Problem Set 3 solutions

Problem 1. Let R be a commutative ring with $1 \neq 0$. Show that if every R-module is free then R is a field.

Proof. Assume towards a contradiction that R is not a field. Recall that a commutative ring R with $1 \neq 0$ is a field if and only if it has no nonzero proper ideals. Thus there is a nonzero, proper ideal I of R.

Consider the R-module R / I. If $r+I$ is any element, then for any $0 \neq a \in I$ we have $a(r+I)=0$. Since $I \neq 0$ such an a exists, and thus any singleton set $\{r+I\}$ is linearly dependent. This proves that no nonempty subset of R / I can be linearly independent. So, the only possible basis of R / I is the empty set, which means that $R / I=\{0\}$. But $R / I \neq\{0\}$, since I is proper, a contradiction.

Problem 2. An abelian group A is called divisible if for each $a \in A$ and integer $n>1$, there exists $b \in A$ such that $a=n b$. Prove that if $A \neq\left\{0_{A}\right\}$ is a divisible abelian group then A is not a free \mathbb{Z}-module. Deduce that \mathbb{Q} is not a free \mathbb{Z}-module.

Proof. Let $A \neq\left\{0_{A}\right\}$ be a divisible abelian group and assume towards a contradiction that A is a free \mathbb{Z}-module with basis B. Since $A \neq\left\{0_{A}\right\}, B \neq \emptyset$, so there exists $0_{A} \neq a \in B$. By a theorem from class (the UMP for free modules), there exists a \mathbb{Z}-module homomorphism $f: A \rightarrow \mathbb{Z}$ such that $f(a)=1_{\mathbb{Z}}$. Pick any integer $n>1$. Since A is divisible, there exists $b \in A$ such that $a=n b$, and thus $1_{\mathbb{Z}}=f(a)=f(n b)=n f(b)$, since f is a \mathbb{Z}-module homomorphism. Therefore, $n \mid 1_{\mathbb{Z}}$, which is a contradiction since $n>1$.

Now notice that \mathbb{Q} is divisible, since for any $q \in \mathbb{Q}$ and $n \in \mathbb{N}$ the element $q^{\prime}=q / n \in \mathbb{Q}$ satisfies $q=n q^{\prime}$. By the first part of the proof, \mathbb{Q} is not a free \mathbb{Z}-module.

Problem 3. Let R be a commutative ring with $1 \neq 0$.
a) Show that if M is a nonzero free R-module, then $\operatorname{ann}(M)=0$.
b) Give an example of a ring R an a module M such that $\operatorname{ann}(M) \neq 0$.

Proof.

a) Suppose towards a contradiction that $M \neq\left\{0_{M}\right\}$ is a free R-module but ann ${ }_{R}(M) \neq\left\{0_{R}\right\}$. Let $0_{R} \neq r \in \operatorname{ann}_{R}(M)$ and let $b \in M$ be an element of a basis of M. Then $r b=0_{M}$ by the definition of the annihilator, and this shows that $\{b\}$ lis linearly dependent. This contradicts the fact that b is a basis element. Therefore, $\operatorname{ann}_{R}(M)=\left\{0_{R}\right\}$.
b) Let R be any commutative ring with $1 \neq 0$ that is not a field, and let I be a nontrivial ideal. The module R / I is not free, as we showed in Problem 1, and $\operatorname{ann}(R / I)=I$.
For a more concrete example, take $R=\mathbb{Z}$ and $I=(2)$, and note that $\operatorname{ann}(\mathbb{Z} /(2))=(2)$.

Problem 4. Prove that if R is a commutative ring with $1 \neq 0$ then $R^{m} \cong R^{n}$ as R-modules if and only if $m=n$. In order to do that, you will complete he following steps:
a) Show that if I is any ideal of R and M is any R-module, then $M / I M$ is an R / I-module via

$$
(r+I) \cdot(m+I M)=r m+I M .
$$

Proof. Given the R / I-action defined by $(r+I) \cdot(m+I M)=r m+I M$, we need to show that our proposed action is well-defined, and then that this makes $M / I M$ a module.

- The action is well defined: To prove this, suppose $r+I=s+I$ and $m+I M=n+I M$. Then $r-s \in I$ and $m-n \in I M$, hence

$$
r m-s n=r m-r n+r n-s n=r(m-n)+(r-s) n \in I M
$$

since $I M$ is closed under addition and the R-action. This shows that $r m+I M=s n+I M$ and thus

$$
(r+I)(m+I M)=(s+I)(n+I M) .
$$

- The module axioms hold true: This follows from the fact that, since $I M$ is an R-submodule, then $M / I M$ is an R-module with R-action $r(m+I M)=r m+I M$. Since the action of R / I on $M / I M$ is the same as the R-action (meaning, the coset $r+I$ acts on $M / I M$ in the same way its representative r acts on $M / I M$) and since all the module axioms hold for the R-action, they also hold for the R / I-action.
For example, here is one of the axioms are in more detail:

$$
\begin{array}{rlr}
((r+I)+(s+I))(m+I M) & =((r+s)+I)(m+I M) & \\
& =(r+s)(m+I M) & M / I M \text { is an } R \text {-module } \\
& =r(m+I M)+s(m+I M) & \square
\end{array}
$$

b) Show that if I is any ideal of R, then $R^{n} / I R^{n} \cong(R / I)^{n}$ as R / I-modules.

Proof. Let $f: R^{n} \rightarrow(R / I)^{n}$ be the unique R-module homomorphism such that $f\left(e_{i}\right)=\overline{e_{i}}$, where e_{i} is the vector with a 1 in the i th position and 0 elsewhere, and \bar{e}_{i} is the vector with $1+I$ in the i th position and $0+I$ elsewhere. Such a map exists by the UMP for free modules since $\left\{e_{1}, \ldots, e_{n}\right\}$ form a basis for R^{n}.
Since the \bar{e}_{i} form a basis for $(R / I)^{n}$ and since $\operatorname{im}(f)$ is a subspace of $(R / I)^{n}$ that contains all the \bar{e}_{i}, it follows that $\operatorname{im}(f)=(R / I)^{n}$, and thus f is surjective. A vector $\left(a_{1}, \ldots, s_{n}\right)$ is in the kernel of f if and only if $\left(a_{1}+I, \ldots, a_{n}+I\right)=(0+I, \ldots, 0+I)$, or equivalently $a_{i} \in I$ for all i. Therefore

$$
\operatorname{ker}(f)=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in I\right\}=\left\{\sum_{i=1}^{n} a_{i} e_{i} \mid a_{i} \in I\right\}=I R^{n} .
$$

The last equality follows because the containment \subseteq holds by definition of $I R^{n}$ and the containment \supseteq is justified by the calculations below:

$$
\begin{gathered}
I R^{n}=\left\{\sum_{i=1}^{m} b_{i} r_{i} \mid b_{i} \in I, r_{i} \in R^{n}\right\}=\left\{\sum_{i=1}^{m} b_{i} \sum_{j=1}^{n} c_{i j} e_{j} \mid b_{i} \in I, c_{i j} \in R\right\} \\
=\left\{\sum_{j=1}^{n}\left(\sum_{i=1}^{m} b_{i} c_{i j}\right) e_{j} \mid b_{i} \in I, c_{i j} \in R \Rightarrow b_{i} c_{i j} \in I\right\}
\end{gathered}
$$

So, by the first isomorphism theorem, f induces an R-module isomorphism

$$
\bar{f}: R^{n} / I R^{n} \xrightarrow{\cong}(R / I)^{n} .
$$

Moreover, both the source and target of \bar{f} are R / I-modules: the right-hand side for obvious reasons and the left-hand side by part a). We actually want \bar{f} to be an R / I-module isomorphism. We already know that \bar{f} preserves sums, since it is an R-module homomorphism. All that remains is to check that \bar{f} is R / I-linear. Since \bar{f} is R-linear:

$$
\bar{f}\left((r+I)\left(m+I R^{n}\right)\right)=\bar{f}\left(\left(r m+I R^{n}\right)\right)=f(r m)=r f(m)=(r+I) \bar{f}\left(m+I R^{n}\right)
$$

The last equality follows since R / I acts on $(R / I)^{n}$ by $(r+I) t=r t$ for any $t \in(R / I)^{n}$.
c) Apply the previous part when $I=\mathfrak{m}$ is a maximal ideal of R.

Tip: You will need to use the following fact, which we shall prove in class very soon: if F is a field, then $F^{n} \cong F^{m}$ as F-vector spaces if and only if $m=n$.

Proof. We want to show that $R^{m} \cong R^{n}$ as R-modules if and only if $m=n$. If $m=n$, then $R^{m} \cong R^{n}$ trivially.
Now assume that $\varphi: R^{n} \rightarrow R^{m}$ is an R-module isomorphism. Take any maximal ideal \mathfrak{m} of R, which exists by a result from Math 817 . Consider the quotient map $q: R^{m} \rightarrow R^{m} / \mathfrak{m} R^{m}$ and the composite map $\psi=q \circ \varphi$. This is an R-module homomorphism, which is surjective since both q and φ are surjective. Let's consider the kernel of ψ. We know that ker $q=\mathfrak{m} R^{m}$, since q is the canonical projection. Since φ is injective, the kernel of ψ is just the preimage of $\mathfrak{m} R^{n}$ via φ :

$$
\operatorname{ker}(\psi)=\psi^{-1}(0)=\varphi^{-1}\left(q^{-1}(0)\right)=\varphi^{-1}\left(\mathfrak{m} R^{m}\right)
$$

But φ^{-1} is an R-module homomorphism as well, so

$$
\operatorname{ker}(\psi)=\mathfrak{m} \varphi^{-1}\left(R^{m}\right)=\mathfrak{m} R^{n}
$$

The First Isomorphism Theorem now gives the existence of an R-module isomorphism

$$
\bar{\psi}: R^{n} / \mathfrak{m} R^{n} \rightarrow R^{m} / \mathfrak{m} R^{m} \quad \bar{\psi}\left(m+\mathfrak{m} R^{n}\right)=\psi(m)
$$

We claim that $\bar{\psi}$ is in fact an R / \mathfrak{m}-module homomorphism; we need to check that this is an R / \mathfrak{m}-linear map:

$$
\bar{\psi}\left((r+\mathfrak{m})\left(m+\mathfrak{m} R^{n}\right)\right)=\bar{\psi}\left(r m+\mathfrak{m} R^{n}\right)=\psi(r m)=r \psi(m)=(r+I) \bar{\psi}\left(m+\mathfrak{m} R^{n}\right)
$$

where the last equality uses again the formula for the R / \mathfrak{m}-action on $R^{m} / \mathfrak{m} R^{m}$.
Using part b), we have the further isomorphisms

$$
(R / \mathfrak{m})^{n} \cong R^{n} / \mathfrak{m} R^{n} \cong R^{m} / \mathfrak{m} R^{m} \cong(R / \mathfrak{m})^{m}
$$

Now rewriting the above isomorphism in terms of the field $F=R / \mathfrak{m}$ gives $F^{n} \cong F^{m}$ as F-vector spaces, and we know from class that this is true if and only if $m=n$.

