Problem Set 2 solutions

Problem 1. Given a homomorphism of R-modules $f: M \rightarrow N$, show that $\operatorname{ker}(f)$ is an R-submodule of M.

Solution. It is sufficient to show that the One-Step Test for submodules applies. Given $r \in R$ and $a, b \in \operatorname{ker}(f)$, we need to show that $r a+b \in \operatorname{ker}(f)$. Since $a, b \in \operatorname{ker}(f)$, we have $f(a)=f(b)=0$. Moreover, since f is a homomorphism of R-modules, we have

$$
f(r a+b)=r f(a)+b=r 0+0=0 .
$$

Therefore, $r a+b \in \operatorname{ker}(f)$, and we conclude that $\operatorname{ker}(f)$ is a submodule of M.
Problem 2. Show that there is a \mathbb{Z}-module isomorphism $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n, \mathbb{Z} / m) \cong \mathbb{Z} / \operatorname{gcd}(m, n)$.
Solution. Using Problem 3 from Problem Set $1, \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m, \mathbb{Z} / n)$ is isomorphic to the submodule of \mathbb{Z} / n given by

$$
T_{m}(\mathbb{Z} / n)=\left\{[x]_{n} \in \mathbb{Z} /(n) \mid m[x]_{n}=[0]_{n}\right\} .
$$

Since subgroups of cyclic groups are cyclic, $T_{m}(\mathbb{Z} / n)$ is cyclic, and so we only need to show its order is $\operatorname{gcd}(m, n)$ in order to know that $T_{m}(\mathbb{Z} / n) \cong \mathbb{Z} / \operatorname{gcd}(m, n)$, since any two cyclic groups of the same order are isomorphic.

We have the following equivalences:

$$
m[x]_{n}=[0]_{n} \Longleftrightarrow m x \equiv 0 \quad(\bmod n) \Longleftrightarrow n\left|m x \Longleftrightarrow \frac{n}{\operatorname{gcd}(m, n)}\right| \frac{m}{\operatorname{gcd}(m, n)} x .
$$

Since the integers $\frac{n}{\operatorname{gcd}(m, n)}$ and $\frac{m}{\operatorname{gcd}(m, n)}$ are coprime, the last statement is equivalent to $\left.\frac{n}{\operatorname{gcd}(m, n)} \right\rvert\, x$, or $x \in\left(\left[\frac{n}{\operatorname{gcd}(m, n)}\right]_{n}\right)$. Recall a fact from Math 817: If G is cyclic of order n, generated by y, then y^{j} has order $n / \operatorname{gcd}(n, j)$. Applying this to $y=[1]_{n}$ and $j=\left[\frac{n}{\operatorname{gcd}(m, n)}\right]$, it follows that

$$
\left|\left(\left[\frac{n}{\operatorname{gcd}(m, n)}\right]_{n}\right)\right|=\frac{n}{\operatorname{gcd}\left(n, \frac{n}{\operatorname{gcd}(m, n)}\right)}=\frac{n}{\overline{\operatorname{gcd}(m, n)}}=\operatorname{gcd}(m, n) .
$$

Problem 3. Let R be a commutative ring. Given an R-module M, its annihilator is the ideal

$$
\operatorname{ann}(M):=\{a \in R \mid a m=0 \text { for all } m \in M\} .
$$

Show that if there is an isomorphism of R-modules $M \cong N$, then $\operatorname{ann}(M)=\operatorname{ann}(N)$.
Solution. Let $f: M \rightarrow N$ be an isomorphism of R-modules. Given $r \in \operatorname{ann}(M)$ and $n \in n$, since f is surjective we can find $m \in M$ such that $n=f(m)$, and since f is a homomorphism of R-modules we have

$$
r n=r f(m)=f(r m) .
$$

But $r \in \operatorname{ann}(M)$ by assumption, and thus $r m=0$. Finally, f is a homomorphism, so

$$
r n=f(r m)=f(0)=0 .
$$

We conclude that $r \in \operatorname{ann}(N)$. This shows that $\operatorname{ann}(M) \subseteq \operatorname{ann}(N)$. On the other hand, there also exists an isomorphism $g: N \rightarrow M$ (the inverse of f), and thus we conclude that $\operatorname{ann}(N) \subseteq \operatorname{ann}(M)$. Therefore $\operatorname{ann}(M)=\operatorname{ann}(N)$.

Problem 4. Let R be a commutative ring with $1 \neq 0$. An R-module M is simple if it has no nontrivial submodules. Show that M is a simple if and only if there exists a maximal ideal \mathfrak{m} of R such that $M \cong R / \mathfrak{m}$.
Note: recall that a proper ideal \mathfrak{m} is maximal if it is maximal with respect to inclusion, meaning that for any ideal $I, \mathfrak{m} \subseteq I$ implies $\mathfrak{m}=I$ or $\mathfrak{m}=R$.

Solution. (\Rightarrow) Assume M is simple and pick any element $m \in M$ with $m \neq 0_{M}$. Consider the submodule $R m$ of M generated by m. Since $m \neq 0$, then $R m \neq 0$. Since M is simple, we conclude that $M=R m$. By Problem Set 1, Problem 2, every cyclic module is isomorphic to R / I for some ideal I. Therefore, $M \cong R / I$ for some ideal I.

By the lattice isomorphism theorem for modules, submodules of R / I are in bijective correspondence with submodules of R that contain I. A submodule of R is the same thing as an ideal, and since R / I is irreducible, we must have that there are no proper ideals of R that properly contain I - that is, I must be maximal. So $M \cong R / \mathfrak{m}$ for a maximal ideal $\mathfrak{m}=I$.
(\Leftarrow) Assume $M \cong R / \mathfrak{m}$ for some maximal ideal \mathfrak{m} of R. By the Lattice Isomorphism Theorem, the submodules of R / \mathfrak{m} correspond to submodules I of R containing \mathfrak{m}. But a submodule of R is the same as an ideal, and since \mathfrak{m} is maximal the only ideals $I \supseteq \mathfrak{m}$ are \mathfrak{m} and R. Therefore, the only submodules of R / \mathfrak{m} are R / \mathfrak{m} and $\mathfrak{m} / \mathfrak{m}=0$, and thus R / \mathfrak{m} is simple. We conclude that M is simple.

Problem 5. Let R be a ring with $0 \neq 1$. Prove that if M is an R-module and N is a submodule of M such that N and M / N are finitely generated, then M is finitely generated.

Proof. Suppose that $\left\{n_{1}, \ldots, n_{l}\right\} \subseteq N$ generates N and $\left\{m_{1}+N, \ldots, m_{k}+N\right\} \subseteq M / N$ generates M / N. We will show that the finite set $\left\{n_{1}, \ldots, n_{l}, m_{1}, \ldots, m_{k}\right\}$ generates M.

Pick $x \in M$. Then

$$
x+N=\sum_{i=1}^{l} r_{i}\left(m_{i}+N\right)=\left(\sum_{i} r_{i} m_{i}\right)+N
$$

for some $r_{i} \in R$, since $\left\{m_{1}+N, \ldots, m_{k}+N\right\} \subseteq M / N$ generates M / N. Thus $x-\sum_{i=1}^{l} r_{i} m_{i} \in N$. Since $\left\{n_{1}, \ldots, n_{l}\right\} \subseteq N$ generates N, we can now find some $s_{j} \in R$ such that

$$
x-\sum_{i=1}^{l} r_{i} m_{i}=\sum_{j=1}^{k} s_{j} n_{j}
$$

Thus

$$
x=\sum_{i=1}^{l} r_{i} m_{i}+\sum_{j=1}^{k} s_{j} n_{j}
$$

Since x was an arbitrary element of M, this proves that the set $\left\{n_{1}, \ldots, n_{l}, m_{1}, \ldots, m_{k}\right\}$ generates M.

