Problem Set 9 solutions

Problem 1. Let F be a field. Recall that

$$
a 1_{F}=\underbrace{1+\cdots+1}_{a \text { times }} .
$$

The prime ring of F is the subring of F generated by 1_{F}, that is

$$
\left\{k 1_{F} \mid k \in \mathbb{Z}\right\}
$$

The prime field of F is the subfield of F generated by 1_{F}, that is

$$
K=\operatorname{Frac}\left(\left\{\mathrm{k} 1_{\mathrm{F}} \mid \mathrm{k} \in \mathbb{Z}\right\}\right)
$$

Show that the prime field of F is isomorphic to exactly one of the fields \mathbb{Q} or \mathbb{Z} / p for some prime integer p.

Proof. Consider the map

$$
\begin{aligned}
& \mathbb{Z} \xrightarrow{\psi} F \\
& a \longmapsto a 1_{F}
\end{aligned}
$$

This map is a ring homomorphism:

- $\psi(1)=1_{F}$ by definition;
- $\phi(a+b)=(a+b) 1_{F}=a 1_{F}+b 1_{F}=\psi(a)+\psi(b) ;$
- $\phi(a+b)=(a+b) 1_{F}=a 1_{F}+b 1_{F}=\psi(a)+\psi(b)$

Moreover, the image of ψ is the prime subring of R, which is

$$
\left\{k 1_{F} \mid k \in \mathbb{Z}\right\}
$$

Thus the prime subring of F is the fraction field of $\operatorname{im}(\psi)$.
Suppose that ψ has a nontrivial kernel. Since \mathbb{Z} is a PID, there exists a positive integer n such that $\operatorname{ker}(\psi)=(n)$. We claim that such n must in fact be prime. If n is not prime, then we can find positive integers $a>1$ and $b>1$ such that $n=a b$. Then

$$
0=\psi(n)=\psi(a b)=\psi(a) \psi(b)=\left(a 1_{F}\right) \cdot\left(b 1_{F}\right)
$$

Since F is a field, we must have $a 1_{F}=0$ or $b 1_{F}=0$. But this implies either $a \in \operatorname{ker}(\psi)=(n)$ or $b \in \operatorname{ker}(\psi)$, while $a, b<n$, which is a contradiction. Therefore, n must be prime, and we will write $p=n$.

By the First Isomorphism Theorem, the prime ring of F is isomorphic to $\mathbb{Z} / \operatorname{ker}(\psi)=\mathbb{Z} /(p)$. Thus the prime field of F is isomorphic to the fraction field of \mathbb{Z} / p, but since \mathbb{Z} / p is a field, its fraction field is itself. Thus the prime field of F is $\mathbb{Z} /(p)$.

On the other hand, if ψ is injective, then again by the First Isomorphism Theorem the prime ring of F is isomorphic to \mathbb{Z}, so the prime field of F is isomorphic to $\operatorname{frac}(\mathbb{Z}) \cong \mathbb{Q}$.

Problem 2. In this problem, we will show that adjoining a finite set of elements to a field F is the same as adjoining its elements one at a time. More precisely, let L / F be a field extension, and let $a_{1}, \ldots, a_{m} \in L$. Set $L_{0}=F$ and for each $1 \leqslant i \leqslant m$ define $L_{i}=L_{i-1}\left(a_{i}\right)$. Show that $F\left(a_{1}, \ldots, a_{m}\right)=L_{m}$.

Proof. We prove by induction that $L_{i}=F\left(a_{1}, \ldots, a_{i}\right)$ for all $1 \leqslant i \leqslant m$, with the case $i=m$ yielding the desired statement.

Base case: $i=1$ follows by definition of L_{1}.
Inductive step: Assume $L_{i}=F\left(a_{1}, \ldots, a_{i}\right)$ for some $i<m$.
Then, by definition, we have $L_{i+1}=L_{i}\left(a_{i+1}\right)=F\left(a_{1}, \ldots, a_{i}\right)\left(a_{i+1}\right)$. This implies in particular that L_{i+1} is a subfield of L and it contains F and $a_{1}, \ldots, a_{i}, a_{i+1}$. By definition of $F\left(a_{1}, \ldots, a_{i}, a_{i+1}\right)$, $F\left(a_{1}, \ldots, a_{i}, a_{i+1}\right)$ is contained in any subfield of L containing both F and a_{1}, \ldots, a_{i+1}, so it follows that $F\left(a_{1}, \ldots, a_{i}, a_{i+1}\right) \subseteq L_{i+1}$.

To establish the converse note that the respective definitions imply that there is a subfield containment $F\left(a_{1}, \ldots, a_{i}\right) \subseteq F\left(a_{1}, \ldots, a_{i}, a_{i+1}\right)$ and also $a_{i+1} \in F\left(a_{1}, \ldots, a_{i}, a_{i+1}\right)$. Therefore, since by definition any field containing $F\left(a_{1}, \ldots, a_{i}\right)$ and a_{i+1} must contain $F\left(a_{1}, \ldots, a_{i}\right)\left(a_{i+1}\right)$, it follows that $L_{i+1}=F\left(a_{1}, \ldots, a_{i}, a_{i+1}\right)\left(a_{i+1}\right) \subseteq F\left(a_{1}, \ldots, a_{i}, a_{i+1}\right)$.

The two containments above combine to show the desired conclusion:

$$
L_{i+1}=F\left(a_{1}, \ldots, a_{i}, a_{i+1}\right) .
$$

Problem 3. Show that $x^{3}+3 x+2 \in \mathbb{Q}[x]$ is irreducible.
Proof. By Gauss' Lemma, it is sufficient to show that $f(x)=x^{3}+3 x+2$ is irreducible over \mathbb{Z}. If it were reducible, then it would be reducible over $\mathbb{Z} /(5)$. However, we claim that this polynomial has no roots modulo 5 . Indeed, over $\mathbb{Z} /(5)$ we have the following:

$$
\begin{aligned}
& f(0)=2 \\
& f(1)=1^{3}+3+2=1 \\
& f(2)=2^{3}+6+2=16=1 \\
& f(3)=3^{3}+9+2=2+4+2=3 \\
& f(4)=(-1)^{3}-3+2=-2=3 .
\end{aligned}
$$

Since f is a polynomial of degree 3 , if it factors, it would have a factor of degree 1 . But since f has no roots, it must be irreducible. Since f is irreducible modulo 5 , it is also irreducible over \mathbb{Z}, and thus over \mathbb{Q}.

Problem 4. In each part, determine, with justification, the degree of the extension $[\mathbb{Q}(\alpha)$: $\mathbb{Q}]$:
a) $\alpha=2+\sqrt{3}$
b) $\beta=1+\sqrt[3]{2}+\sqrt[3]{4}$.

Proof. a) We claim that for $\alpha=2+\sqrt{3}$, we have $[\mathbb{Q}(\alpha): \mathbb{Q}]=2$.
First, we claim that $x^{2}-3 \in \mathbb{Q}[x]$ is irreducible. By Gauss' Lemma, it is sufficient to check that it is irreducible over \mathbb{Z}, since $\mathbb{Q}=\operatorname{frac}(\mathbb{Z})$. Now we can use Eisenstein's criterion with the prime ideal (2), which applies since all the coefficients of degree up to 1 are in (3), the constant coefficient is not in $(3)^{2}$, and the degree 2 coefficient is not in (3). We conclude that $x^{2}-3$ is irreducible over \mathbb{Z}, and thus over \mathbb{Q} as well.

Since $\alpha \in \mathbb{R}$ we may consider the subfield $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$. Similarly we may also consider $\mathbb{Q}(\sqrt{3}) \subseteq \mathbb{R}$. Since $\mathbb{Q}(\sqrt{3})$ contains \mathbb{Q} and $\sqrt{3}$ it follows by definition of $\mathbb{Q}(\alpha)$ that $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\sqrt{3})$. Since $\sqrt{3}$ is a root of the polynomial $x^{2}-3 \in \mathbb{Q}[x]$ and this polynomial is irreducible, it follows that $m_{\sqrt{3, \mathbb{Q}}}=x^{2}-3$ and consequently $[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2$.
By the degree formula, $2=[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{3}): \mathbb{Q}(\alpha)] \cdot[\mathbb{Q}(\alpha): \mathbb{Q}]$, which implies that $[\mathbb{Q}(\alpha): \mathbb{Q}] \in\{1,2\}$. But $[\mathbb{Q}(\alpha): \mathbb{Q}]=1$ if and only if $\mathbb{Q}(\alpha)=\mathbb{Q}$, which is false as $\alpha \notin \mathbb{Q}$. So it must be the case that $[\mathbb{Q}(\alpha): \mathbb{Q}]=2$.
b) For $\beta=1+\sqrt[3]{2}+\sqrt[3]{4}$, we claim that $[\mathbb{Q}(\beta): \mathbb{Q}]=3$.

First, we claim that $x^{3}-2 \in \mathbb{Q}[x]$ is irreducible. By Gauss' Lemma, it is sufficient to check that it is irreducible over \mathbb{Z}, since $\mathbb{Q}=\operatorname{frac}(\mathbb{Z})$. Now we can use Eisenstein's criterion with the prime ideal (2), which applies since all the coefficients of degree up to 2 are in (2), the constant coefficient is not in $(2)^{2}$, and the degree 3 coefficient is not in (2). We conclude that $x^{3}-2$ is irreducible over \mathbb{Z}, and thus over \mathbb{Q} as well.
Since $\beta \in \mathbb{R}$, we may consider the subfield $\mathbb{Q}(\beta) \subseteq \mathbb{R}$. Similarly we may also consider $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$. Since $\mathbb{Q}(\sqrt[3]{2})$ contains \mathbb{Q} and the elements $\sqrt[3]{2}$ and $(\sqrt[3]{2})^{2}=\sqrt[3]{4}$, it follows by definition of $\mathbb{Q}(\beta)$ that $\mathbb{Q}(\beta) \subseteq \mathbb{Q}(\sqrt[3]{2})$. Since $\sqrt[3]{2}$ is a root of the polynomial $x^{3}-2 \in \mathbb{Q}[x]$ and this polynomial is irreducible, it follows that $m_{\sqrt[3]{2}, \mathbb{Q}}=x^{3}-2$ and consequently $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$.
By the degree formula,

$$
3=[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}(\beta)] \cdot[\mathbb{Q}(\beta): \mathbb{Q}]
$$

which implies that $[\mathbb{Q}(\alpha): \mathbb{Q}] \in\{1,3\}$. But $[\mathbb{Q}(\beta): \mathbb{Q}]=1$ if and only if $\mathbb{Q}(\beta)=\mathbb{Q}$, but we will show that $\beta \notin \mathbb{Q}$. Suppose, by contradiction, that $\beta \in \mathbb{Q}$, so that $q(x)=x^{2}+x+(1-\beta) \in \mathbb{Q}[x]$. Note that $\sqrt[3]{2}$ is a root of q, but we have shown that the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} has degree 2 , so this is a contradiction. We conclude that $[\mathbb{Q}(\beta): \mathbb{Q}] \neq 1$, and thus $[\mathbb{Q}(\beta): \mathbb{Q}]=3$.

Problem 5. Consider the two field extensions $\mathbb{Q} \subseteq \mathbb{Q}(i, \sqrt{3})$ and $\mathbb{Q} \subseteq \mathbb{Q}(i, \sqrt[3]{2})$.
a) Show that $\mathbb{Q} \subseteq \mathbb{Q}(i, \sqrt{3})$ has degree 4 .

Proof. We have $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3}) \subseteq \mathbb{Q}(i, \sqrt{3})$. The degree of $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3})$ is 2 since the minimal polynomial of $\sqrt{3}$ is $x^{2}-3$. The degree of $\mathbb{Q}(\sqrt{3}) \subseteq \mathbb{Q}(i, \sqrt{3})$ is at most two since i is a root of $x^{2}+1$. On the other hand, this is a proper extension, since $\mathbb{Q}(\sqrt{3}) \subseteq \mathbb{R}$ and $i \notin \mathbb{R}$. Thus $\mathbb{Q}(\sqrt{3}) \subseteq \mathbb{Q}(i, \sqrt{3})$ has degree exactly 2 . By the degree formula, we conclude that

$$
[\mathbb{Q}(i, \sqrt{3}): \mathbb{Q}]=2 \cdot 2=4
$$

b) Show that $\mathbb{Q} \subseteq \mathbb{Q}(i, \sqrt[3]{2})$ has degree 6 .

Proof. We have $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{Q}(i, \sqrt[3]{2})$ and $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$ since $x^{3}-2$ is irreducible in $\mathbb{Q}[x]$ (which we justified in Problem 4). As before, $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{Q}(i, \sqrt[3]{2})$ is a proper extension of degree at most 2 and hence has degree exactly 2 . By the degree formula,

$$
[\mathbb{Q}(i, \sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(i, \sqrt{3}): \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2 \cdot 3=6 .
$$

c) Find a primitive element γ for the extension $\mathbb{Q} \subseteq \mathbb{Q}(i, \sqrt{3})$.

Proof. Let $\gamma=\sqrt{3}+i$. Since $\gamma \in \mathbb{Q}(i, \sqrt{3})$, we have $\mathbb{Q}(\gamma) \subseteq \mathbb{Q}(i, \sqrt{3})$. Note that

$$
\begin{aligned}
& \gamma^{2}=2+2 \sqrt{3} i \\
& \gamma^{3}=8 i \\
& \gamma^{4}=-8+8 \sqrt{3} i .
\end{aligned}
$$

Thus $i=\frac{1}{8} \gamma^{3} \in \mathbb{Q}(\gamma)$ and $\sqrt{3}=\gamma-\frac{1}{8} \gamma^{3} \in \mathbb{Q}(\gamma)$. We conclude that $\mathbb{Q}(\gamma)=\mathbb{Q}(i, \sqrt{3})$ and thus γ is a primitive element.
d) Find $m_{\gamma, \mathbb{Q}}(x)$.

Proof. Note that

$$
\gamma^{4}-4 \gamma^{2}+16=-8+8 \sqrt{3} i-4(2+2 \sqrt{3} i)+16=0
$$

Since $[\mathbb{Q}(\gamma): \mathbb{Q}]=[\mathbb{Q}(i, \sqrt{3}): \mathbb{Q}]=4$, we know the minimal polynomial of γ over \mathbb{Q} must have degree 4. Therefore, $m_{\alpha, \mathbb{Q}}=x^{4}-4 x^{2}+16$.

Problem 6. Let R be a domain and let F be its fraction field. Show that F has the following universal property: if K is any field and $f: R \rightarrow K$ is any injective ring homomorphism, then f extends to an injective ring homomorphism $\bar{f}: F \rightarrow K$, so that $\left.\bar{f}\right|_{R}=f$.

Proof. Define $\bar{f}: F \rightarrow K$ by

$$
\bar{f}\left(\frac{a}{b}\right)=f(a) f(b)^{-1} .
$$

First, we claim that this map is well-defined. There are really two things to check: first, that $f(b)^{-1}$ makes sense for any element $\frac{a}{b} \in F$, and second that this doesn't depend on the choice of representatives for the class of $\frac{a}{b}$.

Given any element of F, say $\frac{a}{b}$, by definition the elements $a, b \in R$ are such that $b \neq 0$. Since f is injective, $f(b) \neq 0$, and since K is a field, we conclude that $f(b)$ has an inverse. Thus $f(a) f(b)^{-1}$ makes sense.

Moreover, if $\frac{a}{b}=\frac{c}{d}$ are nonzero, then $a d=b c$, and since f is a ring homomorphism we conclude that

$$
f(a) f(d)=f(a d)=f(b c)=f(b) f(c) .
$$

Now since $b, d \neq 0$ by definition of F, and since f is injective, we must have $f(b), f(d) \neq 0$, and since K is a field, both have inverses. Multiplying the identity above by $f(b)^{-1} f(d)^{-1}$, we get

$$
f(a) f(b)^{-1}=f(b) f(d)^{-1} .
$$

Thiss shows that \bar{f} is well-defined.
Moreover, \bar{f} is a ring homomorphism:

- $\bar{f}\left(1_{F}\right)=\bar{f}\left(\frac{1}{1}\right)=f(1) f(1)^{-} 1=1_{K} \cdot 1_{K}^{-1}=1_{K}$. Since f is a ring homomorphism, $f\left(1_{R}\right)=1_{K}$.
- Using that f is preserves sums, we see that

$$
\begin{gathered}
\bar{f}\left(\frac{a}{b}+\frac{c}{d}\right)=\bar{f}\left(\frac{a d+b c}{b d}\right)=f(a d+b c) f(b d)^{-1}=(f(a) f(d)+f(b) f(c)) f(b)^{-1} f(d)^{-1} \\
=\left(f(a) f(b)^{-1}\right)+\left(f(c) f(d)^{-1}\right)=\bar{f}\left(\frac{a}{b}\right)+\bar{f}\left(\frac{c}{d}\right) .
\end{gathered}
$$

- Using that f is preserves multiplication, we see that

$$
\begin{gathered}
\bar{f}\left(\frac{a}{b} \frac{c}{d}\right)=\bar{f}\left(\frac{a c}{b d}\right)=f(a c) f(b d)^{-1} \\
=f(a) f(c) f(b)^{-1} f(d)^{-1}=\left(f(a) f(b)^{-1}\right)\left(f(c) f(d)^{-1}\right)=\bar{f}\left(\frac{a}{b}\right) \bar{f}\left(\frac{c}{d}\right) .
\end{gathered}
$$

Finally, \bar{f} is an extension of f : indeed, given any $r \in R$,

$$
\bar{f}\left(\frac{r}{1}\right)=f(r) f(1)^{-1}=r \cdot 1_{K}^{-1}=r
$$

All that remains to show is that this map \bar{f} is the unique ring homomorphism extending f to F. So let $g: F \rightarrow K$ be a ring homomorphism such that

$$
g\left(\frac{r}{1}\right)=f(r)
$$

Then since g preserves products, for any nonzero $b \in R$ we have

$$
1_{K}=g\left(\frac{1}{1}\right)=g\left(\frac{b}{b}\right)=g\left(\frac{b}{1}\right) g\left(\frac{1}{b}\right)=f(b) g\left(\frac{1}{b}\right)
$$

Thus

$$
g\left(\frac{1}{b}\right)=f(b)^{-1}
$$

Therefore,

$$
g\left(\frac{a}{b}\right)=g\left(\frac{a}{1}\right) g\left(\frac{1}{b}\right)=f(a) f(b)^{-1}=\bar{f}\left(\frac{a}{b}\right)
$$

We conclude that $g=\bar{f}$.

