
Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 4 solutions

Problem 1. Let W be a subspace of a vector space V . Show that dim(V ) = dim(W )+dim(V/W ).

Proof. We will show the following: dim(V ) < ∞ if and only dim(W ) + dim(V/W ). This will show
the formula holds when one of the dimensions is infinite; when all three are finite, we will show
that dim(V ) = dim(W ) + dim(V/W ).

Case 1: If dim(V ) = ∞, then we claim that at least one of dim(W ) or dim(V/W ) is infinite.
Indeed, by problem 3 on Problem Set 3 we have that if both dim(W ) < ∞ and dim(V/W ) < ∞

(i.e both W and V/W are finitely generated) then V is finitely generated, so dim(V ) < ∞. This
shows the contrapositive of the claim above.

Case 2: If dim(V ) < ∞, then we will show that dim(W ) < ∞ and dim(V/W ) < ∞, and prove
that the formula above holds.

Any basis for W is in particular a linearly independent set of V , and thus it can be extended
to a basis of V . Since every basis of V is finite, then any basis of W must also be finite. Say
B = {w1, . . . , ws} ⊆ W is a basis for W and let C = {w1, . . . , ws, v1, . . . , vt} be a basis for V . In
particular, note that dim(V ) = s+ t. We claim that D = {v1 +W, . . . , vt +W} is a basis for V/W ,
which in particular will show that dim(V/W ) = t, and thus

dim(V ) = s+ t = dim(W ) + dim(V/W ).

First, we show that D generates V/W . Let v +W ∈ V/W . Since C generates V , we can find
field elements c1, . . . , cs and d1, . . . , dt such that

v =

s

i=1

ciwi +

t

j=1

djvj .

Since wi +W = 0 +W for all i, we get

v +W =




s

i=1

ciwi +

t

j=1

djvj



+W =

t

j=1

dj(vj +W ),

Now we will show that D is linearly independent. Suppose that di are such that

0 =

t

j=1

dj(vj +W ) =




t

j=1

djvj



+W.

Then d1v1 + · · ·+ dtvt ∈ W , so we can find c1, . . . , cs such that

t

j=1

djvj =

s

i=1

ciwi =⇒
s

i=1

(−ci)wi +

t

j=1

djvj .

But C is a linearly independent set, so all the ci = 0 and dj = 0.

Problem 2. Let F be a field, f : V → W be an F -linear transformation, and coker(f) := W/ im(f).
Prove that

dim(coker(f)) + dim(V ) = dim(W ) + dim(ker(f)).
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Proof. By the Rank-Nullity Theorem,

dim(V ) = dim(ker(f)) + dim(im(f)).

By Problem 1, dim(coker(f)) + dim(im(f)) = dim(W ). Adding dim(coker(f)) on both sides and
using the equality from Problem 1 gives

dim(V ) + dim(coker(f)) = dim(W ) + dim(ker(f)).

Problem 3. Let φ : V → V be an F -linear transformation. Prove that if φ ◦ φ = 0, then

dim(im(φ)))  1

2
dim(V ).

Proof. By the Rank-Nullity Theorem, we have

dim(ker(φ)) + dim(im(φ)) = dim(V ).

Since φ ◦ φ = 0, we have im(φ) ⊆ ker(φ). Then any basis of im(φ) can be extended to a bases of
ker(φ), and thus

dim(im(φ))  dim(ker(φ)).

So
dim(V ) = dim(ker(φ)) + dim(im(φ))  dim(im(φ)) + dim(im(φ)) = 2 rank(φ),

which implies the result.

Problem 4. Let R be a commutative ring with 1 ∕= 0. Let f : Ra → Rb be a surjective R-module
homomorphism. Show that a  b.

Solution. Let m be a maximal ideal of R, which exists by Math 817. Since f is R-linear, for every
c ∈ m and x ∈ Rn we have f(cx) = cf(x), so f(mRa) ⊆ mRb. Let q : Rb → Rb/mRb be the canonical
projection. Since f(mRa) ⊆ mRb, we conclude that mRa is contained in the kernel of q ◦ f . By a
result from class, q ◦f induces a well-defined R-module homomorphism Ra/mRa → Rb/mRb. More
precisely, the map

Ra/mRa f  Rb/mRb

x+mRa ✤  f(x) +mRb

is a well-defined R-module homomorphism. Moreover, f is surjective: for any x+mRb ∈ Rb/mRb,
we can find y ∈ Ra such that f(y) = x, and f(y +mRa) = f(y) +mRb = x+mRb. Note that the
source and target of f are both also R/m-modules, by a result from Problem Set 3. Now we claim
that in fact f is also R/m-linear: indeed,

f((c+m)(x+mRa)) = f(cx+mRa) = f(cx)+mRa = cf(x)+mRa = c(f(x)+mRa) = (c+m)f(x+mRa).

So we conclude that f : Ra/mRa → Rb/mRb is a surjective homomorphism of R/m-modules. Notice
also that R/m is a field, so Ra/mRa and Rb/mRb are vector spaces over that field. Composing with
the isomorphisms (R/mR)a ∼= Ra/mRa and Rb/mRb ∼= (R/mR)b from Problem Set 3, we conclude
that f is a surjective linear transformation of R/m-vector spaces. This reduces the problem to
showing that if F a → F b is a surjective linear transformation, then a  b.

Let ϕ : F a → F b is a surjective linear transformation. Then im(ϕ) = F b. By the Rank-Nullity
Theorem,

b+ dim(ker(ϕ)) = dim(F b) + dim(ker(ϕ)) = dim(im(ϕ)) + dim(ker(ϕ)) = dim(F a) = a.

Since dim(ker(ϕ))  0, we conclude that b  a.
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Problem 5. Let R be a ring, M and N left R-modules, and p : M → N a surjective R-module
homomorphism. We say p is a split surjection if there exists an R-module homomorphism
j : N → M such that p ◦ j = idN .

a) Prove that if N is free, then every surjective R-module homomorphism of the form p : M → N
is a split surjection.

Proof. Let B be a basis of N . Since p is onto, for each b ∈ B there exists at least one m ∈ M
such that p(m) = b. Choose one such mb for each b ∈ B. This gives us a function g : B → M ,
defined by g(b) = mb, so that p(g(b)) = b for all b ∈ B. By the UMP of bases, there is a (unique)
R-module homomorphism j : N → M such that j(b) = g(b) for all b ∈ B. The composition p ◦ j
is an R-module homomorphism from N to N that sends b to b for all b ∈ B. Since B is a basis
of N , it must be that p ◦ j = idN (by the uniqueness part of the UMP for bases). Thus p is a
split surjection.

b) Give an explicit example of a ring R and a surjective R-module homomorphism that is not split.

Proof. Take R = Z, M = Z, N = Z/(2), and p : M → N the canonical surjection sending
n to n + (2). We claim p is not a split surjection. In fact, we claim that the only Z-module
homomorphisms from Z/(2) to Z is the zero map, which does not give a splitting.

Throughout, let j denote the element j + (2) of Z/(2). Say g : Z/(2) → Z is any Z-module
homomorphism. Then g(0) = 0. Also,

0 = g(0) = g(1 + 1) = g(1) + g(1).

Since the only element x of Z satisfying x+ x = 0 is x = 0, this proves g(1) = 0 too, and hence
g is the zero map.
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