Problem Set 5 solutions

Problem 1. Let R be a commutative ring and I an ideal of R. Show that if R is noetherian the R/I is also noetherian.

Proof. There is an order preserving bijection

{ideals of R that contain I} \longleftrightarrow {ideals of R/I}

that sends the ideal $J \supseteq I$ to J/I; its inverse is the map that sends each ideal in R/I to its preimage. Given this bijection, chains of ideals in R/I come from chains of ideals in R that contain J. Given an ascending chain

$$J_1/I \subseteq J_2/I \subseteq \cdots$$

of ideals in R/I, we have an ascending chain

$$J_1 \subseteq J_2 \subseteq \cdots$$

in R. Since R is noetherian, then this chain stops: there exists N such that $J_n = J_{n+1}$ for all $n \ge N$. Then $J_n/I = J_{n+1}/I$ for all $n \ge N$, and the original chain in R/I must also stop.

Problem 2. Let R be a commutative ring with $1 \neq 0$. Show that

$$\operatorname{ann}_R(M \oplus N) = \operatorname{ann}_R(M) \cap \operatorname{ann}_R(N)$$

Proof.

$$r \in \operatorname{ann}_{R}(M \oplus N) \iff r(m,n) = (0_{M},0_{N}) \text{ for all } (m,n) \in M \oplus N$$
$$\iff (rm,rn) = (0_{M},0_{N}) \text{ for all } (m,n) \in M \oplus N$$
$$\iff rm = 0_{M} \text{ and } rn = 0_{N} \text{ for all } m \in M, n \in N$$
$$\iff r \in \operatorname{ann}_{R}(M) \cap \operatorname{ann}_{R}(N). \Box$$

Problem 3. Let R be a domain and let M be an R-module. The torsion submodule of M is

 $Tor(M) = \{ m \in M \mid rm = 0 \text{ for some } r \in R \text{ with } r \neq 0 \}.$

Elements of Tor(M) are called the torsion elements of M, and the module M is called **torsion-free** if Tor(M) = 0. You may take for granted that this is actually a submodule of M without proof.

a) Show that if M and N are R-modules, then $Tor(M \oplus N) = Tor(M) \oplus Tor(N)$.

Proof. We argue by showing two containments. On the one hand, we have

$$Tor(M \oplus N) = \{(m, n) \in M \oplus N \mid r(m, n) = 0 \text{ for some } r \in R \setminus \{0\}\} \\ = \{(m, n) \in M \oplus N \mid (rm, rn) = 0 \text{ for some } r \in R \setminus \{0\}\} \\ \subseteq Tor(M) \oplus Tor(N)$$

On the other hand, if $m \in \operatorname{Tor}(M)$ then there exists a nonzero $r \in R$ such that rm = 0, so r(m,0) = 0, and thus $(m,0) \in \operatorname{Tor}(M \oplus N)$. Similarly, if $n \in \operatorname{Tor}(N)$ then rn = 0 for some nonzero $r \in R$, and thus r(0,n) = 0, so $(0,n) \in \operatorname{Tor}(M \oplus N)$. Because $\operatorname{Tor}(M \oplus N)$ is a submodule and hence closed under taking sums, it follows that $(m,n) \in \operatorname{Tor}(M \oplus N)$ whenever $m \in \operatorname{Tor}(M)$ and $n \in \operatorname{Tor}(N)$. Equivalently $\operatorname{Tor}(M \oplus N) \subseteq \operatorname{Tor}(M) \oplus \operatorname{Tor}(N)$. Since we showed before that $\operatorname{Tor}(M) \oplus \operatorname{Tor}(N) \subseteq \operatorname{Tor}(M \oplus N)$, we conclude that $\operatorname{Tor}(M \oplus N) = \operatorname{Tor}(M) \oplus \operatorname{Tor}(N)$.

b) Show that if $M \cong N$, then $\operatorname{Tor}(M) \cong \operatorname{Tor}(N)$.

Proof. Let $\phi : M \to N$ is an *R*-module isomorphism. We claim that $\operatorname{Tor}(N) = \phi(\operatorname{Tor}(M))$, and thus in particular $\operatorname{Tor}(N) \cong \operatorname{Tor}(M)$.

Given $n \in \text{Tor}(N)$, let $r \in R$ be a nonzero element such that rn = 0. Since ϕ is surjective, we can find some $m \in M$ such that $\phi(m) = n$. Notice that m is necessarily nonzero, since $\phi(0) = 0$. On the other hand, $\phi(rm) = r\phi(m) = rn = 0$, and since ϕ is injective, we conclude that rm = 0. Thus $n = \phi(m) \in \phi(\text{Tor}(M))$.

Conversely, if $n \in \phi(\text{Tor}(M))$, then $n = \phi(m)$ for some $M \in \text{Tor}(M)$. Then we can find some nonzero $r \in R$ such that rm = 0, and thus $rn = r\phi(m) = \phi(rm) = \phi(0) = 0$. We conclude that $n \in \text{Tor}(N)$.

c) Show that if M is a free R-module then Tor(M) = 0.

Proof. If M = 0, since $Tor(M) \subseteq M$ and 0 is a torsion element it follows that Tor(M) = 0. If $M \neq 0$ is free, then there exists a basis B for M. Consider a nonzero $m \in M$. Then

$$m = r_1 b_1 + \dots + r_n b_n$$

for some elements $b_i \in B$ and $0 \neq r_i \in R$. Suppose rm = 0 for some $r \in R$. Then

$$\sum_{i=1}^{n} (rr_i)b_i,$$

and since B is linearly independent we deduce that $rr_i = 0$ for $1 \le i \le n$. Since R is a domain, it follows that either r = 0 or $r_i = 0$ for all $1 \le i \le n$. But $m \ne 0$, so $r_i \ne 0$ for some i, so we conclude that r = 0. Hence any nonzero $m \in M$ is not a torsion element, and Tor(M) = 0. \Box

d) Show that if $I \neq (0)$ is an ideal of R then Tor(R/I) = R/I.

Proof. Here we consider R/I as an R-module. Let $r + I \in R/I$ and let $0 \neq j \in I$. Then j(r+I) = jr + I = 0 + I, so $r + I \in \operatorname{Tor}(R/I)$. Since $r + I \in R/I$ was arbitrary, we conclude that $R/I \subseteq \operatorname{Tor}(R/I)$. But $\operatorname{Tor}(R/I)$ is by definition a subset of R/I, and thus $R/I = \operatorname{Tor}(R/I)$. \Box

e) Suppose that R is a PID, and that M is a finitely generated R-module. Show that M is a torsion-free R-module if and only if M is a free R-module.

Proof. By the classification theorem for modules over PIDs, $M \cong R^r \oplus R/(d_1) \oplus \cdots \oplus R/(d_k)$, where d_1, \ldots, d_k are the invariant factors of M. Then

$0 = \operatorname{Tor}(M)$	since ${\cal M}$ is torsion-free
$\cong \operatorname{Tor} \left(R^r \oplus R/(d_1) \oplus \cdots \oplus R/(d_k) \right)$	by e)
$\cong \operatorname{Tor}(R^r) \oplus \operatorname{Tor}(R/(d_1)) \oplus \cdots \oplus \operatorname{Tor}(R/(d_k))$	by a)
$= 0 \oplus R/(d_1) \oplus \cdots \oplus R/(d_k)$	by b) and d).

Thus Tor(M) = 0 if and only if k = 0, which is equivalent to $M \cong \mathbb{R}^r$. We conclude that Tor(M) = 0 if and only if M is a free \mathbb{R} -module.

Problem 4. Consider the matrix

$$A = \begin{bmatrix} 1 & 6 & 5 & 2\\ 2 & 1 & -1 & 0\\ 3 & 0 & 3 & 0 \end{bmatrix} \in \mathcal{M}_{3,4}(\mathbb{Z}).$$

Determine the simplest representative in the isomorphism class of the \mathbb{Z} -module presented by A.

Proof. Starting from the matrix A, first do three column operations, adding (-6) times the first column to the second column, adding (-5) times the first column to the third column, and adding (-2) time the first column to the fourth column; this gives the matrix $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & -11 & -11 & -4 \\ 3 & -18 & -12 & -6 \end{bmatrix}$. Next do two row operations, adding (-2) times row 1 to row 2, and adding (-3) times row 1 to row 3, resulting in the matrix $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -11 & -11 & -4 \\ 0 & -18 & -12 & -6 \end{bmatrix}$. Next add (-1) times column 2 to column 3, to get $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -11 & 0 & -4 \\ 0 & -18 & 6 & -6 \end{bmatrix}$. Now add (-3) times column 4 to column 2, which gives $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 6 & -6 \end{bmatrix}$. Finally, doing two more column operations, adding 4 times column 2 to column 4, and then adding 1 times column 3 to column 4, gives $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -18 & 6 & -6 \end{bmatrix}$. Lastly, consider the matrix A' obtained by eliminating the adding the provention operations adding 4 times column 4 to column 4 t

the column of zeroes, as well as the columns corresponding the the elementary basis vectors in the previous matrix and the rows where they have 1's. This gives A' = (6).

By a theorem from class, the module presented by A is isomorphic to the module presented by A'. The latter is, by definition, $\mathbb{Z}/\operatorname{im}(t_{A'})$ where $t_{A'}: \mathbb{Z} \to \mathbb{Z}$ is the map $x \mapsto 6x$. This gives that $\operatorname{im}(t_{A'}) = (6)$ and the module presented by A' is $\mathbb{Z}/6$.

Problem 5. Let R be a PID and let M be a finitely generated R-module.

a) Determine a generator for the principal ideal $\operatorname{ann}_R(M)$ in terms of the invariant factors and the free rank of M.

Proof. First, we claim that $\operatorname{ann}_R(R/(d)) = (d)$. If $r \in (d)$ then r(x + (d)) = rx + (d) = 0 + (d)so $(d) \subseteq \operatorname{ann}_R(R/(d))$. Conversely, if $r \in \operatorname{ann}_R(R/(d))$ then r(1 + (d)) = 0 + (d), thus $r \in (d)$. This shows that $\operatorname{ann}_R(R/(d)) = (d)$, as claimed.

We claim that if the free rank of M is r and the invariant factors of M are $d_1 \mid d_2 \mid \ldots \mid d_k$ then

$$\operatorname{ann}_{R}(M) = \begin{cases} (0) & \text{if } r > 0\\ (d_{k}) & \text{if } r = 0. \end{cases}$$

Notice that $\operatorname{ann}_R(R) = (0)$, since the only element that kills 1 is 0. By Problem 6 we have

$$\operatorname{ann}_{R}\left(R^{r}\oplus R/(d_{1})\oplus\cdots\oplus R/(d_{k})\right) = \begin{cases} \operatorname{ann}_{R}(R)\cap\operatorname{ann}_{R}(R/(d_{1}))\cap\ldots\cap\operatorname{ann}_{R}(R/(d_{k})), r > 0\\ \operatorname{ann}_{R}(R/(d_{1}))\cap\ldots\cap\operatorname{ann}_{R}(R/(d_{k})), r = 0 \end{cases}$$

$$= \begin{cases} (0) \cap (d_1) \cap \ldots \cap (d_k) & \text{if } r > 0\\ (d_1) \cap \ldots \cap (d_k) & \text{if } r = 0 \end{cases} = \begin{cases} (0) & \text{if } r > 0\\ (d_k) & \text{if } r = 0 \end{cases}$$

Proof. We will show if the free rank of M is r and the elementary divisors are $p_1^{e_1}, \ldots, p_s^{e_s}$ then

$$\operatorname{ann}_{R}(M) = \begin{cases} (0) & \text{if } r > 0\\ (\operatorname{lcm}(\mathbf{p}_{1}^{\mathbf{e}_{1}}, \dots, \mathbf{p}_{s}^{\mathbf{e}_{s}})) & \text{if } r = 0. \end{cases}$$

As in a), we have

$$\operatorname{ann}_{R}(R^{r} \oplus R/(p_{1}^{e_{1}}) \oplus \dots \oplus R/(p_{s}^{e_{s}})) = \begin{cases} (0) \cap (p_{1}^{e_{1}}) \cap \dots \cap (p_{s}^{e_{s}}) & \text{if } r > 0\\ (p_{1}^{e_{1}}) \cap \dots \cap (p_{s}^{e_{s}}) & \text{if } r = 0 \end{cases}$$

The claim follows if we show that $(p_1^{e_1}) \cap \ldots \cap (p_s^{e_s}) = (\operatorname{lcm}(\mathbf{p}_1^{e_1}, \ldots, \mathbf{p}_s^{e_s}))$. Indeed:

 (\subseteq) If $r \in (p_1^{e_1}) \cap \ldots \cap (p_s^{e_s})$, then $r \in (p_i^{e_i})$ for all i, and in particular $p_i^{e_i} | r$ for all i. Therefore, $\operatorname{lcm}(\mathbf{p}_1^{e_1}, \ldots, \mathbf{p}_s^{e_s}) | \mathbf{r}$, and thus $r \in (\operatorname{lcm}(\mathbf{p}_1^{e_1}, \ldots, \mathbf{p}_s^{e_s}))$.

 (\supseteq) Suppose that $r \in (\operatorname{lcm}(\mathbf{p}_1^{\mathbf{e}_1},\ldots,\mathbf{p}_s^{\mathbf{e}_s}))$. Thus $p_i^{e_i}|\operatorname{lcm}(\mathbf{p}_1^{\mathbf{e}_1},\ldots,\mathbf{p}_s^{\mathbf{e}_s})|\mathbf{r}$, which by transitivity implies that $p_i^{e_i}|r$, and $r \in (p_i^{e_i})$ for all i.

Problem 6. Consider the matrix
$$A = \begin{bmatrix} x & 1 & 0 \\ 1 & x & -3 \\ 0 & 0 & x-1 \end{bmatrix} \in M_{3,3}(R)$$
, where $R = \mathbb{Q}[x]$ is a ED.

a) Determine the Smith normal form for A.

$$\begin{aligned} &Solution. \begin{pmatrix} x & 1 & 0 \\ 1 & x & -3 \\ 0 & 0 & x-1 \end{pmatrix} \stackrel{(1)}{\to} \begin{pmatrix} 1 & x & 0 \\ x & 1 & -3 \\ 0 & 0 & x-1 \end{pmatrix} \stackrel{(2)}{\to} \begin{pmatrix} 1 & 0 & 0 \\ x & -x^2 + 1 & -3 \\ 0 & 0 & x-1 \end{pmatrix} \\ &\stackrel{(3)}{\to} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -x^2 + 1 & -3 \\ 0 & 0 & x-1 \end{pmatrix} \stackrel{(4)}{\to} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & -x^2 + 1 \\ 0 & x-1 & 0 \end{pmatrix} \\ &\stackrel{(5)}{\to} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & x-1 & -\frac{1}{3}(x^2 - 1)(x-1) \end{pmatrix} \stackrel{(6)}{\to} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -\frac{1}{3}(x^2 - 1)(x-1) \end{pmatrix} \\ &\stackrel{(7)}{\to} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (x^2 - 1)(x-1) \end{pmatrix}, \end{aligned}$$

where

(1) is a permutation swapping columns 1 and 2,

- (2) adds -x times column 1 to column 2,
- (3) adds -x times row 1 to row 2,
- (4) is a permutation swapping columns 2 and 3,
- (5) adds $-\frac{1}{3}(x^2-1)$ times column 2 to column 3, (6) adds $-\frac{1}{3}(-x+1)$ times row 2 to row 3,
- (7) multiplies row 2 by the unit $-\frac{1}{3}$ in \mathbb{R} and multiplies row 3 by the unit -3 in \mathbb{R} .

b) Determine the representatives in the isomorphism class of the module presented by A which are written in invariant factor form and in elementary divisor form.

Solution. Since the unique invariant factor of A is $(x^2 - 1)(x - 1)$ from the SNF, the invariant factor decomposition of the $\mathbb{R}[x]$ -module presented by A is

$$\mathbb{R}[x]/((x^2 - 1)(x - 1)).$$

The elementary divisor decomposition is obtained from the above by using the CRT. It is the last module in the following isomorphism

$$\mathbb{R}[x]/((x^2-1)(x-1)) = \mathbb{R}[x]/((x+1)(x-1)^2) \cong \mathbb{R}[x]/(x+1) \oplus \mathbb{R}[x]/((x-1)^2). \quad \Box$$