Introduction to Modern Algebra II UNL — Spring 2023

Problem Set 9 solutions

Problem 1. Let K C L be a finite extension of fields and assume f(x) is a polynomial with
coefficients in K that is irreducible in the ring K[z].

a) Prove f(z) remains irreducible when regarded as an element of the ring L[x] provided [L : K]
is relatively prime to the degree of f(z).

Proof. Let F be an algebraic closure of F' and let L = K(a) where « is a root of f(z) in L.
Then [L: F|=[L: K|[K : F] = [L: K] -n = e-n, where e is the degree of m, g (z). We also
have [L : F] = [L: F(a)][F(«a) : F] =[L : F(a)] - d. Since ged(d,n) = 1, it follows that d | e.
But since « is a root of f(z), mq,x must divide f(z) in Kz]. Since they have the same degree,
it must be that m g (x) = cf(z) for some nonzero constant c. Since mq, k() is irreducible in
K|z], then f(z) is irreducible in K[z]. O

b) Give an explicit example with justification showing that the statement in part a) would become
false if we ommitted the assumption that [L : K] is relatively prime to the degree of f(x).

Proof. Take F =R, K = C and f(z) = 22 4+ 1. The polynomial f is irreducible over R, since it
has no roots over R and it has degree 2, while f factors as f = (x + i)(z — i) over C. On the
other hand, [C: R] =2 < 0. O

Problem 2. Let p be a prime integer and let F' = Q(7). Use the theory of field extensions to show
that the polynomial 23 — p is irreducible in F/[z].

Proof. Let q(z) = 23 —p € Q[z] C F[x]. Note that ¢ is also a polynomial in Z[z]. Since p is a prime
integer, Eisenstein’s Criterion applies to ¢ with the prime ideal (p): p divides all the coefficients
of q of degree up to 2, p does not divide the coefficient of degree 3, and p? { —p. Therefore, q is
irreducible over Z, and thus by Gauss’ Criterion we conclude that ¢ is irreducible over Q.

On the other hand, i ¢ Q, since i is not even a real number. Thus the polynomial z? + 1, which
has degree 2 and roots i and —i over C, must be irreducible over Q. We conclude that 2 +1 is the
minimal polynomial of i over Q, so [Q(7) : Q] = 2.

Since (2,3) = 1, by Problem 1 we conclude that ¢ is irreducible over Q(3). O

Problem 3. Let E be the field extension of QQ obtained by adjoining to Q all four complex roots
of the polynomial z* + 5. That is, E = Q(ay, a2, a3, ay) where

a; = e7ri/4\4/5, Qg = 637ri/4\4/g7 Qg = e57ri/4\4/3’ QL= e77ri/4\4/5.

a) Prove that there exist a field extension Q C F such that FF C E, F C R, and [F : Q] = 4.

Hint: Note that a; + a4 is a real number; find it explicitly.

Proof. Note that
2 V2 V2
alz{l/g.\g—(1+i):20(l+i) and Oz4=TO(1*i)

SO a1 + g = v 20.
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Moreover, o + ay is thus a root of * — 20, which is irreducible: using Gauss’ Lemma, we just
need to show it is irreducible over Z, and Eisenstein’s Criterion applies with p = 5 to show that
x* — 20 is irreducible over Z. Hence, ma, +a,,0(z) = 24 —20. Set F = Q(ay + ). Then F C E
and [F' : Q] = 4, as desired. Moreover, F' C R since a3 + a4 € R and Q C R. O

b) Determine [E : Q] with justification.

Proof. By the Degree Formula, [E: Q] = [E: F][F: Q] = [E : F] - 4. We claim that E = F(i).
First note that gt = % =i so that i € E and hence F(i) C E.

Since each «; has the form @(il + i) and both +/20 and i belong to F(i), we have o € F(i)
for all j and thus £ C F(i). We conclude that E = F(7).

Since i is a root of 22 + 1 € F[z] we have [F(i) : F] < 2. Since F' C R, we have F' # F(i) and
thus [E : F] = 2. By the Degree Formula, [E: Q] =[E: F|[F: Q] =2-4=38. O

Problem 4. Let
FpCFH CFC---

be fields such that F; C Fj,; is an algebraic extension for all ¢ > 0, and let
E=|JF.
7

a) Show that E is a field.
b) Show that Fy C E is an algebraic extension.

Problem 5. Let I be a field and f, g € F[z] be nonzero polynomials. Show that ged(f,g) =1 in
F[z] if any only if f and g have no common roots in an algebraic closure F' of F'.

Proof. We prove the contrapositive: 1 is not a ged for f and g in Fx] if any only if f and g have
a common root in an algebraic closure F of F.

(=) If 1 is not a ged for f and g in F[z], then ged(f, g) = h € F[z] for some polynomial h with
deg(h) > 1. Then since h is nonconstant polynomial, we know h has a root a € F. Since h | f and
h | g, it follows that « is also a root for both f and g.

(<) Suppose that f and g have a common root a € F, that is f(a) = g(a) = 0. Then « is
algebraic over F' and hence it has a minimal polynomial mq ¢ € F[z]. Furthermore, by properties
of the minimal polynomial it follows that since f(a) = 0 then m, r | f and since g(o) = 0 then
Ma,r | g Thus m, p is a common divisor for f,g in F[z] and therefore by properties of the ged
ma,r | ged(f, g). This shows that, since deg(mq,r) > 1, deg(ged(f, g)) # 0, therefore no unit of F
can be a ged for f, g in F[z]. O
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