Problem Set 4 solutions

Problem 1. Let W be a subspace of a vector space V. Show that $\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}(V / W)$.
Proof. We will show the following: $\operatorname{dim}(V)<\infty$ if and only $\operatorname{dim}(W)+\operatorname{dim}(V / W)$. This will show the formula holds when one of the dimensions is infinite; when all three are finite, we will show that $\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}(V / W)$.

Case 1: If $\operatorname{dim}(V)=\infty$, then we claim that at least one of $\operatorname{dim}(W)$ or $\operatorname{dim}(V / W)$ is infinite.
Indeed, by problem 3 on Problem Set 3 we have that if both $\operatorname{dim}(W)<\infty$ and $\operatorname{dim}(V / W)<\infty$ (i.e both W and V / W are finitely generated) then V is finitely generated, so $\operatorname{dim}(V)<\infty$. This shows the contrapositive of the claim above.

Case 2: If $\operatorname{dim}(V)<\infty$, then we will show that $\operatorname{dim}(W)<\infty$ and $\operatorname{dim}(V / W)<\infty$, and prove that the formula above holds.

Any basis for W is in particular a linearly independent set of V, and thus it can be extended to a basis of V. Since every basis of V is finite, then any basis of W must also be finite. Say $B=\left\{w_{1}, \ldots, w_{s}\right\} \subseteq W$ is a basis for W and let $C=\left\{w_{1}, \ldots, w_{s}, v_{1}, \ldots, v_{t}\right\}$ be a basis for V. In particular, note that $\operatorname{dim}(V)=s+t$. We claim that $D=\left\{v_{1}+W, \ldots, v_{t}+W\right\}$ is a basis for V / W, which in particular will show that $\operatorname{dim}(V / W)=t$, and thus

$$
\operatorname{dim}(V)=s+t=\operatorname{dim}(W)+\operatorname{dim}(V / W) .
$$

First, we show that D generates V / W. Let $v+W \in V / W$. Since C generates V, we can find field elements c_{1}, \ldots, c_{s} and d_{1}, \ldots, d_{t} such that

$$
v=\sum_{i=1}^{s} c_{i} w_{i}+\sum_{j=1}^{t} d_{j} v_{j} .
$$

Since $w_{i}+W=0+W$ for all i, we get

$$
v+W=\left(\sum_{i=1}^{s} c_{i} w_{i}+\sum_{j=1}^{t} d_{j} v_{j}\right)+W=\sum_{j=1}^{t} d_{j}\left(v_{j}+W\right)
$$

Now we will show that D is linearly independent. Suppose that d_{i} are such that

$$
0=\sum_{j=1}^{t} d_{j}\left(v_{j}+W\right)=\left(\sum_{j=1}^{t} d_{j} v_{j}\right)+W .
$$

Then $d_{1} v_{1}+\cdots+d_{t} v_{t} \in W$, so we can find c_{1}, \ldots, c_{s} such that

$$
\sum_{j=1}^{t} d_{j} v_{j}=\sum_{i=1}^{s} c_{i} w_{i} \Longrightarrow \sum_{i=1}^{s}\left(-c_{i}\right) w_{i}+\sum_{j=1}^{t} d_{j} v_{j} .
$$

But C is a linearly independent set, so all the $c_{i}=0$ and $d_{j}=0$.
Problem 2. Let F be a field, $f: V \rightarrow W$ be an F-linear transformation, and $\operatorname{coker}(f):=W / \operatorname{im}(f)$. Prove that

$$
\operatorname{dim}(\operatorname{coker}(f))+\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}(\operatorname{ker}(f))
$$

Proof. By the Rank-Nullity Theorem,

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker}(f))+\operatorname{dim}(\operatorname{im}(f)) .
$$

By Problem 1, $\operatorname{dim}(\operatorname{coker}(f))+\operatorname{dim}(\operatorname{im}(f))=\operatorname{dim}(W)$. Adding $\operatorname{dim}(\operatorname{coker}(f))$ on both sides and using the equality from Problem 1 gives

$$
\operatorname{dim}(V)+\operatorname{dim}(\operatorname{coker}(f))=\operatorname{dim}(W)+\operatorname{dim}(\operatorname{ker}(f))
$$

Problem 3. Let $\phi: V \rightarrow V$ be an F-linear transformation. Prove that if $\phi \circ \phi=0$, then

$$
\operatorname{dim}(\operatorname{im}(\phi))) \leqslant \frac{1}{2} \operatorname{dim}(V)
$$

Proof. By the Rank-Nullity Theorem, we have

$$
\operatorname{dim}(\operatorname{ker}(\phi))+\operatorname{dim}(\operatorname{im}(\phi))=\operatorname{dim}(V)
$$

Since $\phi \circ \phi=0$, we have $\operatorname{im}(\phi) \subseteq \operatorname{ker}(\phi)$. Then any basis of $\operatorname{im}(\phi)$ can be extended to a bases of $\operatorname{ker}(\phi)$, and thus

$$
\operatorname{dim}(\operatorname{im}(\phi)) \leqslant \operatorname{dim}(\operatorname{ker}(\phi))
$$

So

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker}(\phi))+\operatorname{dim}(\operatorname{im}(\phi)) \geqslant \operatorname{dim}(\operatorname{im}(\phi))+\operatorname{dim}(\operatorname{im}(\phi))=2 \operatorname{rank}(\phi),
$$

which implies the result.
Problem 4. Let R be a commutative ring with $1 \neq 0$. Let $f: R^{a} \rightarrow R^{b}$ be a surjective R-module homomorphism. Show that $a \geqslant b$.

Solution. Let \mathfrak{m} be a maximal ideal of R, which exists by Math 817. Since f is R-linear, for every $c \in \mathfrak{m}$ and $x \in R^{n}$ we have $f(c x)=c f(x)$, so $f\left(\mathfrak{m} R^{a}\right) \subseteq \mathfrak{m} R^{b}$. Let $q: R^{b} \rightarrow R^{b} / \mathfrak{m} R^{b}$ be the canonical projection. Since $f\left(\mathfrak{m} R^{a}\right) \subseteq \mathfrak{m} R^{b}$, we conclude that $\mathfrak{m} R^{a}$ is contained in the kernel of $q \circ f$. By a result from class, $q \circ f$ induces a well-defined R-module homomorphism $R^{a} / \mathfrak{m} R^{a} \rightarrow R^{b} / \mathfrak{m} R^{b}$. More precisely, the map

$$
\begin{aligned}
& R^{a} / \mathfrak{m} R^{a} \longrightarrow \stackrel{\bar{f}}{\longrightarrow} R^{b} / \mathfrak{m} R^{b} \\
& x+\mathfrak{m} R^{a} \longmapsto f(x)+\mathfrak{m} R^{b}
\end{aligned}
$$

is a well-defined R-module homomorphism. Moreover, \bar{f} is surjective: for any $x+\mathfrak{m} R^{b} \in R^{b} / \mathfrak{m} R^{b}$, we can find $y \in R^{a}$ such that $f(y)=x$, and $\bar{f}\left(y+\mathfrak{m} R^{a}\right)=f(y)+\mathfrak{m} R^{b}=x+\mathfrak{m} R^{b}$. Note that the source and target of \bar{f} are both also R / \mathfrak{m}-modules, by a result from Problem Set 3 . Now we claim that in fact \bar{f} is also R / \mathfrak{m}-linear: indeed,
$\bar{f}\left((c+\mathfrak{m})\left(x+\mathfrak{m} R^{a}\right)\right)=\bar{f}\left(c x+\mathfrak{m} R^{a}\right)=f(c x)+\mathfrak{m} R^{a}=c f(x)+\mathfrak{m} R^{a}=c\left(f(x)+\mathfrak{m} R^{a}\right)=(c+\mathfrak{m}) \bar{f}\left(x+\mathfrak{m} R^{a}\right)$.
So we conclude that $\bar{f}: R^{a} / \mathfrak{m} R^{a} \rightarrow R^{b} / \mathfrak{m} R^{b}$ is a surjective homomorphism of R / \mathfrak{m}-modules. Notice also that R / \mathfrak{m} is a field, so $R^{a} / \mathfrak{m} R^{a}$ and $R^{b} / \mathfrak{m} R^{b}$ are vector spaces over that field. Composing with the isomorphisms $(R / \mathfrak{m} R)^{a} \cong R^{a} / \mathfrak{m} R^{a}$ and $R^{b} / \mathfrak{m} R^{b} \cong(R / \mathfrak{m} R)^{b}$ from Problem Set 3, we conclude that \bar{f} is a surjective linear transformation of R / \mathfrak{m}-vector spaces. This reduces the problem to showing that if $F^{a} \rightarrow F^{b}$ is a surjective linear transformation, then $a \geqslant b$.

Let $\varphi: F^{a} \rightarrow F^{b}$ is a surjective linear transformation. Then $\operatorname{im}(\varphi)=F^{b}$. By the Rank-Nullity Theorem,

$$
b+\operatorname{dim}(\operatorname{ker}(\varphi))=\operatorname{dim}\left(F^{b}\right)+\operatorname{dim}(\operatorname{ker}(\varphi))=\operatorname{dim}(\operatorname{im}(\varphi))+\operatorname{dim}(\operatorname{ker}(\varphi))=\operatorname{dim}\left(F^{a}\right)=a
$$

Since $\operatorname{dim}(\operatorname{ker}(\varphi)) \geqslant 0$, we conclude that $b \leqslant a$.

Problem 5. Let R be a ring, M and N left R-modules, and $p: M \rightarrow N$ a surjective R-module homomorphism. We say p is a split surjection if there exists an R-module homomorphism $j: N \rightarrow M$ such that $p \circ j=i d_{N}$.
a) Prove that if N is free, then every surjective R-module homomorphism of the form $p: M \rightarrow N$ is a split surjection.

Proof. Let B be a basis of N. Since p is onto, for each $b \in B$ there exists at least one $m \in M$ such that $p(m)=b$. Choose one such m_{b} for each $b \in B$. This gives us a function $g: B \rightarrow M$, defined by $g(b)=m_{b}$, so that $p(g(b))=b$ for all $b \in B$. By the UMP of bases, there is a (unique) R-module homomorphism $j: N \rightarrow M$ such that $j(b)=g(b)$ for all $b \in B$. The composition $p \circ j$ is an R-module homomorphism from N to N that sends b to b for all $b \in B$. Since B is a basis of N, it must be that $p \circ j=i d_{N}$ (by the uniqueness part of the UMP for bases). Thus p is a split surjection.
b) Give an explicit example of a ring R and a surjective R-module homomorphism that is not split.

Proof. Take $R=\mathbb{Z}, M=\mathbb{Z}, N=\mathbb{Z} /(2)$, and $p: M \rightarrow N$ the canonical surjection sending n to $n+(2)$. We claim p is not a split surjection. In fact, we claim that the only \mathbb{Z}-module homomorphisms from $\mathbb{Z} /(2)$ to \mathbb{Z} is the zero map, which does not give a splitting.
Throughout, let \bar{j} denote the element $j+(2)$ of $\mathbb{Z} /(2)$. Say $g: \mathbb{Z} /(2) \rightarrow \mathbb{Z}$ is any \mathbb{Z}-module homomorphism. Then $g(\overline{0})=0$. Also,

$$
0=g(\overline{0})=g(\overline{1}+\overline{1})=g(\overline{1})+g(\overline{1})
$$

Since the only element x of \mathbb{Z} satisfying $x+x=0$ is $x=0$, this proves $g(\overline{1})=0$ too, and hence g is the zero map.

