Problem Set 9 solutions

Problem 1. Let $K \subseteq L$ be a finite extension of fields and assume $f(x)$ is a polynomial with coefficients in K that is irreducible in the ring $K[x]$.
a) Prove $f(x)$ remains irreducible when regarded as an element of the ring $L[x]$ provided $[L: K]$ is relatively prime to the degree of $f(x)$.

Proof. Let \bar{F} be an algebraic closure of F and let $L=K(\alpha)$ where α is a root of $f(x)$ in L. Then $[L: F]=[L: K][K: F]=[L: K] \cdot n=e \cdot n$, where e is the degree of $m_{\alpha, K}(x)$. We also have $[L: F]=[L: F(\alpha)][F(\alpha): F]=[L: F(\alpha)] \cdot d$. Since $\operatorname{gcd}(d, n)=1$, it follows that $d \mid e$. But since α is a root of $f(x), m_{\alpha, K}$ must divide $f(x)$ in $K[x]$. Since they have the same degree, it must be that $m_{\alpha, K}(x)=c f(x)$ for some nonzero constant c. Since $m_{\alpha, K}(x)$ is irreducible in $K[x]$, then $f(x)$ is irreducible in $K[x]$.
b) Give an explicit example with justification showing that the statement in part a) would become false if we ommitted the assumption that $[L: K]$ is relatively prime to the degree of $f(x)$.

Proof. Take $F=\mathbb{R}, K=\mathbb{C}$ and $f(x)=x^{2}+1$. The polynomial f is irreducible over \mathbb{R}, since it has no roots over \mathbb{R} and it has degree 2 , while f factors as $f=(x+i)(x-i)$ over \mathbb{C}. On the other hand, $[\mathbb{C}: \mathbb{R}]=2<\infty$.

Problem 2. Let p be a prime integer and let $F=\mathbb{Q}(i)$. Use the theory of field extensions to show that the polynomial $x^{3}-p$ is irreducible in $F[x]$.

Proof. Let $q(x)=x^{3}-p \in \mathbb{Q}[x] \subseteq F[x]$. Note that q is also a polynomial in $\mathbb{Z}[x]$. Since p is a prime integer, Eisenstein's Criterion applies to q with the prime ideal (p) : p divides all the coefficients of q of degree up to $2, p$ does not divide the coefficient of degree 3 , and $p^{2} \nmid-p$. Therefore, q is irreducible over \mathbb{Z}, and thus by Gauss' Criterion we conclude that q is irreducible over \mathbb{Q}.

On the other hand, $i \notin \mathbb{Q}$, since i is not even a real number. Thus the polynomial $x^{2}+1$, which has degree 2 and roots i and $-i$ over \mathbb{C}, must be irreducible over \mathbb{Q}. We conclude that $x^{2}+1$ is the minimal polynomial of i over \mathbb{Q}, so $[\mathbb{Q}(i): \mathbb{Q}]=2$.

Since $(2,3)=1$, by Problem 1 we conclude that q is irreducible over $\mathbb{Q}(i)$.
Problem 3. Let E be the field extension of \mathbb{Q} obtained by adjoining to \mathbb{Q} all four complex roots of the polynomial $x^{4}+5$. That is, $E=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ where

$$
\alpha_{1}=e^{\pi i / 4} \sqrt[4]{5}, \quad \alpha_{2}=e^{3 \pi i / 4} \sqrt[4]{5}, \quad \alpha_{3}=e^{5 \pi i / 4} \sqrt[4]{5}, \quad \alpha_{4}=e^{7 \pi i / 4} \sqrt[4]{5}
$$

a) Prove that there exist a field extension $\mathbb{Q} \subseteq F$ such that $F \subseteq E, F \subseteq \mathbb{R}$, and $[F: \mathbb{Q}]=4$.

Hint: Note that $\alpha_{1}+\alpha_{4}$ is a real number; find it explicitly.
Proof. Note that

$$
\alpha_{1}=\sqrt[4]{5} \cdot \frac{\sqrt{2}}{2}(1+i)=\frac{\sqrt[4]{20}}{2}(1+i) \quad \text { and } \quad \alpha_{4}=\frac{\sqrt[4]{20}}{2}(1-i)
$$

so $\alpha_{1}+\alpha_{4}=\sqrt[4]{20}$.

Moreover, $\alpha_{1}+\alpha_{4}$ is thus a root of $x^{4}-20$, which is irreducible: using Gauss' Lemma, we just need to show it is irreducible over \mathbb{Z}, and Eisenstein's Criterion applies with $p=5$ to show that $x^{4}-20$ is irreducible over \mathbb{Z}. Hence, $m_{\alpha_{1}+\alpha_{2}, \mathbb{Q}}(x)=x^{4}-20$. Set $F=\mathbb{Q}\left(\alpha_{1}+\alpha_{4}\right)$. Then $F \subseteq E$ and $[F: \mathbb{Q}]=4$, as desired. Moreover, $F \subseteq \mathbb{R}$ since $\alpha_{1}+\alpha_{4} \in \mathbb{R}$ and $\mathbb{Q} \subseteq \mathbb{R}$.
b) Determine $[E: \mathbb{Q}]$ with justification.

Proof. By the Degree Formula, $[E: \mathbb{Q}]=[E: F][F: \mathbb{Q}]=[E: F] \cdot 4$. We claim that $E=F(i)$. First note that $\frac{\alpha_{1}}{\alpha_{4}}=\frac{1+i}{1-i}=i$ so that $i \in E$ and hence $F(i) \subseteq E$.
Since each α_{j} has the form $\frac{\sqrt[4]{20}}{2}(\pm 1 \pm i)$ and both $\sqrt[4]{20}$ and i belong to $F(i)$, we have $\alpha_{j} \in F(i)$ for all j and thus $E \subseteq F(i)$. We conclude that $E=F(i)$.
Since i is a root of $x^{2}+1 \in F[x]$ we have $[F(i): F] \leqslant 2$. Since $F \subseteq \mathbb{R}$, we have $F \neq F(i)$ and thus $[E: F]=2$. By the Degree Formula, $[E: \mathbb{Q}]=[E: F][F: \mathbb{Q}]=2 \cdot 4=8$.

Problem 4. Let

$$
F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \cdots
$$

be fields such that $F_{i} \subseteq F_{i+1}$ is an algebraic extension for all $i \geqslant 0$, and let

$$
E=\bigcup_{i} F_{i}
$$

a) Show that E is a field.
b) Show that $F_{0} \subseteq E$ is an algebraic extension.

Problem 5. Let F be a field and $f, g \in F[x]$ be nonzero polynomials. Show that $\operatorname{gcd}(f, g)=1$ in $F[x]$ if any only if f and g have no common roots in an algebraic closure \bar{F} of F.

Proof. We prove the contrapositive: 1 is not a gcd for f and g in $F[x]$ if any only if f and g have a common root in an algebraic closure \bar{F} of F.
(\Rightarrow) If 1 is not a gcd for f and g in $F[x]$, then $\operatorname{gcd}(f, g)=h \in F[x]$ for some polynomial h with $\operatorname{deg}(h) \geqslant 1$. Then since h is nonconstant polynomial, we know has a root $\alpha \in \bar{F}$. Since $h \mid f$ and $h \mid g$, it follows that α is also a root for both f and g.
(\Leftarrow) Suppose that f and g have a common root $\alpha \in \bar{F}$, that is $f(\alpha)=g(\alpha)=0$. Then α is algebraic over F and hence it has a minimal polynomial $m_{\alpha, F} \in F[x]$. Furthermore, by properties of the minimal polynomial it follows that since $f(\alpha)=0$ then $m_{\alpha, F} \mid f$ and since $g(\alpha)=0$ then $m_{\alpha, F} \mid g$. Thus $m_{\alpha, F}$ is a common divisor for f, g in $F[x]$ and therefore by properties of the gcd $m_{\alpha, F} \mid \operatorname{gcd}(f, g)$. This shows that, since $\operatorname{deg}\left(m_{\alpha, F}\right) \geqslant 1, \operatorname{deg}(\operatorname{gcd}(f, g)) \neq 0$, therefore no unit of F can be a gcd for f, g in $F[x]$.

