Problem Set 13 Solutions

Problem 1.

- a) Show that the polynomial $x^4 + x + 1 \in \mathbb{Z}/2[x]$ is irreducible.
- b) Give an explicit construction of a field with 16 elements.

Proof.

a) Let $f = x^2 + x^2 + 1 \in \mathbb{Z}/2[x]$. First, note that f has no roots over $\mathbb{Z}/2$, since f(1) = 1 and f(0) = 1. If f were reducible, it would then have to be a product of two degree 2 polynomials, say

$$f = (x^2 + ax + c)(x^2 + bx + d)$$

Then cd = 1, so c = d = 1, and

$$f = (x^2 + ax + 1)(x^2 + bx + 1).$$

Moreover, a + b = 1, so we without loss of generality we can assume a = 1 and b = 0, so

$$f = (x^2 + x + 1)(x^2 + 1).$$

But

$$f = (x^{2} + x + 1)(x^{2} + 1) = x^{4} + x^{2} + x^{3} + x + x^{2} + 1 = x^{4} + x^{3} + 1.$$

But that is not f, so we conclude that f is in fact irreducible.

b) Let $L = \mathbb{Z}/2[x]/(x^4 + x + 1)$. By Problem Set 6, the elements $1 + (f), x + (f), x^2 + (f), x^3 + (f)$ form a basis for L as a vector space over $\mathbb{Z}/(2)$. Since there are 2 elements in $\mathbb{Z}/(2)$, L has a total of $2^4 = 16$ elements.

On the other hand, if F is any field and $f \in F[x]$ is an irreducible polynomial, then (f) is a maximal ideal in F[x], and thus F[x]/(f) is a field. In particular, L is a field with 4 elements.

Problem 2. Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})/\mathbb{Q}$ is a Galois extension of degree 4 with Galois group that is a cyclic group of order 4.

Proof. Let $\alpha = \sqrt{2 + \sqrt{2}}$ and $L = \mathbb{Q}(\alpha)$. This element α is a root of $f = x^4 - 4x^2 + 2$, which is irreducible.¹ So $m_{\alpha,\mathbb{Q}} = f$ and Moreover, using the quadratic formula, the roots of this polynomial f are

$$\pm\sqrt{2\pm\sqrt{2}}.$$

Note that $\alpha^2 = 2 + \sqrt{2}$, and so $\sqrt{2} \in L$. Set $\beta = \sqrt{2 - \sqrt{2}}$. Note that $\beta = \frac{\sqrt{2}}{\alpha}$, and, since $\sqrt{2} \in L$, it follows that $\beta \in L$. Thus f splits into linear factors in L, and so the splitting field of f is contained in L. But since the splitting field of f contains the roots of f, and in particular α , then $L = \mathbb{Q}(\alpha)$ is contained in the splitting field of f, and hence L is the splitting field of f. Since \mathbb{Q} is a perfect field, then any irreducible polynomial is separable over \mathbb{Q} , so L is Galois over \mathbb{Q} .

Let $G = \text{Gal}(L/\mathbb{Q})$. By definition of Galois extension, $|G| = [L : \mathbb{Q}] = 4$. Such a group G is either cyclic of order 4 or isomorphic to the Klein 4-group $\mathbb{Z}/2 \times \mathbb{Z}/2$.

¹Insert here the usual argument using Eisenstein's criterion and Gauss's lemma.

Let $\tau \in \text{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$ be an automorphism sending $\sqrt{2}$ to $-\sqrt{2}$, which exists since $\mathbb{Q}(\sqrt{2})$ is the splitting field of the irreducible polynomial $x^2 - 2$ over \mathbb{Q} . Since $\mathbb{Q}(\sqrt{2})$ is Galois over \mathbb{Q} , by the Fundamental Theorem of Galois Theory we have an isomorphism

$$\operatorname{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) \cong \operatorname{Gal}(L/\mathbb{Q})/\operatorname{Gal}(L/\mathbb{Q}(\sqrt{2}))$$

with the isomorphism induced by $\sigma \mapsto \sigma|_{\mathbb{Q}(\sqrt{2})}$. In particular, there exists a $\sigma \in \text{Gal}(L/\mathbb{Q})$ such that $\sigma|_{\mathbb{Q}(\sqrt{2})} = \tau$, or, in other words, $\sigma(\sqrt{2}) = -\sqrt{2}$. We claim σ must have order 4.

We know $\sigma(\alpha)$ is one of $\alpha, -\alpha, \beta, -\beta$. If either $\sigma(\alpha) = \alpha$ or $\sigma(\alpha) = -\alpha$, then we would get $\sigma(\alpha^2) = \alpha^2$ and hence $\sigma(2 + \sqrt{2}) = 2 + \sqrt{2}$. This implies $\sigma(\sqrt{2}) = \sqrt{2}$, which is a contradiction. Thus $\sigma(\alpha) = \pm \beta$. If $\sigma(\alpha) = \beta$, then since $\sigma(\sqrt{2}) = -\sqrt{2}$ and $\beta = \sqrt{2}/\alpha$, we have $\sigma(\beta) = -\alpha$. It follows that $\sigma^2 \neq \text{id}$ and hence σ has order 4. Likewise, if $\sigma(\alpha) = -\beta$, then $\sigma(-\beta) = -\alpha$ and σ has order 4. This shows that $G \cong C_4 = \langle \sigma \rangle$.

Problem 3. Let *L* be the splitting field of $x^3 - 2$ over \mathbb{Q} .

- a) Prove that there is a unique intermediate field K such that $[K : \mathbb{Q}] = 2$.
- b) Find, with justification, a primitive element for K over \mathbb{Q} , that is, find an explicit α such that $K = \mathbb{Q}(\alpha)$.

Solution.

a) Let $\zeta_3 = e^{2\pi i/3}$. Note that $x^3 - 2$ has three distinct roots $\alpha = \sqrt[3]{2}$, $\zeta_3 \alpha$, and $\zeta_3^2 \alpha$. In particular, $x^3 - 2$ is separable. Since L is the splitting field of an irreducible polynomial over \mathbb{Q} , then the extension $\mathbb{Q} \subseteq L$ is Galois. In particular, $|\operatorname{Gal}(L/\mathbb{Q})| = [L : \mathbb{Q}]$. We have shown in Problem Set 12 that $|\operatorname{Gal}(L/\mathbb{Q})| = [L : \mathbb{Q}] = 6$. On the other hand, since f has 6 roots, $\operatorname{Gal}(L/\mathbb{Q})$ is a subgroup of S_3 . Since the only subgroup of S_3 with 6 elements is S_3 , we conclude that $\operatorname{Gal}(L/\mathbb{Q}) \cong S_3$.

By the Fundamental Theorem of Galois Theory, an intermediate field K with $[K : \mathbb{Q}] = 2$ corresponds to a subgroup N = Gal(L/K) of $G = \text{Gal}(L/\mathbb{Q}) \cong S_3$ with index 2. But S_3 has a unique subgroup of order 2, which is A_3 . Thus there is a unique intermediate field with $[K : \mathbb{Q}] = 2$.

b) By the Fundamental Theorem of Galois Theory, our intermediate field K is the fixed field of

$$A_3 = \langle (1\ 2\ 3) \rangle = \{e, (1\ 2\ 3), (1\ 3\ 2)\}.$$

Also by the Fundamental Theorem of Galois Theory,

$$K = L^{A_3}.$$

Let $\tau_{(1\ 2\ 3)} \in \text{Gal}(L/\mathbb{Q})$ be the element corresponding to $(1\ 2\ 3)$ and $\tau_{(1\ 3\ 2)} \in \text{Gal}(L/\mathbb{Q})$ be the element corresponding to $(1\ 3\ 2)$. Here 1 corresponds to α , 2 to $\zeta_3\alpha$, and 3 to $\zeta_3^2\alpha$. Then

$$\tau_{(1\ 2\ 3)}(\zeta_3) = \frac{\tau_{(1\ 2\ 3)}(\zeta_3\alpha)}{\tau_{(1\ 2\ 3)}(\alpha)} = \frac{\zeta_3^2\alpha}{\zeta_3\alpha} = \zeta_3$$

and

$$\tau_{(1\ 3\ 2)}(\zeta_3) = \frac{\tau_{(1\ 3\ 2)}(\zeta_3\alpha)}{\tau_{(1\ 3\ 2)}(\alpha)} = \frac{\alpha}{\zeta_3^2\alpha} = \zeta_3^{-2} = \zeta_3$$

In particular, $\zeta_3 \in L^{A_3} = K$. On the other hand, ζ_3 satisfies the polynomial $x^3 - 1 = (x - 1)(x^2 + x + 1)$, and since $\zeta_3 \neq 1$, then ζ_3 must satisfy the polynomial $x^2 + x + 1$. By Problem Set 10 Problem 3, $x^2 + x + 1$ is irreducible, since 2 = 3 - 1 and 3 is prime. Therefore, $x^2 + x + 1$ is the minimal polynomial of ζ_3 . In particular, $[\mathbb{Q}(\zeta_3) : \mathbb{Q}] = 2$.

But now we have $\mathbb{Q} \subseteq \mathbb{Q}(\zeta_3) \subseteq K$ and

$$[\mathbb{Q}(\zeta_3):\mathbb{Q}]=2=[K:\mathbb{Q}].$$

By the Degree Formula, we conclude that $[K : \mathbb{Q}(\zeta_3)] = 1$, and thus $K = \mathbb{Q}(\zeta_3)$.

Problem 4. Let *L* be the splitting field of $x^4 - 2022$ over \mathbb{Q} . Prove that there exists a unique intermediate field $\mathbb{Q} \subseteq K \subseteq L$ such that $[K : \mathbb{Q}] = 4$ and $\mathbb{Q} \subseteq K$ is Galois.

Proof. First, note that 2022 is even but not divisible by $2^2 = 4$, so $f = x^4 - 2022$ is irreducible over \mathbb{Z} by Eisenstein's Criterion, and thus irreducible over \mathbb{Q} by Gauss' Lemma. Consider the four distinct roots

$$\alpha = \alpha_1 = \sqrt[4]{2022}, \quad \alpha_2 = i\sqrt[4]{2022}, \quad \alpha_3 = -\alpha_1, \quad \alpha_4 = -i\sqrt[4]{2022} = -\alpha_2$$

of f. In particular, f is separable, and thus $\mathbb{Q} \subseteq L$ is Galois. Moreover, $L = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \subseteq \mathbb{Q}(\alpha, i)$, while

$$\zeta = \frac{\alpha_2}{\alpha_1} \in L.$$

Thus $L = \mathbb{Q}(\alpha, i)$. Since f is irreducible and monic, it must be the minimal polynomial of α , α_2 , α_3 , and α_4 . In particular, $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$. On the other hand, $\alpha \in \mathbb{R}$ and $\zeta \notin \mathbb{R}$, so $\mathbb{Q}(\alpha) \subsetneq L$ and $[L : \mathbb{Q}(\alpha)] \ge 2$. On the other hand, i satisfies the polynomial $x^2 + 1$. In particular, this shows that

$$[L: \mathbb{Q}(\alpha)] \leq 2$$
 and thus $[L: \mathbb{Q}(\alpha)] = 2.$

By the Degree Formula,

$$[L:\mathbb{Q}] = [L:\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}] = 2 \cdot 4 = 8.$$

Since $\mathbb{Q} \subseteq L$ is Galois, we now know that $|\operatorname{Gal}(L/\mathbb{Q})| = 8$.

Our polynomial f has 4 distinct roots, so $\operatorname{Gal}(L/\mathbb{Q})$ is a subgroup of S_4 , and we know it must have order 8. We identify α_i with i, so that an element of S_4 that sends i to j corresponds to an automorphism sending α_i to α_j .

Complex conjugation induces a bijection $L \to L$, so it gives an element $s \in \text{Gal}(L/\mathbb{Q})$ corresponding to the permutation (2 4), since $s(\alpha_2) = \alpha_4$ and s fixes α_1 and α_3 .

Now consider the field extension $\mathbb{Q}(i) \subseteq L$. Since $[L : \mathbb{Q}] = 8$ and $[\mathbb{Q}(i) : \mathbb{Q}] = 2$, by the Degree Formula we must have $[L : \mathbb{Q}(i)] = 4$. Since $L = \mathbb{Q}(i)(\alpha_1)$, the degree of $m_{\alpha_1,\mathbb{Q}(i)}$ must be 4. In particular, this shows that $x^4 - 2$ remains irreducible as a polynomial in $\mathbb{Q}(i)[x]$. So L is the splitting field of the irreducible polynomial $x^4 - 2$ over $\mathbb{Q}(i)$, and $\operatorname{Aut}(L/\mathbb{Q}(i))$ acts transitively on the roots of f. In particular, there is an element $\tau \in \operatorname{Aut}(L/\mathbb{Q}(i))$ such that $\tau(\alpha_1) = \alpha_2$. We may regard τ as an element of $\operatorname{Aut}(L/\mathbb{Q})$ too. Such a τ satisfies $\tau(i) = i$, so

$$\tau(\alpha_2) = \tau(i\alpha_1) = i\tau(\alpha_1) = i\alpha_2 = \alpha_3.$$

We also get $\tau(\alpha_3) = \alpha_4$ and $\tau(\alpha_4) = \alpha_1$, so τ corresponds to the permutation (1234).

The proves that G is isomorphic to a subgroup of S_4 of order 8 that contains (24) and (1234). We proved in class that the only such subgroup is $\rangle(24)$, $(1234)\langle$, and that it is isomorphic to the group D_8 of permutations of the square. Now since the extension $\mathbb{Q} \subseteq L$ is Galois, by the Fundamental Theorem of Galois Theory we know that any intermediate field K such that $[K : \mathbb{Q}] = 4$ corresponds to a subgroup H of $\operatorname{Gal}(L/\mathbb{Q}) \cong D_8$ of index 4. In particular, note that

$$|H| = \frac{|\operatorname{Gal}(L/\mathbb{Q})|}{[\operatorname{Gal}(L/\mathbb{Q}):H]} = \frac{8}{4} = 2.$$

On the other hand, the Fundamental Theorem of Galois Theory says that such an intermediate field K is Galois over \mathbb{Q} if and only if H is a normal subgroup of $\operatorname{Gal}(L/\mathbb{Q}) \cong D_8$. Thus to show that there exists a unique such K, it suffices to show that D_8 has a unique normal subgroup of order 2.

Problem 5. Let $F \subseteq L$ be Galois field extension of degree 45. Prove there exists a unique intermediate field E such that [E:F] = 5.

Solution. Since $F \subseteq L$ is Galois, then G := Gal(L/F) = Aut(L/F) is a group of order [L : F] = 45. By the Fundamental Theorem of Galois Theory, an intermediate field E with [E : F] = 5 would correspond to a subgroup H of G of index 5. Thus

$$|H| = \frac{|G|}{[G:H]} = \frac{45}{5} = 9.$$

Since $9 = 3^2$, 3 is prime, gcd(5,9) = 1, and $|G| = 5 \cdot 3^2$, by the Main Theorem of Sylow Theory we know there exists a Sylow 3-subgroup of G. By definition, such a subgroup has order 9. Then indeed, there does exist a subgroup of G of order 9. Moreover, the Main Theorem of Sylow Theory also says that the number n of Sylow 3-subgroups of G must satisfy the following properties:

- $n \equiv 1 \pmod{3}$, and
- n|5.

Since n|5, we must have n = 1 or n = 5. On the other hand, $5 \neq 1 \pmod{3}$, so we must have n = 1. Therefore, there exists a unique subgroup of G of order 9. By the Fundamental Theorem of Galois Theory, there exist a unique intermediate field E with [E : F] = 5.