
Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 9 solutions

Problem 1. Let K ⊆ L be a finite extension of fields and assume f(x) is a polynomial with
coefficients in K that is irreducible in the ring K[x].

a) Prove f(x) remains irreducible when regarded as an element of the ring L[x] provided [L : K]
is relatively prime to the degree of f(x).

Proof. Let F be an algebraic closure of F and let L = K(α) where α is a root of f(x) in L.
Then [L : F ] = [L : K][K : F ] = [L : K] · n = e · n, where e is the degree of mα,K(x). We also
have [L : F ] = [L : F (α)][F (α) : F ] = [L : F (α)] · d. Since gcd(d, n) = 1, it follows that d | e.
But since α is a root of f(x), mα,K must divide f(x) in K[x]. Since they have the same degree,
it must be that mα,K(x) = cf(x) for some nonzero constant c. Since mα,K(x) is irreducible in
K[x], then f(x) is irreducible in K[x].

b) Give an explicit example with justification showing that the statement in part a) would become
false if we ommitted the assumption that [L : K] is relatively prime to the degree of f(x).

Proof. Take F = R, K = C and f(x) = x2 + 1. The polynomial f is irreducible over R, since it
has no roots over R and it has degree 2, while f factors as f = (x + i)(x − i) over C. On the
other hand, [C : R] = 2 < ∞.

Problem 2. Let p be a prime integer and let F = Q(i). Use the theory of field extensions to show
that the polynomial x3 − p is irreducible in F [x].

Proof. Let q(x) = x3−p ∈ Q[x] ⊆ F [x]. Note that q is also a polynomial in Z[x]. Since p is a prime
integer, Eisenstein’s Criterion applies to q with the prime ideal (p): p divides all the coefficients
of q of degree up to 2, p does not divide the coefficient of degree 3, and p2 ∤ −p. Therefore, q is
irreducible over Z, and thus by Gauss’ Criterion we conclude that q is irreducible over Q.

On the other hand, i /∈ Q, since i is not even a real number. Thus the polynomial x2+1, which
has degree 2 and roots i and −i over C, must be irreducible over Q. We conclude that x2+1 is the
minimal polynomial of i over Q, so [Q(i) : Q] = 2.

Since (2, 3) = 1, by Problem 1 we conclude that q is irreducible over Q(i).

Problem 3. Let E be the field extension of Q obtained by adjoining to Q all four complex roots
of the polynomial x4 + 5. That is, E = Q(α1,α2,α3,α4) where

α1 = eπi/4
4
√
5, α2 = e3πi/4

4
√
5, α3 = e5πi/4

4
√
5, α4 = e7πi/4

4
√
5.

a) Prove that there exist a field extension Q ⊆ F such that F ⊆ E, F ⊆ R, and [F : Q] = 4.

Hint: Note that α1 + α4 is a real number; find it explicitly.

Proof. Note that

α1 =
4
√
5 ·

√
2

2
(1 + i) =

4
√
20

2
(1 + i) and α4 =

4
√
20

2
(1− i)

so α1 + α4 =
4
√
20.
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Moreover, α1 + α4 is thus a root of x4 − 20, which is irreducible: using Gauss’ Lemma, we just
need to show it is irreducible over Z, and Eisenstein’s Criterion applies with p = 5 to show that
x4 − 20 is irreducible over Z. Hence, mα1+α2,Q(x) = x4 − 20. Set F = Q(α1 +α4). Then F ⊆ E
and [F : Q] = 4, as desired. Moreover, F ⊆ R since α1 + α4 ∈ R and Q ⊆ R.

b) Determine [E : Q] with justification.

Proof. By the Degree Formula, [E : Q] = [E : F ][F : Q] = [E : F ] · 4. We claim that E = F (i).
First note that α1

α4
= 1+i

1−i = i so that i ∈ E and hence F (i) ⊆ E.

Since each αj has the form
4√20
2 (±1± i) and both 4

√
20 and i belong to F (i), we have αj ∈ F (i)

for all j and thus E ⊆ F (i). We conclude that E = F (i).

Since i is a root of x2 + 1 ∈ F [x] we have [F (i) : F ]  2. Since F ⊆ R, we have F ∕= F (i) and
thus [E : F ] = 2. By the Degree Formula, [E : Q] = [E : F ][F : Q] = 2 · 4 = 8.

Problem 4. Let
F0 ⊆ F1 ⊆ F2 ⊆ · · ·

be fields such that Fi ⊆ Fi+1 is an algebraic extension for all i  0, and let

E =


i

Fi.

a) Show that E is a field.

b) Show that F0 ⊆ E is an algebraic extension.

Problem 5. Let F be a field and f, g ∈ F [x] be nonzero polynomials. Show that gcd(f, g) = 1 in
F [x] if any only if f and g have no common roots in an algebraic closure F of F .

Proof. We prove the contrapositive: 1 is not a gcd for f and g in F [x] if any only if f and g have
a common root in an algebraic closure F of F .

(⇒) If 1 is not a gcd for f and g in F [x], then gcd(f, g) = h ∈ F [x] for some polynomial h with
deg(h)  1. Then since h is nonconstant polynomial, we know h has a root α ∈ F . Since h | f and
h | g, it follows that α is also a root for both f and g.

(⇐) Suppose that f and g have a common root α ∈ F , that is f(α) = g(α) = 0. Then α is
algebraic over F and hence it has a minimal polynomial mα,F ∈ F [x]. Furthermore, by properties
of the minimal polynomial it follows that since f(α) = 0 then mα,F | f and since g(α) = 0 then
mα,F | g. Thus mα,F is a common divisor for f, g in F [x] and therefore by properties of the gcd
mα,F | gcd(f, g). This shows that, since deg(mα,F )  1, deg(gcd(f, g)) ∕= 0, therefore no unit of F
can be a gcd for f, g in F [x].
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