Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 4 solutions

Problem 1. Let W be a subspace of a vector space V. Show that dim(V') = dim(W) +dim(V/W).

Proof. We will show the following: dim(V') < oo if and only dim(W') + dim(V/W). This will show
the formula holds when one of the dimensions is infinite; when all three are finite, we will show
that dim(V') = dim(W) + dim(V/W).

Case 1: If dim(V') = oo, then we claim that at least one of dim(W') or dim(V/W) is infinite.

Indeed, by problem 3 on Problem Set 3 we have that if both dim(W) < co and dim(V/W) < oo
(i.e both W and V/W are finitely generated) then V' is finitely generated, so dim(V) < oo. This
shows the contrapositive of the claim above.

Case 2: If dim(V') < oo, then we will show that dim(WW) < oo and dim(V /W) < oo, and prove
that the formula above holds.

Any basis for W is in particular a linearly independent set of V', and thus it can be extended
to a basis of V. Since every basis of V is finite, then any basis of W must also be finite. Say
B ={w,...,ws} € W is a basis for W and let C' = {wy,...,ws,v1,...,v:} be a basis for V. In
particular, note that dim(V') = s+t. We claim that D = {v; + W, ..., v+ W} is a basis for V/W,
which in particular will show that dim(V/W) = t, and thus

dim(V) = s+ t = dim(W) + dim(V/W).

First, we show that D generates V/W. Let v + W € V/W. Since C generates V', we can find
field elements cq,...,cs and dy, ..., d; such that

s t
v = E c;w; + E dj’l)j.
i=1 j=1

Since w; + W = 0+ W for all 7, we get

s

¢ ¢
v+ W = Zciwi—l-Zdjvj —{—W:Zdj(vj-i—W),
i=1 j=1 j=1

Now we will show that D is linearly independent. Suppose that d; are such that

t

t
0=> di(v; + W)= [ dju; | +W.
=1 i=1

Then dyjvy + -+ 4+ dyvy € W, so we can find ¢y, ..., cs such that

t s s t
Z djvj = Z cGw; — Z(—Ci)wi + Z djvj.
j=1 i=1 i=1 j=1

But C is a linearly independent set, so all the ¢; = 0 and d; = 0. Il

Problem 2. Let F be afield, f: V — W be an F-linear transformation, and coker(f) := W/im(f).
Prove that
dim(coker(f)) + dim(V') = dim(W) + dim(ker(f)).
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Proof. By the Rank-Nullity Theorem,
dim(V) = dim(ker(f)) + dim(im(f)).
By Problem 1, dim(coker(f)) + dim(im(f)) = dim(W). Adding dim(coker(f)) on both sides and
using the equality from Problem 1 gives
dim (V') 4 dim(coker(f)) = dim(W) + dim(ker(f)). O

Problem 3. Let ¢ : V — V be an F-linear transformation. Prove that if ¢ o ¢ = 0, then

dim (im(6))) < %dim(V).

Proof. By the Rank-Nullity Theorem, we have
dim(ker(¢)) + dim(im(¢)) = dim(V).

Since ¢ o ¢ = 0, we have im(¢) C ker(¢). Then any basis of im(¢) can be extended to a bases of
ker(¢), and thus
dim(im(¢)) < dim(ker(¢)).
So
dim(V) = dim(ker(¢)) + dim(im(¢)) > dim(im(¢)) + dim(im(¢)) = 2 rank(¢p),

which implies the result. O

Problem 4. Let R be a commutative ring with 1 # 0. Let f: R* — R’ be a surjective R-module
homomorphism. Show that a > b.

Solution. Let m be a maximal ideal of R, which exists by Math 817. Since f is R-linear, for every
ccmand z € R" we have f(cx) = cf(x), so f(mR?) C mR’. Let q: R® — R’/mR? be the canonical
projection. Since f(mR®) C mR?, we conclude that mR? is contained in the kernel of g o f. By a
result from class, go f induces a well-defined R-module homomorphism R*/mR® — R?/mR’. More
precisely, the map

f

R*/mR*® RP/mRY

& +mR* ——> f(x) + mR?

is a well-defined R-module homomorphism. Moreover, f is surjective: for any z + mR® € R®/mR?,
we can find y € R® such that f(y) = z, and f(y + mR?) = f(y) + mR® =  + mR’. Note that the
source and target of f are both also R/m-modules, by a result from Problem Set 3. Now we claim
that in fact f is also R/m-linear: indeed,

f((c+m)(z+mR®)) = f(cx+mR®) = f(cx)+mR®* = cf (z)+mR"* = c(f(x)+mR*) = (c+m) f(z+mR*).
So we conclude that f: R*/mR® — R’/mR? is a surjective homomorphism of R/m-modules. Notice
also that R/m is a field, so R?/mR® and R?/mR? are vector spaces over that field. Composing with
the isomorphisms (R/mR)* = R*/mR* and R®/mR’ = (R/mR)® from Problem Set 3, we conclude
that f is a surjective linear transformation of R/m-vector spaces. This reduces the problem to
showing that if F¢ — F? is a surjective linear transformation, then a > b.

Let ¢: F® — F? is a surjective linear transformation. Then im(¢) = F®. By the Rank-Nullity
Theorem,

b+ dim(ker(p)) = dim(F®) + dim(ker(y)) = dim(im(p)) 4 dim(ker(¢)) = dim(F*) = a.

Since dim(ker(y)) > 0, we conclude that b < a.
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Problem 5. Let R be a ring, M and N left R-modules, and p: M — N a surjective R-module
homomorphism. We say p is a split surjection if there exists an R-module homomorphism
7: N — M such that poj = idy.

a)

Prove that if N is free, then every surjective R-module homomorphism of the form p: M — N
is a split surjection.

Proof. Let B be a basis of N. Since p is onto, for each b € B there exists at least one m € M
such that p(m) = b. Choose one such m;, for each b € B. This gives us a function g : B — M,
defined by g(b) = my, so that p(g(b)) = b for all b € B. By the UMP of bases, there is a (unique)
R-module homomorphism j : N — M such that j(b) = g(b) for all b € B. The composition po j
is an R-module homomorphism from N to IV that sends b to b for all b € B. Since B is a basis
of N, it must be that p o j = idy (by the uniqueness part of the UMP for bases). Thus p is a
split surjection. O

Give an explicit example of a ring R and a surjective R-module homomorphism that is not split.

Proof. Take R = Z, M = Z, N = Z/(2), and p : M — N the canonical surjection sending
n to n + (2). We claim p is not a split surjection. In fact, we claim that the only Z-module
homomorphisms from Z/(2) to Z is the zero map, which does not give a splitting.

Throughout, let j denote the element j + (2) of Z/(2). Say g: Z/(2) — Z is any Z-module
homomorphism. Then ¢(0) = 0. Also,

0=49(0) =g(T+1) = g(1) + g(1).

Since the only element z of Z satisfying  + x = 0 is « = 0, this proves g(1) = 0 too, and hence
g is the zero map. O
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