
Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 9 solutions

Problem 1. Let F be a field. Recall that

a1F = 1 + · · ·+ 1  
a times

.

The prime ring of F is the subring of F generated by 1F , that is

{k1F | k ∈ Z}.

The prime field of F is the subfield of F generated by 1F , that is

K = Frac ({k1F | k ∈ Z}) .

Show that the prime field of F is isomorphic to exactly one of the fields Q or Z/p for some prime
integer p.

Proof. Consider the map

Z ψ  F

a ✤  a1F

.

This map is a ring homomorphism:

• ψ(1) = 1F by definition;

• φ(a+ b) = (a+ b)1F = a1F + b1F = ψ(a) + ψ(b);

• φ(a+ b) = (a+ b)1F = a1F + b1F = ψ(a) + ψ(b)

Moreover, the image of ψ is the prime subring of R, which is

{k1F | k ∈ Z}.

Thus the prime subring of F is the fraction field of im(ψ).
Suppose that ψ has a nontrivial kernel. Since Z is a PID, there exists a positive integer n such

that ker(ψ) = (n). We claim that such n must in fact be prime. If n is not prime, then we can find
positive integers a > 1 and b > 1 such that n = ab. Then

0 = ψ(n) = ψ(ab) = ψ(a)ψ(b) = (a1F ) · (b1F ).

Since F is a field, we must have a1F = 0 or b1F = 0. But this implies either a ∈ ker(ψ) = (n) or
b ∈ ker(ψ), while a, b < n, which is a contradiction. Therefore, n must be prime, and we will write
p = n.

By the First Isomorphism Theorem, the prime ring of F is isomorphic to Z/ ker(ψ) = Z/(p).
Thus the prime field of F is isomorphic to the fraction field of Z/p, but since Z/p is a field, its
fraction field is itself. Thus the prime field of F is Z/(p).

On the other hand, if ψ is injective, then again by the First Isomorphism Theorem the prime
ring of F is isomorphic to Z, so the prime field of F is isomorphic to frac(Z) ∼= Q.
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Problem 2. In this problem, we will show that adjoining a finite set of elements to a field F is
the same as adjoining its elements one at a time. More precisely, let L/F be a field extension,
and let a1, . . . , am ∈ L. Set L0 = F and for each 1  i  m define Li = Li−1(ai). Show that
F (a1, . . . , am) = Lm.

Proof. We prove by induction that Li = F (a1, . . . , ai) for all 1  i  m, with the case i = m
yielding the desired statement.

Base case: i = 1 follows by definition of L1.
Inductive step: Assume Li = F (a1, . . . , ai) for some i < m.
Then, by definition, we have Li+1 = Li(ai+1) = F (a1, . . . , ai)(ai+1). This implies in particular

that Li+1 is a subfield of L and it contains F and a1, . . . , ai, ai+1. By definition of F (a1, . . . , ai, ai+1),
F (a1, . . . , ai, ai+1) is contained in any subfield of L containing both F and a1, . . . , ai+1, so it follows
that F (a1, . . . , ai, ai+1) ⊆ Li+1.

To establish the converse note that the respective definitions imply that there is a subfield
containment F (a1, . . . , ai) ⊆ F (a1, . . . , ai, ai+1) and also ai+1 ∈ F (a1, . . . , ai, ai+1). Therefore,
since by definition any field containing F (a1, . . . , ai) and ai+1 must contain F (a1, . . . , ai)(ai+1), it
follows that Li+1 = F (a1, . . . , ai, ai+1)(ai+1) ⊆ F (a1, . . . , ai, ai+1).

The two containments above combine to show the desired conclusion:

Li+1 = F (a1, . . . , ai, ai+1).

Problem 3. Show that x3 + 3x+ 2 ∈ Q[x] is irreducible.

Proof. By Gauss’ Lemma, it is sufficient to show that f(x) = x3 + 3x+ 2 is irreducible over Z. If
it were reducible, then it would be reducible over Z/(5). However, we claim that this polynomial
has no roots modulo 5. Indeed, over Z/(5) we have the following:

f(0) = 2

f(1) = 13 + 3 + 2 = 1

f(2) = 23 + 6 + 2 = 16 = 1

f(3) = 33 + 9 + 2 = 2 + 4 + 2 = 3

f(4) = (−1)3 − 3 + 2 = −2 = 3.

Since f is a polynomial of degree 3, if it factors, it would have a factor of degree 1. But since f has
no roots, it must be irreducible. Since f is irreducible modulo 5, it is also irreducible over Z, and
thus over Q.

Problem 4. In each part, determine, with justification, the degree of the extension [Q(α) : Q]:

a) α = 2 +
√
3

b) β = 1 + 3
√
2 + 3

√
4.

Proof. a) We claim that for α = 2 +
√
3, we have [Q(α) : Q] = 2.

First, we claim that x2 − 3 ∈ Q[x] is irreducible. By Gauss’ Lemma, it is sufficient to check
that it is irreducible over Z, since Q = frac(Z). Now we can use Eisenstein’s criterion with the
prime ideal (2), which applies since all the coefficients of degree up to 1 are in (3), the constant
coefficient is not in (3)2, and the degree 2 coefficient is not in (3). We conclude that x2 − 3 is
irreducible over Z, and thus over Q as well.
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Since α ∈ R we may consider the subfield Q(α) ⊆ R. Similarly we may also consider Q(
√
3) ⊆ R.

Since Q(
√
3) contains Q and

√
3 it follows by definition of Q(α) that Q(α) ⊆ Q(

√
3). Since

√
3

is a root of the polynomial x2 − 3 ∈ Q[x] and this polynomial is irreducible, it follows that
m√

3,Q = x2 − 3 and consequently [Q(
√
3) : Q] = 2.

By the degree formula, 2 = [Q(
√
3) : Q] = [Q(

√
3) : Q(α)] · [Q(α) : Q], which implies that

[Q(α) : Q] ∈ {1, 2}. But [Q(α) : Q] = 1 if and only if Q(α) = Q, which is false as α /∈ Q. So it
must be the case that [Q(α) : Q] = 2.

b) For β = 1 + 3
√
2 + 3

√
4, we claim that [Q(β) : Q] = 3.

First, we claim that x3 − 2 ∈ Q[x] is irreducible. By Gauss’ Lemma, it is sufficient to check
that it is irreducible over Z, since Q = frac(Z). Now we can use Eisenstein’s criterion with the
prime ideal (2), which applies since all the coefficients of degree up to 2 are in (2), the constant
coefficient is not in (2)2, and the degree 3 coefficient is not in (2). We conclude that x3 − 2 is
irreducible over Z, and thus over Q as well.

Since β ∈ R, we may consider the subfieldQ(β) ⊆ R. Similarly we may also considerQ( 3
√
2) ⊆ R.

Since Q( 3
√
2) contains Q and the elements 3

√
2 and ( 3

√
2)2 = 3

√
4, it follows by definition of Q(β)

that Q(β) ⊆ Q( 3
√
2). Since 3

√
2 is a root of the polynomial x3 − 2 ∈ Q[x] and this polynomial is

irreducible, it follows that m 3√2,Q = x3 − 2 and consequently [Q( 3
√
2) : Q] = 3.

By the degree formula,

3 = [Q(
3
√
2) : Q] = [Q(

3
√
2) : Q(β)] · [Q(β) : Q],

which implies that [Q(α) : Q] ∈ {1, 3}. But [Q(β) : Q] = 1 if and only if Q(β) = Q, but we will
show that β /∈ Q. Suppose, by contradiction, that β ∈ Q, so that q(x) = x2+x+(1−β) ∈ Q[x].
Note that 3

√
2 is a root of q, but we have shown that the minimal polynomial of 3

√
2 over Q has

degree 2, so this is a contradiction. We conclude that [Q(β) : Q] ∕= 1, and thus [Q(β) : Q] = 3.

Problem 5. Consider the two field extensions Q ⊆ Q(i,
√
3) and Q ⊆ Q(i, 3

√
2).

a) Show that Q ⊆ Q(i,
√
3) has degree 4.

Proof. We have Q ⊆ Q(
√
3) ⊆ Q(i,

√
3). The degree of Q ⊆ Q(

√
3) is 2 since the minimal

polynomial of
√
3 is x2 − 3. The degree of Q(

√
3) ⊆ Q(i,

√
3) is at most two since i is a root

of x2 + 1. On the other hand, this is a proper extension, since Q(
√
3) ⊆ R and i /∈ R. Thus

Q(
√
3) ⊆ Q(i,

√
3) has degree exactly 2. By the degree formula, we conclude that

[Q(i,
√
3) : Q] = 2 · 2 = 4.

b) Show that Q ⊆ Q(i, 3
√
2) has degree 6.

Proof. We have Q ⊆ Q( 3
√
2) ⊆ Q(i, 3

√
2) and [Q( 3

√
2) : Q] = 3 since x3 − 2 is irreducible in Q[x]

(which we justified in Problem 4). As before, Q( 3
√
2) ⊆ Q(i, 3

√
2) is a proper extension of degree

at most 2 and hence has degree exactly 2. By the degree formula,

[Q(i,
√
3) : Q] = [Q(i,

√
3) : Q(

√
3)][Q(

√
3) : Q] = 2 · 3 = 6.

c) Find a primitive element γ for the extension Q ⊆ Q(i,
√
3).
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Proof. Let γ =
√
3 + i. Since γ ∈ Q(i,

√
3), we have Q(γ) ⊆ Q(i,

√
3). Note that

γ2 = 2 + 2
√
3i

γ3 = 8i

γ4 = −8 + 8
√
3i.

Thus i = 1
8γ

3 ∈ Q(γ) and
√
3 = γ − 1

8γ
3 ∈ Q(γ). We conclude that Q(γ) = Q(i,

√
3) and thus

γ is a primitive element.

d) Find mγ,Q(x).

Proof. Note that
γ4 − 4γ2 + 16 = −8 + 8

√
3i− 4(2 + 2

√
3i) + 16 = 0.

Since [Q(γ) : Q] = [Q(i,
√
3) : Q] = 4, we know the minimal polynomial of γ over Q must have

degree 4. Therefore, mα,Q = x4 − 4x2 + 16.

Problem 6. Let R be a domain and let F be its fraction field. Show that F has the following
universal property: if K is any field and f : R → K is any injective ring homomorphism, then f
extends to an injective ring homomorphism f : F → K, so that f |R = f .

Proof. Define f : F → K by

f
a
b


= f(a)f(b)−1.

First, we claim that this map is well-defined. There are really two things to check: first, that
f(b)−1 makes sense for any element a

b ∈ F , and second that this doesn’t depend on the choice of
representatives for the class of a

b .
Given any element of F , say a

b , by definition the elements a, b ∈ R are such that b ∕= 0. Since f
is injective, f(b) ∕= 0, and since K is a field, we conclude that f(b) has an inverse. Thus f(a)f(b)−1

makes sense.
Moreover, if a

b = c
d are nonzero, then ad = bc, and since f is a ring homomorphism we conclude

that
f(a)f(d) = f(ad) = f(bc) = f(b)f(c).

Now since b, d ∕= 0 by definition of F , and since f is injective, we must have f(b), f(d) ∕= 0, and
since K is a field, both have inverses. Multiplying the identity above by f(b)−1f(d)−1, we get

f(a)f(b)−1 = f(b)f(d)−1.

Thiss shows that f is well-defined.
Moreover, f is a ring homomorphism:

• f(1F ) = f(11) = f(1)f(1)−1 = 1K · 1−1
K = 1K . Since f is a ring homomorphism, f(1R) = 1K .

• Using that f is preserves sums, we see that

f(
a

b
+

c

d
) = f(

ad+ bc

bd
) = f(ad+ bc)f(bd)−1 = (f(a)f(d) + f(b)f(c))f(b)−1f(d)−1

= (f(a)f(b)−1) + (f(c)f(d)−1) = f(
a

b
) + f

 c

d


.
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• Using that f is preserves multiplication, we see that

f
a
b

c

d


= f

ac
bd


= f(ac)f(bd)−1

= f(a)f(c)f(b)−1f(d)−1 = (f(a)f(b)−1)(f(c)f(d)−1) = f
a
b


f
 c

d


.

Finally, f is an extension of f : indeed, given any r ∈ R,

f
r
1


= f(r)f(1)−1 = r · 1−1

K = r.

All that remains to show is that this map f is the unique ring homomorphism extending f to
F . So let g : F → K be a ring homomorphism such that

g
r
1


= f(r).

Then since g preserves products, for any nonzero b ∈ R we have

1K = g(
1

1
) = g


b

b


= g


b

1


g


1

b


= f(b)g


1

b


.

Thus

g


1

b


= f(b)−1.

Therefore,

g
a
b


= g

a
1


g


1

b


= f(a)f(b)−1 = f

a
b


.

We conclude that g = f .
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