
Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 6

Instructions: You are encouraged to work together on these problems, but each student should
hand in their own final draft, written in a way that indicates their individual understanding of the
solutions. Never submit something for grading that you do not completely understand. You cannot
use any resources besides me, your classmates, our course notes, and the textbook.

I will post the .tex code for these problems for you to use if you wish to type your homework.
If you prefer not to type, please write neatly. As a matter of good proof writing style, please use
complete sentences and correct grammar. You may use any result stated or proven in class or in a
homework problem, provided you reference it appropriately by either stating the result or stating
its name (e.g. the definition of ring or Lagrange’s Theorem). Do not refer to theorems by their
number in the course notes or textbook.

Problem 1. Let F be a field and consider a monic polynomial f(x) = xn+an−1x
n−1+· · ·+a1x+a0

in F [x] with n  1.

a) Show that the principal ideal (f(x)) is a subspace of the F -vector space F [x].

Proof. First, note that (f(x)) is nonempty, since it contains f(x). To show that (f(x)) is a
subspace we need to check that (f(x)) is closed under addition and multiplication by elements
of F . This is certainly true as ideals are closed under addition and multiplication by any elements
of F [x], and thus in particular closed under multiplication by elements of F .

b) Show that the set B = {1, x, . . . , xn−1}, where xi = xi + (f(x)), is a basis for the quotient
F -vector space F [x]/(f(x)).

Proof. Let g(x) ∈ F [x]. By the Division Algorithm in F [x], we have g(x) = f(x)q(x)+r(x) where
r(x) = 0 or deg(r) < n. Since g(x)−r(x) ∈ (f(x)), we deduce that g(x)+(f(x)) = r(x)+(f(x)).
Since deg(r) < n, it follows that r(x)+(f(x)) is in the F -span of B, hence B spans F [x]/(f(x)).

Suppose a01+a1x+ · · ·+an−1xn−1 = 0 in F [x]/(f(x)). Then a0+a1x+ · · ·+an−1x
n−1 ∈ (f(x)).

But the only polynomial in (f(x)) of degree less than n is 0, so a0 = · · · = an−1 = 0 and thus
B is linearly independent.

c) Consider the linear transformation lx : F [x]/(f(x)) → F [x]/(f(x)) defined by lx(v) = xv for any
v ∈ F [x]/(f(x)). Find the matrix representing lx in the basis B from part b).

Proof. Recall that the columns of [λx]
B
B are obtained by collecting the coefficients of the expres-

sions for lx(b) for each b ∈ B as linear combinations of the elements of B.

lx(1) = x = 0 · 1 + 1 · x+ 0 · x2 + · · ·+ 0 · xn−1

lx(x) = x2 = 0 · 1 + 0 · x+ 1 · x2 + · · ·+ 0 · xn−1

...

lx(xn−2) = xn−2 = 0 · 1 + 0 · x+ 0 · x2 + · · ·+ 1 · xn−1

Finally,
lx(xn−1) = −a0 · 1− a1 · x− a2 · x2 + · · ·− an−1 · xn−1.
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Thus

[λx]
B
B =





0 0 · · · 0 −a0
1 0 · · · 0 −a1

0 1
. . . 0 −a2

...
. . .

. . .
...

...
0 · · · 0 1 −an−1




.

Problem 2. Let V = R3 with the standard basis B = {e1, e2, e3} and let t : V → V be the linear
transformation represented by the matrix

[t]BB =




0 −1 0
−1 0 3
0 0 1



 .

a) Find the invariant factor decomposition of the R[x]-module Vt.

Answer: From Problem 6 of Problem Set 5, we see that the Smith Normal Form for xI3 −A is

xI3 −A ∼




1 0 0
0 1 0
0 0 (x2 − 1)(x− 1)



 .

The invariant factor decomposition of the R[x]-module Vt is

Vt
∼= R[x]/((x2 − 1)(x− 1)).

b) Find the characteristic and minimal polynomials of t.

Answer: We showed in class that the characteristic polynomial is the product of all the invariant
factors, so ct(x) = det(xI3 − A) = (x2 − 1)(x − 1). If the invariant factors are g1| · · · |gk, then
the minimal polynomial is gk, so mt(x) = (x2 − 1)(x− 1).

c) Find the rational canonical form of t.

Answer: RCF (t) = C

(x2 − 1)(x− 1)


= C(x3 − x2 − x+ 1) =




0 0 −1
1 0 1
0 1 1



.

d) Find the Jordan canonical form of t.

Answer: First notice that the characteristic and minimal polynomial factor completely into
linear factors, thus JCF (t) exists. Since

Vt
∼= R[x]/


(x2 − 1)(x− 1)


= R[x]/


(x+ 1)(x− 1)2

 ∼= R[x]/(x+ 1)⊕ R[x]/

(x− 1)2



the elementary divisors of t are x+ 1 and (x− 1)2. Thus

JCF (t) = J1(−1)⊕ J2(1) =




−1 0 0
0 1 1
0 0 1



 .
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Problem 3. Let F be a field, let V and W be vector spaces over F , let a : V → V and b : W → W
be linear transformations and let Va and Wb be the F [x]-modules they determine.

a) Show that a function g : Va → Wb is an F [x]-module homomorphism if and only if

(1) g : V → W is a linear transformation and

(2) g ◦ a = b ◦ g.

Proof. Suppose that F is a field, V,W are vector spaces over F , a : V → V and b : W → W are
linear transformations, and g : Va → Wb is a function.

(⇒): Suppose that g is an F [x]-module homomorphism. Then for all f ∈ F [x] and v, v′ ∈ V , we
have g(v+v′) = g(v)+g(v′) and g(fv) = fg(v). Considering the first of these identities together
with the second one applied in the particular case where f ∈ F is a constant polynomial shows
that g is also an F -module homomorphism, so (1) holds.

Moreover, using the definition of the F [x]-module action on Va and Wb, we have

(g ◦ a)(v) = g(a(v))
Va action

= g(x · v) g hom
= xg(v)

Wb action
= b(g(v)) = (b ◦ g)(v).

Therefore (2) holds.

(⇐): Suppose that (1) and (2) hold. Let p be any element of F [x], and let v, v′ ∈ Va. We can
write

p(x) = fnx
n + · · ·+ f0 =

n

i=0

fix
i

for some n  0 and fn, . . . , f0 ∈ F . Property (2) and induction on i gives g ◦ ai = bi ◦ g for all
i  1; denote this property as (2’). Now we check that g is an F [x]-module homomorphism:

g(v + v′) = g(v) + g(v′) by (1)

g(p(x)v) = g


n

i=0

fix
i


v


Va action

= g


n

i=0

fia
i(v)


(i)
=

n

i=0

fig(a
i(v)))

(2′)
=

n

i=0

fib
i(g(v)))

Wb action
=

n

i=0

fix
ig(v) = p(x)g(v).

Hence g is an F [x]-module homomorphism.

b) Suppose that V = Fm = W , and let A,B ∈ Mm(F ) be the matrices representing the linear
transformations a and b, respectively, in the standard basis of Fm. Show that there is an
F [x]-module isomorphism Va

∼= Wb if and only if the matrices A and B are similar.

Proof. Using part (a), a function g : Va → Wb is an F [x]-module homomorphism if and only if it
is F -linear and satisfies g ◦a = b◦g for some g. We showed in class that there is an isomorphism
HomF (V,W ) ∼= Mm(F ); more precisely, we showed that the linear map g : Va → Wb is F -linear
if and only if, fixing the standard basis of Va = Wb = Fm, g can be represented by a matrix P
such that g(v) = Pv for all v ∈ Va.

Furthermore, g is an isomorphism if and only if P is invertible. If g is an isomorphism, then
g ◦ a = b ◦ g holds and thus PA = BP ⇐⇒ B = PAP−1, so A and B being similar.
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Conversely, if A and B being similar, then there exists some invertible matrix P such that
PA = BP ⇐⇒ B = PAP−1. The map g : V → W defined by g(v) = Pv is an isomorphism,
since P is invertible, and PA = BP implies g◦a = b◦g. We conclude that g gives an isomorphism
Va

∼= Wb.

Problem 4. Let F be a field and n a positive integer. We say an n × n matrix A with entries
in F is unipotent if A − In is nilpotent, meaning that (A − In)

k = 0 for some k  1. For the
field F = Q, find (with complete justification) the number of similarity classes of 4 × 4 unipotent
matrices and give an explicit representative for each class.

Proof. We know two n×n matrices are similar if and only they have the same invariant factors, say
g1| . . . |gs. We can thus characterize all the similarity classes of unipotent matrices by classifying the
possible invariant factors, and the corresponding rational canonical forms provide a representative
of each class. If (A − In)

k = 0 for some k  1, then A satisfies the polynomial (x − 1)k, and thus
the minimal polynomial of A must divide (x− 1)k. Since the minimal polynomial of A is of degree
at most 4, we conclude that the minimal polynomial of A must be (x − 1)k for some 1  k  4;
in particular, gs = (x − 1)k. Moreover, the characteristic polynomial of A has degree 4 and must
divide some power of (x− 1)k, and thus cA = g1 · · · gs = (x− 1)4. We must then have the following
possibilities:

• The invariant factors of A are g1 = g2 = g3 = g4 = x− 1, so xI − A has Rational Canonical
Form I4.

• The invariant factors of A are g1 = g2 = x− 1 and g3 = (x− 1)2 = x2− 2x+1, so xI −A has
Rational Canonical Form

c(x− 1)⊕ c(x− 1)⊕ c((x− 1)2) =

1

⊕


1

⊕


0 −1
1 2


=





1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 2



 .

• The invariant factors of A are g1 = (x− 1)2 and g2 = (x− 1)2 = x2 − 2x+ 1, so xI − A has
Rational Canonical Form

c((x− 1)2)⊕ c((x− 1)2) =


0 −1
1 2


⊕


0 −1
1 2


=





0 −1 0 0
1 2 0 0
0 0 0 −1
0 0 1 2



 .

• The invariant factors of A are g1 = x − 1 and g2 = (x − 1)3 = x3 − 3x2 + 3x − 1, so xI − A
has Rational Canonical Form

c(x− 1)⊕ c((x− 1)3) =

1

⊕




0 0 1
1 0 −3
0 1 3



 =





1 0 0 0
0 0 0 1
0 1 0 −3
0 0 1 3



 .

• The invariant factor of A is g1 = (x− 1)4 = x4 − 4x3 + 6x2 − 4x+ 1, so xI −A has Rational
Canonical Form

c((x− 1)4) =





0 0 0 −1
1 0 0 4
0 1 0 −6
0 0 1 4



 .

4 of 4


