Problem Set 9 solutions

Problem 1. Let $K \subseteq L$ be a finite extension of fields and assume f(x) is a polynomial with coefficients in K that is irreducible in the ring K[x].

a) Prove f(x) remains irreducible when regarded as an element of the ring L[x] provided [L:K] is relatively prime to the degree of f(x).

Proof. Let \overline{F} be an algebraic closure of F and let $L = K(\alpha)$ where α is a root of f(x) in L. Then $[L:F] = [L:K][K:F] = [L:K] \cdot n = e \cdot n$, where e is the degree of $m_{\alpha,K}(x)$. We also have $[L:F] = [L:F(\alpha)][F(\alpha):F] = [L:F(\alpha)] \cdot d$. Since gcd(d,n) = 1, it follows that $d \mid e$. But since α is a root of f(x), $m_{\alpha,K}$ must divide f(x) in K[x]. Since they have the same degree, it must be that $m_{\alpha,K}(x) = cf(x)$ for some nonzero constant c. Since $m_{\alpha,K}(x)$ is irreducible in K[x], then f(x) is irreducible in K[x].

b) Give an explicit example with justification showing that the statement in part a) would become false if we ommitted the assumption that [L:K] is relatively prime to the degree of f(x).

Proof. Take $F = \mathbb{R}$, $K = \mathbb{C}$ and $f(x) = x^2 + 1$. The polynomial f is irreducible over \mathbb{R} , since it has no roots over \mathbb{R} and it has degree 2, while f factors as f = (x+i)(x-i) over \mathbb{C} . On the other hand, $[\mathbb{C} : \mathbb{R}] = 2 < \infty$.

Problem 2. Let p be a prime integer and let $F = \mathbb{Q}(i)$. Use the theory of field extensions to show that the polynomial $x^3 - p$ is irreducible in F[x].

Proof. Let $q(x) = x^3 - p \in \mathbb{Q}[x] \subseteq F[x]$. Note that q is also a polynomial in $\mathbb{Z}[x]$. Since p is a prime integer, Eisenstein's Criterion applies to q with the prime ideal (p): p divides all the coefficients of q of degree up to 2, p does not divide the coefficient of degree 3, and $p^2 \nmid -p$. Therefore, q is irreducible over \mathbb{Z} , and thus by Gauss' Criterion we conclude that q is irreducible over \mathbb{Q} .

On the other hand, $i \notin \mathbb{Q}$, since *i* is not even a real number. Thus the polynomial $x^2 + 1$, which has degree 2 and roots *i* and -i over \mathbb{C} , must be irreducible over \mathbb{Q} . We conclude that $x^2 + 1$ is the minimal polynomial of *i* over \mathbb{Q} , so $[\mathbb{Q}(i) : \mathbb{Q}] = 2$.

Since (2,3) = 1, by Problem 1 we conclude that q is irreducible over $\mathbb{Q}(i)$.

Problem 3. Let *E* be the field extension of \mathbb{Q} obtained by adjoining to \mathbb{Q} all four complex roots of the polynomial $x^4 + 5$. That is, $E = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ where

$$\alpha_1 = e^{\pi i/4} \sqrt[4]{5}, \quad \alpha_2 = e^{3\pi i/4} \sqrt[4]{5}, \quad \alpha_3 = e^{5\pi i/4} \sqrt[4]{5}, \quad \alpha_4 = e^{7\pi i/4} \sqrt[4]{5}.$$

a) Prove that there exist a field extension $\mathbb{Q} \subseteq F$ such that $F \subseteq E, F \subseteq \mathbb{R}$, and $[F : \mathbb{Q}] = 4$.

Hint: Note that $\alpha_1 + \alpha_4$ is a real number; find it explicitly.

Proof. Note that

$$\alpha_1 = \sqrt[4]{5} \cdot \frac{\sqrt{2}}{2}(1+i) = \frac{\sqrt[4]{20}}{2}(1+i) \text{ and } \alpha_4 = \frac{\sqrt[4]{20}}{2}(1-i)$$

so $\alpha_1 + \alpha_4 = \sqrt[4]{20}$.

Moreover, $\alpha_1 + \alpha_4$ is thus a root of $x^4 - 20$, which is irreducible: using Gauss' Lemma, we just need to show it is irreducible over \mathbb{Z} , and Eisenstein's Criterion applies with p = 5 to show that $x^4 - 20$ is irreducible over \mathbb{Z} . Hence, $m_{\alpha_1+\alpha_2,\mathbb{Q}}(x) = x^4 - 20$. Set $F = \mathbb{Q}(\alpha_1 + \alpha_4)$. Then $F \subseteq E$ and $[F:\mathbb{Q}] = 4$, as desired. Moreover, $F \subseteq \mathbb{R}$ since $\alpha_1 + \alpha_4 \in \mathbb{R}$ and $\mathbb{Q} \subseteq \mathbb{R}$.

b) Determine $[E : \mathbb{Q}]$ with justification.

Proof. By the Degree Formula, $[E : \mathbb{Q}] = [E : F][F : \mathbb{Q}] = [E : F] \cdot 4$. We claim that E = F(i). First note that $\frac{\alpha_1}{\alpha_4} = \frac{1+i}{1-i} = i$ so that $i \in E$ and hence $F(i) \subseteq E$.

Since each α_j has the form $\frac{\sqrt[4]{20}}{2}(\pm 1 \pm i)$ and both $\sqrt[4]{20}$ and *i* belong to F(i), we have $\alpha_j \in F(i)$ for all *j* and thus $E \subseteq F(i)$. We conclude that E = F(i).

Since *i* is a root of $x^2 + 1 \in F[x]$ we have $[F(i) : F] \leq 2$. Since $F \subseteq \mathbb{R}$, we have $F \neq F(i)$ and thus [E : F] = 2. By the Degree Formula, $[E : \mathbb{Q}] = [E : F][F : \mathbb{Q}] = 2 \cdot 4 = 8$.

Problem 4. Let

$$F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots$$

be fields such that $F_i \subseteq F_{i+1}$ is an algebraic extension for all $i \ge 0$, and let

$$E = \bigcup_i F_i.$$

a) Show that E is a field.

b) Show that $F_0 \subseteq E$ is an algebraic extension.

Problem 5. Let F be a field and $f, g \in F[x]$ be nonzero polynomials. Show that gcd(f,g) = 1 in F[x] if any only if f and g have no common roots in an algebraic closure \overline{F} of F.

Proof. We prove the contrapositive: 1 is not a gcd for f and g in F[x] if any only if f and g have a common root in an algebraic closure \overline{F} of F.

 (\Rightarrow) If 1 is not a gcd for f and g in F[x], then $gcd(f,g) = h \in F[x]$ for some polynomial h with $deg(h) \ge 1$. Then since h is nonconstant polynomial, we know h has a root $\alpha \in \overline{F}$. Since $h \mid f$ and $h \mid g$, it follows that α is also a root for both f and g.

(\Leftarrow) Suppose that f and g have a common root $\alpha \in \overline{F}$, that is $f(\alpha) = g(\alpha) = 0$. Then α is algebraic over F and hence it has a minimal polynomial $m_{\alpha,F} \in F[x]$. Furthermore, by properties of the minimal polynomial it follows that since $f(\alpha) = 0$ then $m_{\alpha,F} \mid f$ and since $g(\alpha) = 0$ then $m_{\alpha,F} \mid g$. Thus $m_{\alpha,F}$ is a common divisor for f, g in F[x] and therefore by properties of the gcd $m_{\alpha,F} \mid \gcd(f,g)$. This shows that, since $\deg(m_{\alpha,F}) \ge 1$, $\deg(\gcd(f,g)) \ne 0$, therefore no unit of F can be a gcd for f, g in F[x].