Problem Set 3 solutions

Problem 1. Let R be a commutative ring with $1 \neq 0$. Show that if every R-module is free then R is a field.

Proof. Assume towards a contradiction that R is not a field. Recall that a commutative ring R with $1 \neq 0$ is a field if and only if it has no nonzero proper ideals. Thus there is a nonzero, proper ideal I of R.

Consider the *R*-module R/I. If r+I is any element, then for any $0 \neq a \in I$ we have a(r+I) = 0. Since $I \neq 0$ such an *a* exists, and thus any singleton set $\{r+I\}$ is linearly dependent. This proves that no nonempty subset of R/I can be linearly independent. So, the only possible basis of R/I is the empty set, which means that $R/I = \{0\}$. But $R/I \neq \{0\}$, since *I* is proper, a contradiction. \Box

Problem 2. An abelian group A is called divisible if for each $a \in A$ and integer n > 1, there exists $b \in A$ such that a = nb. Prove that if $A \neq \{0_A\}$ is a divisible abelian group then A is not a free \mathbb{Z} -module. Deduce that \mathbb{Q} is not a free \mathbb{Z} -module.

Proof. Let $A \neq \{0_A\}$ be a divisible abelian group and assume towards a contradiction that A is a free \mathbb{Z} -module with basis B. Since $A \neq \{0_A\}$, $B \neq \emptyset$, so there exists $0_A \neq a \in B$. By a theorem from class (the UMP for free modules), there exists a \mathbb{Z} -module homomorphism $f: A \to \mathbb{Z}$ such that $f(a) = 1_{\mathbb{Z}}$. Pick any integer n > 1. Since A is divisible, there exists $b \in A$ such that a = nb, and thus $1_{\mathbb{Z}} = f(a) = f(nb) = nf(b)$, since f is a \mathbb{Z} -module homomorphism. Therefore, $n \mid 1_{\mathbb{Z}}$, which is a contradiction since n > 1.

Now notice that \mathbb{Q} is divisible, since for any $q \in \mathbb{Q}$ and $n \in \mathbb{N}$ the element $q' = q/n \in \mathbb{Q}$ satisfies q = nq'. By the first part of the proof, \mathbb{Q} is not a free \mathbb{Z} -module.

Problem 3. Let R be a commutative ring with $1 \neq 0$.

- a) Show that if M is a nonzero free R-module, then $\operatorname{ann}(M) = 0$.
- b) Give an example of a ring R an a module M such that $ann(M) \neq 0$.

Proof.

- a) Suppose towards a contradiction that $M \neq \{0_M\}$ is a free *R*-module but $\operatorname{ann}_R(M) \neq \{0_R\}$. Let $0_R \neq r \in \operatorname{ann}_R(M)$ and let $b \in M$ be an element of a basis of *M*. Then $rb = 0_M$ by the definition of the annihilator, and this shows that $\{b\}$ lis linearly dependent. This contradicts the fact that *b* is a basis element. Therefore, $\operatorname{ann}_R(M) = \{0_R\}$.
- b) Let R be any commutative ring with $1 \neq 0$ that is not a field, and let I be a nontrivial ideal. The module R/I is not free, as we showed in Problem 1, and $\operatorname{ann}(R/I) = I$.

For a more concrete example, take $R = \mathbb{Z}$ and I = (2), and note that $\operatorname{ann}(\mathbb{Z}/(2)) = (2)$.

Problem 4. Prove that if R is a commutative ring with $1 \neq 0$ then $\mathbb{R}^m \cong \mathbb{R}^n$ as R-modules if and only if m = n. In order to do that, you will complete he following steps:

a) Show that if I is any ideal of R and M is any R-module, then M/IM is an R/I-module via

$$(r+I) \cdot (m+IM) = rm + IM.$$

Proof. Given the R/I-action defined by $(r + I) \cdot (m + IM) = rm + IM$, we need to show that our proposed action is well-defined, and then that this makes M/IM a module.

• The action is well defined: To prove this, suppose r + I = s + I and m + IM = n + IM. Then $r - s \in I$ and $m - n \in IM$, hence

$$rm - sn = rm - rn + rn - sn = r(m - n) + (r - s)n \in IM$$

since IM is closed under addition and the *R*-action. This shows that rm + IM = sn + IMand thus

$$(r+I)(m+IM) = (s+I)(n+IM).$$

• The module axioms hold true: This follows from the fact that, since IM is an R-submodule, then M/IM is an R-module with R-action r(m+IM) = rm+IM. Since the action of R/I on M/IM is the same as the R-action (meaning, the coset r + I acts on M/IM in the same way its representative r acts on M/IM) and since all the module axioms hold for the R-action, they also hold for the R/I-action.

For example, here is one of the axioms are in more detail:

$$\begin{aligned} ((r+I) + (s+I))(m+IM) &= ((r+s) + I)(m+IM) \\ &= (r+s)(m+IM) \\ &= r(m+IM) + s(m+IM) \\ &= (r+I)(m+IM) + (s+I)(m+IM) \end{aligned} \qquad M/IM \text{ is an R-module} \end{aligned}$$

b) Show that if I is any ideal of R, then $R^n/IR^n \cong (R/I)^n$ as R/I-modules.

Proof. Let $f: \mathbb{R}^n \to (\mathbb{R}/I)^n$ be the unique \mathbb{R} -module homomorphism such that $f(e_i) = \overline{e_i}$, where e_i is the vector with a 1 in the *i*th position and 0 elsewhere, and $\overline{e_i}$ is the vector with 1 + I in the *i*th position and 0 + I elsewhere. Such a map exists by the UMP for free modules since $\{e_1, \ldots, e_n\}$ form a basis for \mathbb{R}^n .

Since the \overline{e}_i form a basis for $(R/I)^n$ and since $\operatorname{im}(f)$ is a subspace of $(R/I)^n$ that contains all the \overline{e}_i , it follows that $\operatorname{im}(f) = (R/I)^n$, and thus f is surjective. A vector (a_1, \ldots, s_n) is in the kernel of f if and only if $(a_1 + I, \ldots, a_n + I) = (0 + I, \ldots, 0 + I)$, or equivalently $a_i \in I$ for all i. Therefore

$$\ker(f) = \{(a_1, \dots, a_n) \mid a_i \in I\} = \left\{\sum_{i=1}^n a_i e_i \mid a_i \in I\right\} = IR^n.$$

The last equality follows because the containment \subseteq holds by definition of IR^n and the containment \supseteq is justified by the calculations below:

$$IR^{n} = \left\{ \sum_{i=1}^{m} b_{i}r_{i} \mid b_{i} \in I, r_{i} \in R^{n} \right\} = \left\{ \sum_{i=1}^{m} b_{i} \sum_{j=1}^{n} c_{ij}e_{j} \mid b_{i} \in I, c_{ij} \in R \right\}$$
$$= \left\{ \sum_{j=1}^{n} \left(\sum_{i=1}^{m} b_{i}c_{ij} \right) e_{j} \mid b_{i} \in I, c_{ij} \in R \Rightarrow b_{i}c_{ij} \in I \right\}.$$

So, by the first isomorphism theorem, f induces an R-module isomorphism

$$\overline{f}: \mathbb{R}^n / I\mathbb{R}^n \xrightarrow{\cong} (\mathbb{R}/I)^n.$$

Moreover, both the source and target of \overline{f} are R/I-modules: the right-hand side for obvious reasons and the left-hand side by part a). We actually want \overline{f} to be an R/I-module isomorphism. We already know that \overline{f} preserves sums, since it is an R-module homomorphism. All that remains is to check that \overline{f} is R/I-linear. Since \overline{f} is R-linear:

$$\overline{f}((r+I)(m+IR^n)) = \overline{f}((rm+IR^n)) = f(rm) = rf(m) = (r+I)\overline{f}(m+IR^n).$$

The last equality follows since R/I acts on $(R/I)^n$ by (r+I)t = rt for any $t \in (R/I)^n$.

c) Apply the previous part when $I = \mathfrak{m}$ is a maximal ideal of R.

Tip: You will need to use the following fact, which we shall prove in class very soon: if F is a field, then $F^n \cong F^m$ as F-vector spaces if and only if m = n.

Proof. We want to show that $R^m \cong R^n$ as *R*-modules if and only if m = n. If m = n, then $R^m \cong R^n$ trivially.

Now assume that $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ is an \mathbb{R} -module isomorphism. Take any maximal ideal \mathfrak{m} of \mathbb{R} , which exists by a result from Math 817. Consider the quotient map $q: \mathbb{R}^m \to \mathbb{R}^m/\mathfrak{m}\mathbb{R}^m$ and the composite map $\psi = q \circ \varphi$. This is an \mathbb{R} -module homomorphism, which is surjective since both q and φ are surjective. Let's consider the kernel of ψ . We know that ker $q = \mathfrak{m}\mathbb{R}^m$, since q is the canonical projection. Since φ is injective, the kernel of ψ is just the preimage of $\mathfrak{m}\mathbb{R}^n$ via φ :

$$\ker(\psi) = \psi^{-1}(0) = \varphi^{-1}(q^{-1}(0)) = \varphi^{-1}(\mathfrak{m}R^m).$$

But φ^{-1} is an *R*-module homomorphism as well, so

$$\ker(\psi) = \mathfrak{m}\varphi^{-1}(R^m) = \mathfrak{m}R^n$$

The First Isomorphism Theorem now gives the existence of an R-module isomorphism

$$\overline{\psi}: R^n/\mathfrak{m}R^n \to R^m/\mathfrak{m}R^m \quad \overline{\psi}(m+\mathfrak{m}R^n) = \psi(m).$$

We claim that $\overline{\psi}$ is in fact an R/\mathfrak{m} -module homomorphism; we need to check that this is an R/\mathfrak{m} -linear map:

$$\overline{\psi}((r+\mathfrak{m})(m+\mathfrak{m}R^n)) = \overline{\psi}(rm+\mathfrak{m}R^n) = \psi(rm) = r\psi(m) = (r+I)\overline{\psi}(m+\mathfrak{m}R^n),$$

where the last equality uses again the formula for the R/\mathfrak{m} -action on $R^m/\mathfrak{m}R^m$. Using part b), we have the further isomorphisms

$$(R/\mathfrak{m})^n \cong R^n/\mathfrak{m}R^n \cong R^m/\mathfrak{m}R^m \cong (R/\mathfrak{m})^m.$$

Now rewriting the above isomorphism in terms of the field $F = R/\mathfrak{m}$ gives $F^n \cong F^m$ as F-vector spaces, and we know from class that this is true if and only if m = n.