Degree Formula,

[L : Q] = [L : Q(α)][Q(α) : Q] = 2 · 4 = 8.

Since Q ⊆ L is Galois, we now know that |Gal(L/Q)| = 8.
Our polynomial f has 4 distinct roots, so Gal(L/Q) is a subgroup of S4, and we know it must

have order 8. We identify αi with i, so that an element of S4 that sends i to j corresponds to an
automorphism sending αi to αj .

Complex conjugation induces a bijection L → L, so it gives an element s ∈ Gal(L/Q) corre-
sponding to the permutation (2 4), since s(α2) = α4 and s fixes α1 and α3.

Now consider the field extension Q(i) ⊆ L. Since [L : Q] = 8 and [Q(i) : Q] = 2, by the
Degree Formula we must have [L : Q(i)] = 4. Since L = Q(i)(α1), the degree of mα1,Q(i) must be
4. In particular, this shows that x4 − 2 remains irreducible as a polynomial in Q(i)[x]. So L is the
splitting field of the irreducible polynomial x4 − 2 over Q(i), and Aut(L/Q(i)) acts transitively on
the roots of f . In particular, there is an element τ ∈ Aut(L/Q(i)) such that τ(α1) = α2. We may
regard τ as an element of Aut(L/Q) too. Such a τ satisfies τ(i) = i, so

τ(α2) = τ(iα1) = iτ(α1) = iα2 = α3.

We also get τ(α3) = α4 and τ(α4) = α1, so τ corresponds to the permutation (1 2 3 4).
The proves that G is isomorphic to a subgroup of S4 of order 8 that contains (2 4) and (1 2 3 4).

We proved in class that the only such subgroup is 〉(2 4), (1 2 3 4)〈, and that it is isomorphic to
the group D8 of permutations of the square.
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Now since the extension Q ⊆ L is Galois, by the Fundamental Theorem of Galois Theory
we know that any intermediate field K such that [K : Q] = 4 corresponds to a subgroup H of
Gal(L/Q) ∼= D8 of index 4. In particular, note that

|H| = |Gal(L/Q)|
[Gal(L/Q) : H]

=
8

4
= 2.

On the other hand, the Fundamental Theorem of Galois Theory says that such an intermediate
field K is Galois over Q if and only if H is a normal subgroup of Gal(L/Q) ∼= D8. Thus to show
that there exists a unique such K, it suffices to show that D8 has a unique normal subgroup of
order 2.

Problem 5. Let F ⊆ L be Galois field extension of degree 45. Prove there exists a unique
intermediate field E such that [E : F ] = 5.

Solution. Since F ⊆ L is Galois, then G := Gal(L/F ) = Aut(L/F ) is a group of order [L : F ] = 45.
By the Fundamental Theorem of Galois Theory, an intermediate field E with [E : F ] = 5 would
correspond to a subgroup H of G of index 5. Thus

|H| = |G|
[G : H]

=
45

5
= 9.

Since 9 = 32, 3 is prime, gcd(5, 9) = 1, and |G| = 5 · 32, by the Main Theorem of Sylow Theory
we know there exists a Sylow 3-subgroup of G. By definition, such a subgroup has order 9. Then
indeed, there does exist a subgroup of G of order 9. Moreover, the Main Theorem of Sylow Theory
also says that the number n of Sylow 3-subgroups of G must satisfy the following properties:

• n ≡ 1 (mod 3), and

• n|5.

Since n|5, we must have n = 1 or n = 5. On the other hand, 5 ∕≡ 1 (mod 3), so we must have n = 1.
Therefore, there exists a unique subgroup of G of order 9. By the Fundamental Theorem of Galois
Theory, there exist a unique intermediate field E with [E : F ] = 5.
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