Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 2 solutions

Problem 1. Given a homomorphism of R-modules f: M — N, show that ker(f) is an R-submodule
of M.

Solution. It is sufficient to show that the One-Step Test for submodules applies. Given r € R and
a,b € ker(f), we need to show that ra + b € ker(f). Since a,b € ker(f), we have f(a) = f(b) = 0.
Moreover, since f is a homomorphism of R-modules, we have

f(ra+b)=rf(a)+b=r0+0=0.
Therefore, ra + b € ker(f), and we conclude that ker(f) is a submodule of M.
Problem 2. Show that there is a Z-module isomorphism Homgz(Z/n,Z/m) = Z/ gcd(m,n).

Solution. Using Problem 3 from Problem Set 1, Homy(Z/m,Z/n) is isomorphic to the submodule
of Z/n given by
Tm(Z/n) = {[z]n € Z/(n) | m[z]n = [0]n}.

Since subgroups of cyclic groups are cyclic, T,,(Z/n) is cyclic, and so we only need to show its
order is ged(m,n) in order to know that 7,,(Z/n) = Z/ gcd(m,n), since any two cyclic groups of
the same order are isomorphic.

We have the following equivalences:

n m
mlz], =[0], < mzr=0 (modn) < n|mr < x.
[#]n = (0]n ( ) | ged(m,n) | ged(m,n)
Since the integers o d(TTLn,n) and #m’n) are coprime, the last statement is equivalent to m | z,

or x € ([gc%} ) Recall a fact from Math 817: If G is cyclic of order n, generated by y, then
n

(m,n)

y/ has order n/ ged(n, j). Applying this to y = [1], and j = [m}, it follows that

() )= oy = st
ng(m7 n) n ged (n, m) gcd(?n,n)

Problem 3. Let R be a commutative ring. Given an R-module M, its annihilator is the ideal
ann(M) :={a € R|am =0 for all m € M }.
Show that if there is an isomorphism of R-modules M = N, then ann(M) = ann(N).

Solution. Let f: M — N be an isomorphism of R-modules. Given r € ann(M) and n € n, since f
is surjective we can find m € M such that n = f(m), and since f is a homomorphism of R-modules
we have

rn=rf(m) = f(rm).
But r € ann(M) by assumption, and thus rm = 0. Finally, f is a homomorphism, so
rn = f(rm) = f(0) = 0.

We conclude that r € ann(/N). This shows that ann(A/) C ann(/N). On the other hand, there also
exists an isomorphism g: N — M (the inverse of f), and thus we conclude that ann(N) C ann(M).
Therefore ann(M) = ann(V).
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Problem 4. Let R be a commutative ring with 1 # 0. An R-module M is simple if it has no
nontrivial submodules. Show that M is a simple if and only if there exists a maximal ideal m of R
such that M = R/m.

Note: recall that a proper ideal m is maximal if it is maximal with respect to inclusion, meaning
that for any ideal I, m C [ implies m =1 or m = R.

Solution. (=) Assume M is simple and pick any element m € M with m # 0j;. Consider the
submodule Rm of M generated by m. Since m # 0, then Rm # 0. Since M is simple, we conclude
that M = Rm. By Problem Set 1, Problem 2, every cyclic module is isomorphic to R/I for some
ideal I. Therefore, M = R/I for some ideal I.

By the lattice isomorphism theorem for modules, submodules of R/I are in bijective correspon-
dence with submodules of R that contain I. A submodule of R is the same thing as an ideal, and
since R/I is irreducible, we must have that there are no proper ideals of R that properly contain
I — that is, I must be maximal. So M = R/m for a maximal ideal m = I.

(<) Assume M = R/m for some maximal ideal m of R. By the Lattice Isomorphism Theorem,
the submodules of R/m correspond to submodules I of R containing m. But a submodule of R is
the same as an ideal, and since m is maximal the only ideals I O m are m and R. Therefore, the
only submodules of R/m are R/m and m/m = 0, and thus R/m is simple. We conclude that M is
simple.

Problem 5. Let R be a ring with 0 # 1. Prove that if M is an R-module and N is a submodule
of M such that N and M/N are finitely generated, then M is finitely generated.

Proof. Suppose that {ni,...,n;} C N generates N and {m; + N,...,my + N} C M/N generates
M/N. We will show that the finite set {ny,...,n;, mi,...,my} generates M.

Pick x € M. Then l
r+ N = Zri(mi—}—N) = (Zrzmz> +N

i=1 7

for some r; € R, since {m; + N,...,mp + N} C M/N generates M /N. Thus x — Zi’:l r;m; € N.
Since {n1,...,n;} C N generates N, we can now find some s; € R such that

l k
xTr — E rim; = E sjnj.
=1 7=1

Thus
! k
T = anz‘ + Z S515.
i=1 j=1
Since x was an arbitrary element of M, this proves that the set {ni,...,n;,m1,...,my} generates
M. O
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