Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 9 solutions

Problem 1. Let I be a field. Recall that
alp=1+---+1.
—_——
a times

The prime ring of F' is the subring of F' generated by 1g, that is
{klp | k € Z}.
The prime field of F is the subfield of F' generated by 1g, that is
K =Frac({klp | k € Z}).

Show that the prime field of F' is isomorphic to exactly one of the fields Q or Z/p for some prime
integer p.
Proof. Consider the map

7 ——F .

a+——alp

This map is a ring homomorphism:
e (1) = 1p by definition;
o pla+b) = (a+b)lp=alp+blp=1(a)+(b);
® ¢(a+b)=(a+b)lp=alp+blp=1(a)+p(b)
Moreover, the image of v is the prime subring of R, which is
{klp | k € Z}.

Thus the prime subring of F' is the fraction field of im().

Suppose that 1 has a nontrivial kernel. Since Z is a PID, there exists a positive integer n such
that ker(¢) = (n). We claim that such n must in fact be prime. If n is not prime, then we can find
positive integers @ > 1 and b > 1 such that n = ab. Then

0 =1(n) = y(ab) = P(a)y(b) = (alr) - (b1F).

Since F' is a field, we must have alp = 0 or blp = 0. But this implies either a € ker(y)) = (n) or
b € ker(¢)), while a,b < n, which is a contradiction. Therefore, n must be prime, and we will write
p=n.

By the First Isomorphism Theorem, the prime ring of F' is isomorphic to Z/ker(y)) = Z/(p).
Thus the prime field of F' is isomorphic to the fraction field of Z/p, but since Z/p is a field, its
fraction field is itself. Thus the prime field of F' is Z/(p).

On the other hand, if 1 is injective, then again by the First Isomorphism Theorem the prime
ring of F' is isomorphic to Z, so the prime field of F' is isomorphic to frac(Z) = Q. O
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Problem 2. In this problem, we will show that adjoining a finite set of elements to a field F' is
the same as adjoining its elements one at a time. More precisely, let L/F be a field extension,
and let a1,...,a;, € L. Set Ly = F and for each 1 < i < m define L; = L;_1(a;). Show that
F(ay,...,am) = Lpy,.

Proof. We prove by induction that L; = F(ay,...,a;) for all 1 < ¢ < m, with the case i = m
yielding the desired statement.

Base case: i = 1 follows by definition of L;.

Inductive step: Assume L; = F(aq,...,a;) for some i < m.

Then, by definition, we have L;11 = L;(aj+1) = F(a1,...,a;)(a;+1). This implies in particular
that L;;1 is a subfield of L and it contains F' and ay, . .., a;, a;+1. By definition of F'(aq, ..., a;, a;+1),
F(ay,...,a;,a+1) is contained in any subfield of L containing both F" and a1, ..., a;t1, so it follows
that F(al, vy Qg ai+1) - Li+1.

To establish the converse note that the respective definitions imply that there is a subfield

containment F(ai,...,a;) € F(ai,...,a;,a;41) and also a;+1 € F(ai,...,a;,a;41). Therefore,
since by definition any field containing F'(a,...,a;) and a;+; must contain F(aq,...,a;)(a;+1), it
follows that L;y1 = F(a,...,a;,ai+1)(ai+1) C F(ai,...,a;, ait11).

The two containments above combine to show the desired conclusion:
Liy1 = F(a1,...,ai,a;41). O
Problem 3. Show that 23 + 3z + 2 € Q[x] is irreducible.

Proof. By Gauss’ Lemma, it is sufficient to show that f(z) = 23 + 3z + 2 is irreducible over Z. If
it were reducible, then it would be reducible over Z/(5). However, we claim that this polynomial
has no roots modulo 5. Indeed, over Z/(5) we have the following;:

f(0) =2

f)=13+3+2=1
f2)=224+6+2=16=1
f3)=33+9+2=24+442=3
f@)=(-1°-3+2=-2=3.

Since f is a polynomial of degree 3, if it factors, it would have a factor of degree 1. But since f has
no roots, it must be irreducible. Since f is irreducible modulo 5, it is also irreducible over Z, and
thus over Q. Il

Problem 4. In each part, determine, with justification, the degree of the extension [Q(«) : Q:
a) a=2++3

b) B=1+ V2+ V4.

Proof. a) We claim that for a = 2 4 /3, we have [Q(a) : Q] = 2.

First, we claim that #? — 3 € Q[z] is irreducible. By Gauss’ Lemma, it is sufficient to check
that it is irreducible over Z, since Q = frac(Z). Now we can use Eisenstein’s criterion with the
prime ideal (2), which applies since all the coefficients of degree up to 1 are in (3), the constant
coefficient is not in (3)2, and the degree 2 coefficient is not in (3). We conclude that 22 — 3 is
irreducible over Z, and thus over Q as well.
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Since o € R we may consider the subfield Q(a) € R. Similarly we may also consider Q(v/3) C R.
Since Q(v/3) contains Q and /3 it follows by definition of Q(«) that Q(a) C Q(v/3). Since v/3
is a root of the polynomial 22 — 3 € Q[z] and this polynomial is irreducible, it follows that
mgo = 2% — 3 and consequently [Q(v/3) : Q] = 2.

By the degree formula, 2 = [Q(v/3) : Q] = [Q(V/3) : Q(a)] - [Q(«) : Q], which implies that
[Q(a) : Q] € {1,2}. But [Q(a) : Q] =1 if and only if Q(«) = Q, which is false as a ¢ Q. So it
must be the case that [Q(«) : Q] = 2.

For B =1+ v/2 + V4, we claim that [Q(3) : Q] = 3.

First, we claim that 3 — 2 € Q[z] is irreducible. By Gauss’ Lemma, it is sufficient to check
that it is irreducible over Z, since Q = frac(Z). Now we can use Eisenstein’s criterion with the
prime ideal (2), which applies since all the coefficients of degree up to 2 are in (2), the constant
coefficient is not in (2)2, and the degree 3 coefficient is not in (2). We conclude that z® — 2 is
irreducible over Z, and thus over Q as well.

Since 3 € R, we may consider the subfield Q(8) C R. Similarly we may also consider Q(+¥/2) C R.
Since Q(+/2) contains Q and the elements v/2 and (+v/2)? = V/4, it follows by definition of Q(3)
that Q(B8) € Q(+/2). Since V/2 is a root of the polynomial 3 — 2 € Q[z] and this polynomial is
irreducible, it follows that m V50 = 23 — 2 and consequently [Q(+v/2) : Q] = 3.

By the degree formula,
3=[Q(V2):Q = [Q(V2): Q(B)] - [Q(B) : Q,

which implies that [Q(«) : Q] € {1,3}. But [Q(p) : Q] = 1 if and only if Q(5) = Q, but we will
show that 3 ¢ Q. Suppose, by contradiction, that 3 € Q, so that g(z) = 2?>+ 2+ (1 - 3) € Q[z].
Note that /2 is a root of ¢, but we have shown that the minimal polynomial of /2 over Q has
degree 2, so this is a contradiction. We conclude that [Q(8) : Q] # 1, and thus [Q(5) : Q] = 3.
O

Problem 5. Consider the two field extensions Q C Q(i,v/3) and Q C Q(4, v/2).

a)

b)

)

Show that Q C Q(i,/3) has degree 4.

Proof. We have Q C Q(v/3) € Q(i,+/3). The degree of Q C Q(v/3) is 2 since the minimal
polynomial of v/3 is 22 — 3. The degree of Q(v/3) C Q(4,+/3) is at most two since i is a root
of 2 4+ 1. On the other hand, this is a proper extension, since Q(v/3) C R and i ¢ R. Thus
Q(V3) € Q(i,V3) has degree exactly 2. By the degree formula, we conclude that

[Q@,V3):Q=2-2=4. O
Show that Q@ C Q(4, v/2) has degree 6.
Proof. We have Q C Q(+/2) € Q(4,v/2) and [Q(+/2) : Q] = 3 since 23 — 2 is irreducible in Q[x]

(which we justified in Problem 4). As before, Q(v/2) C Q(i, v/2) is a proper extension of degree
at most 2 and hence has degree exactly 2. By the degree formula,

(@, v3) : Q] = [Q(i,V3) : Q(V3)][Q(V3) : Q] =2-3=6. O
Find a primitive element + for the extension Q C Q(4,/3).
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Proof. Let v = /3 + 1. Since v € Q(i,/3), we have Q(vy) C Q(i,+/3). Note that

V2 =2+2V3i
73 = 8i
At = —8 +8/3i.

Thus i = 37 € Q(7) and V3 = v — §7* € Q(v). We conclude that Q(y) = Q(i,v/3) and thus

v is a primitive element. O
d) Find m, q(z).

Proof. Note that
vt =44 £ 16 = —8 + 8V/3i — 4(2 + 2V/3i) + 16 = 0.

Since [Q(v) : Q] = [Q(4,v/3) : Q] = 4, we know the minimal polynomial of 7 over Q must have
degree 4. Therefore, m, g = zt — 422 + 16. O

Problem 6. Let R be a domain and let F' be its fraction field. Show that F' has the following
universal property: if K is any field and f: R — K is any injective ring homomorphism, then f
extends to an injective ring homomorphism f: F' — K, so that f|r = f.

Proof. Define f: F — K by
—/a
7(5) = f@ro™

First, we claim that this map is well-defined. There are really two things to check: first, that
f(b)~! makes sense for any element 7 € F, and second that this doesn’t depend on the choice of
representatives for the class of ¢.

Given any element of F, say ¢, by definition the elements a,b € R are such that b # 0. Since f
is injective, f(b) # 0, and since K is a field, we conclude that f(b) has an inverse. Thus f(a)f(b)~!
makes sense.

C

Moreover, if § = ¢ are nonzero, then ad = be, and since f is a ring homomorphism we conclude
that

fla)f(d) = f(ad) = f(be) = f(b) f(c)-

Now since b,d # 0 by definition of F', and since f is injective, we must have f(b), f(d) # 0, and
since K is a field, both have inverses. Multiplying the identity above by f(b)~!f(d)~!, we get

Thiss shows that £ is well-defined.
Moreover, f is a ring homomorphism:

e f(lp)=f(3) = f)f(1) 1 =1k - 1! = 1x. Since f is a ring homomorphism, f(1g) = 1k.
e Using that f is preserves sums, we see that

+ 9 = TR = fad+be) fbd) ™ = (F(a) () + FB)F()F (1) F(d)”

(
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e Using that f is preserves multiplication, we see that
F(332) =7 (5) = flac)f )~
= F@F@F O @) = (@O FI@ ™ =T (3) T (5)-
Finally, f is an extension of f: indeed, given any r € R,

F(5) = ferm ™ =ragdt=r

All that remains to show is that this map f is the unique ring homomorphism extending f to
F. So let g: F — K be a ring homomorphism such that

g G) = f(r).

Then since g preserves products, for any nonzero b € R we have

wenty=+ () -o(2)o () - )

Thus 1
s(3) = ror
Therefore,
1(3)=0(3)o(3) = revor =13
We conclude that g = f. O
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