
Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 2 solutions

Problem 1. Given a homomorphism ofR-modules f : M → N , show that ker(f) is anR-submodule
of M .

Solution. It is sufficient to show that the One-Step Test for submodules applies. Given r ∈ R and
a, b ∈ ker(f), we need to show that ra+ b ∈ ker(f). Since a, b ∈ ker(f), we have f(a) = f(b) = 0.
Moreover, since f is a homomorphism of R-modules, we have

f(ra+ b) = rf(a) + b = r0 + 0 = 0.

Therefore, ra+ b ∈ ker(f), and we conclude that ker(f) is a submodule of M .

Problem 2. Show that there is a Z-module isomorphism HomZ(Z/n,Z/m) ∼= Z/ gcd(m,n).

Solution. Using Problem 3 from Problem Set 1, HomZ(Z/m,Z/n) is isomorphic to the submodule
of Z/n given by

Tm(Z/n) = {[x]n ∈ Z/(n) | m[x]n = [0]n}.
Since subgroups of cyclic groups are cyclic, Tm(Z/n) is cyclic, and so we only need to show its
order is gcd(m,n) in order to know that Tm(Z/n) ∼= Z/ gcd(m,n), since any two cyclic groups of
the same order are isomorphic.

We have the following equivalences:

m[x]n = [0]n ⇐⇒ mx ≡ 0 (mod n) ⇐⇒ n | mx ⇐⇒ n

gcd(m,n)
| m

gcd(m,n)
x.

Since the integers n
gcd(m,n) and

m
gcd(m,n) are coprime, the last statement is equivalent to n

gcd(m,n) | x,

or x ∈


n
gcd(m,n)



n


. Recall a fact from Math 817: If G is cyclic of order n, generated by y, then

yj has order n/ gcd(n, j). Applying this to y = [1]n and j =


n
gcd(m,n)


, it follows that




n

gcd(m,n)



n

 =
n

gcd

n, n

gcd(m,n)

 =
n
n

gcd(m,n)

= gcd(m,n).

Problem 3. Let R be a commutative ring. Given an R-module M , its annihilator is the ideal

ann(M) := {a ∈ R | am = 0 for all m ∈ M}.

Show that if there is an isomorphism of R-modules M ∼= N , then ann(M) = ann(N).

Solution. Let f : M → N be an isomorphism of R-modules. Given r ∈ ann(M) and n ∈ n, since f
is surjective we can find m ∈ M such that n = f(m), and since f is a homomorphism of R-modules
we have

rn = rf(m) = f(rm).

But r ∈ ann(M) by assumption, and thus rm = 0. Finally, f is a homomorphism, so

rn = f(rm) = f(0) = 0.

We conclude that r ∈ ann(N). This shows that ann(M) ⊆ ann(N). On the other hand, there also
exists an isomorphism g : N → M (the inverse of f), and thus we conclude that ann(N) ⊆ ann(M).
Therefore ann(M) = ann(N).
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Problem 4. Let R be a commutative ring with 1 ∕= 0. An R-module M is simple if it has no
nontrivial submodules. Show that M is a simple if and only if there exists a maximal ideal m of R
such that M ∼= R/m.
Note: recall that a proper ideal m is maximal if it is maximal with respect to inclusion, meaning
that for any ideal I, m ⊆ I implies m = I or m = R.

Solution. (⇒) Assume M is simple and pick any element m ∈ M with m ∕= 0M . Consider the
submodule Rm of M generated by m. Since m ∕= 0, then Rm ∕= 0. Since M is simple, we conclude
that M = Rm. By Problem Set 1, Problem 2, every cyclic module is isomorphic to R/I for some
ideal I. Therefore, M ∼= R/I for some ideal I.

By the lattice isomorphism theorem for modules, submodules of R/I are in bijective correspon-
dence with submodules of R that contain I. A submodule of R is the same thing as an ideal, and
since R/I is irreducible, we must have that there are no proper ideals of R that properly contain
I — that is, I must be maximal. So M ∼= R/m for a maximal ideal m = I.

(⇐) Assume M ∼= R/m for some maximal ideal m of R. By the Lattice Isomorphism Theorem,
the submodules of R/m correspond to submodules I of R containing m. But a submodule of R is
the same as an ideal, and since m is maximal the only ideals I ⊇ m are m and R. Therefore, the
only submodules of R/m are R/m and m/m = 0, and thus R/m is simple. We conclude that M is
simple.

Problem 5. Let R be a ring with 0 ∕= 1. Prove that if M is an R-module and N is a submodule
of M such that N and M/N are finitely generated, then M is finitely generated.

Proof. Suppose that {n1, . . . , nl} ⊆ N generates N and {m1 +N, . . . ,mk +N} ⊆ M/N generates
M/N . We will show that the finite set {n1, . . . , nl,m1, . . . ,mk} generates M .

Pick x ∈ M . Then

x+N =

l

i=1

ri(mi +N) =




i

rimi


+N

for some ri ∈ R, since {m1 +N, . . . ,mk +N} ⊆ M/N generates M/N . Thus x−
l

i=1 rimi ∈ N .
Since {n1, . . . , nl} ⊆ N generates N , we can now find some sj ∈ R such that

x−
l

i=1

rimi =

k

j=1

sjnj .

Thus

x =

l

i=1

rimi +

k

j=1

sjnj .

Since x was an arbitrary element of M , this proves that the set {n1, . . . , nl,m1, . . . ,mk} generates
M .
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