
Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 5 solutions

Problem 1. Let R be a commutative ring and I an ideal of R. Show that if R is noetherian the
R/I is also noetherian.

Proof. There is an order preserving bijection

{ideals of R that contain I} ←→ {ideals of R/I}

that sends the ideal J ⊇ I to J/I; its inverse is the map that sends each ideal in R/I to its preimage.
Given this bijection, chains of ideals in R/I come from chains of ideals in R that contain J . Given
an ascending chain

J1/I ⊆ J2/I ⊆ · · ·
of ideals in R/I, we have an ascending chain

J1 ⊆ J2 ⊆ · · ·

in R. Since R is noetherian, then this chain stops: there exists N such that Jn = Jn+1 for all
n 󰃍 N . Then Jn/I = Jn+1/I for all n 󰃍 N , and the original chain in R/I must also stop.

Problem 2. Let R be a commutative ring with 1 ∕= 0. Show that

annR(M ⊕N) = annR(M) ∩ annR(N)

Proof.
r ∈ annR(M ⊕N) ⇐⇒ r(m,n) = (0M , 0N ) for all (m,n) ∈ M ⊕N

⇐⇒ (rm, rn) = (0M , 0N ) for all (m,n) ∈ M ⊕N

⇐⇒ rm = 0M and rn = 0N for all m ∈ M,n ∈ N

⇐⇒ r ∈ annR(M) ∩ annR(N).

Problem 3. Let R be a domain and let M be an R-module. The torsion submodule of M is

Tor(M) = {m ∈ M | rm = 0 for some r ∈ R with r ∕= 0}.

Elements of Tor(M) are called the torsion elements of M , and the module M is called torsion-free
if Tor(M) = 0. You may take for granted that this is actually a submodule of M without proof.

a) Show that if M and N are R-modules, then Tor(M ⊕N) = Tor(M)⊕ Tor(N).

Proof. We argue by showing two containments. On the one hand, we have

Tor(M ⊕N) = {(m,n) ∈ M ⊕N | r(m,n) = 0 for some r ∈ R \ {0}}
= {(m,n) ∈ M ⊕N | (rm, rn) = 0 for some r ∈ R \ {0}}
⊆ Tor(M)⊕ Tor(N)

On the other hand, if m ∈ Tor(M) then there exists a nonzero r ∈ R such that rm = 0, so
r(m, 0) = 0, and thus (m, 0) ∈ Tor(M ⊕ N). Similarly, if n ∈ Tor(N) then rn = 0 for some
nonzero r ∈ R, and thus r(0, n) = 0, so (0, n) ∈ Tor(M⊕N). Because Tor(M⊕N) is a submodule
and hence closed under taking sums, it follows that (m,n) ∈ Tor(M⊕N) whenever m ∈ Tor(M)
and n ∈ Tor(N). Equivalently Tor(M ⊕N) ⊆ Tor(M)⊕ Tor(N). Since we showed before that
Tor(M)⊕ Tor(N) ⊆ Tor(M ⊕N), we conclude that Tor(M ⊕N) = Tor(M)⊕ Tor(N).
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b) Show that if M ∼= N , then Tor(M) ∼= Tor(N).

Proof. Let φ : M → N is an R-module isomorphism. We claim that Tor(N) = φ(Tor(M)), and
thus in particular Tor(N) ∼= Tor(M).

Given n ∈ Tor(N), let r ∈ R be a nonzero element such that rn = 0. Since φ is surjective, we
can find some m ∈ M such that φ(m) = n. Notice that m is necessarily nonzero, since φ(0) = 0.
On the other hand, φ(rm) = rφ(m) = rn = 0, and since φ is injective, we conclude that rm = 0.
Thus n = φ(m) ∈ φ(Tor(M)).

Conversely, if n ∈ φ(Tor(M)), then n = φ(m) for some M ∈ Tor(M). Then we can find some
nonzero r ∈ R such that rm = 0, and thus rn = rφ(m) = φ(rm) = φ(0) = 0. We conclude that
n ∈ Tor(N).

c) Show that if M is a free R-module then Tor(M) = 0.

Proof. If M = 0, since Tor(M) ⊆ M and 0 is a torsion element it follows that Tor(M) = 0.

If M ∕= 0 is free, then there exists a basis B for M . Consider a nonzero m ∈ M . Then

m = r1b1 + · · ·+ rnbn

for some elements bi ∈ B and 0 ∕= ri ∈ R. Suppose rm = 0 for some r ∈ R. Then

n󰁛

i=1

(rri)bi,

and since B is linearly independent we deduce that rri = 0 for 1 󰃑 i 󰃑 n. Since R is a domain,
it follows that either r = 0 or ri = 0 for all 1 󰃑 i 󰃑 n. But m ∕= 0, so ri ∕= 0 for some i, so we
conclude that r = 0. Hence any nonzero m ∈ M is not a torsion element, and Tor(M) = 0.

d) Show that if I ∕= (0) is an ideal of R then Tor(R/I) = R/I.

Proof. Here we consider R/I as an R-module. Let r + I ∈ R/I and let 0 ∕= j ∈ I. Then
j(r+I) = jr+I = 0+I, so r+I ∈ Tor(R/I). Since r+I ∈ R/I was arbitrary, we conclude that
R/I ⊆ Tor(R/I). But Tor(R/I) is by definition a subset of R/I, and thus R/I = Tor(R/I).

e) Suppose that R is a PID, and that M is a finitely generated R-module. Show that M is a
torsion-free R-module if and only if M is a free R-module.

Proof. By the classification theorem for modules over PIDs, M ∼= Rr ⊕ R/(d1)⊕ · · ·⊕ R/(dk),
where d1, . . . dk are the invariant factors of M . Then

0 = Tor(M) since M is torsion-free
∼= Tor (Rr ⊕R/(d1)⊕ · · ·⊕R/(dk)) by e)
∼= Tor(Rr)⊕ Tor(R/(d1))⊕ · · ·⊕ Tor(R/(dk)) by a)

= 0⊕R/(d1)⊕ · · ·⊕R/(dk) by b) and d).

Thus Tor(M) = 0 if and only if k = 0, which is equivalent to M ∼= Rr. We conclude that
Tor(M) = 0 if and only if M is a free R-module.
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Problem 4. Consider the matrix

A =

󰀵

󰀷
1 6 5 2
2 1 −1 0
3 0 3 0

󰀶

󰀸 ∈ M3,4(Z).

Determine the simplest representative in the isomorphism class of the Z-module presented by A.

Proof. Starting from the matrix A, first do three column operations, adding (-6) times the first
column to the second column, adding (-5) times the first column to the third column, and adding

(-2) time the first column to the fourth column; this gives the matrix

󰀵

󰀷
1 0 0 0
2 −11 −11 −4
3 −18 −12 −6

󰀶

󰀸. Next

do two row operations, adding (-2) times row 1 to row 2, and adding (-3) times row 1 to row 3,

resulting in the matrix

󰀵

󰀷
1 0 0 0
0 −11 −11 −4
0 −18 −12 −6

󰀶

󰀸. Next add (-1) times column 2 to column 3, to get

󰀵

󰀷
1 0 0 0
0 −11 0 −4
0 −18 6 −6

󰀶

󰀸. Now add (-3) times column 4 to column 2, which gives

󰀵

󰀷
1 0 0 0
0 1 0 −4
0 0 6 −6

󰀶

󰀸. Finally,

doing two more column operations, adding 4 times column 2 to column 4, and then adding 1 times

column 3 to column 4, gives

󰀵

󰀷
1 0 0 0
0 1 0 0
0 0 6 0

󰀶

󰀸. Lastly, consider the matrix A′ obtained by eliminating

the column of zeroes, as well as the columns corresponding the the elementary basis vectors in the
previous matrix and the rows where they have 1’s. This gives A′ = (6).

By a theorem from class, the module presented by A is isomorphic to the module presented by
A′. The latter is, by definition, Z/ im(tA′) where tA′ : Z → Z is the map x 󰀁→ 6x. This gives that
im(tA′) = (6) and the module presented by A′ is Z/6.

Problem 5. Let R be a PID and let M be a finitely generated R-module.

a) Determine a generator for the principal ideal annR(M) in terms of the invariant factors and the
free rank of M .

Proof. First, we claim that annR(R/(d)) = (d). If r ∈ (d) then r(x+ (d)) = rx+ (d) = 0 + (d)
so (d) ⊆ annR(R/(d)). Conversely, if r ∈ annR(R/(d)) then r(1 + (d)) = 0 + (d), thus r ∈ (d).
This shows that annR(R/(d)) = (d), as claimed.

We claim that if the free rank of M is r and the invariant factors of M are d1 | d2 | . . . | dk then

annR(M) =

󰀫
(0) if r > 0

(dk) if r = 0.

Notice that annR(R) = (0), since the only element that kills 1 is 0. By Problem 6 we have

annR (Rr ⊕R/(d1)⊕ · · ·⊕R/(dk)) =

󰀫
annR(R) ∩ annR(R/(d1)) ∩ . . . ∩ annR(R/(dk)), r > 0

annR(R/(d1)) ∩ . . . ∩ annR(R/(dk)), r = 0

=

󰀫
(0) ∩ (d1) ∩ . . . ∩ (dk) if r > 0

(d1) ∩ . . . ∩ (dk) if r = 0
=

󰀫
(0) if r > 0

(dk) if r = 0
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b) Determine a generator for the principal ideal annR(M) in terms of the elementary divisors and
the free rank of M .

Proof. We will show if the free rank of M is r and the elementary divisors are pe11 , . . . , pess then

annR(M) =

󰀫
(0) if r > 0

(lcm(pe11 , . . . , pess )) if r = 0.

As in a), we have

annR (Rr ⊕R/(pe11 )⊕ · · ·⊕R/(pess )) =

󰀫
(0) ∩ (pe11 ) ∩ . . . ∩ (pess ) if r > 0

(pe11 ) ∩ . . . ∩ (pess ) if r = 0.

The claim follows if we show that (pe11 ) ∩ . . . ∩ (pess ) = (lcm(pe11 , . . . , pess )). Indeed:

(⊆) If r ∈ (pe11 ) ∩ . . . ∩ (pess ), then r ∈ (peii ) for all i, and in particular peii |r for all i. Therefore,
lcm(pe11 , . . . , pess )|r, and thus r ∈ (lcm(pe11 , . . . , pess )).

(⊇) Suppose that r ∈ (lcm(pe11 , . . . , pess )). Thus peii |lcm(pe11 , . . . , pess )|r, which by transitivity
implies that peii |r, and r ∈ (peii ) for all i.

Problem 6. Consider the matrix A =

󰀵

󰀷
x 1 0
1 x −3
0 0 x− 1

󰀶

󰀸 ∈ M3,3(R), where R = Q[x] is a ED.

a) Determine the Smith normal form for A.

Solution.

󰀳

󰁃
x 1 0
1 x −3
0 0 x− 1

󰀴

󰁄 (1)→

󰀳

󰁃
1 x 0
x 1 −3
0 0 x− 1

󰀴

󰁄 (2)→

󰀳

󰁃
1 0 0
x −x2 + 1 −3
0 0 x− 1

󰀴

󰁄

(3)→

󰀳

󰁃
1 0 0
0 −x2 + 1 −3
0 0 x− 1

󰀴

󰁄 (4)→

󰀳

󰁃
1 0 0
0 −3 −x2 + 1
0 x− 1 0

󰀴

󰁄

(5)→

󰀳

󰁃
1 0 0
0 −3 0
0 x− 1 −1

3(x
2 − 1)(x− 1)

󰀴

󰁄 (6)→

󰀳

󰁃
1 0 0
0 −3 0
0 0 −1

3(x
2 − 1)(x− 1)

󰀴

󰁄

(7)→

󰀳

󰁃
1 0 0
0 1 0
0 0 (x2 − 1)(x− 1)

󰀴

󰁄,

where

(1) is a permutation swapping columns 1 and 2,
(2) adds −x times column 1 to column 2,
(3) adds −x times row 1 to row 2,
(4) is a permutation swapping columns 2 and 3,
(5) adds −1

3(x
2 − 1) times column 2 to column 3,

(6) adds −1
3(−x+ 1) times row 2 to row 3,

(7) multiplies row 2 by the unit −1
3 in R and multiplies row 3 by the unit −3 in R.
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b) Determine the representatives in the isomorphism class of the module presented by A which are
written in invariant factor form and in elementary divisor form.

Solution. Since the unique invariant factor of A is (x2 − 1)(x− 1) from the SNF, the invariant
factor decomposition of the R[x]-module presented by A is

R[x]/((x2 − 1)(x− 1)).

The elementary divisor decomposition is obtained from the above by using the CRT. It is the
last module in the following isomorphism

R[x]/((x2 − 1)(x− 1)) = R[x]/((x+ 1)(x− 1)2) ∼= R[x]/(x+ 1)⊕ R[x]/((x− 1)2).
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