Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 3 solutions

Problem 1. Let R be a commutative ring with 1 # 0. Show that if every R-module is free then
R is a field.

Proof. Assume towards a contradiction that R is not a field. Recall that a commutative ring R
with 1 # 0 is a field if and only if it has no nonzero proper ideals. Thus there is a nonzero, proper
ideal I of R.

Consider the R-module R/I. If r+1 is any element, then for any 0 # a € I we have a(r+1) = 0.
Since I # 0 such an a exists, and thus any singleton set {r + I'} is linearly dependent. This proves
that no nonempty subset of R/I can be linearly independent. So, the only possible basis of R/I is
the empty set, which means that R/I = {0}. But R/I # {0}, since [ is proper, a contradiction. [

Problem 2. An abelian group A is called divisible if for each a € A and integer n > 1, there exists
b € A such that a = nb. Prove that if A # {04} is a divisible abelian group then A is not a free
Z-module. Deduce that Q is not a free Z-module.

Proof. Let A # {04} be a divisible abelian group and assume towards a contradiction that A is a
free Z-module with basis B. Since A # {04}, B # 0, so there exists 04 # a € B. By a theorem
from class (the UMP for free modules), there exists a Z-module homomorphism f: A — Z such
that f(a) = 1z. Pick any integer n > 1. Since A is divisible, there exists b € A such that a = nb,
and thus 17 = f(a) = f(nb) = nf(b), since f is a Z-module homomorphism. Therefore, n | 1z,
which is a contradiction since n > 1.

Now notice that Q is divisible, since for any ¢ € Q and n € N the element ¢’ = ¢/n € Q satisfies
g = ng'. By the first part of the proof, Q is not a free Z-module. O

Problem 3. Let R be a commutative ring with 1 # 0.

a) Show that if M is a nonzero free R-module, then ann(M) = 0.

b) Give an example of a ring R an a module M such that ann(M) # 0.
Proof.

a) Suppose towards a contradiction that M # {0y} is a free R-module but anng(M) # {Or}.
Let Og # r € anng(M) and let b € M be an element of a basis of M. Then rb = 0p; by the
definition of the annihilator, and this shows that {b} lis linearly dependent. This contradicts
the fact that b is a basis element. Therefore, anng(M) = {Og}.

b) Let R be any commutative ring with 1 # 0 that is not a field, and let I be a nontrivial ideal.
The module R/I is not free, as we showed in Problem 1, and ann(R/I) = I.

For a more concrete example, take R = Z and I = (2), and note that ann(Z/(2)) = (2).
O

Problem 4. Prove that if R is a commutative ring with 1 # 0 then R™ = R™ as R-modules if and
only if m = n. In order to do that, you will complete he following steps:

a) Show that if I is any ideal of R and M is any R-module, then M /IM is an R/I-module via

(r+1)-(m+IM)=rm+ IM.
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Proof. Given the R/I-action defined by (r+I) - (m + IM) = rm + IM, we need to show that
our proposed action is well-defined, and then that this makes M/IM a module.

e The action is well defined: To prove this, suppose r+1 = s+1 and m+IM =n—+1IM. Then
r—sé&€land m—n € IM, hence

rm—sn=rm—rn+rn—sn=r(m—n)+(r—snelM

since IM is closed under addition and the R-action. This shows that rm +IM = sn+ IM
and thus
(r+I)(m+IM)=(s+1I)(n+IM).

e The module axioms hold true: This follows from the fact that, since IM is an R-submodule,
then M/IM is an R-module with R-action r(m+IM) = rm+IM. Since the action of R/I on
M/IM is the same as the R-action (meaning, the coset r 4+ I acts on M/IM in the same way
its representative r acts on M/IM) and since all the module axioms hold for the R-action,
they also hold for the R/I-action.

For example, here is one of the axioms are in more detail:

(r+D)+(s+1)m+IM)=((r+s)+1)(m+1IM)

=(r+s)(im+1IM)
=r(m+IM)+ s(m+ IM) M/IM is an R-module
=(r+I)(m+IM)+ (s+I)(m+IM) O

Show that if I is any ideal of R, then R"/IR™ = (R/I)" as R/I-modules.

Proof. Let f: R® — (R/I)"™ be the unique R-module homomorphism such that f(e;) = &,
where e; is the vector with a 1 in the i¢th position and 0 elsewhere, and €; is the vector with
1+ I in the ith position and 0 + I elsewhere. Such a map exists by the UMP for free modules
since {ei,...,e,} form a basis for R".

Since the €; form a basis for (R/I)™ and since im(f) is a subspace of (R/I)" that contains all
the €;, it follows that im(f) = (R/I)", and thus f is surjective. A vector (ai,...,sy) is in the
kernel of f if and only if (a1 +1,...,a,+1) = (0+1,...,0+ 1), or equivalently a; € I for all i.
Therefore

ker(f) = {(a1,...,an) | a; € I} = {Zaiei|aiel} =IR".

i=1
The last equality follows because the containment C holds by definition of I R™ and the contain-
ment DO is justified by the calculations below:

IR" — {Zbiri |b;el,r;c R”} = ZbiZCijej | b; €l,ci; €ER

=1 =1 7j=1

n m
j=1 \i=1

So, by the first isomorphism theorem, f induces an R-module isomorphism

f:RY/IR" = (R/I)".
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Moreover, both the source and target of f are R/I-modules: the right-hand side for obvious
reasons and the left-hand side by part a). We actually want f to be an R/I-module isomorphism.
We already know that f preserves sums, since it is an R-module homomorphism. All that
remains is to check that f is R/I-linear. Since f is R-linear:

F(r + D(m+1IR")) = f((rm + IR")) = f(rm) = rf(m) = (r + I) f(m + IR").

The last equality follows since R/I acts on (R/I)"™ by (r + I)t = rt for any t € (R/I)". O

Apply the previous part when I = m is a maximal ideal of R.

Tip: You will need to use the following fact, which we shall prove in class very soon: if F'is a
field, then F™ =2 F™ as F-vector spaces if and only if m = n.

Proof. We want to show that R™ = R™ as R-modules if and only if m = n. If m = n, then
R™ = R™ trivially.

Now assume that ¢ : R — R™ is an R-module isomorphism. Take any maximal ideal m of R,
which exists by a result from Math 817. Consider the quotient map ¢: R™ — R™/mR"™ and the
composite map ¥ = go . This is an R-module homomorphism, which is surjective since both ¢
and ¢ are surjective. Let’s consider the kernel of ¥. We know that ker ¢ = mR™, since ¢ is the
canonical projection. Since ¢ is injective, the kernel of v is just the preimage of mR"™ via (:

ker(1)) = ¢~1(0) = ¢~ (¢7'(0)) = ¢~ (mR™).
But ¢! is an R-module homomorphism as well, so
ker()) = mp~(R™) = mR".
The First Isomorphism Theorem now gives the existence of an R-module isomorphism
P R"/mR™ — R™/mR™ (m+mR") = ¥(m).

We claim that ¢ is in fact an R/m-module homomorphism; we need to check that this is an
R/m-linear map:

$((r +m)(m +mR")) = P(rm +mR") = ¢(rm) = rp(m) = (r + )i (m + mR"),

where the last equality uses again the formula for the R/m-action on R™/mR™.

Using part b), we have the further isomorphisms

(R/m)" = R" /mR" = R™ /mR™ = (R /m)™.

Now rewriting the above isomorphism in terms of the field F' = R/m gives F™ = F'™ as F-vector
spaces, and we know from class that this is true if and only if m = n. O
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