
Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 3 solutions

Problem 1. Let R be a commutative ring with 1 ∕= 0. Show that if every R-module is free then
R is a field.

Proof. Assume towards a contradiction that R is not a field. Recall that a commutative ring R
with 1 ∕= 0 is a field if and only if it has no nonzero proper ideals. Thus there is a nonzero, proper
ideal I of R.

Consider the R-module R/I. If r+I is any element, then for any 0 ∕= a ∈ I we have a(r+I) = 0.
Since I ∕= 0 such an a exists, and thus any singleton set {r+ I} is linearly dependent. This proves
that no nonempty subset of R/I can be linearly independent. So, the only possible basis of R/I is
the empty set, which means that R/I = {0}. But R/I ∕= {0}, since I is proper, a contradiction.

Problem 2. An abelian group A is called divisible if for each a ∈ A and integer n > 1, there exists
b ∈ A such that a = nb. Prove that if A ∕= {0A} is a divisible abelian group then A is not a free
Z-module. Deduce that Q is not a free Z-module.

Proof. Let A ∕= {0A} be a divisible abelian group and assume towards a contradiction that A is a
free Z-module with basis B. Since A ∕= {0A}, B ∕= ∅, so there exists 0A ∕= a ∈ B. By a theorem
from class (the UMP for free modules), there exists a Z-module homomorphism f : A → Z such
that f(a) = 1Z. Pick any integer n > 1. Since A is divisible, there exists b ∈ A such that a = nb,
and thus 1Z = f(a) = f(nb) = nf(b), since f is a Z-module homomorphism. Therefore, n | 1Z,
which is a contradiction since n > 1.

Now notice that Q is divisible, since for any q ∈ Q and n ∈ N the element q′ = q/n ∈ Q satisfies
q = nq′. By the first part of the proof, Q is not a free Z-module.

Problem 3. Let R be a commutative ring with 1 ∕= 0.

a) Show that if M is a nonzero free R-module, then ann(M) = 0.

b) Give an example of a ring R an a module M such that ann(M) ∕= 0.

Proof.

a) Suppose towards a contradiction that M ∕= {0M} is a free R-module but annR(M) ∕= {0R}.
Let 0R ∕= r ∈ annR(M) and let b ∈ M be an element of a basis of M . Then rb = 0M by the
definition of the annihilator, and this shows that {b} lis linearly dependent. This contradicts
the fact that b is a basis element. Therefore, annR(M) = {0R}.

b) Let R be any commutative ring with 1 ∕= 0 that is not a field, and let I be a nontrivial ideal.
The module R/I is not free, as we showed in Problem 1, and ann(R/I) = I.

For a more concrete example, take R = Z and I = (2), and note that ann(Z/(2)) = (2).

Problem 4. Prove that if R is a commutative ring with 1 ∕= 0 then Rm ∼= Rn as R-modules if and
only if m = n. In order to do that, you will complete he following steps:

a) Show that if I is any ideal of R and M is any R-module, then M/IM is an R/I-module via

(r + I) · (m+ IM) = rm+ IM.
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Proof. Given the R/I-action defined by (r + I) · (m+ IM) = rm+ IM , we need to show that
our proposed action is well-defined, and then that this makes M/IM a module.

• The action is well defined: To prove this, suppose r+ I = s+ I and m+ IM = n+ IM . Then
r − s ∈ I and m− n ∈ IM , hence

rm− sn = rm− rn+ rn− sn = r(m− n) + (r − s)n ∈ IM

since IM is closed under addition and the R-action. This shows that rm + IM = sn + IM
and thus

(r + I)(m+ IM) = (s+ I)(n+ IM).

• The module axioms hold true: This follows from the fact that, since IM is an R-submodule,
then M/IM is an R-module with R-action r(m+IM) = rm+IM . Since the action of R/I on
M/IM is the same as the R-action (meaning, the coset r+ I acts on M/IM in the same way
its representative r acts on M/IM) and since all the module axioms hold for the R-action,
they also hold for the R/I-action.

For example, here is one of the axioms are in more detail:

((r + I) + (s+ I))(m+ IM) = ((r + s) + I)(m+ IM)

= (r + s)(m+ IM)

= r(m+ IM) + s(m+ IM) M/IM is an R-module

= (r + I)(m+ IM) + (s+ I)(m+ IM)

b) Show that if I is any ideal of R, then Rn/IRn ∼= (R/I)n as R/I-modules.

Proof. Let f : Rn → (R/I)n be the unique R-module homomorphism such that f(ei) = ei,
where ei is the vector with a 1 in the ith position and 0 elsewhere, and ei is the vector with
1 + I in the ith position and 0 + I elsewhere. Such a map exists by the UMP for free modules
since {e1, . . . , en} form a basis for Rn.

Since the ei form a basis for (R/I)n and since im(f) is a subspace of (R/I)n that contains all
the ei, it follows that im(f) = (R/I)n, and thus f is surjective. A vector (a1, . . . , sn) is in the
kernel of f if and only if (a1 + I, . . . , an + I) = (0+ I, . . . , 0+ I), or equivalently ai ∈ I for all i.
Therefore

ker(f) = {(a1, . . . , an) | ai ∈ I} =


n

i=1

aiei | ai ∈ I


= IRn.

The last equality follows because the containment ⊆ holds by definition of IRn and the contain-
ment ⊇ is justified by the calculations below:

IRn =


m

i=1

biri | bi ∈ I, ri ∈ Rn


=






m

i=1

bi

n

j=1

cijej | bi ∈ I, cij ∈ R






=






n

j=1


m

i=1

bicij


ej | bi ∈ I, cij ∈ R ⇒ bicij ∈ I




 .

So, by the first isomorphism theorem, f induces an R-module isomorphism

f : Rn/IRn ∼=−→ (R/I)n.
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Moreover, both the source and target of f are R/I-modules: the right-hand side for obvious
reasons and the left-hand side by part a). We actually want f to be an R/I-module isomorphism.
We already know that f preserves sums, since it is an R-module homomorphism. All that
remains is to check that f is R/I-linear. Since f is R-linear:

f((r + I)(m+ IRn)) = f((rm+ IRn)) = f(rm) = rf(m) = (r + I)f(m+ IRn).

The last equality follows since R/I acts on (R/I)n by (r + I)t = rt for any t ∈ (R/I)n.

c) Apply the previous part when I = m is a maximal ideal of R.

Tip: You will need to use the following fact, which we shall prove in class very soon: if F is a
field, then Fn ∼= Fm as F -vector spaces if and only if m = n.

Proof. We want to show that Rm ∼= Rn as R-modules if and only if m = n. If m = n, then
Rm ∼= Rn trivially.

Now assume that ϕ : Rn → Rm is an R-module isomorphism. Take any maximal ideal m of R,
which exists by a result from Math 817. Consider the quotient map q : Rm → Rm/mRm and the
composite map ψ = q ◦ϕ. This is an R-module homomorphism, which is surjective since both q
and ϕ are surjective. Let’s consider the kernel of ψ. We know that ker q = mRm, since q is the
canonical projection. Since ϕ is injective, the kernel of ψ is just the preimage of mRn via ϕ:

ker(ψ) = ψ−1(0) = ϕ−1(q−1(0)) = ϕ−1(mRm).

But ϕ−1 is an R-module homomorphism as well, so

ker(ψ) = mϕ−1(Rm) = mRn.

The First Isomorphism Theorem now gives the existence of an R-module isomorphism

ψ : Rn/mRn → Rm/mRm ψ(m+mRn) = ψ(m).

We claim that ψ is in fact an R/m-module homomorphism; we need to check that this is an
R/m-linear map:

ψ((r +m)(m+mRn)) = ψ(rm+mRn) = ψ(rm) = rψ(m) = (r + I)ψ(m+mRn),

where the last equality uses again the formula for the R/m-action on Rm/mRm.

Using part b), we have the further isomorphisms

(R/m)n ∼= Rn/mRn ∼= Rm/mRm ∼= (R/m)m.

Now rewriting the above isomorphism in terms of the field F = R/m gives Fn ∼= Fm as F -vector
spaces, and we know from class that this is true if and only if m = n.
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