Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 5 solutions

Problem 1. Let R be a commutative ring and I an ideal of R. Show that if R is noetherian the
R/I is also noetherian.

Proof. There is an order preserving bijection

{ideals of R that contain I} +— {ideals of R/I}

that sends the ideal J D I to J/I; its inverse is the map that sends each ideal in R/ to its preimage.
Given this bijection, chains of ideals in R/I come from chains of ideals in R that contain J. Given
an ascending chain

JI/IC JJIC -

of ideals in R/I, we have an ascending chain

J1CJHhC---
in R. Since R is noetherian, then this chain stops: there exists N such that J, = J,41 for all
n > N. Then J,/I = J,41/1 for all n > N, and the original chain in R/I must also stop. O

Problem 2. Let R be a commutative ring with 1 # 0. Show that
annp(M @ N) = anng(M) Nanng(N)

Proof.
! r€angp(M @& N) — r(m,n) = (0p,0n) for all (m,n) € M & N
<~ (rm,rn) = (0p7,0p) for all (m,n) € M & N
<— =0y andrn=0y forallme M,ne N
= r € anng(M)Nanng(N). O

Problem 3. Let R be a domain and let M be an R-module. The torsion submodule of M is
Tor(M) ={m € M | rm = 0 for some r € R with r # 0}.

Elements of Tor(M) are called the torsion elements of M, and the module M is called torsion-free
if Tor(M) = 0. You may take for granted that this is actually a submodule of M without proof.

a) Show that if M and N are R-modules, then Tor(M & N) = Tor(M) & Tor(N).

Proof. We argue by showing two containments. On the one hand, we have
Tor(M @ N) = {(m,n)€ M & N |r(m,n) =0 for some r € R\ {0}}
= {(m,n) € M ® N | (rm,rn) =0 for some r € R\ {0}}
Tor(M) @ Tor(N)

N

On the other hand, if m € Tor(M) then there exists a nonzero r € R such that rm = 0, so
r(m,0) = 0, and thus (m,0) € Tor(M & N). Similarly, if n € Tor(/N) then rn = 0 for some
nonzero r € R, and thus (0,n) = 0, so (0,n) € Tor(M&N). Because Tor(M@N) is a submodule
and hence closed under taking sums, it follows that (m,n) € Tor(M @& N) whenever m € Tor(M)
and n € Tor(N). Equivalently Tor(M & N) C Tor(M) & Tor(N). Since we showed before that
Tor(M) @ Tor(N) C Tor(M @ N), we conclude that Tor(M @ N) = Tor(M) @ Tor(N). O
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b)

Show that if M = N, then Tor(M) = Tor(N).

Proof. Let ¢ : M — N is an R-module isomorphism. We claim that Tor(N) = ¢(Tor(M)), and
thus in particular Tor(N) = Tor(M).

Given n € Tor(N), let r € R be a nonzero element such that rn = 0. Since ¢ is surjective, we
can find some m € M such that ¢(m) = n. Notice that m is necessarily nonzero, since ¢(0) = 0.
On the other hand, ¢(rm) = r¢(m) = rn = 0, and since ¢ is injective, we conclude that rm = 0.
Thus n = ¢(m) € ¢(Tor(M)).

Conversely, if n € ¢(Tor(M)), then n = ¢(m) for some M € Tor(M). Then we can find some
nonzero r € R such that rm = 0, and thus rn = r¢(m) = ¢(rm) = ¢(0) = 0. We conclude that
n € Tor(N). O

Show that if M is a free R-module then Tor(M) = 0.

Proof. If M = 0, since Tor(M) C M and 0 is a torsion element it follows that Tor(M) = 0.
If M # 0 is free, then there exists a basis B for M. Consider a nonzero m € M. Then

m=r1by +---+rpb,

for some elements b; € B and 0 # r; € R. Suppose rm = 0 for some r € R. Then

n

> (rri)bs,

=1

and since B is linearly independent we deduce that rr; = 0 for 1 < i < n. Since R is a domain,
it follows that either r = 0 or ; = 0 for all 1 < i < n. But m # 0, so r; # 0 for some ¢, so we
conclude that » = 0. Hence any nonzero m € M is not a torsion element, and Tor(M) =0. O

Show that if I # (0) is an ideal of R then Tor(R/I) = R/I.

Proof. Here we consider R/I as an R-module. Let r+ 1 € R/I and let 0 # j € I. Then
jir+I)=jr+1=0+1,sor+1I € Tor(R/I). Since r+1 € R/I was arbitrary, we conclude that
R/I C Tor(R/I). But Tor(R/I) is by definition a subset of R/I, and thus R/I = Tor(R/I). O

Suppose that R is a PID, and that M is a finitely generated R-module. Show that M is a
torsion-free R-module if and only if M is a free R-module.

Proof. By the classification theorem for modules over PIDs, M =2 R" @ R/(d1) @ --- ® R/(dy),
where di, . ..d; are the invariant factors of M. Then

0 = Tor(M) since M is torsion-free
=~ Tor(R"®R/(d1)®---® R/(dg)) by e)
= Tor(R") @ Tor(R/(dy)) @ - -- & Tor(R/(dy)) by a)
=0®R/(d1)®---® R/(dy) by b) and d).

Thus Tor(M) = 0 if and only if & = 0, which is equivalent to M = R". We conclude that
Tor(M) = 0 if and only if M is a free R-module. O
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Problem 4. Consider the matrix

1 6 5 2
A=1(2 1 -1 0 €M374<Z>.
30 3 O

Determine the simplest representative in the isomorphism class of the Z-module presented by A.

Proof. Starting from the matrix A, first do three column operations, adding (-6) times the first
column to the second column, adding (-5) times the first column to the third column, and adding
1 0 0 0
(-2) time the first column to the fourth column; this gives the matrix [2 —11 —11 —4]|. Next
3 —18 —-12 —6
do two row operations, adding (-2) times row 1 to row 2, and adding (-3) times row 1 to row 3,
1 0 0 0
resulting in the matrix |0 —11 —11 —4|. Next add (-1) times column 2 to column 3, to get
0 —18 —-12 -6
1 0 0 0 100 O
0 —11 0 —4|. Now add (-3) times column 4 to column 2, which gives {0 1 0 —4]. Finally,
0 —18 6 —6 0 0 6 —6
doing two more column operations, adding 4 times column 2 to column 4, and then adding 1 times
1 000
column 3 to column 4, gives [0 1 0 O0[. Lastly, consider the matrix A’ obtained by eliminating
00 6 0
the column of zeroes, as well as the columns corresponding the the elementary basis vectors in the
previous matrix and the rows where they have 1’s. This gives A" = (6).
By a theorem from class, the module presented by A is isomorphic to the module presented by
A’. The latter is, by definition, Z/im(t4/) where t4/ : Z — Z is the map = — 6x. This gives that
im(t4/) = (6) and the module presented by A’ is Z/6. O

Problem 5. Let R be a PID and let M be a finitely generated R-module.

a) Determine a generator for the principal ideal anng (M) in terms of the invariant factors and the
free rank of M.

Proof. First, we claim that anng(R/(d)) = (d). If r € (d) then r(z + (d)) = rz + (d) = 0+ (d)
so (d) C anng(R/(d)). Conversely, if r € anng(R/(d)) then r(1 4 (d)) = 0 + (d), thus r € (d).
This shows that anng(R/(d)) = (d), as claimed.

We claim that if the free rank of M is r and the invariant factors of M are d; | da | ... | dj then

(0) ifr>0

anng(M) = {(dk) ifr=0. O

Notice that anng(R) = (0), since the only element that kills 1 is 0. By Problem 6 we have

anng(R) Nanng(R/(d1)) N...Nanng(R/(dg)),r >0

anng (R” & R/(d) @ - @ R/(dy) = {annR(R/(dl)) A ... Namp(R/(dy)),r =0

JOn@)n...n(d) iEr>0 [0 ifr>0
)N 0 (dg) if r =0 (dp) ifr=0
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b) Determine a generator for the principal ideal anng(M) in terms of the elementary divisors and
the free rank of M.

Proof. We will show if the free rank of M is r and the elementary divisors are p{',...,p% then

{m) if 7> 0

anng(M) =
R(M) (lem(pf,...,ps)) ifr=0. O

As in a), we have

O)NnEMN...n(pe) ifr>0

anng (R"® R/(p]*) @ --- & R/(p%)) = {(pffl) N...0 (@) ifr—=o0.

The claim follows if we show that (p{*)N...N (p%) = (lem(p{?,...,ps)). Indeed:

(Q) Ifr e (pf*) N...N(pS), then r € (pi*) for all 7, and in particular p;*|r for all 7. Therefore,
lem(p{',...,pS)|r, and thus r € (lem(pf*, ..., ps)).
D) Suppose that » € (lem(py',...,pP*)). us p;tllem(pit, ..., ps®)|r, which by transitivity
o) S b lem(p%, ..., p%)). Thus pSi[lem(pS, ..., pe)|r, which b
implies that p*|r, and r € (p;*) for all 4.

x 1 0
Problem 6. Consider the matrix A= |1 = —3 | € M33(R), where R = Q] is a ED.
0 0 z—1

a) Determine the Smith normal form for A.

10\ e 0 0 0
Solution. |1 = -3 4; zr 1 -3 —2 r —224+1 -3
00 z2—1 00 z—1 0 0 r—1

o (! 0 0N (L O 0
@lo 2241 -3 |Ulo -3 2241

0 0 r—1 0 z—1 0

1 0 0 1 0 0
®lo -3 0 © -3 0

0 z—1 —3(@@*-1)(z—1) 0 0 —3@-1)(z—1)
o (L0 0
@0 1 0 :

00 (z2-1)(z—1)

where

(1) is a permutation swapping columns 1 and 2,

(2) adds —x times column 1 to column 2,

(3) adds —x times row 1 to row 2,

(4) is a permutation swapping columns 2 and 3,

(5) adds —(2? — 1) times column 2 to column 3,

(6) adds —z(—x + 1) times row 2 to row 3,

(7) multiplies row 2 by the unit —% in R and multiplies row 3 by the unit —3 in R. O
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b) Determine the representatives in the isomorphism class of the module presented by A which are
written in invariant factor form and in elementary divisor form.

Solution. Since the unique invariant factor of A is (z? — 1)(z — 1) from the SNF, the invariant
factor decomposition of the R[z]-module presented by A is

Rlz]/((2* = 1)(z — 1)).

The elementary divisor decomposition is obtained from the above by using the CRT. It is the
last module in the following isomorphism

R[z]/((2* = 1)(z — 1)) = Rlz]/((z + D)(z = 1)*) = R[z]/(z + 1) ®R[z]/((z — 1)*). O
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