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Chapter 1

Modules

Modules are a generalization of the concept of a vector space to any ring of scalars. But while
vector spaces make for a great first example of modules, many of the basic facts we are used
to from linear algebra are often a little more subtle over a general ring. These differences
are features, not bugs. We will introduce modules, study some general linear algebra, and
discuss the differences that make the general theory of modules richer and even more fun.

1.1 Basic assumptions

In this class, all rings have a multiplicative identity, written as 1 or 1R is we want to emphasize
that we are referring to the ring R. This is what some authors call unital rings ; since for us
all rings are unital, we will omit the adjective. Moreover, we will think of 1 as part of the
structure of the ring, and thus require it be preserved by all natural constructions. As such,
a subring S of R must share the same multiplicative identity with R, meaning 1R = 1S.
Moreover, any ring homomorphism must preserve the multiplicative identity. To clear any
possible confusion, we include below the relevant definitions.

Definition 1.1. A ring is a set R equipped with two binary operations, + and ·, satisfying:

(1) (R,+) is an abelian group with identity element denoted 0 or 0R.

(2) The operation · is associative, so that (R, ·) is a semigroup.

(3) For all a, b, c ∈ R, we have

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

(4) there is a multiplicative identity, written as 1 or 1R, such that 1 · a = a = a · 1 for all
a ∈ R.

To simplify notation, we will often drop the · when writing the multiplication of two
elements, so that ab will mean a · b.

Definition 1.2. A ring R is a commutative ring if for all a, b ∈ R we have a · b = b · a.
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Definition 1.3. A ring R is a division ring if 1 6= 0 and R \ {0} is a group under ·, so
every nonzero r ∈ R has a multiplicative inverse. A field is a commutative division ring.

Definition 1.4. A commutative ring R is a domain, sometimes called an integral domain
if it has no zerodivisors: ab = 0⇒ a = 0 or b = 0.

For some familiar examples, Mn(R) (the set of n × n matrices) is a ring with the usual
addition and multiplication of matrices, Z and Z/n are commutative rings, C and Q are
fields, and the real Hamiltonian quaternion ring H is a division ring.

Definition 1.5. A ring homomorphism is a function f : R→ S satisfying the following:

• f(a+ b) = f(a) + f(b) for all a, b ∈ R.

• f(ab) = f(a)f(b) for all a, b ∈ R.

• f(1R) = 1S.

Under this definition, the map f : R→ M2(R) sending a 7→
[
a 0
0 0

]
preserves addition and

multiplication but not the multiplicative identities, and thus it is not a ring homomorphism.

Exercise 1. For any ring R, there exists a unique homomorphism Z→ R.

Definition 1.6. A subset S of a ring R is a subring of R if it is a ring under the same
addition and multiplication operations and 1R = 1S.

So under this definition, 2Z, the set of even integers, is not a subring of Z; in fact, it is
not even a ring, since it does not have a multiplicative identity!

Definition 1.7. Let R be a ring. A subset I of R is an ideal if:

• I is nonempty.

• (I,+) is a subgroup of (R,+).

• For every a ∈ I and every r ∈ R, we have ra ∈ I and ar ∈ I.

The final property is often called absorption. A left ideal satisfies only absorption on the
left, meaning that we require only that ra ∈ I for all r ∈ R and a ∈ I. Similarly, a right
ideal satisfies only absorption on the right, meaning that ar ∈ I for all r ∈ R and a ∈ I.

When R is a commutative ring, the left ideals, right ideals, and ideals over R are all the
same. However, if R is not commutative, then these can be very different classes.

One key distinction between unital rings and nonunital rings is that if one requires every
ring to have a 1, as we do, then the ideals and subrings of a ring R are very different
creatures. In fact, the only subring of R that is also an ideal is R itself. The change lies in
what constitutes a subring; notice that nothing has changed in the definition of ideal.

Remark 1.8. Every ring R has two trivial ideals: R itself and the zero ideal (0) = {0}.

A nontrivial ideal I of R is an ideal that I 6= R and I 6= (0). An ideal I of R is a
proper ideal if I 6= R.
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1.2 Modules: definition and examples

Definition 1.9. Let R be a ring with 1 6= 0. A left R-module is an abelian group (M,+)
together with an action R ×M → M of R on M , written as (r,m) 7→ rm, such that for all
r, s ∈ R and m,n ∈M we have the following:

• (r + s)m = rm+ sm,

• (rs)m = r(sm),

• r(m+ n) = rm+ rn, and

• 1m = m.

A right R-module is an abelian group (M,+) together with an action of R on M , written
as M ×R→M, (m, r) 7→ mr, such that for all r, s ∈ R and m,n ∈M we have

• m(r + s) = mr +ms,

• m(rs) = (mr)s,

• (m+ n)r = mr + nr, and

• m1 = m.

By default, we will be studying left R-modules. To make the writing less heavy, we will
sometimes say R-module rather than left R-module whenever there is no ambiguity.

Remark 1.10. If R is a commutative ring, then any left R-module M may be regarded as
a right R-module by setting mr := rm. Likewise, any right R-module may be regarded as a
left R-module. Thus for commutative rings, we just refer to modules, and not left or right
modules.

Lemma 1.11 (Arithmetic in modules). Let R be a ring with 1R 6= 0R and M be an R-module.
Then 0Rm = 0M and (−1R)m = −m for all m ∈M .

Proof. Let m ∈M . Then

0Rm = (0R + 0R)m = 0Rm+ 0Rm.

Since M is an abelian group, the element 0Rm has an additive inverse, −0Rm, so adding it
on both sides we see that

0M = 0Rm.

Moreover,
m+ (−1R)m = 1Rm+ (−1R)m = (1R − 1R)m = 0Rm = 0M ,

so (−1R)m = −m.
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Typically, one first encounters modules in an undergraduate linear algebra course: the
vector spaces from linear algebra are modules over fields. Later we will see that vector spaces
are much simpler modules than modules over other rings. So while one might take linear
algebra and vector spaces as an inspiration for what to expect from a module, be warned
that this perspective can often be deceiving.

Definition 1.12. Let F be a field. A vector space over F is an F -module.

We will see more about vector spaces soon. Note that many of the concepts we will
introduce have special names in the case of vector spaces. Here are some other important
examples:

Lemma 1.13. Let M be a set with a binary operation +. Then

(1) M is an abelian group if and only if M is a Z-module.

(2) M is an abelian group such that nm := m+ · · ·+m︸ ︷︷ ︸
n times

= 0M for all m ∈ M if and only

if M has a Z/n-module structure.

Proof. First, we show 1). If M is a Z-module, then (M,+) is an abelian group by definition of
module. Conversely, if (M,+) is an abelian group then there is a unique Z-module structure
on M given by the formulas below. The uniqueness of the Z action follows from the identities
below in which the right hand side is determined only by the abelian group structure of M .
The various identities follow from the axioms of a module:

i ·m = (1 + · · ·+ 1︸ ︷︷ ︸
i

) ·m = 1 ·m+ · · ·+ 1 ·m︸ ︷︷ ︸
i

= m+ · · ·+m︸ ︷︷ ︸
i

if i > 0

0 ·m = 0M

i ·m = −(−i) ·m = −(m+ · · ·+m︸ ︷︷ ︸
−i

) if i < 0.

We leave it as an exercise to check that this Z-action really satisfies the module axioms.
Now we show 2). If M is a Z/n module, then (M,+) is an abelian group by definition,

and nm = m+ · · ·+m︸ ︷︷ ︸
n

= [1]n ·m+ · · ·+ [1]n ·m︸ ︷︷ ︸
n

= [0]nm = 0M .

Conversely, there is a unique Z/n-module structure on M given by the formulas below,
which are analogous to the ones above:

[i]n ·m = ([1]n + · · ·+ [1]n︸ ︷︷ ︸
i

) ·m = [1]n ·m+ · · ·+ [1]n ·m︸ ︷︷ ︸
i

= m+ · · ·+m︸ ︷︷ ︸
i

if i > 0

0 ·m = 0M

[i]n ·m = −(−[i]n) ·m = −(m+ · · ·+m︸ ︷︷ ︸
−i

) if i < 0.

These formulas are well-defined, meaning they are independent of the choice of representative
for [i]n, because of the assumption that nm = 0M . Again checking that this Z/n-action really
satisfies the module axioms is left as an exercise.
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The proposition above says in particular that any group of the form

G = Z` × Z/d1 × · · · × Z/dm

is a Z-module, and if ` = 0,m > 1 and di | n for 1 6 i 6 m then G is also a Z/n-module. In
particular, the Klein group is a Z/2-module.

In contrast to vector spaces, for M a module over a ring R, it can happen that rm = 0
for some r ∈ R and m ∈M such that r 6= 0R and m 6= 0M . For example, in the Klein group
K4 viewed as a Z-module we have 2m = 0 for all m ∈ K4.

Example 1.14. (1) The trivial R-module is 0 = {0} with r0 = 0 for any r ∈ R.

(2) If R is any ring, then R is a left and right R-module via the action of R on itself given
by its internal multiplication.

(3) If I is a left (respectively, right) ideal of a ring R then I is a left (respectively, right)
R-module with respect to the action of R on I by internal multiplication.

(4) If R is a subring of a ring S, then S is an R-module with respect to the action of R
on S by internal multiplication in S.

(5) If R is a commutative ring with 1 6= 0, then R[x1, . . . , xn] is an R-module for any n > 1.
This is a special case of (4).

(6) If R is a commutative ring and G is a group, then R[G] is an R-module. This is a
special case of (4).

(7) If R is a commutative ring, let Mn(R) denote set of n× n matrices with entries in R.
Then Mn(R) is an R-module for n > 1, with the R-action given by multiplying all the
entries of the given matrix by the given element of R.

(8) The free module over R of rank n is the set

Rn =


r1

...
rn

 | ri ∈ R, 1 6 i 6 n


with componentwise addition and multiplication by elements of R, as follows:r1

...
rn

+

r
′
1
...
r′n

 =

r1 + r′1
...

rn + r′n

 and r

r1
...
rn

 =

rr1
...
rrn

 .
We will often write the elements of Rn as n-tuples (r1, . . . , rn) instead. Notice that R
is the free R-module of rank 1.

(9) More generally, given a collection of R-modules {Ai}, the abelian group⊕
i

Ai = {(ai)i | ai ∈ Ai, ai = 0 for all i but finitely many}

is an R-module with the R-action r(ai) := (rai).
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1.3 Submodules and restriction of scalars

Definition 1.15. Let R be a ring and let M be a left R-module. An R-submodule of M
is a subgroup N of M satisfying rn ∈ N for all r ∈ R and n ∈ N .

The submodules of an R-module M are precisely the subsets of M which are modules in
their own right, via the same R-action as we are considering for M .

Exercise 2. Show that if N is a submodule of M , then N is an R-module via the restriction
of the action of R on M to the subset N .

Example 1.16. Every R-module M has two trivial submodules: M itself and the zero
module 0 = {0M}. A submodule N of M is nontrivial if N 6= M and N 6= 0.

Lemma 1.17 (One-step test for submodules). Let R be a ring with 1 6= 0 and let M be a left
R-module. A nonempty subset N of M is an R-submodule of M if and only if rn+ n′ ∈ N
for all r ∈ R and n, n′ ∈ N .

Proof. The One-step Test for subgroups says that if for all n, n′ ∈ N we have n′ − n ∈ N ,
then N is a subgroup of M . By Lemma 1.11, by taking r = −1 we get rn + n′ = n′ − n,
and by assumption this is an element of N . Therefore, N is a subgroup of M . As a
consequence, 0M ∈ N . By taking n′ = 0M , we see that for all n ∈ N and all r ∈ R we have
rn = rn+ n′ ∈ N , and thus we can now conclude that N is a submodule of M .

Example 1.18. Let R be a ring and let M be a subset of R. Then M is a left (respectively,
right) R-submodule of R if and only if M is a left (respectively, right) ideal of R.

Exercise 3. Let R be a ring and let A and B be submodules of an R-module M . Then the
sum of A and B,

A+B := {a+ b | a ∈ A, b ∈ B},

and A ∩B are both R-submodules of M .

Exercise 4. Let R be a commutative ring with 1 6= 0, let I be an ideal of R and let M be
an R-module. Show that

IM :=

{
n∑
k=1

jkmk | n > 0, jk ∈ I,mk ∈M for 1 6 k 6 n

}

is a submodule of M .

Example 1.19. When R is a field, the submodules of a vector space V are precisely the
subspaces of V . When R = Z, then the class of R-modules is simply the class of all abelian
groups, by Lemma 1.13. The submodules of a Z-module M coincide with the subgroups of
the abelian group M .

Definition 1.20. Let R be a ring with 1 6= 0 and let M be an R-module. Given elements
m1, . . . ,mn ∈M , the submodule generated by m1, . . . ,mn is the subset of M given by

Rm1 + · · ·+Rmn := {r1m1 + · · ·+ rnmn | r1, . . . , rn ∈ R}.
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Exercise 5. Let R be a ring with 1 6= 0 and M be an R-module. Given m1, . . . ,mn ∈ M ,
the submodule generated by m1, . . . ,mn is indeed a submodule of M . Moreover, this is the
smallest submodule of M that contains m1, . . . ,mn, meaning that every submodule of M
containing m1, . . . ,mn must also contain Rm1 + · · ·+Rmn.

Definition 1.21. Let R be a ring with 1 6= 0. An R-module M is cyclic if there exists an
element m ∈M such that

M = Rm := {rm | r ∈ R}.
Given an R-module M , the ring R is often referred to as the ring of scalars, by analogy

to the vector space case. Given an action of a ring of scalars on a module, we can sometimes
produce an action of a different ring of scalars on the same set, producing a new module
structure.

Lemma 1.22 (Restriction of scalars). Let φ : R → S be a ring homomorphism. Any left
S-module M may be regarded via restriction of scalars as a left R-module with R-action
defined by rm := φ(r)m for any m ∈M . In particular, if R is a subring of a ring S, then any
left S-module M may be regarded via restriction of scalars as a left R-module with R-action
defined by the action of the elements of R viewed as elements of S.

Proof. Let r, s ∈ R and m,n ∈M . One checks that the axioms in the definition of a module
hold for the given action using properties of ring homomorphisms. For example:

(r + s)m = φ(r + s)m = (φ(r) + φ(s))m = φ(r)m+ φ(s)m = rm+ sm.

The remaining properties are left as an exercise.

Note that the second module structure on M obtained via restriction of scalars is induced
by the original module structure, so the two are related. In general, one can give different
module structures on the same abelian group over different, possibly unrelated, rings.

Example 1.23. If I is an ideal of a ring R, applying restriction of scalars along the quotient
homomorphism q : R → R/I tells us that any left R/I-module is also a left R-module. In
particular, applying this to the R/I-module R/I makes R/I a left and right R-module by
restriction of scalars along the quotient homomorphism. Thus the R-action on R/I is given
by

r · (a+ I) := ra+ I.

Example 1.24. Given any ring R there exists a unique ring homomorphism Z → R, by
Exercise 1. Thus any R-module can be given the structure of a Z-module by restriction
of scalars along this unique map. Note also that a module over any ring is in particular
an abelian group, so we can always regard any R-module as a Z-module by forgetting the
R-action and focusing only on the abelian group structure. These two constructions – the
restriction of scalars to Z and the forgetful functor 1 – actually coincide.

The next example explains why restriction of scalars is called a restriction.

Example 1.25. Let R be a subring of S, and let i : R → S be the inclusion map, which
must by definition be a ring homomorphism. Applying restriction of scalars to an S-module
M via i is the same as simply restricting our scalars to the elements of R.

1This is a concrete abstract nonsense construction that we will discuss in Homological Algebra next Fall.
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1.4 Module homomorphisms and isomorphisms

Definition 1.26. Given R-modules M and N , an R-module homomorphism from M to
N is a function f : M → N such that for all r ∈ R and m,n ∈M we have

• f(m+ n) = f(m) + f(n)

• f(rm) = rf(m).

Remark 1.27. The condition f(m + n) = f(m) + f(n) says that f is a homomorphism
of abelian groups, and the condition f(rm) = rf(m) says that f is R-linear, meaning that
it preserves the R-action. Since f is a homomorphism of abelian groups, it follows that
f(0) = 0 must hold.

Definition 1.28. Let M and N be vector spaces over a field F . A linear transformation
from M to N is an F -module homomorphism M → N .

Example 1.29. Let R be a commutative ring and M be an R-module. For each r ∈ R, the
multiplication map µr : M → M given by µr(m) = rm is a homomorphism of R-modules:
indeed, by the definition of R-module we have

µr(m+ n) = r(m+ n) = rm+ rn = µr(m) + µr(n),

and
µr(sm) = r(sm) = (rs)m = (sr)m = s(rm) = sµr(m).

Definition 1.30. An R-module homomorphism h : M → N is an R-module isomorphism
if there is an R-module homomorphism g : N → M such that h ◦ g = idN and g ◦ h = idM .
We say M and N are isomorphic, denoted M ∼= N , if there exists an isomorphism M → N .

To check that an R-module homomorphism f : M → N is an isomorphism, it is sufficient
to check that it is bijective.

Exercise 6. Let f : M → N be a homomorphism of R-modules. Show that if f is bijective,
then its set-theoretic inverse f−1 : N →M is an R-module homomorphism. Therefore, every
bijective homomorphism of R-modules is an isomorphism.

One should think of a module isomorphism as a relabelling of the names of the elements
of the module. If two modules are isomorphic, that means that they are essentially the same,
up to renaming the elements.

Definition 1.31. Let f : M → N be a homomorphism of R-modules. The kernel of f is

ker(f) := {m ∈M | f(m) = 0}.

The image of f , denoted im(f) or f(M), is

im(f) := {f(m) | m ∈M}.

Exercise 7. LetR be a ring with 1 6= 0, letM be anR-module, and letN be anR-submodule
of M . Then the inclusion map i : N →M is an R-module homomorphism.
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Exercise 8. If f : M → N is an R-module homomorphism, then ker(h) is an R-submodule
of M and im(f) is an R-submodule of N .

Definition 1.32. Let R be a ring and let M and N be R-modules. Then HomR(M,N)
denotes the set of all R-module homomorphisms from M to N , and EndR(M) denotes the
set HomR(M,M). We call End(M) the endomorphism ring ofM , and elements of End(M)
are called endomorphisms of M .

The endomorphism ring of an R-module M is called that because it is a ring, with
multiplication given by composition of endomorphisms, 0 given by the zero map (the constant
equal to 0), and 1 given by the identity map. However, two homomorphisms from M to N
are not composable unless M = N , so HomR(M,N) is not a ring.

When R is commutative, HomR(M,N) is, however, an R-module; let us describe its
R-module structure. Given f, g ∈ HomR(M,N), f + g is the map defined by

(f + g)(m) := f(m) + g(m),

and given r ∈ R and f ∈ HomR(M,N), r · f is the R-module homomorphism defined by

(r · f)(m) := r · f(m) = f(rm).

The zero element of HomR(M,N) is the zero map, the constant equal to 0N .

Lemma 1.33. Let M and N be R-modules over a commutative ring R. Then the addition
and multiplication by scalars defined above make HomR(M,N) an R-module.

Proof. There are many things to check, including:

• The addition and the R-action are both well-defined: given f, g ∈ HomR(M,N) and
r ∈ R, we always have f + g, rf ∈ HomR(M,N).

• The axioms of an R-module are satisfied for HomR(M,N).

We leave the details as exercises.

We will see later that for an n-dimensional vector space V over a field F , there is an
isomorphism of vector spaces EndF (V ) ∼= Mn(F ). This says that every linear transformation
T : V → V corresponds to some n× n matrix. However, the story for general R-modules is
a lot more complicated.

Lemma 1.34. For any commutative ring R with 1 6= 0 and any R-module M there is an
isomorphism of R-modules HomR(R,M) ∼= M .

Before we write a formal proof, it helps to think about why this theorem is true. What
does it mean to give an R-module homomorphism f : R → M? More precisely, what
information do we need to determine such an f? Do we need to be given the values of f(r)
for every r ∈ R? Since f is a homomorphism of R-modules, for any r ∈ R we have

f(r) = f(r · 1) = rf(1),
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so the value of f(1) completely determines which R-module homomorphism we are talking
about. On the other hand, we can choose any m ∈M to be the image of 1, since thanks to
the axioms for modules, the function

f(r) := rm

is a well-defined R-module homomorphism for any m ∈M . In summary, to give an R-module
homomorphism R→M is the same as choosing an element m ∈M , and HomR(R,M) ∼= M .

Proof. Let f : M → HomR(R,M) be given for each m ∈ M by f(m) = φm where φm is the
map defined by φm(r) = rm for all r ∈ R. Now we have many things to check:

• f is well-defined, meaning that for any m ∈ M , its image f(m) = φm is an element of
HomR(R,M), since

φm(r1 + r2) = (r1 + r2)m = r1m+ r2m = φm(r1) + φm(r2)

φm(r1r2) = (r1r2)m = r1(r2m) = r1φm(r2)

for all r1, r2 ∈ R.

• f is an R-module homomorphism, since

φm1+m2(r) = r(m1 +m2) = rm1 + rm2 = φm1(r) + φm2(r)

φr′m(r) = r(r′m) = (rr′)m = r′(rm) = r′φm(r)

• f is injective, since φm = φm′ implies in particular that φm(1R) = φm′(1R), which by
definition of φ− means that m = m′.

• f is surjective, since for ψ ∈ HomR(R,M) we have ψ(r) = ψ(r1R) = rψ(1R) for all r ∈ R,
so ψ = φψ(1R).

This shows that f is an R-module isomorphism.

Definition 1.35. Let R be a commutative ring with 1R 6= 0R. An R-algebra is a ring A
with 1A 6= 0A together with a ring homomorphism f : R→ A such that f(R) is contained in
the center of A.

Given an R-algebra A, the R-algebra structure on A induces a natural R-module struc-
ture: given elements r ∈ R and a ∈ A, the R-action is defined by

r · a := f(r)a,

where the product on the right is the multiplication in A. Similarly, we get a natural right
R-module structure on A, and since by definition f(R) is contained in the center of A, we
obtain what is called a balanced bimodule structure on A. We will discuss these further in
Homological Algebra next Fall.
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Example 1.36. Let R be a commutative ring with 1R 6= 0R. The ring R[x1, . . . , xn] together
with the inclusion map R ↪→ R[x1, . . . , xn] is an R-algebra. More generally, any quotient of
R[x1, . . . , xn] is an R-algebra.

The ring of matrices Mn(R) with the homomorphism r 7→ rIn is also an R-algebra, as is
the group ring R[G] for any group G with the inclusion of R into R[G] given by r 7→ reG.

Lemma 1.37. Let R be a commutative ring with 1 6= 0 and let M be an R-module. Then
EndR(M) is an R-algebra, with addition and R-action defined as above, and multiplication
defined by composition (fg)(m) = f(g(m)) for all f, g ∈ EndR(M) and all m ∈M .

Proof. There are many things to check here, including that:

• The axioms of a (unital) ring are satisfied for EndR(M).

• There is a ring homomorphism f : R → EndR(M) such that f(1R) = 1EndR(M) = idM
and f(R) ⊆ Z(EndR(M)).

We will just check the last item and leave the others as exercises. Define f : R→ EndR(M)
by f(r) = r idM . Notice that this is the map µr from Example 1.29. Then

f(r + s) = (r + s) idM = r idM +s idM = f(r) + f(s)

and
f(rs) = (rs) idM = (r idM) ◦ (s idM) = f(r)f(s)

show that f is a ring homomorphism. Moreover, idM ∈ Z(EndR(M)), and once can check
easily that µr ∈ EndR(M): given any other g ∈ EndR(M), and any m ∈ M , since g is
R-linear we have

(g ◦ µr)(m) = g(µr(m)) = g(rm) = rg(m) = (µr ◦ g)(m).

This shows that f(R) ⊆ EndR(M).

Remark 1.38. Let R be a commutative ring with 1 6= 0 and let M be an R-module. Then
M is also an EndR(M)-module with the action φm = φ(m) for any φ ∈ EndR(M), m ∈M .

Definition 1.39. Let R be a ring, let M be an R-module, and let N be a submodule of M.
The quotient module M/N is the quotient group M/N with R action defined by

r(m+N) := rm+N

for all r ∈ R and m+N ∈M/N .

Lemma 1.40. Let R be a ring, let M be an R-module, and let N be a submodule of M . The
quotient module M/N is an R-module, and the quotient map q : M →M/N is an R-module
homomorphism with kernel ker(q) = N .

Proof. Among the many things to check here, we will only check the well-definedness of
the R-action on M , and leave the others as exercises. To check well-definedness, consider
m + N = m′ + N . Then m −m′ ∈ N , so r(m −m′) ∈ N by the definition of submodule.
This gives that rm− rm′ ∈ N , hence rm+N = rm′ +N .
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Definition 1.41. Given an R-module M and a submodule N of M , the map q : M →M/N
is the canonical quotient map, or simply the canonical map from M to N .

Example 1.42. If R is a field, quotient modules are the same thing as quotient vector
spaces. When R = Z, recall that Z-modules are the same as abelian groups, by Lemma 1.13.
Quotients of Z-modules coincide with quotients of abelian groups.

Theorem 1.43. Let N be a submodule of M , let T be an R-module, and let f : M → T be
an R-module homomorphism. If N ⊆ ker f , then the function

M/N
f

// T

m+N � // f(m)

is a well-defined R-module homomorphism. In fact, f : M/N → T is the unique R-module
homomorphism such that f ◦ q = f , where q : M →M/N denotes the canonical map.

We can represent this in a more visual way by saying that f is the unique R-module
homomorphism that makes the diagram

M

q
""

f
// T

M/N
∃!f

<<

commute.

Proof. By 817, we already know that f is a well-defined homomorphism of groups under +
and that it is the unique one such that f ◦ q = f . It remains only to show f is an R-linear
map:

f(r(m+N)) = f(rm+N) = f(rm) = rf(m) = rf(m+N).

where the third equation uses that f preserves scaling.

Theorem 1.44 (First Isomorphism Theorem). Let N be an R-module and let h : M → N
be an R-module homomorphism. Then ker(h) is a submodule of M and there is an R-module
isomorphism M/ ker(h) ∼= im(h).

Proof. If we forget the multiplication by scalars in R, by the First Isomorphism Theorem
for Groups, we know that there is an isomorphism of abelian groups under +, given by

h : M/ ker(h)
∼= // im(h)

m+ ker(f) � // h(m).

It remains only to show this map preserves multiplication by scalars. And indeed:

h(r(m+ ker(h))) = h(rm+ ker(h)) by definition of the R-action on M/ ker(h)

= h(rm) by definition of h

= rh(m) since h is an R-module homomorphism

= rh(m+ kerh) by definition of h.
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Theorem 1.45 (Second Isomorphism Theorem). Let A and B be submodules of M , and let
A+B = {a+ b | a ∈ A, b ∈ B}. Then A+B is a submodule of M , A∩B is a submodule of
A, and there is an R-module isomorphism (A+B)/B ∼= A/(A ∩B).

Proof. By Exercise 3, A+B and A ∩B are submodules of M . By the Second Isomorphism
Theorem for Groups, there is an isomorphism of abelian groups

h : A/(A ∩B)
∼= // (A+B)/B

a+ (A ∩B) � // a+B

It remains only to show h preserves multiplication by scalars:

h(r(a+ (A ∩B))) = h(ra+ A ∩B) = ra+B = r(a+B) = rh(a+ (A ∩B)).

Theorem 1.46 (Third Isomorphism Theorem). Let A and B be submodules of M with
A ⊆ B. Then there is an R-module isomorphism (M/A)/(B/A) ∼= M/B.

Proof. From 817, we know that B/A is a subgroup of M/A under +. Given r ∈ R and
b + A ∈ B/A we have r(b + A) = rb + A which belongs to B/A since rb ∈ B. This proves
B/A is a submodule of M/A. By the Third Isomorphism Theorem for Groups, there is an
isomorphism of abelian groups

(M/A)/(B/A) //M/B

(m+ A) +B/A � //m+B

and it remains only to show this map is R-linear:

h(r((m+ A) +B/A)) =h(r(m+ A) +B/A) = h((rm+ A) +B/A)

= rm+B = r(m+B)

= rh((m+ A) +B/A).

Theorem 1.47 (Lattice Isomorphism Theorem). Let R be a ring, let N be a R-submodule
of an R-module M , and let q : M →M/N be the quotient map. Then the function

{R-submodules of M containing N} Ψ // {R-submodules of M/N}

K � // K/N

is a bijection, with inverse defined by

Ψ−1(T ) := q−1(T ) = {a ∈M | a+N ∈ T}

for each R-submodule T of M/N . Moreover, Ψ and Ψ−1 preserve sums and intersections of
submodules.
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Proof. From 817, we know there is a bijection between the set of subgroups of M and that
contain N and subgroups of the quotient group M/N , given by the same map Ψ. We just
need to prove that these maps send submodules to submodules. If K is a submodule of M
containing N , then by the Third Isomorphism Theorem we know that K/N is a submodule
of M/N . If T is a submodule of M/N , then π−1(T ) is an abelian group, by 817. For r ∈ R
and m ∈ π−1(T ), we have π(m) ∈ T , and hence π(rm) = rπ(m) ∈ T too, since T is a
submodule. This proves π−1(T ) is a submodule.

We come to a very important class of examples which will help us study linear transfor-
mations using module theory.

Lemma 1.48 (F [x]-modules). Let F be a field. There is a bijection

{V an F [x]-module} ←→ {V an F -vector space and T ∈ EndF (V )}.

Proof. If V is an F [x] module then V is an F -vector space by restriction of scalars along the
inclusion F ↪→ F [x]. Let T : V → V be defined by T (v) = xv. To show that T ∈ EndF (V ),
note that for any c ∈ F and v, v1, v2 ∈ V the axioms of the F [x]-module give us

T (v1 + v2) = x(v1 + v2) = xv1 + xv2 = T (v1) + T (v2) and T (cv) = x(cv) = c(xv).

Conversely, let V be an F -vector space and T ∈ EndF (V ). We claim that the action of
of F [x] on V given by

f(x)v = (f(T ))(v)

satisfies the axioms for a module (exercise!). Alternatively, we can explain this module
structure in a more conceptual way, as follows. Consider the evaluation homomorphism
ϕ : F [x] → EndF (V ), ϕ(f(x)) = f(T ). Since V is an EndF (V )-module by Remark 1.38,
then V is also an F [x]-module by restriction of scalars along φ; the F [x] action is the one
we described above:

f(x)v = ϕ(f)(v) = (f(T ))(v)

Finally, one can check that the two constructions above are inverse to each other.

Notation 1.49. We shall denote the F [x]-module structure on an F -vector space V induced
by T ∈ EndF (V ) by VT .

Example 1.50. The proposition above says that if we fix an F -vector space V then any
linear transformation T gives a different F [x] module structure on V . For example,

• for T = 0 the F [x] module V0 carries an action given by scaling by the constant
coefficient of f , that is if f(x) = anxn + · · ·+ a0 then

f(x)v = (f(0))v = a0v for all f ∈ F [x].

• for T the “shift operator” that takes T (ei) = ei−1, where ei is the i-th standard basis

vector, the F [x] module VT is has the action xm



v1
...

vn−m
vn−m+1

...
vn


=



vm+1
...
vn
0
...
0


.
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1.5 Module generators, bases and free modules

Definition 1.51. Let M be an R-module. A linear combination of finitely many elements
a1, ..., an of M is an element of M of the form r1m+ 1 + · · ·+ rnmn for some r1, . . . , rn ∈ R.

Definition 1.52. Let R be a ring with 1 6= 0 and let M be an R-module. For a subset A of
M , the submodule of M generated by A is

RA := {r1a1 + · · ·+ rnan | n ≥ 0, ri ∈ R, ai ∈ A}.

We M is generated by A if M = RA. If M is an F -vector space, we say that M is spanned
by a set A instead of generated by A.

A module M is finitely generated if there is a finite subset A of M that generates M .
If A = a has a single element, the module RA = Ra is called cyclic.

Exercise 9. Let M be an R-module and let A ⊆ M . Then RA is the smallest submodule
of M containing A, that is

RA =
⋂

A⊆N,N submodule of M

N.

Exercise 10. Being finitely generated and being cyclic are R-module isomorphism invari-
ants.

Example 1.53. Let R be a ring with 1 6= 0.

(1) R = R1 is cyclic.

(2) R⊕R is generated by {(1, 0), (0, 1)}.

(3) R[x] is generated as an R-module by the set {1, x, x2, . . . , xn, . . .} of monic monomials
in the variable x.

(4) Let M = Z[x, y]. M is generated by

• {1, x, y} as a ring,

• {1, y, y2, . . . , yn, . . .} as an Z[x]-module, and

• {xiyj | i, j ∈ Z>0} as a group (Z-module).

Lemma 1.54. Let R be a ring with 1 6= 0, let M be an R-module, and let N be an R-
submodule of M .

(1) If M is finitely generated as an R-module, then so is M/N .

(2) If N and M/N are finitely generated as R-modules, then so is M .

Proof. The proof of (2) will be a problem set question. To show (1), note that if M = RA
then M/N = RĀ, where Ā = {a+N | a ∈ A}.
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Definition 1.55. Let M be an R-module and let A be a subset of M . The set A is linearly
independent if whenever r1, . . . , rn ∈ R and a1, . . . , an are distinct elements of A satisfying
r1a1 + · · ·+ rnan = 0, then r1 = · · · = rn = 0. Otherwise A is linearly dependent.

Definition 1.56. A subset A of an R-module M is a basis of M if A is linearly independent
and generates M . An R-module M is a free R-module if M has a basis.

We will later see that over a field, every module is free. However, when R is not a field,
there are R-modules that are not free; in fact, most modules are not free.

Example 1.57. Here are some examples of free modules:

(1) If we think of R as a module over itself, it is free with basis {1}.

(2) The module R⊕R is free with basis {(1, 0), (0, 1)}.

(3) The R-module R[x] is free, and {1, x, x2, . . . , xn, . . .} is a basis.

(4) Let M = Z[x, y]. Then {1, y, y2, . . . , yn, . . .} is a basis for the Z[x]-module M , and
{xiyj | i, j ∈ Z>0} is a basis for the Z-module M .

Example 1.58. Z/2 is not a free Z-module. Indeed suppose that A is a basis for Z/2 and
a ∈ A. Then 2a = 0 so A cannot be linearly independent, a contradiction.

Lemma 1.59. If A is a basis of M then every nonzero element 0 6= m ∈ M can be written
uniquely as m = r1a1 + · · ·+ rnan with ai distinct elements of A and ri 6= 0.

Proof. Suppose that if m 6= 0 and A1, A2 are finite subsets of A such that

m =
∑
a∈A1

raa =
∑
b∈A2

sbb

for some ra, sb ∈ R. Then∑
a∈A1∩A2

(ra − sa)a+
∑

a∈A1\A2

raa−
∑

a∈A2\A1

saa = 0.

Since A is a linearly independent set, we conclude that ra = sa for a ∈ A1 ∩A2, ra = 0R for
a ∈ A1 \ A2, and sa = 0R for a ∈ A2 \ A1. Set

B := {a ∈ A1 ∩ A2 | ra 6= 0R}.

Then
m =

∑
a∈B

raa

is the unique way of writing m as a linear combination of elements of A with nonzero
coefficients.

Theorem 1.60. Let R be a ring, M be a free R-module with basis B, N be any R-module,
and let j : B → N be any function. Then there is a unique R-module homomorphism
h : M → N such that h(b) = j(b) for all b ∈ B.
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Proof. We have two things to prove: existence and uniqueness.
Existence: By Lemma 1.59, any 0 6= m ∈M can be written uniquely as

m = r1b1 + · · ·+ rnbn

with bi ∈ B distinct and 0 6= ri ∈ R. Define h : M → N by{
h(r1b1 + · · ·+ rnbn) = r1j(b1) + · · ·+ rnj(bn) if r1b1 + · · ·+ rnbn 6= 0

h(0M) = 0N

One can check that this satisfies the conditions to be an R-module homomorphism (exercise!).
Uniqueness: Let h : M → N be an R-module homomorphism such that h(bi) = j(bi).

Then in particular h : (M,+)→ (N,+) is a group homomorphism and therefore h(0m) = 0N
by properties of group homomorphisms. Furthermore, if m = r1b1 + · · ·+ rnbn then

h(m) = h(r1b1 + · · ·+ rnbn) = r1h(b1) + · · ·+ rnh(bn) = r1j(b1) + · · ·+ rnj(bn)

by the definition of homomorphism, and because h(bi) = j(bi).

Corollary 1.61. If A and B are sets of the same cardinality, and fix a bijection j : A→ B.
If M and N are free R-modules with bases A and B respectively, then there is an isomorphism
of R-modules M ∼= N .

Proof. Let g : M → N and h : N → M be the module homomorphisms induced by the
bijection j : A→ B and its inverse j−1 : B → A, which exist by Theorem 1.60. We will show
that h and g are inverse homomorphisms. First, note that g ◦ h : N → N is an R-module
homomorphism and (g◦h)(b) = g(j−1(b)) = j(j−1(b)) = b for every b ∈ B. Since the identity
map idN is an R-module homomorphism and idN(b) = b for every b ∈ B, by the uniqueness
in Theorem 1.60 we have g ◦ h = idn. Similarly, one shows that h ◦ g = idM .

The corollary gives that, up to isomorphism, there is only one free module with basis A,
provided such a module exists. But does a free module generated by a given set A exist? It
turns out it does.

Definition 1.62. Let R be a ring and let A be a set. The free R-module generated by A,
denoted FR(A) is the set of formal sums

FR(A) = {r1a1 + · · ·+ rnan | n > 0, ri ∈ R, ai ∈ A}

=

{∑
a∈A

raa | ra ∈ R, ra = 0 for all but finitely many a

}
,

with addition defined by (∑
a∈A

raa

)
+

(∑
a∈A

saa

)
=
∑
a∈A

(ra + sa)a

and R-action defined by

r

(∑
a∈A

raa

)
=
∑
a∈A

(rra)a.
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Exercise 11. This construction FR(A) results in an R-module, which is free with basis A,
and FR(A) ∼=

⊕
a∈AR.

Theorem 1.63 (Uniqueness of rank over commutative rings). Let R be a commutative ring
with 1 6= 0 and let M be a free R-module. If A and B are both bases for M , then A and B
have the same cardinality, meaning that there exists a bijection A→ B.

Proof. You will show this in the next problem set (at least in the case where M has a finite
basis).

Definition 1.64. Let R be a commutative ring with 1 6= 0 and let M be a free R-module.
The rank of M is the cardinality of any basis of M .

Example 1.65. Let R be a commutative ring with 1 6= 0. The rank of Rn is n. Note that
by Corollary 1.61, any free R-module of rank n must be isomorphic to Rn.

Earlier, we described the R-module structure on the direct sum of R-modules; this is how
we construct Rn, by taking the direct sum of n copies of the R-module R. This construction
can also be described as the direct product of n copies of R. However, the direct sum and
direct product are two different constructions.

Definition 1.66. Let R be a ring. Let {Ma}a∈J be a collection of R-modules. The direct
product of the R-modules Ma is the Cartesian product∏

a∈J

Ma := {(ma)a∈J | ma ∈Ma}

with addition defined by

(ma)a∈J + (na)a∈J := (ma + na)a∈J

and R-action defined by
r(ma)a∈J = (rma)a∈J .

The direct sum of the R-modules Ma is the R-submodule
⊕

a∈JMa of the direct product∏
a∈JMa given by⊕

a∈J

Ma = {(ma)a∈J | ma = 0 for all but finitely many a}.

Exercise 12. The direct sum and the direct product of an arbitrary family of R-modules
are R-modules.

Example 1.67. Suppose that |A| = n < ∞. Let M1, . . . ,Mn be R-modules. The direct
product module M1 × · · · ×Mn is the abelian group M1 × · · · ×Mn with ring action given
by r(m1, . . . ,mn) = (rm1, . . . , rmn) for all r ∈ R and mi ∈ Mi. Comparing the definitions
we see that

M1 × · · · ×Mn = M1 ⊕ · · · ⊕Mn.

If Mi = R for 1 6 i 6 n, then we denote Rn = R× · · · ×R︸ ︷︷ ︸
n

= R⊕ · · · ⊕R︸ ︷︷ ︸
n

.
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It is useful to talk about maps from the factors/summands to the direct product/ direct
sum and conversely.

Definition 1.68. For i ∈ J the inclusion of the i-th factor into a direct product or direct
sum is the map

ιi : Mi →
∏
a∈J

Ma or ιi : Mi →
⊕
a∈J

Ma, ιi(m) = (ma)a∈J , where ma =

{
m if a = i

0 if a 6= i
.

For i ∈ J the i-th projection map from a direct product or a direct sum module is

πi :
∏
a∈J

Ma →Mi or πi :
⊕
a∈J

Ma →Mi, πi ((ma)a∈J) = mi.

Lemma 1.69. Projections from direct products or sums of R-module, inclusions into direct
products or sums of R-modules, and products of R-module homomorphisms are R-module
homomorphisms. Furthermore, inclusions are injective, projections are surjective, and

πi ◦ ιi = idMi
.

Also, ιi(Mi) is an R-submodule of the direct product/sum which is isomorphic to Mi.

Note, however, that ιi ◦ πi 6= id.



Chapter 2

Vector spaces and linear
transformations

2.1 Classification of vector spaces and dimension

Recall that for a subset A of an F -vector space V , the span of A, denoted span(A), is the
subspace generated by A:

span(A) := {
n∑
i=1

ciai | n > 0, ci ∈ F, ai ∈ A}.

Lemma 2.1. Suppose I is a linearly independent subset of an F -vector space V and v ∈
V \ span(I), then I ∪ {v} is also linearly independent.

Proof. Let w1, . . . , wn be any list of distinct elements of I∪{v} and suppose that
∑

i ciwi = 0
for some ci ∈ F . If none of the wi’s is equal to v, then ci = 0 for all i, since I is linearly
independent. Without loss of generality, say w1 = v. If c1 = 0 then ci = 0 for all i by the
same reasoning as in the previous case. If c1 6= 0, then

v =
∑
i>2

ci
c1

wi ∈ span(I),

contrary to assumption. This proves that I ∪ {v} is a linearly independent set.

To prove that every vector space has a basis, we will need to use Zorn’s Lemma. Before
we recall what Zorn’s Lemma says, let’s recall some notation:

Definition 2.2. A poset is a set S with an order relation 6 such that for all elements
x, y, z ∈ S we have

• x 6 x,

• if x 6 y and y 6 z then x 6 z, and

• if x 6 y and y 6 x then x = y.

22
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A totally ordered set is a poset (T,≤) such that for all x, y ∈ T either x 6 y or y 6 x.

Example 2.3. Given a set X, the collection P(X) of all subsets of X forms a poset with 6
defined to be set containment ⊆. Unleess X is empty or a singleton, the poset P(X) is not
totally ordered.

Definition 2.4. Let (A,6) be a poset, meaning that A is a set with a partial order 6. A
subset B of A is totally ordered if for all b, b′ ∈ B either b 6 b′ or b′ 6 b; a totally ordered
subset of A is sometimes called a chain. We say a subset B of A has an upper bound in A
if there exists an element uB ∈ A such that b 6 uB for all b ∈ B. We say A has a maximal
element if there exists m ∈ A such that whenever x ∈ A and m 6 x then m = x.

Axiom 2.5 (Zorn’s Lemma). If A is a nonempty poset such that every totally ordered
subset B ⊆ A has an upper bound in A, then there is a maximal element m ∈ A.

Some mathematicians refuse to accept Zorn’s Lemma into their axiom system. We will
at least pretend to be mathematicians who do. Fun fact: Theorem 2.6 is actually equivalent
to the Axiom of Choice, meaning that if one replaces the Axiom of Choice in the ZFC axioms
for set theory by Theorem 2.6, that does not change set theory – and one would then be
able to deduce the Axiom of Choice.

If we accept Zorn’s Lemma, we can now show that every vector space has a basis.

Theorem 2.6 (Every vector space has a basis). Let V be an F -vector space and assume
I ⊆ S ⊆ V are subsets such that I is linearly independent and S spans V . Then there is a
subset B with I ⊆ B ⊆ S such that B is a basis.

Before we prove this theorem, note that a corollary of Theorem 2.6 is that every vector
space has a basis; in particular, this says that every module over a field is free!

Corollary 2.7. Every vector space V has a basis. Moreover, every linearly independent
subset of V is contained in some basis, and every set of vectors that spans V contains some
basis.

Proof. For this first part, apply the theorem with I = ∅ and S = V . For the second and
third, use I arbitrary and S = V and I = ∅ and S arbitrary, respectively.

Example 2.8. R has a basis as a Q-vector space; just don’t ask me what it looks like.

We will not prove Theorem 2.6. But before we give a formal proof, let’s first give a
heuristic proof. To so that, start with I. If span(I) = V , then B = I does the job. If not,
then since span(S) = V , there must be a v ∈ S \ span(I). Let I ′ := I ∪ {v}. Then I ′ ⊆ S
and, by Lemma 2.1, I ′ is linearly independent. If span(I ′) = V , we have found our B, and if
not we construct I ′′ from I ′ just as we constructed I ′ from I. At this point we would like to
say that this process cannot go on for ever, and this is more-or-less true. But at least in an
infinite dimensional setting, we need to use Zorn’s Lemma to complete the proof rigorously.

Proof of Theorem 2.6. Let P denote the collection of all subsets X of V such that I ⊆ X ⊆ S
and X is linearly independent. We make P into a poset by the order relation given by set
containment ⊆. We note that P is not empty since, for example I ∈ P .
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Let T be any nonempty chain in P . Let Z =
⋃
Y ∈T Y . We claim Z ∈ P . Given

z1, . . . , zm ∈ Z, for each i we have zi ∈ Yi for some Yi ∈ T . Since T is totally ordered,
one of Y1, . . . , Ym contains all the others and hence contains all the zi’s. Since Yi is linearly
independent, this shows z1, . . . , zm are linearly independent. Thus Z is linearly independent.
Since T is non-empty, Z ⊇ I and hence Z ∈ P . It is an upper bound for T by construction.

By Zorn’s Lemma, P has a maximal element B, which we claim is a basis for V . Note
that B is linearly independent and I ⊆ B ⊆ S by construction. We need to show that it
spans V . Suppose not. Since S spans V , if S ⊆ span(B), then span(B) would have to be all
of V . So, there is at least one v ∈ S such that v /∈ span(B), and set X := B ∪ {v}. Clearly,
I ⊂ X ⊆ S and, by Lemma 2.1, X is linearly independent. This shows that X is an element
of P that is strictly bigger than B, contrary to the maximality of B.

Corollary 2.9. Let F be a field and W be a subspace of the F -vector space V . Then every
basis of W extends to a basis of V , that is, if B is a basis of W then there exists a basis B̃
of V such that B is a subset of B̃.

Proof. Apply Corollary 2.7 with B = I and S = V . Since B is a basis of W , B is linearly
independent, and B remains linearly independent when regarded as a subset of V .

Remark 2.10. It is not true that, with the notation of the previous Corollary, if B̃ is a
basis of V then there exists a basis B of W such that B is a subset of B̃. For instance, take
F = R, V = R2, B̃ = {(1, 0), (0, 1)} and W the subspace spanned by (1, 1).

Definition 2.11. A vector space is finite dimensional if there is spanned by a finite subset.

Thanks to Theorem 2.6, this is equivalent to the property that it has a finite basis. In the
language of modules, a finite dimensional vector space is just a finitely generated F -module.

The following is an essential property of vector spaces that eventually will allow us to
compare bases in terms of size.

Lemma 2.12 (Exchange Property). Let B be a basis for the vector space V and consider
any finite set of linearly independent vectors C = {c1, . . . , cm} in V . Then there are distinct
vectors b1, . . . , bm in B such that (B \ {b1, . . . , bm}) ∪ C is also a basis V .

Proof. Using induction on k, we will show that for each k with 0 6 k 6 m there are distinct
vectors b1, . . . , bk in B such that (B \ {b1, . . . , bk})∪ {c1, . . . , ck}) is also a basis of V . In the
base case, k = 0, there is nothing to show. The terminal case, k = m, gives us the desired
statement.

For the inductive step, assume B′ = (B \ {b1, . . . , bk})∪{c1, . . . , ck}) is also a basis of V .
Since ck+1 ∈ V , we can write

ck+1 =
n∑
i=1

λibi +
k∑
i=1

µici

for some scalars λi, µi ∈ F and some elements bi ∈ B \ {b1, . . . , bk}. Note that since C is
linearly independent, at least one of the scalars λi is nonzero. Let i0 be such that λi0 6= 0,
and notice that solving for bi0 from the displayed equation gives that bi0 ∈ span(B′′) where
B′′ = (B′ \ {bi0}) ∪ {ck+1}). Now we can “replace” bi0 by ck, since the previous statement
implies span(B′′) = span(B′) = V and moreover B′′ is linearly independent since otherwise
B′ would be linearly dependent.
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Next, we will show that all bases of the same vector space have the same cardinality. We
will only prove this under the assumption that V is finite dimensional, though it is true even
if V has infinite dimension.

Theorem 2.13 (Dimension Theorem). Any two bases of the same vector space have the
same cardinality.

Proof of the finite dimensional case. Suppose V is finite dimensional. Then it has a finite
basis B. Let B′ be any other basis, and note that we cannot yet assume B′ is necessarily
finite. Let {c1, . . . , cm} be any m-element subset of B′ for any m. An immediate consequence
of Lemma 2.12 is that m 6 |B|, since otherwise we could not find m distinct elements of
B to replace the ci’s by. Since every finite subset of B′ has cardinality no larger than |B|,
this proves that B′ is finite and |B′| 6 |B|. By symmetry, we obtain |B| 6 |B|′ too, hence
equality follows.

Definition 2.14. The dimension of a vector space V , denoted dimF (V ) or dim(V ), is the
cardinality of any of its bases.

Example 2.15. dimF (F n) = |{e1, e2, . . . , en}| = n.

Theorem 2.16 (Classification of finitely generated vector spaces). Let F be a field.

(1) Every finitely generated vector space over F is isomorphic to F n for n = dimF (V ).

(2) For any m,n ∈ Z>0, Fm ∼= F n if and only if m = n.

Proof. To show (1), let V be a finite dimensional F -vector space. Then F has a finite
spanning set S and by Theorem 2.6 there is a basis B ⊆ S for V . Notice that B is necessarily
finite and V = FB. Set |B| = n and B = {b1, . . . , bn}. By Theorem 1.60, there is a linear
transformation f : F n → V such that f(ei) = bi as well as a linear transformation g : V → F n

such that g(bi) = ei. Then both f ◦g : V → V and g◦f : F n → F n are linear transformation
which agree with the identity map on a basis. Hence by the uniqueness part of Theorem 1.60
we have f ◦ g = idV and g ◦ f = idFn . Therefore, these maps are the desired isomorphisms.

To show (2), let ϕ : Fm ∼= F n be a vector space isomorphism and let B be a basis of Fm.
We claim that ϕ(B) is a basis for F n. Indeed, if

m∑
i=1

ciϕ(bi) = 0 then ϕ

(
m∑
i=1

cibi

)
= 0, so

m∑
i=1

cibi = 0

since ϕ is injective. But B is linearly independent, so we must have ci = 0 for all 1 6 i 6 m.
If v ∈ F n, then since B spans Fm we have

ϕ−1(v) =
m∑
i=1

cibi

for some ci. Thus

v =
m∑
i=1

ciϕ(bi),

which shows ϕ(B) spans F n. By the Dimension Theorem, we have

dimF (F n) = n = |ϕ(B)| = |B| = m.
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Remark 2.17.

(1) The same proof as in part (1) of Theorem 2.16 above shows that every finitely generated
free R-module is isomorphic to Rn for some n > 0.

(2) Part (2) of the Classification Theorem can be extended to modules over commutative
rings as stated in Theorem 1.63; this is a problem in Problem Set 3.

(3) The Classification Theorem yields that dimension is an isomorphism invariant.

Corollary 2.18. Two finite dimensional vector spaces V and V ′ over the same field F are
isomorphic if and only if dimF (V ) = dimF (V ′).

Proof. By Theorem 2.16, V and V ′ are both of the form V ∼= Fm and V ′ ∼= F n, while
Fm ∼= F n if and only if m = n.

A word on infinite-dimensional vector spaces.

Example 2.19. Consider the vector space F [x]. This cannot be a finite dimensional vector
space. For instance, if {f1, . . . , fn} were a basis, then setting

M = max
16j6n

{deg(fj)}

we see that the element xM+1 is not be in the span of {f1, . . . , fn}. We can find a basis for this
space though. Consider the collection B = {1, x, x2, . . .}. This set is linearly independent and
spans F [x], thus it forms a basis for F [x]. This basis is countable, so dimF (F [x]) = ℵ0 = |N|.

Example 2.20. Consider the real vector space

V := RN = R× R× R× · · · .

This space can be identified with sequences {an} of real numbers. One might be interested
in a basis for this vector space. At first glance, the most obvious choice for a basis would
be E = {e1, e2, . . .}. It turns out that E is the basis for the direct sum

⊕
i∈N R. However,

it is immediate that this set does not span V , as v = (1, 1, . . .) can not be represented as a
finite linear combination of these elements. Since v is not in span(E), then by Lemma 2.1
we know that E ∪ {v} is a linearly independent set. However, this new set E ∪ {v} does not
span V either, as (1, 2, 3, 4, . . .) is not in the span of E ∪ {v}. We know that V has a basis,
but it can be shown that no countable collection of vectors forms a basis for this space, and
in fact dimR(RN) = |R|.

We now deduce some formulas that relate the dimensions of various vector spaces.

Theorem 2.21. Let W be a subspace of a vector space V . Then

dim(V ) = dim(W ) + dim(V/W ).

Here the dimension of a vector space is understood to be either a nonnegative integer or
∞, and the arithmetic of the formula is understood to follow the rules n+∞ =∞ =∞+∞
for any n ∈ Z>0. We leave the proof for Problem Set 4.
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Example 2.22. Consider the vector space V = R2 and its subspace W = span{e1}. Then
the quotient vector space V/W is, by definition,

V/W = {(x, y) +W | (x, y) ∈ R2}.

Looking at each coset we see that

(x, y) +W = (x, y) + span{e1} = {(x, y) + (a, 0) | a ∈ R} = {(t, y) | t ∈ R},

so (x, y) +W is geometrically a line parallel to the x-axis and having the y-intercept y. It is
intuitively natural to identify such a line with its intercept, which gives a map

V/W → span{e2} (x, y) +W 7→ (0, y).

It turns out that this map is a vector space isomorphism, hence

dim(V/W ) = dim(span{e2}) = 1

and we can check that

dim(W ) + dim(V/W ) = 1 + 1 = 2 = dim(V ).

If V and W are both infinite dimensional vector spaces, it can happen that V/W is finite
dimensional but also that it is infinite dimensional.

Example 2.23. Let V = F [x], which we saw in Example 2.19 is an infinite dimensional
vector space over F . Fix a polynomial f with deg(f) = d, and note that the ideal (f) of F [x]
generated by f is also an F -vector subspace of F [x] via restriction of scalars. We will show
later that dim(F [x]/(f)) = d. In contrast, the subspace E of all even degree polynomials in
F [x] together with the zero polynomial, then dim(F [x]/E) =∞.

Definition 2.24. Let T : V → W be a linear transformation. The nullspace of T is ker(T ).
The rank of T is dim(im(T )).

Corollary 2.25 (Rank-Nullity Theorem). Let f : V → W be a linear transformation. Then

dim(ker(f)) + dim(im(f)) = dim(V ).

Proof. By the First Isomorphism Theorem for modules we have V/ ker(f) ∼= im(f), thus

dim (V/ ker(f)) = dim(im(V )).

By Theorem 2.21, we have

dim(V ) = dim(ker(V )) + dim (V/ ker(f)) .

Thus
dim(V ) = dim(ker(V )) + dim (V/ ker(f)) = dim(ker(V )) + dim(im(V )).
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2.2 Linear transformations and homomorphisms be-

tween free modules

Exercise 13. If W is a free R-module with basis C = {c1, . . . , cm} and w ∈ W , then w can
be written uniquely as w =

∑m
j=1 ajcj with a1, . . . , am ∈ R.

Definition 2.26 (The matrix of a homomorphism between free modules). Let R be a com-
mutative ring with 1 6= 0. Let V be a finitely generated free R-modules of rank n, and let W
be a finitely generated free R-module of rank m. Let B = {b1, . . . , bn} and C = {c1, . . . , cm}
be ordered bases of V,W . Given an R-module homomorphism f : V → W , we define
elements aij ∈ R for 1 6 i 6 m and 1 6 j 6 n by the formulas

f(bi) =
m∑
j=1

aj,icj. (2.2.1)

The matrix

[f ]CB =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n


is said to represent the homomorphism f with respect to the bases B and C.

Remark 2.27. By Exercise 13, the coefficients aj,i in equation 2.2.1 are uniquely determined
by the f(bi) and the elements of C. The coefficients aj,i corresponding to f(bi) form the ith
column of [f ]CB. Note that [f ]CB is an m× n matrix with entries in R.

Definition 2.28. Let V and W be finite F -vector spaces of dimension n and m with ordered
bases B and C respectively and let f : V → W be a linear transformation. The matrix [f ]CB
is called the matrix of the linear transformation f with respect to the bases B and C.

Example 2.29. If idV : V → V is the identity automorphism of an n-dimensional free
R-module V , then for any basis B of V we have idV (bi) = bi for all i and hence

[idV ]BB = In.

Example 2.30. Let P3 denote the the F -vector space of polynomials of degree at most 3
(including the zero polynomial) and consider the linear transformation d : P3 → P3 given by
taking the derivative d(f) = f ′. Let B = {1, x, x2, x3}. Then

[f ]BB =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .
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Example 2.31. Let F be a field and consider a linear transformation f : V → W , where
V = F n and W = Fm. Consider also the standard ordered bases B and C, i.e. bi = ei ∈ V
and ci = ei ∈ W . Then for any

v =

l1...
ln

 =
∑
i

libi

in V we have
f
(∑

libi

)
=
∑
i

lif(bi).

Each f(bi) can be written uniquely as a linear combination of the cj’s as in (2.2.1):

f(bi) =
∑
j

aj,icj.

Then we get

f(v) =
∑
i

li

(∑
j

aj,icj

)
=
∑
j

(∑
i

aj,ili

)
cj.

In other words, we have

f(v) =


∑

i a1,ili
...∑

i am,ili

 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

 ·
l1...
ln

 = [f ]CB · v.

Then for any

v =
∑
i

libi

in V we have
f(
∑

libi) =
∑
i

lif(bi).

Each f(bi) is uniquely expressible as a linear combination of the cj’s, say

f(bi) =
∑
j

aj,icj.

Then we get

f(v) =
∑
i

li

(∑
j

aj,icj

)
=
∑
j

(∑
i

aj,ili

)
cj.

In other words, we have
f(v) = [f ]CB · v
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where

[f ]CB =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n


and [f ]CB · v denote the usual rule for matrix multiplication.

This says that any linear transformation f : F n → Fm is given by multiplication by a
matrix, since we noticed above that f(v) = [f ]CB · v. The same type of statement holds for
free modules over commutative rings, and we will show it below in Theorem 2.32.

Theorem 2.32. Let R be a commutative ring with 1 6= 0. Let V and W be finitely generated
free R-modules of ranks n and m respectively. Fixing ordered bases B for V and C for W
gives an isomorphism of R-modules

HomR(V,W ) ∼= Mm,n(R) f 7→ [f ]CB.

If V = W , so that in particular m = n, and B = C, then the above map is an R-algebra
isomorphism EndR(V ) ∼= Mn(R).

Proof. Let ϕ : HomR(V,W ) → Mm,n(R) be defined by ϕ(f) = [f ]CB. We need to check
that ϕ is a homomorphism of R-modules, which translates into [f + g]CB = [f ]CB + [g]CB and
[λf ]CB = λ[f ]CB for any f, g ∈ HomR(V,W ) and λ ∈ R. Let A = [f ]CB and A′ = [g]CB. Then

(f + g)(bi) = f(bi) + g(bi) =
∑
j

aj,icj +
∑
j

a′j,icj =
∑
j

(aj,i + a′i,j)cj

gives [f + g]CB = A+ A′ and

(λf)(bi) = λ

(∑
j

aj,icj

)
=
∑
j

(λaj,i)cj

gives [λf ]CB = λA. We leave the proof that for f, g ∈ EndR(V ) we have [f ◦ g]BB = [f ]BB[g]BB
as an exercise.

Finally, the argument described in Example 2.31 also works for any ring R, and it can
be adapted for any two chosen basis B and C, showing that ϕ is a bijection.

Corollary 2.33. For any field F and finite F -vector spaces V and W of dimension n and
m respectively, dim(HomF (V,W )) = mn.

Proof. The isomorphism HomF (V,W ) ∼= Mm,n(F ) gives

dim (HomF (V,W )) = dim (Mm,n(F )) = mn.
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2.3 Change of basis

Definition 2.34. Let V be a finitely generated free module over a commutative ring R, and
let B and C be bases of V . Let idV be the identity map on V . Then [idV ]CB is a matrix called
the change of basis matrix from B to C.

In Theorem 2.39 we will show that [idV ]CB is invertible with inverse
(
[idV ]CB

)−1
= [idV ]BC .

Example 2.35. Consider the subspace V = P2 of F [x] of all polynomials of degree up to 2,
and the bases B = {1, x, x2} and C = {1, x− 2, (x− 2)2} of V . We calculate the change of
basis matrix. We have

idV (1) = 1,

idV (x) = 2 · 1 + 1 · (x− 2),

idV (x2) = 4 · 1 + 4 · (x− 2) + 1 · (x− 2)2.

Thus, the change of basis matrix is given by [idV ]CB =

1 2 4
0 1 4
0 0 1

 .
Lemma 2.36. If V,W,U are finitely generated free R-modules spaces with ordered bases B,
C, and D, and if f : V → W and g : W → U are R-module homomorphisms, then

[g ◦ f ]BD = [g]CD · [f ]BC .

Proof. Given v ∈ V , we have

(f ◦ g)(v) = f(g(v)) = f([g]CBv) = [f ]DC ([g]CBv) = ([f ]DC [g]CB)v,

so [f ◦ g]BB = [f ]BB[g]BB.

Definition 2.37. Let V be a finitely generated free module over a commutative ring R.
Two R-module homomorphisms f, g : V → V are similar if there is a bijective linear
transformation h : V → V such that g = h ◦ f ◦ h−1. Two n × n matrices A and B with
entries in R are similar if there is an invertible n× n matrix P such that B = PAP−1.

Remark 2.38. For elements A,B ∈ GLn(R), the notions of similar and conjugate are the
same.

Theorem 2.39. Let V,W be finitely generated free modules over a commutative ring R, let
B and B′ be bases of V , let C and C ′ be bases of W , and let f : V → W be a homomorphism.
Then

[f ]C
′

B′ = [idW ]C
′

C [f ]CB[idV ]BB′ (2.3.1)

In particular, if g : V → V is an R-module homomorphism, then [g]BB and [g]B
′

B′ are similar.

Proof. Since f = idW ◦f ◦ idV , by Lemma 2.36 we have

[f ]C
′

B′ = [idW ]C
′

C [f ]CB[idV ]BB′ .
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Setting V = W , B = C, B′ = C ′, and f = idV in (2.3.1) we have [idV ]B
′

B′ = [idV ]B
′

B [idV ]BB[idV ]BB′ .
Notice that [idV ]BB = [idV ]B

′

B′ = I is the identity matrix, so the previous formula says that

I = [idV ]B
′

B I[idV ]BB′ .

Setting P = [idV ]B
′

B , we notice that the previous identity gives P−1 = [idV ]BB′ .
Now set V = W,B = C,B′ = C ′ and f = g in (2.3.1) to obtain

[g]B
′

B′ = [idV ]B
′

B [g]BB[idV ]BB′ = P [g]BBP
−1.

We now come to certain special changes of basis and their matrices:

Definition 2.40. Let R be a commutative ring with 1 6= 0, let M be a free R-module of
finite rank n, and let B = {b1, . . . , bn} be an ordered basis for M . An elementary basis
change operation on the basis B is one of the following three types of operations:

1. Replacing bi by bi + rbj for some i 6= j and some r ∈ R,

2. Replacing bi by ubi for some i and some unit u of R,

3. Swapping the indices of bi and bj for some i 6= j.

Definition 2.41. Let R be a commutative ring with 1 6= 0. An elementary row operation
on a matrix A ∈ Mm,n(R) is one of the following three types of operations:

1. Adding an element of R times a row of A to a different row of A.

2. Multiplying a row of A by a unit of R.

3. Interchanging two rows of A.

Definition 2.42. Let R be a commutative ring with 1 6= 0. An elementary matrix over
R is an n× n matrix obtained from In by applying a single elementary row operation:

1. For r ∈ R and 1 6 i, j 6 n with i 6= j, let Ei,j(r) be the matrix with 1s on the diagonal,
r in the (i, j) position, and 0 everywhere else.

2. For u ∈ R× and 1 6 i 6 n let Ei(u) denote the matrix with (i, i) entry u, (j, j) entry
1 for all j 6= i, and 0 everywhere else.

3. For 1 6 i, j 6 n with i 6= j, let E(i,j) denote the matrix with 1 in the (i, j) and (j, i)
positions and in the (l, l) positions for all l 6∈ {i, j}, and 0 in all other entries.

Remark 2.43. Let E be an n× n elementary matrix.

• E is the change of basis matrix [idV ]BB′ , where B is any basis of V and B′ is the basis
obtained from B by the corresponding elementary basis change operation.

• If A ∈ Mn,q(R), then the product matrix EA is the result of performing the corresponding
elementary row operation on A.

• If B ∈ Mm,n(R), then the product matrix BE is the result of performing the corresponding
elementary column operation on B.
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2.4 A warning on the differences between vector spaces

and general free modules

Many of the nice theorems we showed about vector spaces, basis, and dimension do not
extend well to general free modules over a commutative ring. Most importantly, Theorem 2.6,
which says that for a vector space V every linearly independent set can be extended to a
basis and every set that spans V contains a basis, does not hold in general, even in simple
cases.

Example 2.44. Let R = Z and consider the free R-module R. The set {2} is linearly
independent but it is not a basis for R; given any other element n ∈ R, {2, n} is necessarily
linearly dependent, since n · 2− 2 · n = 0. Thus we cannot extend {2} to a basis of this free
module.

Conversely the set {2, 3} spans the free module R = Z, but it is not linearly independent,
and the subsets {2} and {3} do not generate the entire free module R.

The failure of Theorem 2.6 leads to the failure of other properties we might expect.
For example, one can show that Theorem 2.6 implies that if W is a subspace of V , then
dim(W ) 6 dim(V ). But when R is a general commutative ring, submodules of free modules
do not have to be free, so we can’t even talk about dimension; and if we count the number
of generators needed, even cyclic modules might have submodules that are not cyclic.

Example 2.45. Let R be a ring an I be an ideal that is not principal. For example, we
can take R = k[x, y] with k a field and I = (x, y). Then the R-module R is cyclic, while the
submodule I needs at least 2 generators.

Moreover, submodules of free modules are not necessarily free:

Example 2.46. Let k be a field and R = k[x]/(x2). The submodule I = (x) of the free
module R is not free: it is cyclic, generated by x, but ann(I) = (x) is nontrivial, and thus I
is not free.



Chapter 3

Finitely generated modules over PIDs

We have seen that every module over a field is free. In contrast, whenever R is a commutative
ring that is not a field, we can always construct modules that are not free. We will see that,
however, every module is still a quotient of a free module. Describing that quotient explicitly
is to give a presentation for the module, similarly to how we gave presentations for groups.
We will study the particular case of finitely generated modules over PIDs in more detail.

3.1 Every module is a quotient of a free module

Lemma 3.1. Given any ring R with 1 6= 0, any direct sum of copies of R is always a free
R-module.

Proof. Suppose that F =
⊕

i∈ΛR is a direct sum of copies of R indexed by some set Λ. The
tuples

ei = (aj)j∈Λ with aj = 0 for all j 6= i and ai = 1

generate F , since we can write any element as

(ci)i∈Λ =
∑
i∈Λ

ciei.

Notice that by definition ci 6= 0 for only finitely many i, so the sum on the right has finitely
many nonzero terms. Moreover, the ei are linearly independent, and thus they form a basis
for F .

We will show in the next chapter that every when R is a field, every R-module is free.
In contrast, we will also see that if R is a commutative ring that is not a field, there always
exists an R-module that is not free – in fact, given a ring R that is not a field, one can give
a very concrete recipe for building nonfree modules.

However, even though not all modules are free, what is true is that every R-module can be
written as a quotient of a free module, as follows. Given a module M , first take a generating
set for M , say Γ = {mi}i∈Λ. Notice that a generating set always exists: for example, we can
take Γ = M , though of course that is a bit of an overkill, since it’s quite likely that some
elements can be obtained from linear combinations of others.

34
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Next, we construct a free module on the set Λ; more precisely, we take a free module on
as many generators as generators for M that we picked. Now the map⊕

i∈Λ

R
π //M

(ri)
� //

∑
i∈Λ

rimi.

Notice this map actually makes sense: the tuples (ri) have only finitely many nonzero entries,
and thus

∑
i∈Λ rimi is a (finite) linear combination of our chosen generators. Moreover, since

we chose the mi to be generators for M , this map π is surjective. It is also easy to check that
it is an R-module homomorphism: in fact, this is the R-module homomorphism we would
get from Theorem 1.60 by setting ei 7→ mi.

By the First Isomorphism Theorem,

M ∼=
⊕
i∈Λ

R/ kerπ.

This shows the following:

Theorem 3.2. Every R-module is a quotient of a free R-module.

Notice that the map π we constructed above depends on a choice of generating set for M .
Given the map π corresponding to the set of generators Γ = {mi}, each element in ker(π) is
a relation among the generators for M : the tuple (ri) is a relation for the generators {mi}
if ∑

i∈Λ

rimi = 0.

A nonzero relation among the mi tells us that the set {mi} is linearly dependent. Thus we
see that

π is injective ⇐⇒ {mi} is linearly independent ⇐⇒ {mi} is a basis for M .

In particular, the existence of such a map π that is injective is equivalent to M being
free. Since π is always surjective (as long as {mi} forms a generating set for M , we can now
rephrase this as

π is an isomorphism ⇐⇒ {mi} is a basis for M .

The module M is free if and only if we can find a basis for M , thus M if M is free then
M is isomorphic to a direct sum of copies of R. Since we have already shown that a direct
sum of copies of R is free, we conclude the following:

Theorem 3.3. An R-module is free if and only if it is isomorphic to a direct sum of copies
of R.
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3.2 Presentations for finitely generated modules over

noetherian rings

Writing a given R-module M as a quotient of a free module is giving a presentation for
M . In 817, we studied presentations for groups; these consisted of a set of generators and
a set (normal subgroup) of relations among these generators. Presentations are important
for modules as well. In this case, the relations are encoded by a matrix, or equivalently by
a homomorphism between a pair of free modules. We study below how the change of basis
techniques can be applied to unravel the structure of a module starting with its presentation.

Definition 3.4. Let R be a commutative ring with 1 6= 0, let A ∈ Mm,n(R), and let
tA : Rn → Rm be the R-module homomorphism represented by A with respect to the
standard bases. Notice that this homomorphism is given by the rule tA(v) = Av. The
R-module presented by A is the R-module Rm/ im(tA).

The R-module M presented by A ∈ Mm,n(R) has m generators and n relations. Each row
of A corresponds to a generator for M , while each column encodes a relation among those
generators. More precisely, the relations among the m generators are themselves generated
by the n generators of im(tA), which are the images of the standard basis of Rn by tA.

Example 3.5. The Z-module M = Z/6 is presented by

Z 6−→ Z,

since M ∼= Z/ im(t6) = Z/(6). Notice here we abused notation and wrote 6 instead of the
1× 1 matrix [6].

Example 3.6. Let R = k[x, y], where k is a field, and I = (x, y). The R-module M = R/I

has 1 generator, m = 1 + I, so we can write a presentation for M of the form F
p−→ R for

some free module F and some R-module homomorphism p. To find such an F , we need to
ask about the relations among the generators of M . For any a ∈ I, we have the relation
am = 0, so I is the module of relations for this presentation of M .

How many generators does the module of relations have? In this case, we need 2: the
relations xm = 0 and ym = 0 generate all the relations, since for any a ∈ I, we can write
a = rx + sy for some x, y ∈ R, and thus am = 0 can be rewritten as r(xm) + s(ym) = 0,
which is a linear combination of the two relations xm = 0 and ym = 0. Finally, we have the
following presentation for M :

R2

[
x y

]
−−−−→ R.

Indeed, the image of
[
x y

]
is (x, y), and M ∼= R/(x, y).

Conversely, we might be given a matrix and ask about what module it represents; one
thing to keep in mind is that some presentations might be inefficient, either by having more
generators or more relations than necessary. We want to answer to key questions: given a
presentation for a module, how to find a more efficient presentation; and how to decide if two
different presentations actually give us isomorphic modules. Keeping these goals in mind,
let’s try a more elaborate example.
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Example 3.7. Consider the matrix

A =


2 1 0
3 9 5
1 −2 7
0 1 2

 .
What Z-module M is presented by A? Formally, M is the quotient module M = Z4/ im(tA),
where tA : Z3 → Z4 is defined by tA(v) = Av. Since Z4 is generated by its standard basis
elements {e1, e2, e3, e4}, we deduce as in Lemma 1.54 that M = Z4/ im(tA) is generated by
the cosets of the ei. To keep the notation short, we set mi = ei + im(tA).

Let N = im(tA) and note that N is the submodule of Z4 generated by the columns of A:

N = R




2
3
1
0

 ,


1
9
−2
1

 ,


0
5
7
2


 = R{2e1 + 3e2 + e3, e1 + 9e2 − 2e3 + e4, 5e2 + 7e3 + 2e4}.

Since N maps to 0 under the quotient map q : Z4 → M = Z4/N , the relations of M can
be written as 

2m1 + 3m2 +m3 = 0

m1 + 9m2 − 2m3 +m4 = 0

5m2 + 7m3 + 2m4 = 0.

We can now see that this is a rather inefficient presentation, since we can clearly use the
first equation to solve for for m3 = −2m1 − 3m2. This implies that M can be generated
using only m1,m2 and m4, that is

M = R{m1,m2,m3,m4} = R{m1,m2,m4}.

This eliminates the first equation and the latter two become{
5m1 + 15m2 +m4 = 0

−14m2 − 16m2 + 2m4 = 0

Now we can also eliminate m4, i.e leaving just two generators m1,m2 that satisfy

−24m1 − 46m2 = 0.

Another way to do this is to look at the matrix A and use elementary row operations to
“make zeros” on the 1st and 2nd columns, as follows:

A =


2 1 0
3 9 5
1 −2 7
0 1 2

→


0 5 −14
0 15 −16
1 −2 7
0 1 2

→


0 0 −24
0 0 −46
1 0 13
0 1 0


Eliminating the generators m3 and m4 amounts to dropping the first two columns (which

are the 3rd and 4th standard basis vectors) as well as the last two rows. As we will prove
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soon, this shows that the Z-module presented by A is isomorphic to the Z-module presented
by

B =

[
−24
−46

]
.

We can go further. Set m′1 := m1 + 2m2. Then m′1 and m2 also form a generating set of
M . The relation on m1,m2 translates to

−24m′1 + 2m2 = 0

given by the matrix

C = E1,2(−2)B =

[
−24

2

]
.

Note that we have done a row operation (subtract twice row 1 from row 2) to get from B to
C. Continuing in this fashion by subtracting 12 row 2 from row 1 we also form

D = E1,2(12)C =

[
0
2

]
,

The last matrix D presents the module M ′ = Z2/ im(tD) with generators a, b, where

a = e1 + im(tD), b = e2 + im(tD)

and relation 2a = 0. This module M ′ is isomorphic to our original module M . As we will
see, this proves M ∼= Z ⊕ Z/2. An explicit isomorphism between M ′ and Z ⊕ Z/2 is given
by sending Z2 → Z⊕ Z/2 by the unique Z-module homomorphism defined by

e1 7→ (1, 0) and e2 7→ (0, [1]2).

Now notice that the kernel of this homomorphism is the submodule (2e2)Z = im(tD). Then
the first isomorphism theorem gives M ′ = Z2/ im(tD) ∼= Z⊕ Z/2.

Lemma 3.8. Let R be a commutative ring with 1 6= 0, A ∈ Mm,n(R) and B ∈Mm′,n′(R) for
some m,n,m′, n′ > 1. Then A and B present isomorphic R-modules if B can be obtained
from A by any finite sequence of operations of the following form:

(1) an elementary row operation,

(2) an elementary column operation,

(3) deletion of the jth column and ith row of A if Aej = ei, that is, if the jth column of A
is the vector ei,

(4) the reverse of 3: insertion of a row and column satisfying Aej = ei,

(5) deletion of a column of all 0’s,

(6) the reverse of 5: insertion of a column of all 0s.
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Proof. It is sufficient to show that each individual operation gives an isomorphism, as the
composition of isomorphisms is an isomorphism.

For operations (1) and (2), consider matrices A and A′ where A′ is obtained from A by the
given elementary row/column operation, and set M = Rm/ im(tA) and M ′ = Rm′/ im(tA′).
We need to prove that there is an isomorphism M ∼= M ′.

In case (1), where we have an elementary row operation, let E be the corresponding
elementary matrix. Since A′ = EA, the isomorphism E : Rn → Rn maps im(A) bijectively
onto im(A′). Thus Q induces an isomorphism

M = Rm/ im(tA)
∼=−→ Rm/ im(tA′) = M ′.

In case (2), where we have an elementary column operation, let E be the corresponding
elementary matrix. Since A′ = AE and since E is an isomorphism, we have

im(tA′) = im(tAE) = im(tA ◦ tE) = im(tA)

and so m = m′ and M = Rm/ im(tA) = Rm′/ im(tA′) = M ′. In fact, note that for this one
we get equality, not merely an isomorphism.

For case (3), we have m′ = m− 1 and n′ = n− 1. Since Rm is free, by the UMP for free
modules there is a unique R-module homomorphism p : Rm → Rm−1 sending

e1 7→ e′1, . . . , ei−1 7→ e′i−1

ei 7→ 0

ei+1 7→ e′i, . . . , em 7→ e′m−1

Similarly, there is a unique R-module homomorphism q : Rn → Rn−1 sending

e1 7→ e′1, . . . , ej−1 7→ e′j−1,

ej 7→ 0,

ej+1 7→ e′j, . . . , en 7→ e′n−1.

Here the elements ei are part of a standard basis for Rn or for Rm, while the elements e′i
are part of a standard basis for Rn−1 or for Rm−1. Then the diagram

Rn A //

q
����

Rm

p
����

Rn−1

A′
// Rm−1

commutes by the definition of A′. In particular, p(im(tA)) ⊆ im(tA′) and so p induces an
R-module homomorphism

p : M →M ′,

and we claim p is bijective.
Since p is onto, so is p. Suppose m ∈ ker(p). Then m = v+ im(tA) for some v ∈ Rm and

p(v) ∈ im(tA′). Say p(v) = A′w. Since q is onto, w = q(u) for some u. Then

p(v − Au) = p(v)− pA(u) = p(v)− A′q(u) = p(v)− A′w = p(v)− p(v) = 0,
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and thus v−Au ∈ ker(p). Now, the kernel of p is clearly Rei, so that v−Au = rei for some
r. Finally, since Aej = ei, we have A(rej) = rei = v − Au and hence v = A(u+ rej), which
proves v = tA(u+ rej) ∈ im(tA) and hence that m = 0.

For (5), it is clear that the columns of A′ generate the same submodule of Rm as do the
columns of A, and thus M = M ′.

Finally, for operations (4) and (6), since the isomorphism relation is reflexive, the state-
ments of parts (3) and (5) show that parts (4) and (6) are true as well.

Which modules have presentations? The discussion in Section 3.1 shows that the answer
is every module. But if we want to make the presentation be finite (that is, so that the
matrix describing the module has finitely many rows and columns) then we need to restrict
ourselves to finitely generated modules. This in general does not suffice to guarantee that
there will only be finitely many generators for the submodule of relations.

It might seem like no submodule of a finitely generated module could ever fail to itself
be finitely generated, but indeed this happens!

Example 3.9. Let k be a field and R = k[x1, x2, . . .] be a polynomial ring in infinitely many
variables. When we think of R as a module over itself, it is finitely generated – by the
element 1. However, there are submodules of R that are not finitely generated: for example,
the ideal (x1, x2, . . .) generated by all the variables.

Definition 3.10 (Noetherian ring). A ring R is noetherian if every ascending chain of
ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

eventually stabilizes: there is some N for which In = In+1 for all n > N .

The following characterization of noetherian rings is the key to guaranteeing that sub-
modules of finitely generated modules are also finitely generated.

Theorem 3.11. A commutative ring R is noetherian if and only if every ideal of R is finitely
generated.

Many rings are noetherian.

Example 3.12.

a) Every field k is noetherian, since (0) and k are the only ideals.

b) If R is a principal ideal domain (PID), then by definition every ideal is generated by a
single element, and hence R is noetherian.

c) If R is noetherian, then you will show in Problem Set 5 that every quotient of R is also
noetherian.

For more examples, the following famous theorem is useful.

Theorem 3.13 (Hilbert Basis Theorem). If R is a noetherian ring, then so is R[x1, . . . , xn]
for all integers n > 1.



41

In the interest of time, and since we really won’t need it in this class, I will not give a
proof of the Hilbert Basis Theorem. Combining the facts above together gives the following
very nice fact:

Corollary 3.14. Let k be a field and let I be an ideal in S = k[x1, . . . , xn] for some n > 1.
Then the ring S/I is noetherian.

This includes a large collection of the rings that are of most interest in the fields of
commutative algebra and algebraic geometry. In contrast, above we saw an example of a
ring that is not noetherian:

Example 3.15. Let k be any field and R = k[x1, x2, . . .] be the polynomial ring in arbitrarily
many variables. Then R is not noetherian: the ideal (x1, x2, . . .) generated by all the variables
is not finitely generated. Alternatively, we can see that the ascending chain of ideals

(x1) ⊆ (x1, x2) ⊆ (x1, x2, x3) ⊆ · · ·

does not stop.

Theorem 3.16. Let R be a commutative ring. If R is a noetherian ring, then every sub-
module of a finitely generated module is also finitely generated.

Proof. We will first prove that for each n > 1, every submodule of Rn is finitely generated.
The base case n = 1 holds by Theorem 3.11, since a submodule of R1 is the same thing as
an ideal of R. Assume n > 1 and that every submodule of Rn−1 is finitely generated. Let
M be any submodule of Rn. Define

π : Rn � R1

to be the projection onto the last component of Rn. The kernel of π may be identified
with Rn−1, and so N := ker(π) ∩M is a submodule of Rn−1. By assumption, N is finitely
generated. The image π(M) is a submodule of R1, that is, an ideal of R, and so it too
is finitely generated by Theorem 3.11. Furthermore, by the First Isomorphism Theorem
M/ ker(π) ∼= π(M). By Lemma 1.54, we deduce that M is a finitely generated module.

Now let T be any finitely generated R-module and N ⊆ T any submodule. Since T is
finitely generated, there exists a surjective R-module homomorphism q : Rn � T for some n.
Then q−1(N) is a submodule of Rn and hence it is finitely generated by the case we already
proved, say by element v1, . . . , vm ∈ q−1(N). We claim that q(v1), . . . , q(vm) generate N .
Given any a ∈ N , since q is surjective we can find some b ∈ q−1(N) such that q(b) = a.
Since v1, . . . , vm generated q−1(N), we can find c1, . . . , cm ∈ R such that

b = c1v1 + · · ·+ cmvm =⇒ c1q(v1) + · · ·+ cmq(vm) = q(c1v1 + · · ·+ cmvm) = q(b) = a.

In fact, the converse of Theorem 3.16 is also true. More precisely, a commutative ring
R is noetherian if and only if every submodule of a finitely generated module is also finitely
generated.
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Remark 3.17. Let R be a commutative ring. Note that R is a module over itself and a
submodule of R is exactly the same thing as an ideal. This module R is always finitely
generated as an R-module: 1 generates R, for example. If R is not noetherian, then by
Theorem 3.11 R has an ideal I that is not finitely generated. Then I is a submodule of a
finitely generated module that fails to be finitely generated.

Theorem 3.18. Any finitely generated module M over a noetherian ring R has a finite
presentation given by an m× n matrix A, that is, there is an isomorphism

M ∼= Rm/ im(tA),

where tA : Rn → Rm is the map on free modules tA(v) = Av induced by A.

Proof. Let M be a finitely generated module over a noetherian ring. We start by following
the general argument we described in Section 3.1: we choose a finite generating set y1, . . . ym
of M and obtain an R-module map π : Rm → M that sends ei to yi, by using the UMP for
free modules. Since every element in M is given as a linear combination of the yi, the map
π is surjective. Notice, however, that this representation as a linear combination of the yi is
not necessarily unique, so π might have a nontrivial kernel.

Since Rm is finitely generated and R is noetherian, by Theorem 3.16 the submodule
ker(π) is also finitely generated, say by z1, . . . , zn. This too leads to a surjective R-module
map g : Rn → ker(π) that sends ei 7→ zi. The composition of g : Rn � ker(π) followed by
the inclusion of ι : ker(π) ↪→ Rm is an R-module homomorphism t = ι ◦ g : Rn → Rm and
hence by Theorem 2.32 we know t is given by a m× n matrix A = [t]CB with respect to the
standard bases of Rm and Rn respectively, meaning t = tA.

It remains to show that M ∼= Rm/ im(tA). First note that since tA = ι ◦ g and g is
surjective we have

im(tA) = im(ι ◦ g) = ι(im(g)) = ι(ker(π)) = ker(π).

By the First Isomorphism Theorem we now have

M = im(π) ∼= Rm/ ker(π) = Rm/ im(tA).

3.3 Classification of finitely generated modules over

PIDs

Since any PID is a noetherian ring, any finitely generated module M over a PID has a
finite presentation matrix A. We will discuss a canonical form for such a matrix A and the
consequences it has on determining the isomorphism type of M .

Theorem 3.19 (Smith Normal Form (SNF)). Let R be a PID and let A ∈ Mm,n(R). Then
there exist invertible matrices P and Q such that M = PAQ = [aij] satisfies the following:
all nondiagonal entries of M are 0, meaning aij = 0 if i 6= j, and the diagonal entries of M
satisfy

a11 | a22 | a33 | · · · .
Moreover, the number ` of nonzero entries of M is uniquely determined by A, and the nonzero
diagonal entries a11, . . . , a`` are unique up to multiplication by units.
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Remark 3.20. Elementary row and column operations correspond to multiplication by
elementary matrices, which are invertible, and that the composition of invertible matrices is
invertible. So whenever we apply elementary row and column operations, we can translate
it into multiplication by an invertible matrix on the left or the right, respectively.

To transform a matrix A into its Smith Normal Form, we will use a sequence of steps that
all correspond to multiplication by invertible matrices. Many of those steps will actually be
elementary row and column operations, which correspond to multiplication by an elementary
matrix. Elementary matrices are invertible, and a product of invertible matrices is invertible,
and so any finite sequence of elementary row and column operations can be described by
multiplication by an invertible matrix. However, in general not every invertible matrix can
be obtained as a product of elementary matrices. In fact, there are examples of PIDs R
and matrices A for which the Smith Normal Form cannot be obtained by simply taking a
sequence of elementary row and column operations. However, it is not easy to give such
an example, in part because when our PID R is nice enough, the Smith Normal Form can
in fact be obtained by simply taking a sequence of elementary row and column operations.
This is the case for Euclidean domains: over such rings, the Euclidean Algorithm for finding
the gcd of two elements works, and it’s the key step we will need to find a Smith Normal
Form. When R is a general PID, however, we need to work a little harder.

Before we prove Theorem 3.19, let’s see how to classify modules over PIDs using the Smith
Normal Form for their presentation matrix. First, we need a lemma on how to interpret the
module presented by a matrix in Smith Normal Form; we leave the proof as an exercise.

Lemma 3.21. Let R be a commutative ring with 1 6= 0, let m > n, let A = [aij] ∈ Mm,n(R)
be a matrix such that all nondiagonal entries of A are 0, and let M be the R-module presented
by A. Then M ∼= Rm−n ⊕R/(a11)⊕ · · · ⊕R/(ann).

Theorem 3.22 (Classification of finitely generated modules over a PID using invariant
factors). Let R be a PID and let M be a finitely generated module. Then there exist r > 0,
k > 0, and nonzero nonunit elements d1, . . . , dk of R satisfying d1 | d2 | · · · | dk such that

M ∼= Rr ⊕R/(d1)⊕ · · · ⊕R/(dk).

Moreover r and k are uniquely determined by M , and the di are unique up to associates.

Proof. By Theorem 3.18, M has a presentation matrix A. By Theorem 3.19, A can be
put into Smith Normal Form B, where the diagonal entries of B are b1, . . . , b` and satisfy
b1 | b2 | · · · | bk. Moreover, k is unique and the di are uniquely determined up to associates
(ie, up to multiplication by units) by A, hence by B. By Theorem 3.18, M is isomorphic to
the module presented by B. By Lemma 3.21, this is isomorphic to

M ∼= Rr ⊕R/(b1)⊕ · · · ⊕R/(b`).

Finally, some of these bi might be units; let d1| · · · |dk be the nonunits among the bi, and
note that if u is a unit, then R/(u) ∼= (0). We conclude that

M ∼= Rr ⊕R/(d1)⊕ · · · ⊕R/(dk),

as desired.
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Definition 3.23. Let R be a PID, let r > 0, k > 0, and let d1, . . . , dk be nonzero nonunit
elements of R satisfying d1 | d2 | · · · | dk. Let M be any R-module such that

M ∼= Rr ⊕R/(d1)⊕ · · · ⊕R/(dk).

We say M has free rank r and invariant factors d1, . . . , dk.

Notice that the invariant factors of M are only defined up to multiplication by units.

Remark 3.24. The classification theorem can be interpreted as saying that M decomposes
into a free submodule Rr and a torsion submodule Tor(M) = R/(d1)⊕ · · · ⊕R/(dk).

Corollary 3.25 (Classification of finitely generated abelian groups). Let G be a finitely
generated abelian group. Then

G ∼= Zr ⊕ Z/n1 ⊕ · · · ⊕ Z/nk

for some r > 0, k > 0, and ni > 2 for all i, satisfying ni+1 | ni for all i. Moreover, the
integers r, k, and n1, . . . nk are uniquely determined by G.

Example 3.26. Consider the Z-module M presented by the matrix

A =

1 6 5 2
2 1 −1 0
3 0 3 0

 .
We can obtain the Smith Normal Form as follows:

A =

1 6 5 2
2 1 −1 0
3 0 3 0

 R2→R2−2R1−−−−−−−→
R3→R3−3R1

1 6 5 2
0 −11 −11 −4
0 −18 −12 −6

→
1 0 0 0

0 −11 −11 −4
0 −18 −12 −6


C2↔C4−−−−→

1 0 0 0
0 −4 −11 −11
0 −6 −12 −18

 C3→C3+2C2−−−−−−−→
C4→C4+3C1

1 0 0 0
0 −4 −3 1
0 −6 0 0

 C2↔C4−−−−→

1 0 0 0
0 1 −3 −4
0 0 0 −6


→

1 0 0 0
0 1 0 0
0 0 0 −6

 C3↔C4−−−−→

1 0 0 0
0 1 0 0
0 0 −6 0

 C3→−C3−−−−−→

1 0 0 0
0 1 0 0
0 0 6 0

 .
Thus the Smith normal form of A is

M =

1 0 0 0
0 1 0 0
0 0 6 0

 ,
with invariant factor d1 = 6. Notice that the two ones are not invariant factors: we only
care about nonunits. Therefore we have

M ∼= Z/(1)⊕ Z/(1)⊕ Z/(6) ∼= Z/(6).
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Here is a spinoff of the classification theorem.

Theorem 3.27 (Classification of finitely generated modules over a PID using elementary
divisors). Let R be a PID and let M be a finitely generated module. Then there exist r > 0,
s > 0, prime elements p1, . . . , ps of R (not necessarily distinct), and e1, . . . , es > 1 such that

M ∼= Rr ⊕R/(pe11 )⊕ · · · ⊕R/(pess ).

Moreover, r and s are uniquely determined by M , and the list pe11 , . . . , p
es
s is unique up to

associates and reordering.

Proof. First, write M in invariant factor form M ∼= Rr ⊕R/(d1)⊕ · · · ⊕R/(dk). Then write
each invariant factor as a product of prime powers

di :=

ni+1∏
j=ni

p
ej
j ,

and recall that by the CRT we have

R/(di) ∼= R/(p
eni
ni )⊕ · · · ⊕R/(peni+1

ni+1 ).

Substituting into the invariant factor form gives the desired result. Uniqueness follows from
the uniqueness of the invariant factor form and of the prime factorizations of each di.

Definition 3.28. Let R be a PID, let r > 0, s > 0, p1, . . . , ps be prime elements of R, and
let e1, . . . , es > 1. Let M be the R-module M ∼= Rr⊕R/(pe11 )⊕ · · · ⊕R/(pess ). The elements
pe11 , . . . , p

es
s of R are the elementary divisors of M .

Careful that a particular prime might appear repeatedly in the elementary divisors of a
particular module.

Example 3.29. When R = Z and M = Z/(6), we can write M ∼= Z/(2) ⊕ Z/(3), so the
elementary divisors are 2 and 3.

Corollary 3.30. Let G be a finitely generated abelian group. Then there exist r, s > 0,
prime integers p1, . . . , ps, and positive integers ei > 1 such that

G ∼= Zr ⊕ Z/pe11 ⊕ · · · ⊕ Z/pess .

Moreover, r, pi, and ei are all uniquely determined by G.

We have yet to show Theorem 3.19: every matrix over a PID has a Smith Normal Form.
We will need a few auxiliary lemmas.

Definition 3.31. Let R be a PID and let a1, . . . , an ∈ R. The greatest common divisor or
gcd of a1, . . . , an, denoted gcd(a1, . . . , an), is a generator for the principal ideal (a1, . . . , an).
Given a matrix A ∈ Mm,n(R), gcd(A) is the gcd of the entries of A. We adopt the convention
that gcd(0, 0) = 0 and thus if A is the matrix of all zeroes, then gcd(A) = 0.

Notice that the greatest common divisor is only defined up to multiplication by a unit.
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Lemma 3.32. Let R is a PID. Let A ∈ Mm,n(R) be any matrix and let P ∈ Mm(R) and
Q ∈ Mn(R) be invertible matrices. Then gcd(A) = gcd(PA) = gcd(QA). In particular, if
B ∈ Mm,n(R) and B is obtained from A by a finite sequence of elementary row and column
operations, then gcd(A) = gcd(B).

Proof. First, suppose that n = 1, meaning that A is a column, say

A =

a1
...
am

 and let PA =

 b1
...
bm

 .
We need to show that (a1, . . . , am) = (b1, . . . , bm). On the one hand, each bi is a linear
combination of the aj, so (b1, . . . , bm) ⊆ (a1, . . . , am). On the other hand,a1

...
am

 = P−1(PA) = P−1

 b1
...
bm


so each aj is a combination of the bi, and aj ∈ (b1, . . . , bm). We conclude that we have an
equality of ideals (a1, . . . , am) = (b1, . . . , bm), and thus multiplying a column vector by an
invertible matrix does not change the greatest common divisor of the entries.

Now given A ∈ Mm,n(R), if we denote the ith column of A by Ai, we have

PA =
[
PA1 · · · PAm

]
.

Since the gcd of each column remains the same, the gcd of all the entries does not change.
To show that gcd(AQ) = gcd(A), note that transposing a matrix does not change its gcd

nor the fact that its invertible, so we can apply what we have already shown:

gcd(AQ) = gcd((AQ)T ) = gcd(QTAT ) = gcd(AT ) = gcd(A).

Finally, applying elementary row and column operations corresponds to multiplying by
an elementary matrix on the left or right, and elementary matrices are invertible.

Lemma 3.33. Let R be a PID and x, y ∈ R. There exists an invertible 2 × 2 matrix
P ∈ M2(R) such that

P

[
x
y

]
=

[
gcd(x, y)

0

]
.

Proof. By definition of greatest common divisor, (x, y) = (gcd(x, y)), so there exist a, b ∈ R
such that ax + by = gcd(x, y). Write g := gcd(x, y) and h = gcd(a, b). Then ax + by is a
multiple of gh, but since ax+ by = g and R is a domain, we conclude that h must be a unit,
and (a, b) = (h) = (1). In particular, we can find c, d ∈ R such that ad − bc = 1. Finally,
bx+ cy ∈ (x, y) = (g), so [

a b
c d

] [
x
y

]
=

[
g
eg

]
.
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Now we can apply the row operation that adds −e times the first row to the second row: by
setting

P :=

[
1 0
−e 1

] [
a b
c d

]
=

[
a b

c− ea b− de

]
.

we get

P

[
x
y

]
=

[
g
0

]
.

Finally, one can easily check that

P−1 =

[
d −b
−c a

] [
1 0
e 1

]
.

By transposing the matrices in Lemma 3.33, we can show that there exists an invertible
2× 2 matrix Q such that [

x y
]
Q =

[
gcd(x, y) 0

]
.

Exercise 14. Show that for any i > 1 and any commutative ring R, the ideal generated by
the i× i minors of a matrix with entries in R is unchanged by row and column operations.

We are now finally ready to show that every matrix over a PID can be put into Smith
Normal Form.

Theorem 3.19. (Smith Normal Form) Let R be a PID and let A ∈ Mm,n(R). There
exist invertible matrices P and Q such that M = PAQ = [aij] satisfies the following: all
nondiagonal entries of M are 0, meaning aij = 0 if i 6= j, and the diagonal entries of M
satisfy

a11 | a22 | a33 | · · · .

Moreover, the number ` of nonzero entries of M is uniquely determined by A, and the
nonzero diagonal entries a11, . . . , a`` are unique up to multiplication by units.

Proof. Before we begin, note that we will apply a sequence of steps that correspond to
multiplication by an invertible matrix on the left or right, and by Lemma 3.32, none of these
steps will change the gcd.

To prove existence of such a matrix M , we claim we can multiply A on the right and the
left by invertible matrices to transform it into a matrix of the form[

g 0
0 B

]
for some (n − 1) × (m − 1) matrix B, where g = gcd(A). If our claim holds, then we are
done: notice that g divides every entry of B, since gcd(A) = gcd(g,B) by Lemma 3.32, and
so by applying this fact to B, and then over and over again, we arrive at a matrix of the
desired form M . Notice moreover that if C is an invertible matrix, then so is[

1 0
0 C

]
.
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To construct a matrix in the form above, let a be the upper left (1, 1) entry of A. First,
we are going to show that we can turn A into a matrix of the form[

∗ 0
0 B

]
with the same gcd as A. If a happens to divide all the entries on the first row and column,
then we can simply apply elementary row and column operations to get to the desired
form. Suppose there exists b on the first column such that a - b. Then we may apply an
elementary row operation switching rows so that b = a2,1 is on the first column, second row.
By Lemma 3.33, we can now find an invertible matrix C ∈ M2(R) such that

C

[
a
b

]
=

[
gcd(a, b)

0

]
.

Consider the m×m matrix

P :=

[
C 0
0 Im−2

]
.

Note that PA has (PA)1,1 = gcd(a, b) and (PA)2,1 = 0, so this step replaces a by gcd(a, b)
and b by 0. By Lemma 3.32, gcd(PA) = gcd(A). We can keep repeating this until the top
left corner entry divides every entry on the first column, and this process must stop after at
most m− 1 steps, since there are only m elements on the first column.

Similarly, if there exists b on the first row that a does not divide, we can repeat this
process by instead multiplying A on the left by an invertible matrix, until we zero out all
the remaining entries on the first row and column. Finally, we arrive at a matrix of the form[

a 0
0 B

]
.

If a = gcd(A), we are done. If not, then we can find some entry b = ai,j such that a - b.
We can then add the jth column to the first column, which puts b into the first column
without affecting a, since the remainder of the top row is zero. But this brings us back to
the previous situation, and we have already shown that we can replace the top left corner
by gcd(a, b).

At each step, we replace a by some c with is both a divisor of a and a multiple of gcd(A).
Our ring R is a UFD, so there are finitely many factors of a/ gcd(A), and this process must
stop. This shows that we can eventually replace A by[

gcd(A) 0
0 B

]
.

Now it remains to show the uniqueness portion of the theorem. For any i and any matrix
B, let gcdi(B) denote the gcd of all the i× i minors of B. By Exercise 14, gcdi is unchanged
by row and column operations, so gcdi(A) = gcdi(M).

For a matrix of the form M , the only minors that are nonzero are those where the choices
of columns and rows are the same, and hence the only nonzero i×i minors of M are gs1 · · · gsi
for some s1 < · · · < si. Since gs1 · · · gsi divide each other, it follows that

gcdi(A) = gcdi(M) = g1 · · · gi.
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In particular, the largest value of i such that some i× i minor of A is nonzero is `. Also, we
have

gi =
gcdi(A)

gcdi−1(A)
.

This proves uniqueness, for it shows that `, g1, . . . , g` are all defined from A directly, without
any choices.

Example 3.34. Consider the PID R = k[x], where k is any field, and the matrix

A =

[
x− 1 0

1 x− 2

]
.

The first row has already been zeroed out, but unfortunately x−1 does not divide 1. In this
case, though, we can see that gcd(A) = 1, so we can switch the first and second rows to get[

1 x− 2
x− 1 0

]
.

Now we zero out the rest of the first row and first column using row and column operations:[
1 x− 2

x− 1 0

]
R2→R2−(x−1)R1−−−−−−−−−−→

[
1 x− 2
0 −(x− 1)(x− 2)

]
C2→C2−(x−2)C1−−−−−−−−−−→

[
1 0
0 −(x− 1)(x− 2)

]
.

This is a Smith Normal Form. If we prefer to not have that negative sign, we can multiply
the second row by −1, to obtain[

1 x− 2
x− 1 0

]
R2→R2−(x−1)R1−−−−−−−−−−→

[
1 x− 2
0 −(x− 1)(x− 2)

]
C2→C2−(x−2)C1−−−−−−−−−−→

[
1 0
0 (x− 1)(x− 2)

]
.

There is only one invariant factor, which is (x− 1)(x− 2). The k[x]-module M presented by
A is

M ∼= k[x]/((x− 1)(x− 2)).

If we prefer to write this in terms of elementary divisors, our module has two: x − 1 and
x− 2, and it is isomorphic to

M ∼= k[x]/(x− 1)⊕ k[x]/(x− 2).



Chapter 4

Canonical forms for endomorphisms

4.1 Rational canonical form

Recall that given an F -vector space V with dimF (V ) = n and an ordered basis B for V we
have proven in Proposition 2.32 that EndF (V ) ∼= Mn(F ) via the maps t 7→ [t]BB and A 7→ tA.
Recall also from Lemma 1.48 that to give a finitely generated module over F [x] is the same
data as a finite dimensional vector space V and a linear transformation V → V :

Definition 4.1. Let F be a field, let V be a finite dimensional vector space over F , and let
t : V → V be a linear transformation. The F [x]-module Vt is defined to be the vector space
V with the unique F [x]-action satisfying xv = t(v) for all v ∈ V . That is,

(rnx
n + · · ·+ r0)v = rntn(v) + · · ·+ r0v for all rnx

n + · · ·+ r0 ∈ F [x].

Theorem 4.2. Let F be a field, let V be an F -vector space of dimension n, let t : V → V be
a linear transformation, let B be an ordered basis for V , and let A = [t]BB. Then the matrix
xIn − A ∈ Mn(F [x]) presents the F [x]-module Vt.

Proof. Let B = {b1, . . . , bn} be any basis for V , and note that B is a generating set for Vt as
a module over F [x]. As we described in Section 3.1, Vt can then be written as a quotient of
F [x]n. More precisely, let e1, . . . , en denote the standard F [x]-basis for the free F [x]-module
F [x]n, and let π : F [x]n → Vt be the surjective F [x]-module homomorphism sending ei to bi.
That is,

π((g1(x), . . . , gn(x)) = π

(
n∑
i=1

gi(x)ei

)
=

n∑
i=1

gi(x)bi =
n∑
i=1

gi(t)bi.

By the First Isomorphism Theorem, we have Vt ∼= F [x]n/ ker(π). On the other hand, the
matrix xIn − A determines a map

txIn−A : F [x]n → F [x]n,

and to show that Vt ∼= F [x]n/ im(txIn−A) it suffices to show that im(txIn−A) = ker(π). Now

(π◦txIn−A)(ei) = π((xIn−A)ei) = (xIn−A)π(ei) = (xIn−A)bi = xbi−Abi = t(bi)−t(bi) = 0.
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This proves im(xIn − a) ⊆ ker(π). It follows by Theorem 1.43 that there is a surjection of
F [x]-modules

W := F [x]n/ im(xIn − A)� Vt.

We may also regard this as a surjection of F -vector spaces. Since dimF (Vt) = n and the map
above is surjective, we have dimF (W ) > n, which follows from the Rank Nulity Theorem.
To establish that the map above is an isomorphism, it suffices to show that dimF (W ) 6 n.

Denote by ci = ei + im(xIn − A) the image of the standard basis of F [x]n in W . The
ith column of xIn −A gives the relation xci = vi in W , where vi is the i-th column of A. It
follows that p(x)ci = p(A)ci in W for any polynomial p(x). Thus a typical element of W ,
given by

∑
i gi(x)ci, is equal to g1(A)c1 + · · · + gn(A)cn. Such an expression belongs to the

F -span of c1, . . . , cn in W ; that is; c1, . . . , cn span W as an F -vector space. Therefore, we
have the desired inequality dimF (W ) 6 n, which completes our proof.

Corollary 4.3. Suppose F is a field, V is an F -vector space, and t : V → V is a linear
transformation. There exist unique monic polynomials g1| · · · |gk ∈ F [x] of positive degree
and an F [x]-module isomorphism

Vt ∼= F [x]/(g1)⊕ · · · ⊕ F [x]/(gk).

The polynomials g1, . . . , gk are both the invariant factors of the F [x]-module Vt and the entries
on the diagonal of the Smith normal form of xIn − [t]BB for any basis B of V .

Proof. Theorem 4.2 says that xIn − [t]BB presents the F [x]-module Vt, and the remainder of
the statement is an immediate application of the Classification of finitely generated modules
over PIDs to this special case once we show that there is no free summand. Note that F [x]
is an infinite dimensional vector space over F , while Vt is a finite dimensional vector space.
If Vt had a free summand, then it would contain an infinite linearly independent set over F ,
and thus it could not be finite-dimensional.

Definition 4.4. The polynomials g1, . . . , gk in Corollary 4.3 are called the invariant factors
of the linear transformation t.

Example 4.5. Let

A =

[
1 1
0 1

]
∈ M2(Q).

Then

xI2 − A =

[
x− 1 −1

0 x− 1

]
.

We could compute the invariant factors of t : Q2 → Q2 by appealing to the Smith Normal
Form of xI2 − A, but let us try another way. Let[

d1 0
0 d2

]
be the Smith Normal Form of xI2−A. Recall from the proof of Theorem 3.19 that d1 is the
gcd of the entries of xI2 − A and d1d2 = det(xI2 − A). Thus d2 = det(xI2 − A) = (x − 1)2

and d1 = 1. Therefore the only invariant factor of tA is (x− 1)2.
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You will show the following lemma in Problem Set 6:

Lemma 4.6. For a monic polynomial f(x) = xn + an−1x
n−1 + · · · a1x + a0 with n > 1, the

classes of 1, x, . . . , xn−1 form a basis for F [x]/(f(x)) regarded as an F -vector space. Relative
to this basis, the F -linear operator lx : F [x]/(f(x)) → F [x]/(f(x)) defined by lx(v) = xv is
given by the following matrix:

C(f) :=


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1
. . . 0 −a2

...
. . . . . .

...
...

0 · · · 0 1 −an−1

 =


0 · · · 0 −a0

−a1

In−1
...

−an−1

 .

Definition 4.7. In the setup of Lemma 4.6, the matrix C(f) is called the companion
matrix of the monic polynomial f .

Definition 4.8. Given square matrices A1, . . . , Am with entries in a ring R, not necessarily
of the same size, we define A1 ⊕ · · · ⊕ Am to be the block diagonal matrix

A1 0 · · · 0
0 A2 · · · 0
...

. . .
...

0 · · · 0 Am

 .
Remark 4.9. If f : V1 → W1 and g : V2 → W2 are linear transformations, then the map
f ⊕ g : V1⊕V2 → W1⊕W2 given by (f ⊕ g)(a, c) = (f(a), g(c)) is a linear transformation. If
Bi is a basis for Vi and Ci is a basis for Wi, and ιi : Ai ↪→ A1⊕A2 are the natural inclusions,
then B = ι1(B1) ∪ ι2(B2) is a basis for V1 ⊕ V2, C = ι1(C1) ∪ ι2(C2) is a basis for W1 ⊕W2,
and

[f ⊕ g]CB =

[
[f ]C1

B1
0

0 [g]C2
B2

]
.

Theorem 4.10 (Rational Canonical Form). Let F be a field, V a finite dimensional F -vector
space, and t : V → V an F -linear transformation. There is a basis B of V such that

[t]BB = C(g1)⊕ · · · ⊕ C(gk) =


C(g1) 0 0 · · · 0

0 C(g2) 0 · · · 0
...

...
. . .

...
0 0 · · · 0 C(gk)


where g1, . . . , gk are the invariant factors of t, meaning they are monic polynomials of positive
degree such that g1 | g2 | · · · | gk. Moreover, the polynomials g1, . . . , gk are unique.

Proof. By Corollary 4.3, Vt ∼=
⊕k

i=1 F [x]/(gi(x)) for some unique gi as in the statement.
Set Vi = F [x]/(gi(x)) and note that Vt = V1 ⊕ · · · ⊕ Vk. The map lx : Vt → Vt given by
multiplication by x preserves each summand in this decomposition: lx(Vi) ⊆ Vi. Thus if we
choose a basis Bi of each summand Vi and set B =

⋃k
i=1 ιi(Bi), by Remark 4.9, B is a basis

of Vt and [t]BB = [t|V1 ]B1
B1
⊕ · · · ⊕ [t|Vk ]

Bk
Bk

. The result now follows from Lemma 4.6.
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Definition 4.11. In the setup of Theorem 4.10, the matrix C(g1)⊕· · ·⊕C(gk) is called the
rational canonical form (RCF) of the linear transformation t. The rational canonical form
of a matrix A ∈ Mn(F ) is defined to be the rational canonical form of the endomorphism tA
represented by A with respect to the standard basis of F n.

Example 4.12. Let A =

[
1 1
0 1

]
∈ M2(Q) as in Example 4.5. Because the only invariant

factor of xI2 − A is (x− 1)2, the Rational Canonical Form of tA is

RCF (A) = C((x− 1)2) = C(x2 − 2x+ 1) =

[
0 −1
1 2

]
.

We will later show that two matrices have the same Rational Canonical Form if and only
if they are similar.

4.2 The Cayley-Hamilton Theorem

Definition 4.13. Let F be a field and let A ∈ Mn(F ). The characteristic polynomial of
A is the polynomial cA = det(xIn − A).

Definition 4.14. Let V be an F -vector space of dimension n, and let t : V → V be a linear
transformation. The characteristic polynomial of t, denoted ct, is the characteristic
polynomial cA for a matrix A = [t]BB with respect to some ordered basis B of V .

Characteristic polynomials are well-defined.

Remark 4.15. We need to check that the characteristic polynomial of a linear transforma-
tion is invariant under base changes. More precisely, we need to check that if we choose two
different basis B and B′ for V , then the matrices A = [t]BB and C = [t]B

′

B′ have the same
characteristic polynomial. First, recall that A and C are similar matrices, by Theorem 2.39,
so C = PAP−1 for some invertible matrix P . Moreover, diagonal matrices are in the center
of Mn(R), meaning they commute with other matrices, and thus we have the following:

det(xIn − C) = det(xIn − PAP−1)

= det(P (xIn − A)P−1)

= det(P ) det(xIn − A) det(P−1)

= det(xIn − A).

We conclude that A and B have the same characteristic polynomial.

Remark 4.16. For any matrices A and B, cA⊕B = cAcB.

Definition 4.17. Let F be a field and let A ∈ Mn(F ). The minimal polynomial of A,
denoted mA, is the unique monic polynomial that generates the principal ideal

{f(x) ∈ F [x] | f(A) = 0}.
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Definition 4.18. Let V be an F -vector space of dimension n, and let t : V → V be a
linear transformation. The minimal polynomial of t, denoted mt, is the unique monic
polynomial generating the ideal annF [x](Vt) in the PID F [x].

Lemma 4.19. Let F be a field. Let V be an F -vector space of dimension n with basis B and
let t : V → V be a linear transformation. The minimal polynomial mA of A = [t]BB satisfies
mA = mt.

Proof. Since mA and mt are both monic, it’s sufficient to show annF [x](Vt) = (mA). Indeed,

f ∈ annF [x](Vt) ⇐⇒ f(x)v = 0 for all v ∈ Vt
⇐⇒ f(A)v = 0 for all v ∈ Vt
⇐⇒ ker(f(A)) = Vt

⇐⇒ rank(f(A)) = 0 by the Rank-Nulity Theorem

⇐⇒ f(A) = 0

⇐⇒ f ∈ (mA) by definition of mA.

Remark 4.20. If m(x) is the minimal polynomial of an endomorphism t and f(x) is another
polynomial such that f(x) annihilates Vt, then f(x) ∈ ann(Vt) = (m(x)), and thusm(x)|f(x).

Similarly, suppose that m(x) is the minimal polynomial of a matrix A and f(x) is another
polynomial such that f(A) = 0. By Lemma 4.19, we know that m(x) is also the minimal
polynomial of the linear transformation t : v 7→ Av, and that f(x) also annihilates Vt. Thus
we can also conclude that m(x) | f(x).

Lemma 4.21. Let F be a field, let V be a finite dimensional F -vector space, and t : V → V
be a linear transformation with invariant factors g1| · · · |gk. Then ct = g1 · · · gk and mt = gk.

Proof. The product of the elements on the diagonal of the Smith Normal Form of xIn − A
is the determinant of xIn − A. Thus the product of the invariant factors g1 · · · gk of Vt
is the characteristic polynomial ct of t. Notice here that we chose our invariant factors
g1, . . . , gk to be monic, so that g1 · · · gk is monic, and thus actually equal to ct (not just up
to multiplication by a unit).

By Problem Set 5, annF [x](Vt) = (gk), and since gk is monic we deduce that mt = gk.

We can now prove the famous Caley-Hamilton theorem.

Theorem 4.22 (Cayley-Hamilton). Let F be a field, and let V be a finite dimensional F -
vector space. If t : V → V is a linear transformation, then mt | ct, and hence ct(t) = 0.
Similarly, for any matrix A ∈ Mn(F ) over a field F we have mA|cA and cA(A) = 0.

Proof. Let A = [t]BB for some basis B of V . Note that the statements about A and t are
equivalent, since by definition cA = ct, while mA = mt we have f(A) = 0 if and only if
f(t) = 0. So write m = mA = mt and c = cA = ct.

By Lemma 4.21, m = gk and c = g1 · · · gk, so m | c. By definition, we m(A) = 0. Since
m|c, we conclude that c(A) = 0.
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Remark 4.23. As a corollary of the Cayley-Hamilton Theorem, we obtain that the minimal
polynomial of t : V → V has degree at most n = dim(V ), since mt divides ct, which is a
polynomial of degree n.

Lemma 4.24. Let F be a field and let V be a finite dimensional F -vector space. If t : V → V
is a linear transformation, then ct | mk

t .

Proof. Since gi | gk for 1 6 i 6 k, we have ct = g1 · · · gk | gkk = mk
t .

It follows that ct and mt have the same roots, not counting multiplicities.

Definition 4.25. Let V be t : V → V be a linear transformation over a field F . A nonzero
element v ∈ V satisfying t(v) = λv for some λ ∈ F is an eigenvector of t with eigenvalue λ.
Similarly, given a matrix A ∈ Mn(F ), a nonzero v ∈ F n satisfying Av = λv for some λ ∈ F
is an eigenvector of A with eigenvalue λ.

Theorem 4.26. Let f ∈ F . The following are equivalent:

(1) λ is an eigenvalue of t.

(2) λ is a root of ct.

(3) λ is a root of mt.

Proof. By the Cayley-Hamilton Theorem, mt|ct, and thus (3)⇒ (2). On the other hand, by
Lemma 4.24 we know that ct | mk

t , so if ct(λ) = 0 then mt(λ)k = 0, and since we are over a
field, we conclude that mt(λ) = 0. This shows (2)⇒ (3).

Finally, to show that (1)⇔ (2), notice that the scalar λ ∈ F is an eigenvalue of A if and
only if there is a nonzero solution v to (λIn−A)v = 0. This happens if and only if λIn−A has
a nontrivial kernel, or equivalently if λI − A is not invertible. Thus λ ∈ F is an eigenvalue
of A if and only if it is a root of its characteristic polynomial cA(x) = det(xIn−A), meaning
cA(λ) = 0.

Theorem 4.27. Let F be a field and let A,A′ ∈ Mn(F ). The following are equivalent:

(1) A and A′ are similar matrices.

(2) A and A′ have the same Rational Canonical Form.

(3) A and A′ have the same invariant factors.

Proof. To show (1)⇒ (2), suppose A is similar to A′. Then there exists an invertible matrix
P such that A′ = PAP−1, and thus

xIn − A′ = xInPAP
−1 = P (xIn − A)P−1.

Thus the matrices xIn−A and xIn−A′ are also similar. Moreover, by definition we see that
similar matrices have the same Smith normal form, and thus A and A′ have the Rational
Canonical Form. The invariant factors can be read off of the Rational Canonical Form, and
thus (2)⇒ (3).

Finally, to show (3) ⇒ (1) notice that if A and A′ have the same invariant factors then
there is an isomorphism of F [x]-modules F n

tA
∼= F n

tA′
, which implies by a homework problem

in Problem Set 6 that A and A′ must be similar.
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Example 4.28. Let us find the minimal and characteristic polynomials of T : R2 → R2

given as rotation by 60 degrees counter-clockwise. We could write this down as matrix and
compute its characteristic polynomial, but a simpler way is to notice that T 3 = −I2, and
so T satisfies the polynomial x3 + 1 = (x + 1)(x2 − x + 1). Its minimal polynomial must
therefore divide x3 + 1. Since x3 + 1 = (x + 1)(x2 − x + 1) and x2 − x + 1 is irreducible in
R[x], we conclude that the minimal polynomial of T , which we know has degree at most 2,
must be either x + 1 or x2 − x + 1. If mT = x + 1, then T would be −I2, which is clearly
incorrect. So the minimal polynomial of T must be x2 − x + 1. By Cayley-Hamilton, this
polynomial must divide the characteristic polynomial, and since the latter also has degree
two, we conclude that

cT (x) = x2 − x+ 1.

Since this is irreducible, in this example we have no choice for how to form the invariant
factors: there must just be one of them, cT (x) itself. So

C(x2 − x+ 1) =

[
0 −1
1 1

]
is the rational canonical form of T .

Example 4.29. Let’s find the minimal polynomial of
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


By the Cayley-Hamilton Theorem, mA(x) | cA(x). The polynomial cA(x) is easy to

compute since this matrix is upper-triangular:

cA(x) = det(xI4 − A) = (x− 1)4.

So mA(x) = (x− 1)j for some j 6 4. By brute-force, we verify that (A− I4)3 6= 0 and thus
it must be the case that mA(x) = cA(x) = (x− 1)4.

Example 4.30. Let’s find the minimal polynomial of
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


As in the previous example, cA(x) = (x − 1)4 and so by the Cayley-Hamilton Theorem
mA(x) = (x − 1)j for some j 6 4. This time we notice that (A − I4)2 = 0 and so, since
(A− I4) 6= 0, we have mA(x) = cA(x) = (x− 1)2.
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4.3 Jordan canonical form

We now turn to the Jordan canonical form. To motivate it, let us do an example.

Example 4.31. Let us consider

A =

0 0 8
1 0 −12
0 0 6

 = C((x− 2)3) ∈ M3(Q).

This means we can interpret this matrix as arising from the linear transformation lx on

V = Q[x]/(x− 2)3

given by multiplication by x. Recall that the basis that gives the matrix A is

B = {1, x, x2}

But notice that
B′ = {(x− 2)2, x− 2, 1}

is also a basis of V , and indeed seems like a more pleasing one. Let us calculate what the
operator T does to this alternative basis. We could work this out by brute force, but a
cleaner way is to first compute what the operator T ′ = T − 2 idV does. It is clear that T ′ is
multiplication by x − 2, and hence T ′ sends each basis element to the previous one, except
for the first which is sent to 0. That is the matrix of T ′ is0 1 0

0 0 1
0 0 0


and hence the matrix for T is T ′ + 2I3:

J3(2) :=

2 1 0
0 2 1
0 0 2

 .
This is a Jordan Block.

Definition 4.32. Let F be a field, let n > 0, and let r ∈ F . The Jordan block Jn(r) is
the n× n matrix over F with entries satisfying the following:

aij =


r if i = j

1 if j = i+ 1

0 otherwise.

Thus a Jordan block looks like 
r 1

r
. . .
. . . . . .

r 1
r

 .



58

Theorem 4.33 (Jordan Canonical Form Theorem). Let F be a field, let V be a finite
dimensional vector space, and let t : V → V be a linear transformation satisfying the property
that the characteristic polynomial ct of t factors completely into linear factors over F . Then
there is an ordered basis B for V such that

[t]BB = Je1(r1)⊕ · · · ⊕ Jes(rs) =


Je1(r1) 0 0 · · · 0

0 Je2(r2) 0 · · · 0
...

...
. . .

...
0 0 · · · 0 Jes(rs)


such that each ri ∈ F is a root of the characteristic polynomial ct and each ei > 1. Moreover,
the polynomials (x− r1)e1 , . . . , (x− rs)e

s
are the elementary divisors of the F [x]-module Vt,

and this expression for [t]BB is unique up to ordering of the Jordan blocks.

Proof. The key point is the following: the assumption that c completely factors into linear
terms guarantees that the elementary divisors of c are of the form (x− r)e. The proof then
follows along the lines of Example 4.31. First write Vt in terms of the elementary divisors,
as follows

Vt ∼= F [x]/((x− r1)e1)⊕ · · · ⊕ F [x]/((x− rs)es).

Then pick bases B′i = {(x− ri)ei−1, . . . , x− ri, 1} for each of the summands and set

B :=
s⋃
i=1

ιi(B
′
i).

All that remains to show is that the matrix representing multiplication by x on each summand
is Jei(ri). More precisely, we want to compute the matrix representing the F -linear trans-
formation T : F [x]/((x− r)e) x−→ F [x]/((x− r)e) in the basis B = {(x− r)e−1, . . . , x− r, 1}.
Let T ′ := T − r · id, and note that

T ′((x− r)e−1) = 0

and
T ′((x− r)i) = (x− r)i+1 for all i < e− 1.

Thus the first column of [T ′]BB is zero, and each of the remaining ordered basis vectors is
taken to the previous basis vector, so that

[T ′]BB =


0 1

0
. . .
. . . . . .

0 1
0

 .

Since T = T ′ + r id, we conclude that [T ]BB is indeed given by the Jordan block Je(r), as
desired.



59

Definition 4.34. Let F be a field, V be a finite dimensional vector space, and let t : V → V
be a linear transformation satisfying the property that the characteristic polynomial ct of t
factors completely into linear factors and has elementary divisors (x − r1)e1 , . . . , (x − rs)es .
The matrix Je1(r1)⊕ · · · ⊕ Jes(rs) is a Jordan canonical form (JCF) of t.

A Jordan canonical form for A ∈ Mn(F ) is a Jordan canonical form for the linear
transformation tA : F n → F n such that A = [t]EE in the standard basis E of F n.

The same matrix may fail to have a JCF when interpreted as a matrix with entries in a
smaller field while it has a JCF when interpreted as a matrix with entries in a larger field.

Example 4.35. We revisit the example of the rotation by 60◦ but extend scalars to C. That
is, start with a matrix A with cA(x) = x2 − x+ 1 = (x−w)(x−w) where w = 1+

√
3i

2
. Since

the minimal polynomial of A is mA = x2− x+ 1, we deduced in Example 4.28 that the only
invariant factor of A is x2 − x+ 1, and hence the RCF of A is C(x2 − x+ 1). On the other
hand, over C the polynomial mA factors, say as x2 − x + 1 = (x − w)(x − w), and thus by
the CRT

C[x]/(x2 − x+ 1) ∼= C[x]/(x− w)⊕ C[x]/(x− w).

Therefore,

A ∼ C(x− w)⊕ C(x− w) =

[
w 0
0 w

]
.

The latter matrix is the JCF of A, and in this case the JCF is a diagonal matrix. Notice
that if we consider A ∈ M2(R) then the characteristic polynomials fails to factor into linear
factors. Hence A ∈ M2(R) does not have a JCF.

Definition 4.36. Let F be a field, let V be a finite dimensional vector space, and let
t : V → V be a linear transformation. Then t is diagonalizable if there is a basis B for V
such that the matrix [t]BB is a diagonal matrix. Let A ∈ Mn(F ). Then A is diagonalizable
if A is similar to a diagonal matrix.

Theorem 4.37. Let F be a field, let V be a finite dimensional vector space, and consider a
linear transformation t : V → V . The following are equivalent:

(1) t is diagonalizable.

(2) t has a Jordan canonical form A and A is a diagonal matrix.

(3) t has a Jordan canonical form and all elementary divisors are of the form x − r with
r ∈ F .

(4) Each invariant factor of t is a product of linear polynomials with no repeated linear
factors.

(5) The minimal polynomial of t is a product of linear polynomials with no repeated linear
factors.
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Proof. Note that a diagonal matrix is an example of a matrix in JCF. By the uniqueness of
the JCF, (1) holds if and only if (2) holds. Moreover, the equivalence of (2) and (3) follows
by definition. A matrix has a JCF if and only if its invariant factors factor completely.
In this case, the elementary divisors are constructed by decomposing each invariant factor
into powers of distinct linear polynomials. This gives that (3) holds if and only if (4) holds.
Finally, since the minimal polynomial is one of the invariant factors and every other invariant
factor divides it, we get the equivalence between (4) and (5).



Chapter 5

Field Extensions

One motivation for studying field extensions is that we want to build fields in which certain
polynomials have roots. Here is a classical example going back to Gauss: while over R the
polynomial f = x2 + 1 ∈ R[x] has no roots, if we want a field in which f does have a root
we need to consider C = R(i) = {a+ bi | a, b ∈ R}.

Here’s another example that has already come up in this class: the polynomial g =
x2−x+1 ∈ Q[x]. We know that this has a root ω = 1+

√
3i

2
∈ C. But if we look for the smallest

field containing Q in which x2−x+1 has a root we obtain the field Q(ω) = {a+bω | a, b ∈ Q}.
So here’s our goal: starting from a smaller field F and an irreducible polynomial f ∈ F [x],

we want to build a larger field L. One way to do this is to take a root a of f and adjoin
it to F obtaining the field L = F (a), which is the collection of all expressions that one can
build using addition, subtraction, multiplication and division starting from the of elements
of F ∪ {a}. Another way to build a larger field L from a smaller field F and an irreducible
polynomial f ∈ F [x] is to let L = F [x]/(f(x)). We will show below that these two ways of
creating larger fields are one and the same.

Throughout, we will need some results about irreducible polynomials from 817.

Theorem 5.1. Let F be a field and f ∈ F [x]. An element α ∈ F is a root of f if and only
if f = (x− α)g for some g ∈ F [x].

Theorem 5.2 (Eisenstein’s Criterion). Suppose R is a domain and let n > 1, and consider
the monic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ R[x].

If there exists a prime ideal P of R such that a0, . . . , an−1 ∈ P and a0 /∈ P 2, then f is
irreducible in R[x].

Theorem 5.3 (Gauss’ Lemma). Let R be a UFD with field of fractions F . Regard R as a
subring of F and R[x] as a subring of F [x] via the induced map R[x] ↪→ F [x]. If f(x) ∈ R[x]
is irreducible in R[x], then f(x) remains irreducible as an element of F [x].

Theorem 5.4. Let R be a UFD with field of fractions F . Regard R as a subring of F and
R[x] as a subring of F [x] via the induced map R[x] ↪→ F [x]. If f(x) ∈ R[x] is irreducible
in F [x] and the gcd of the coefficients of f(x) is a unit, then f(x) remains irreducible as an
element of R[x].

61
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5.1 Definition and first properties

Definition 5.5. A field extension is an inclusion of one field F into a larger field L, making
F into a subfield of L. We sometimes write F ⊆ L and sometimes L/F to signify that L is
a field extension of F .

So a field extension is just another name for a subfield, but the emphasis is different. We
think of F as coming first and L later.

Remark 5.6. If F ⊆ L is a field extension, then L is in particular an F -vector space. This
is a special case of the more general fact that if φ : R→ S is a ring homomorphism, then S
is a left R-module via r · s := φ(r)s by restriction of scalars.

Definition 5.7. The degree of a field extension L/F is

[L : F ] := dimF (L).

A field extension is finite if its degree is finite.

Here are some examples.

Example 5.8. Since C = R(i) = {a+ bi | a, b ∈ R}, we have [C : R] = 2.

Example 5.9. We have [R : Q] =∞. In fact, to be more precise we should say that [R : Q]
is the cardinality of R, but in general we lump all infinite field extensions together when
talking about degree, and just write [L : F ] =∞.

Now we show that for any field F and any nonconstant polynomial f with coefficients in
F , there exists a field extension of F in which the polynomial f has at least one root.

Theorem 5.10. Let F be a field, p ∈ F [x] with deg(p) > 1, and L = F [x]/(p). If p is
irreducible, then

(1) L/F is a field extension via the map

F // L

f � // f + (p).

(2) The degree of the extension is [L : F ] = deg(p).

(3) The element x := x+ (p) ∈ L is a root of p in L.

Proof. First, note that (p) is a nonzero principal ideal in F [x]. Recall that over a PID, ideals
generated by an irreducible element are maximal. Since p is irreducible, we conclude that
(p) is maximal, and thus F [x]/(p) is a field.

We regard L as a field extension of F via the canonical map F → L sending f ∈ F to
the coset of the constant polynomial f . This map is not technically an inclusion map, but
since it is an injective map we can pretend that it is an inclusion by identifying F with its
image under this map. Note that injectivity of this map follows from the fact that (p) is a
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proper ideal of F [x], and thus every nonzero constant a ∈ F is taken to a nonzero element
in L = F [x]/(p).

You showed in Problem Set 6 that if deg(p) = n, then the classes of 1, x, . . . , xn−1 modulo
(p) form basis for L regarded as an F -vector space. Therefore, [L : F ] = deg(p). Moreover,
we can extend the inclusion F ⊆ L to an inclusion F [x] ⊆ L[x], and thus we can regard p as
belonging to L[x]. Setting x = x+ (p) ∈ L, the element x is a root of p(x) ∈ L[x] since

p(x̄) = p(x) + (p(x)) = 0L.

Example 5.11. The polynomial f(x) = x2 + 1 is irreducible over R. Theorem 5.10 says
that f has a root in the extension R[x]/(x2 + 1), and indeed, R[x]/(x2 + 1) ∼= C, where f
factors completely into linear factors: f(x) = (x− i)(x+ i). In fact, R[x]/(x2 + 1) ∼= R[i].

Now that we know that there exists a field extension of F in which p(x) has a root, we
may wonder about the smallest such extension.

Definition 5.12. Let F ⊆ L be a field extension and α ∈ L. We write F (α) for the smallest
subfield of L that contains all of F and α.

In contrast with the previous definition, we will also consider the smallest ring containing
F and α.

Remark 5.13. Since the intersection of any two subfields of L is again a subfield, F (a)
exists and is given by

F (α) =
⋂

E field
F∪{α}⊆E⊆L

E.

Definition 5.14. Let F ⊆ L be a field extension and α ∈ L. We write

F [α] := {f(α) | f ∈ F [x]}.

Remark 5.15. Note that any subring of L containing F and α must contain all products of
α and elements of F , and all linear combinations of such things. Thus F [α] is the smallest
subring of L containing F and α. Note that our notation does not include L, since in fact
F [α] does not actually depend on the choice of L as long as L 3 α.

Here is another way to describe this field F (α). We leave the proof for Problem Set 7.

Lemma 5.16. If F ⊆ L is a field extension and α ∈ L, the field F (α) is the fraction field
of F [α] = {f(α) | f ∈ F [x]}: more precisely,

F (α) =

{
g(α)

f(α)
| g(x), f(x) ∈ F [x], f(α) 6= 0

}
.

Soon we will give an even better description for F (α) in the case where α is the root of
a polynomial p ∈ F [x].

Definition 5.17. A field extension L/F is called simple if L = F (α) for some element α
of L. We call such an α a primitive element for the extension.
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If L/F is a simple field extension, note that there might be many different elements α ∈ L
such that L = F (α). Thus primitive elements are not necessarily unique.

Example 5.18. The extension R ⊆ C is simple, and i is a primitive element: C = R(i). For
another choice of primitive element, take −i.

We can generalize this to adjoining a subset instead of a single element.

Definition 5.19. If F ⊆ L is a field extension and A is any subset of L, the subfield
generated by A over F , denoted F (A), is the smallest subfield of L that contains all of
F . If A = {a1, . . . , an} is a finite set, we write F (a1, . . . , an) for F (A).

Remark 5.20. Again, since the intersection of any two subfields of L is again a subfield,
F (A) exists and is given by

F (A) =
⋂

E⊇F,A

E.

Example 5.21. Regard Q as a subfield of C and let F = Q(
√

2,
√

3). Setting E = Q(
√

2),
we can also think of F as F = E(

√
3). We will see shortly that E = {a + b

√
2 | a, b ∈ Q}.

In other words, E is the set of Q-linear combinations of 1 and
√

2, so [E : Q] = 2.

Since
√

3
2 ∈ Q ⊆ E, every element in F can be rewritten as an E-linear combination of

1 and
√

3:

F = {α + β
√

3 | α, β ∈ E} = {(a+ b
√

2) + (c+ d
√

2)
√

3 | a, b, c, d ∈ Q}.

and On the other hand, E 6= F , so we conclude that [F : E] = 2.
We claim that F is in fact a simple extension of Q; more precisely, that Q(

√
2+
√

3) = F .
Set β :=

√
2 +
√

3. Note that β2 = 5 + 2
√

6 and

β3 = 5
√

2 + 5
√

3 + 4
√

3 + 6
√

2 = 11
√

2 + 9
√

3.

So 1
2
(β3 − 9β) =

√
2, and hence

√
2 ∈ Q(β). Likewise,

√
3 = −1

2
(β3 − 11β) ∈ Q(β). So

Q(β) = Q(
√

2,
√

3). This shows that Q(
√

2,
√

3)/Q is simple and
√

2 +
√

3 is a primitive
element of this field extension.

This example is an illustration of the Primitive Element Theorem, which we might or
might not have time to prove this semester: every finite extension of Q is simple.

Next we will show that if α is a root of a given polynomial p(x) ∈ F [x], then F (α) is
determined by p(x) up to isomorphism.

Theorem 5.22. Let L/F be a field extension and let p(x) ∈ F [x] be an irreducible polyno-
mial. If p has a root α ∈ L, then there is an isomorphism φ with φ|F = idF and

F [x]
(p(x))

// F (α)

x+ (p(x)) � // α

f(x) + (p(x)) � // f(α).
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Proof. Let φ̃ : F [x] → F (α) be the evaluation homomorphism that sends x 7→ α; more
precisely, φ̃(f(x) := f(α), and the restriction of this map to F is the identity on F . Since
p(α) = 0, we have (p(x)) ⊆ ker(φ̃), and since (p(x)) is a maximal ideal and ker(φ̃) 6= F [x],
we conclude that (p(x)) = ker(φ̃).

Now by Theorem 1.43 we get an injective ring homomorphism

φ :
F [x]

(p(x))
→ F (α)

such that φ(f(x) + (p(x))) = φ̃(f(x)) = f(α).
It remains to be shown that φ is surjective. We will actually show more, namely that

im(φ) = F [α] = F (α). Note first that by the definition of φ above, the image of φ̃ on F [x]
is F [α]. However, since φ is injective the image of φ̃ is a field contained in F (α), and since
the smallest field containing F [α] is F (α), we must in fact have im(φ̃) = F (α).

Let’s formalize the extra information we have obtained in the course of proving the
theorem. First we used the following useful fact:

Remark 5.23. If φ : F → L is an injective ring homomorphism and F and L are fields then
the image of φ is a subfield of L.

Corollary 5.24. Let L/F be a field extension and let p(x) ∈ F [x] be irreducible having a
root α ∈ L. Then F [α] = F (α).

Corollary 5.25 (Uniqueness of F (α)). Let p(x) ∈ F [x] be irreducible and let α and β be
two roots of p(x) in some extensions L and K of F . Then F (α) ∼= F (β), so that the two
roots are algebraically indistinguishable.

Example 5.26. Taking p(x) = x2 + 1 ∈ R[x] with roots α = i and β = −i in C, we actually
obtain equal fields R(i) = C = R(−i). But Corollary 5.25 gives that there is an interesting

isomorphism φ : C
∼=−→ C that sends i to −i. In general, we have φ(a + bi) = a − bi for

a, b ∈ R.

Example 5.27. Another example illustrating Corollary 5.25 is that Q(
√

2) and Q(−
√

2)
are isomorphic fields. In fact, the are equal: Q(

√
2) = Q(−

√
2). But again Corollary 5.25

gives that there is an interesting isomorphism φ : Q(
√

2)
∼=−→ Q(−

√
2) = Q(

√
2) that sends√

2 to −
√

2. In general, we have φ(a+ b
√

2) = a−
√

2 for a, b ∈ Q.

The two examples above preview the central idea of Galois theory.

Example 5.28. In Example 5.21, we showed that Q(
√

2,
√

3) = Q(
√

2 +
√

3). We want to
find a polynomial p ∈ Q[x] such that Q(

√
2 +
√

3) ∼= Q[x]/(p(x)). Set β =
√

2 +
√

3.
Note that we have β2 = 5 + 2

√
6 and β4 = 49 + 20

√
6 and hence β4− 10β2 + 1 = 0. So β

is a root of x4 − 10x2 + 1. It can be shown that this polynomial is irreducible. How? First,
Gauss’ Lemma says that it is sufficient to show that it is irreducible in Z[x].

Suppose that f does factor. Then that factorization will be preserved when we go modulo
p for any prime p. We will use this to show that f has no linear factors. When we go modulo
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3, we claim that f has no roots: indeed, Fermat’s Little Theorem says that a3 = a for all
a ∈ Z/(3), so our polynomial becomes

f(x) = x4 − x2 + 1 = x2 − x2 + 1 = 1.

Since there are no roots modulo 3, we conclude that f has no linear factors over Z either.
Thus if f factors over Z, it must factor as a product of degree 2 polynomials, which we can
assume to be minimal. Suppose

f(x) = (x2 + ax+ b)(x2 + cx+ d).

These coefficients must satisfy the following system of equations:
a+ c = 0
b+ d+ ac = −10
ad+ bc = 0
bd = 1.

The first equation tells us that a = −c, so 0 = ad+ bc = a(d− b), and since Z is a domain,
we conclude that d = b. Moreover, b2 = 1, so b ∈ {−1, 1}. Finally, we have

b+ d+ ac = −10 =⇒ a2 = 10± 2.

But neither 8 nor 12 are squares in Z, so this is impossible.

The previous example partially illustrates a nice trick: to show that a polynomial over
Q is irreducible, we need only to show it is irreducible over Z, and to do that, it is sufficient
to show that the polynomial is irreducible modulo a prime. In what follows, we will be very
interested in irreducible polynomials, and we might want to use this type of tricks. Before
we move on, let’s see another example of this technique.

Example 5.29. Consider the polynomial f(x) = x4 − 10x2 − 19 ∈ Q[x]. We claim it is
irreducible, and thanks to Gauss’ Lemma it is sufficient to show that f is irreducible over
Z. If f is reducible over Z, it must also be reducible over Z/(p) for all primes, since going
modulo p will preserve the fact that f factors. Modulo 3, our polynomial becomes

f(x) = x4 + 2x2 + 2.

Repeating the trick from Example 5.28, since x4 and x2 take the same values over Z/(3), we
see that for any a ∈ Z/(3) we have

f(a) = a4 + 2a2 + 2 = 3a2 + 2 = 2 6= 0.

Thus f has no roots modulo 3, and thus it has no linear factors. Thus if it is reducible, it
must be a product of two degree 2 factors, say

f(x) = (x2 + ax+ b)(x2 + cx+ d).

These coefficients must satisfy the following system of equations:
a+ c = 0
b+ d+ ac = 2
ad+ bc = 0
bd = 2.

Since a = −c, we get a(d− b) = ad+ bc = 0 =⇒ b = d. Thus the last equation tells us that
b2 = 2, but all squares modulo 3 are 0 or 1, so this is impossible.



67

5.2 Algebraic and transcendental extensions

Definition 5.30. For a field extension F ⊆ L and α ∈ L, we say α is algebraic over F if
f(x) = 0 for some nonconstant polynomial f(x). Otherwise, α is transcendental over F .

Example 5.31. The element i ∈ C is algebraic over R, since i2 + 1 = 0. In fact, every
element of C is algebraic over R, and we will soon see why. In contrast, the numbers π and
e of R are transcendental over Q, though these are both deep facts.

Theorem 5.32. Suppose L/F is a field extension and α ∈ L.

(1) The set I := {f(x) ∈ F [x] | f(α) = 0} is an ideal of F [x].

(2) I = 0 if and only if α is transcendental over F . Equivalently, I 6= 0 if and only if α is
algebraic over F .

(3) If α is algebraic over F , meaning I 6= 0, then the unique monic generator mα,F (x) of
the ideal I is irreducible.

(4) If α is algebraic over F , then there is an isomorphism of fields

F (α) ∼= F [x]/(mα,F (x))

sending F identically to F and sending x to α.

(5) The element α is algebraic over F if and only if [F (α) : F ] <∞. In this case,

[F (α) : F ] = deg(mα,F (x)).

(6) The element α is transcendental over F if and only if [F (α) : F ] = ∞. In this case,
there is an isomorphism of fields between F (α) and the field of fractions of F [x]:

F (α) ∼= F (x) :=

{
g(x)

f(x)
| g 6= 0

}
sending F identically to F and sending x to α.

Proof. The set I is the kernel of the evaluation homomorphism that maps x 7→ α. This map
is a ring homomorphism, and thus I must be an ideal of F [x]. The content of (2) follows by
definition of algebraic and transcendental elements.

To show (3), assume I 6= 0 and let p be its unique monic generator. Suppose p = fg.
Since p(α) = 0 in F and F is a field (and thus a domain), either f(α) = 0 or g(α) = 0.
Therefore, either f(x) ∈ I or g(x) ∈ I. This proves (p) is a prime ideal and hence p is a
prime element. Since F [x] is a PID, it follows that p is irreducible.

The statement of (4) is already Theorem 5.22.
Let’s show (5). If α is algebraic over F , then (4) shows that

[F (α) : F ] = deg(mα,F (x)) <∞.
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For the converse, if [F (α) : F ] <∞, then the infinite list 1, α, α2, . . . of elements of F (α) must
be F -linearly dependent. Thus a0 + a1α+ · · · anαn = 0 for some n and some a0, . . . , an ∈ F
not all zero. This shows α is the root of a nonzero polynomial.

To show (6), the map φ defined as in (4) is injective. Since the target is a field L and
F [x] is an integral domain, by the UMP of the fraction field φ can be extended to the field
of fractions of F [x], so there is a homomorphism of fields φ̃ : F (x) → L. The image of this
field map is {

g(α)

f(α)
| g, f ∈ F[x], f(x) 6= 0

}
,

which is precisely F (α) by Lemma 5.16. The map is injective since it is a field homomorphism
that is not identically zero.

Definition 5.33. Let F ⊆ L be a field extension and α ∈ L, and consider the ideal

I = {f(x) ∈ F [x] | f(α) = 0}

from the previous theorem. The unique monic generator mα,F (x) for I is called the minimal
polynomial of α over F .

Remark 5.34. Note that the minimal polynomial of α over F , if it exists, must divide
every polynomial in F [x] that has α as a root. Also, it can be characterized as the monic
polynomial in F [x] of least degree having α as a root.

Example 5.35. Note that the minimal polynomial of i over R is mi,R(x) = x2 + 1.

Theorem 5.36 (The Degree Formula). Suppose F ⊆ L ⊆ K are field extensions. Then

[K : F ] = [K : L][L : F ].

In particular, the composition of two finite extensions of fields is again a finite extension.

Proof. Let A ⊆ K be a basis for K as an L-vector space and let B ⊆ L be a basis for L as
an F -vector space. Consider the subset of K given by

AB := {ab | a ∈ A, b ∈ B}.

First, we claim that AB is a basis of K as an F -vector space. For a ∈ K, we have a =
∑

i liai
for some a1, . . . , am ∈ A and l1, . . . , lm ∈ L. For each i, li is an F -linear combination of a
finite set of elements of B. Combining these gives that a is in the F -span of AB. To prove
linear independence, it suffices to prove that if a1, . . . , am and b1, . . . , bn be distinct elements
of A and B respectively, then the set {aibj} is linearly independent. Suppose

∑
i,j fi,jaibj = 0

for some fi,j ∈ F . Since the bj are L-linearly independent and

∑
i,j

fi,jaibj =
∑
j

(∑
i

fi,jai

)
bj

and fi,jai ∈ L, we get that, for each j,
∑

i fi,jai = 0. Using now that the ai are F -
linearly independent, we have that for all j and all i, fi,j = 0. This proves that the set
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{aibj | i = 1, . . . ,m, j = 1, . . . , n} is linearly independent over F , and hence AB is linearly
independent over F .

In particular, this shows that the elements of the form ab with a ∈ A and b ∈ B are all
distinct, so |AB| = |A| · |B|. Since AB is a basis for L over K, we conclude that

[K : F ] = [K : L][L : F ].

Example 5.37. In Example 5.21 we showed that Q(
√

2,
√

3) = Q(β) with β =
√

2 +
√

3.
We claim that mβ,Q(x) = x4 − x2 + 1. By the Degree Formula, we have

[Q(β) : Q] = [Q(β) : E][E : Q] = 2 · 2 = 4.

Thus mβ,Q(x) has degree 4. We already know that β is a root of x4 − 10x2 + 1, hence this
polynomial is divisible by the minimal polynomial of β. Since they are both monic and have
degree 4, it must be that mβ,Q(x) = x4 − 10x2 + 1. Arguing this way, there is no need to
check this polynomial is irreducible; it must be by Theorem 5.32 (3).

Definition 5.38. A field extension F ⊆ L is algebraic if every element a ∈ L is algebraic
over F .

Definition 5.39. We say an extension of fields F ⊆ L is finite if it has finite dimension.

Note: this is not a statement about the number of elements in the fields F and L.

Example 5.40. The extension R ⊆ C is finite, since [C : R] = 2.

Lemma 5.41. Every finite extension of fields is algebraic.

First proof. Let K ⊆ L be a finite field extension, and let a ∈ L. Since the extension is
finite, any infinite set of elements in L must be linearly dependent over F . In particular, the
set

{an | n > 0}
is linearly dependent. Does there exists n such that

{1, a, a2, . . . , an}

is linearly dependent. Writing an equation of linear dependence, say

bna
n + · · ·+ b1a+ b0 = 0

for some bi ∈ F , we might as well assume that bn 6= 0 (otherwise, replace n by the largest
value of i such that bi 6= 0), and thus after multiplying by b−1

n we conclude that we can write
an in terms of the lower powers of a. In particular, a is algebraic over F .

Proof using the Degree formula. Let K ⊆ L be a finite field extension, and let a ∈ L. By
the Degree Formula, we have

[L : K] = [L : K(a)][K(a) : K],

and thus K ⊆ K(a) must be finite. By Theorem 5.32 (5), a must be algebraic over K.
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The converse if false, as shown by the following example:

Example 5.42. Let Q denote the set of complex numbers that are algebraic over Q, which
is by definition an algebraic extension of Q. However, we claim that Q is not finite over Q.

First, let p any prime integer, n > 0 be any integer, and consider the polynomial xn − p
over Q[x]. By applying Eisenstein’s Criterion with the prime ideal (p), we conclude that
xn − p is irreducible over Z. By Gauss’ Lemma, xn − p is also irreducible over Q.

Now Q contains the subextension Q(a), where a is a root of xn − p. Since xn − p is
irreducible over Q, it is the minimal polynomial of a over Q, and thus by Theorem 5.32 (5) we
conclude that the degree of this extension is [Q(a) : Q] = n. Thus Q contains subextensions
of Q of arbitrarily large degree. By the Degree Formula applied to Q ⊆ Q(a) ⊆ Q, if Q had
finite degree over Q then that degree would be divisible by n for all n. We conclude that
[Q : Q] =∞.

Theorem 5.43. Given field extensions F ⊆ L ⊆ E, L/F and E/L are both algebraic if and
only if E/F is algebraic.

Proof. (⇐) Suppose F ⊆ E is algebraic. Every element in L is in E as well, and thus it is
algebraic over F ; thus F ⊆ L is algebraic. Moreover, any element α ∈ E is algebraic over F
by assumption, so it satisfies a polynomial with coefficients in F . But any polynomial with
coefficients in F is also a polynomial with coefficients in L, and thus α is algebraic over L.

(⇒) Fix α ∈ E. We need to prove α is a root of some monic polynomial with coefficients
in F . This is surprisingly hard to prove directly, and in fact the proof we will give is rather
nonconstructive.

Since α is algebraic over L, it is a root of some polynomial anx
n+· · ·+a1x+a0 ∈ L[x]. Note

that this polynomial belongs to F (a0, . . . , an)[x] too, and so α is algebraic over F (a0, . . . , an).
Consider the chain of field extensions

F ⊆ F (a0) ⊆ F (a0, a1) ⊆ · · · ⊆ F (a0, a1, . . . , an) ⊆ F (a0, . . . , an, α).

Each ai ∈ L is algebraic over F for all i, and α is algebraic over F (a0, a1, . . . , an), so each
step in our tower of extensions consists of adding an algebraic element to the previous field.
By Theorem 5.32, each step in this chain has finite dimension. By the Degree Formula,

[F (a0, . . . , an, α) : F ] = [F (a0, . . . , an, α) : F (a0, . . . , an)] · · · [F (a0) : F ]

is finite. Moreover, if we reorder the tower above to start from F ⊆ F (α), by the Degree
Formula we have

[F (α) : F ][F (a0, . . . , an, α) : F (α)] = [F (a0, . . . , an, α) : F ] <∞.

Therefore, [F (α) : F ] is finite. By Theorem 5.32 (5) again, α is algebraic over F .

In the proof of Theorem 5.43, we also showed the following corollary of the Degree
Formula:

Corollary 5.44. If α1, . . . , αn are algebraic over F , then F ⊆ F (α1, . . . , αn) is a finite
algebraic extension.
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5.3 Algebraically closed fields and algebraic closure

Definition 5.45. For any field extension F ⊆ L, we define the algebraic closure of F in
L to be the set

FL = {α ∈ L | α is algebraic over F}.

Lemma 5.46. For any field extension F ⊆ L, the set FL is a a subfield of L that contains F .
Moreover, it is the largest subfield of L that is algebraic over F .

Proof. First, note that every element in a ∈ F satisfies the monic polynomial x − a, and
thus F ⊆ FL, which is in particular nonempty. The claims that F ⊆ FL and that FL is the
largest subfield of L that is algebraic over F follow from the definition of FL.

It remains to show that FL is a field: we need to show that FL is closed under addition,
multiplication, and taking additive and multiplicative inverses. Let α, β ∈ FL. Since α and β
are algebraic over F and consequently β is algebraic over F (α), we have that [F (α) : F ] <∞
and [F (α, β) : F (α)] < ∞. Thus by the Degree Formula the extension F (α, β)/F is finite,
and hence algebraic by Lemma 5.41. It follows that every element of F (α, β) is algebraic
over F . In particular α± β, αβ, and α−1 (if α 6= 0) are elements of F (α, β) ⊆ FL.

The notion of algebraic closure is closely related (pun intended) to being algebraically
closed.

Definition 5.47. A field L is algebraically closed if every polynomial f(x) ∈ L[x] that is
not a constant has a root in L.

This is equivalent to the condition that every nonconstant polynomial splits completely
into linear factors.

Example 5.48. The Fundamental Theorem of Algebra says that any polynomial in C[x]
completely factors as a product of linear terms, thus C is an algebraically closed field.

Lemma 5.49. If F ⊆ L is a field extension with L algebraically closed, then FL is also
algebraically closed.

Proof. Let f ∈ FL[x] be a nonconstant polynomial. Since FL ⊆ L, f ∈ L[x], and thus f has
a root in L, say α ∈ L. Since α satisfies a polynomial in FL[x], it must then be algebraic over
FL. Thus FL ⊆ FL(α) is an algebraic extension, and F ⊆ FL ⊆ FL(α) is a composition
of two algebraic extensions. By Theorem 5.43, F ⊆ FL(α) is algebraic. By definition, this
says that α is algebraic over F , and thus α ∈ FL. Therefore, f has a root over FL, and FL

is algebraically closed.

Remark 5.50. In contrast, if L/F is a field extension with L not algebraically closed, then
FL need not be algebraically closed. For example, think of the extremal case when F = L,
where we must have FL = F , which is not algebraically closed by assumption.

Example 5.51. Lemma 5.49 shows that the field Q defined in Example 5.42 is algebraically
closed.

Definition 5.52. Given a field F , a field L is called an algebraic closure of F if F ⊆ L is
an algebraic field extension and L is algebraically closed.
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Remark 5.53. Let L be an algebraic closure of F . Since L is algebraically closed by
definition, by Lemma 5.49 we conclude that FL is algebraically closed. On the other hand,
since F ⊆ L is algebraic by definition, we conclude that FL = L. This explains why we say
L is an algebraic closure of F .

Example 5.54.

1) Since [C : R] = 2, the extension R ⊆ C is finite, and thus by Lemma 5.41 the extension
R ⊆ C must also be algebraic. Moreover, C is algebraically closed by the Fundamental
Theorem of Algebra. Thus C is an algebraic closure of R.

2) By Lemma 5.49, an algebraic closure inside an algebraically closed field is algebraically
closed. Thus QC = {z ∈ C | z is algebraic over Q} is an algebraic closure of Q.

Next we will show that every field has a unique algebraic closure, so we can talk about
the algebraic closure of a field. To do that, we first need a lemma.

Lemma 5.55. If L/F is an algebraic field extension and every nonconstant polynomial
f(x) ∈ F [x] splits completely into linear factors in L[x], then L is algebraically closed and
hence is an algebraic closure of F .

Proof. Suppose g(x) ∈ L[x] is not constant. We need to prove g has a root in L. We may
form a (possibly trivial) algebraic extension L ⊆ E such that g(x) has a root α in E. Note
that E/F is algebraic and hence α is algebraic over F . So α is a root of some f(x) ∈ F [x].
But then f(x) =

∏
i(x − βi) ∈ L[x] and it follows that α must one of the βi, and hence

belongs to L.

We are going to use one more technical result, which will also be helpful to us later.

Theorem 5.56. Let F be a field, f be an irreducible nonconstant polynomial, and consider
a field isomorphism θ : F → F ′. Consider the isomorphism θ̃ : F [x] → F ′[x] induced by θ,
and let f ′ = θ̃(f) ∈ F ′[x] be the polynomial corresponding to f . Let α be any root of f in
some field extension L of F , and α′ be any root of f ′ in some field extension L′ of F ′. Then
there exists a field isomorphism

θ̂ : F (α)→ F ′(α′)

that extends the map θ and sends α to α′.

Proof. The key point is that
F [x]/(f) ∼= F (α)

via a map that is the identity on F and sends x to α, as we saw in Corollary 5.25. Thus we
have

F (α) ∼= F [x]/(f) ∼= F ′[x]/(f ′) ∼= F ′(α′)

with the middle isomorphism induced by θ. Tracking through these maps shows that it
extends θ and sends α to α′:

α 7→ x+ (f) 7→ x+ (f ′) 7→ α′.
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We are now ready to show that every field has an algebraic closure, and that algebraic
closures are unique up to isomorphism.

Theorem 5.57 (Existence and uniqueness of algebraic closures). For any field F , there
exists an algebraic closure of F . If L and L′ are two algebraic closures of the same field F ,

then there exists a field isomorphism φ : L
∼=−→ L′ such that φ|F = idF .

Proof of existence of algebraic closures. First, we reduce the proof of existence to the follow-
ing:

Claim: There is an algebraic field extension F ⊆ L such that every nonconstant polyno-
mial in F [x] has at least one root in L.

Let us assume the claim holds. By using this fact repeatedly, we may form a tower of
field extensions

F = F0 ⊆ F1 ⊆ F2 ⊆ · · ·

such that, for all i, the extension Fi ⊆ Fi+1 is algebraic and every nonconstant polynomial in
Fi[x] has at least one root in Fi+1. At each step, we apply the claim to Fi to construct Fi+1.

Let E := ∪iFi. One can show E is a field and F ⊆ E is algebraic (exercise). Given
f ∈ F [x], by assumption f has a root α in F1, and hence f factors as f(x) = (x − α)g(x)
for g(x) ∈ F1[x]. But then g has a root in F2 and hence factors in F2[x]. Repeating this
we see f splits completely into linear factors in Fn[x], where n = deg(f), and thus f splits
completely into linear factors in E[x]. By Lemma 5.55, E is an algebraic closure of F .

Proof of Claim: Let S be the collection of all nonconstant polynomials with coefficients
in F , and for each f ∈ S, pick an indeterminate yf . Now we form the rather large polynomial
ring R = F [yf | f ∈ S]. Let I be the ideal generated by f(yf ). We claim that I is a proper
ideal. If not, then 1 ∈ I, so we would have an equation of the form

1 = g1f1(yf1) + · · ·+ gmfm(yfm)

in R. There exists finite extension E of F in which each fi has a root αi: by Theorem 5.10,
fi has a root αi in some extension of F , and F (α1, . . . , αn) is a finite extension of F by
Corollary 5.44. Evaluating the above equation by setting yfi = αi, we get 1 = 0, which is
impossible. This shows that I must be a proper ideal.

Since I is a proper ideal, it is contained in some maximal ideal m. The quotient ring
K := R/m is a field, and the composition F ↪→ R � K is a ring map F → K between two
fields, and thus must be injective. By a slight abuse of notation, we will think of this map
as an actual inclusion. For any f ∈ S, in K we have f(yf ) = 0, so the image yf ∈ K of
yf ∈ R is a root of f . We have constructed a field extension F ⊆ K such that every f ∈ S
has a least one root in K.

We are not quite done since it is not clear that K is algebraic over F . For each f ∈ S,
pick a root βf ∈ K of f . Let L = F (βf | f ∈ S) ⊆ K. Then L is algebraic over F and every
member of S has at least one root in L.

Proof of uniqueness of algebraic closures. Suppose L and L′ are two algebraic closures of F .
Let S be the set of pairs (E, i) where E is a subfield of L that contains F and i : E ↪→ L′ is
a ring homomorphism with i|F = idF . Make S into a poset by declaring that (E, i) ≤ (E ′, i′)
whenever E ⊆ E ′ and i′|E = i.
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One can show (exercise!) that S satisfies the hypotheses of Zorn’s Lemma, and hence it
has a maximal element (E, i). We claim E must equal L. If not, we can find α ∈ L \ E.
Let p(x) = mα,E and set E ′ := i(E). So i maps E isomorphically onto E ′. Let p′(x) be
the polynomial in E ′[x] corresponding to p(x) via i, and pick any root α′ of p′(x) in L′. By
Theorem 5.56, there is an isomorphism E(α) → E ′(α′) extending the isomorphism i. Since
E(α) ⊆ L, and by assumption α /∈ E, this contradicts the maximality of (E, i).

Thus we have a field extension F ⊆ i(L) ⊆ L′ with i(L) ∼= L via an isomorphism that
fixes F . It follows that i(L) is also an algebraic closure of F . Since L′/F is algebraic, we
must have i(L) = L′. Thus i is surjective, and thus an isomorphism.

We will then be able to talk about not just an algebraic closure of F but the algebraic
closure of F , so we can simplify our notation a bit.

Definition 5.58. Given a field F , we will write F for its algebraic closure inside an alge-
braically closed field extension of F .

By Theorem 5.57, F is defined only up to isomorphism.

Example 5.59. The field C is the algebraic closure of R, so we write R = C.

Example 5.60. In Example 5.42, we defined Q as the set of complex numbers that are
algebraic over Q. In our notation from this chapter, this is what we denote by QC, the
algebraic closure of Q in C. Since C is an algebraically closed field, this is the algebraic
closure of Q, which explains our notation Q from Example 5.42. This field Q is sometimes
called the field of algebraic numbers.

Remark 5.61. Earlier we used the notation FL to denote the algebraic closure of F in L. If
L is an algebraically closed field, then by Lemma 5.49 we know that FL is also algebraically
closed, and since it is by definition algebraic over F , then FL is an algebraic closure of F ,
so in fact this is the algebraic closure of F (defined only up to isomorphism).

In contrast, if L is not an algebraically closed field, we saw in Remark 5.50 that FL is
not necessarily algebraically closed. In particular, FL is not necessarily an algebraic closure
of F , and thus FL and F might denote completely different things.

From now on, many constructions will happen inside an algebraic closure of a given field,
and we will use the notation F .

Remark 5.62. Every algebraically closed field is infinite. Indeed, if F is a finite field, say
F = {a1, . . . , an}, then the polynomial

(x− a1) · · · (x− an) + 1 ∈ F [x]

has no roots in F . In particular, the algebraic closure of any finite field is infinite.
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5.4 Splitting fields

Definition 5.63. Let F be a field and let f ∈ F [x] be a nonconstant polynomial. A
splitting field of f over F is a field extension F ⊆ L such that f splits completely into
linear factors in L[x], and f does not split completely into linear factors over any proper
subfield of L that contains F .

A splitting field of f is given by adjoining all the roots of f .

Lemma 5.64. If F ⊆ E is a field extension such that f ∈ F [x] factors in E[x] as

f = c
n∏
i=1

(x− αi)

for some c, α1, . . . , αn ∈ E, then F (α1, . . . , αn) is a splitting field for f over F .

Proof. Note that c is just the coefficient of f in degree n, and thus c ∈ F . Thus f(x) also
factors as

f(x) = c
n∏
i=1

(x− αi)

in F (α1, . . . , αn)[x]. Hence, given some splitting field L of f over F , by the minimality
condition in the definition, we must have L ⊆ F (α1, . . . , αn). However, the splitting field
L must contain all roots of f in order for f to split completely in L[x], so we also have
F (α1, . . . , αn) ⊆ L.

Remark 5.65. Note that there may be repetitions in the list α1, . . . , αn, but that does not
affect the validity of anything here.

Theorem 5.66 (Existence of splitting fields). Let F be a field and f ∈ F [x] a nonconstant
polynomial. There exists a splitting field L for f over F .

Proof. Let F be an algebraic closure of F , which exists by Theorem 5.57. Let α1, . . . , αm be
the roots of f in F . By construction, F (α1, . . . , αm) is a splitting field of f .

Example 5.67.

a) As a silly example, if f already splits into linear factors over F [x], then F itself is the
splitting field of f over F .

b) The splitting field of f = x2 +1 over R is C: the roots of f are i and −i, and R(i,−i) = C.

c) Let q be any irreducible quadratic polynomial in R[x]. You will show in problem set 10
that the splitting field of q is C.

Remark 5.68. In general, to form a field extension given by adjoining all the roots of
two polynomials g1 and g2 amounts to forming a splitting field of their product g1g2. This
naturally generalizes to any number of polynomials g1, . . . , gn: to adjoin all the roots of
g1, . . . , gn is the same as forming the splitting field of g1 · · · gn.
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It seems intuitive that by adjoining all the roots of f ∈ F [x] to F , we will get a unique
field (up to isomorphism). That is, it seems intuitive that splitting fields are unique up to
isomorphism. This is indeed true, but the proof is a bit technical. We will actually show
something a bit stronger.

Theorem 5.69. Let F be a field, f be a nonconstant polynomial, and a field isomorphism
θ : F → F ′. Consider the isomorphism θ̃ : F [x] → F ′[x] induced by θ, and let f ′ = θ̃(f) ∈
F ′[x] be the polynomial corresponding to f . Suppose L is a splitting field of f over F and L′

is a splitting field of f ′ over F ′. Then there is a field isomorphism θ̂ : L→ L′ extending θ.

Proof. We proceed by induction on the degree n of f . If f is linear, then so is f ′, and in
this case L = F and L′ = F ′. We have shown this already in Corollary 5.25.

Let p be any irreducible factor of f , and let α ∈ L be any one of the roots of p. Let
p′ = θ̃(p) be the irreducible polynomial in F ′[x] that corresponds to p, and let α′ be any one
of the roots of p′. By Theorem 5.56, there is an isomorphism

φ : F (α)→ F ′(α′)

extending θ and sending α to α′.
In F (α), f factors as f = (x − α)g, and in F ′(α′). Moreover, since φ extends θ and

φ(α) = α′, it follows that φ(x − α) = x − α′. Therefore, the corresponding polynomial
f ′ = φ(f) factors as f ′ = (x− α′)g′, and we have

(x− α′)φ(g) = φ(x− α)φ(g) = φ((x− α)g) = φ(f) = f ′ = (x− α′)g′.

Since F ′ is a domain, we conclude that φ(g) = g′.
Since L is a splitting field of f over F , f factors completely over L and thus so must g.

Moreover, any other field E ⊇ F (α) containing all the roots of g would also contain α, and
thus all the roots of f , and thus E = L. Thus L is a splitting field for g over F (α), and L′

is a splitting field of g′ over F (α′): Since deg(g) < deg(f) = n, it follows by induction that

there is a field isomorphism θ̂ : L→ L′ that extends φ and hence extends θ.

Corollary 5.70 (Uniqueness of the splitting field of f(x) over the base field F ). Any two
splitting fields L and L′ of f(x) ∈ F [x] over F are isomorphic via an isomorphism φ : L→ L′

that fixes F , i.e. φ|F = idF .

Proof. Apply part (2) of Theorem 5.69 to θ = idF .

We will now be referring to the splitting field of F , rather than a splitting field, thanks
to the uniqueness result above.

Corollary 5.71. If L is the splitting field over F of an irreducible polynomial f(x) ∈ F[x]
and if α, β ∈ L are any two roots of f , then there is a field automorphism s : L → L such
that s|F = idF and s(α) = β.

Proof. We basically already proved this, but since it is of large importance, let’s do so again:
Since α, β are roots of the same irreducible polynomial, by Corollary 5.25 there is an

isomorphism τ : F (α)→ F (β) such that τ |F = idF and τ(α) = β. We have two field maps,
the inclusion F (α) ↪→ L and the composition of F (α)

τ−→ F (β) ↪→ L, and realize L as the
splitting field of f over F (α) in two different ways. Since splitting fields are unique, by
Corollary 5.70, an isomorphism such as s exists.
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Example 5.72. Let L be the splitting field of x3−2 over Q, so L = Q( 3
√

2, e2πi/3 3
√

2, e4πi/3 3
√

2).
Corollary 5.71 says that there is a field automorphism s of L such that

s(e2πi/3 3
√

2) = e4πi/3 3
√

2.

In fact, complex conjugation gives such an isomorphism.
Corollary 5.71 also says that there is a field automorphism τ of L such that

τ(
3
√

2) = e2πi/3 3
√

2,

but it is not as clear what map this τ is.

Example 5.73. The splitting field of f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) is

Q(
√

2,−
√

2,
√

3,−
√

3) = Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Note that we have shown the last equality in Example 5.21. This is an example where the
splitting field of f ∈ F [x] is not the algebraic closure of F : we showed in Example 5.37
that [Q(

√
2 +
√

3) : Q] = 4, while in Example 5.42 we showed that [Q : Q] = ∞. Thus
Q(
√

2 +
√

3) ( Q.

Lemma 5.74. For every field F and every nonconstant polynomial f ∈ F [x] of degree n > 1,
every splitting field L for f over F satisfies [L : F ] 6 n!.

Proof. By Corollary 5.70, splitting fields are unique up to isomorphism, so we just need to
show that there exists a splitting field L for f over F with [L : F ] 6 n!.

Intuitively, we just need to adjoin all the roots of f , which is possible since we already
know we can adjoint a root of any polynomial. More formally, we start by showing that there
is a field extension E/F such that f splits completely in E[x], but without the minimality
condition. Proceed by induction on the degree n of f . In the base case, n = 1, so f is linear
and so E = F works.

Assume f has degree n > 1. We proved in Theorem 5.10 that there exists a field extension
K of F such that f has a root α. In K[x] we have f = (x−α)g with deg(g) = deg(f)− 1 =
n − 1. By induction, there is a field extension E of K with [E : K] 6 (n − 1)! in which g
splits completely. Then f also splits completely in E and by the Degree Formula

[E : F ] = [E : K][K : F ] 6 (n− 1)!n = n!.

Finally, let

f(x) =
∏
i

(x− αi)

be the factorization of f in E[x], and set L = F (α1, . . . , αn). By Lemma 5.64, L is a splitting
field of f over F . By the Degree Formula,

[E : F (α1, . . . , αn)][F (α1, . . . , αn) : F ] = [E : F ] 6 n! =⇒ [F (α1, . . . , αn) : F ] 6 n!.

The degree of the splitting field of f can be n!, but it can also be much smaller.
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Example 5.75. Let us find the splitting field L of x3 − 2 over Q, and the degree of this
field. Its roots in C are 3

√
2, ζ3

3
√

2, and ζ2
3

3
√

2, where ζ3 = e
2πi
3 . So

L = Q(
3
√

2, ζ3
3
√

2, ζ2
3

3
√

2).

It is useful to simplify this a bit, by noting that

ζ3 =
ζ2

3
3
√

2

ζ3
3
√

2
∈ L

and thus
L = Q(

3
√

2, ζ3).

We know from Lemma 5.74 above that [L : Q] 6 3! = 6. We claim it is exactly 6. First,
we have

Q ⊆ Q(
3
√

2) ⊆ L.

Moreover, x3 − 2 is irreducible over Q, and 3
√

2 satisfies this polynomial, so it must be the
minimal polynomial of 3

√
2 over Q. Thus [Q( 3

√
2) : Q] = 3. Note that Q( 3

√
2) ⊆ R but ζ3 is

not real, so Q( 3
√

2) ⊆ L has degree at least two. The Degree Formula shows that

[L : Q] = [L : Q(
3
√

2)][Q(
3
√

2) : Q] > 3 · 2 = 6.

By Lemma 5.74, [L : Q] 6 6, so we conclude that [L : Q] = 6.

Example 5.76. Let f(x) = xn − 1 ∈ Q[x]. Then f splits completely in C[x], and its n
many roots are the nth roots of 1. One of these is ζn := e2πi/n. Notice that every other nth
root of 1 is a power of this one. Thus Q(ζn) is the splitting field of xn − 1 over Q. This is
a somewhat special example: upon adjoining one of the roots of f we got all the others for
free. This happens in other examples too, but it is certainly not a general principle.

In particular, we see that the degree of Q ⊆ Q(ζn) is at most n, far less than the bound of
n! given by Lemma 5.74. In fact, it is at most n−1, since f factors as (x−1)(xn−1+· · ·+x+1),
and hence the minimum polynomial of ζn is a divisor of xn−1 + · · ·+ x+ 1.

When n = p is prime, then one can show that xp−1 + · · ·+x+ 1 is irreducible, and hence
it must equal the minimum polynomial of ζp. So, in this case, the degree of Q ⊆ Q(ζp) is
exactly p − 1. However, the degree of Q ⊆ Q(ζn) can be smaller that n − 1 in general; for
example, when n = 4, ζ4 = i and [Q(i) : Q] = 2. Note that x3 + x2 + x+ 1 factors as

x3 + x2 + x+ 1 = (x2 + 1)(x+ 1)

and mi,Q(x) = x2 + 1.

Example 5.77. In Problem Set 9, you showed that the splitting field F of f = x4 +5 ∈ Q[x]
is a degree 8 extension of Q, and again 8 < 4! = 24. This is also an example where adding
one root does not give us the entire splitting field: since f is irreducible over Q, which one
can show via Eisensteins’ Criterion, then for any root α of f we must have [Q(α) : Q] = 4,
but since [F : Q] = 8, then Q(α) must not contain at least one of the other roots of f .

Here is another interesting feature of this example: let

α1 = eπi/4
4
√

5, α2 = e3πi/4 4
√

5, α3 = e5πi/4 4
√

5, α4 = e7πi/4 4
√

5,

and note that these are the four roots of f . You showed in Problem Set 9 that Q(α1+α4) ⊆ R,
but since α1, . . . , α4 /∈ R, this says that none of the roots (including α1 and α2 is in Q(α1+α4).
This is in stark contrast with the example Q(

√
2 +
√

3) = Q(
√

2,
√

3) from before.
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5.5 Separability

Definition 5.78. Let R be a commutative ring. The characteristic char(R) of R is defined
to be the smallest positive integer n such that

n · 1R = 1R + . . .+ 1R︸ ︷︷ ︸
n

= 0F

if such and integer exists, and 0 otherwise.

Example 5.79. Here are some familiar examples: char(Z) = 0 and char(Z/n) = n.

Definition 5.80. Given a field F , its prime field is the subfield of F generated by 1F .
More precisely, the field

Frac ({k1F | k ∈ Z}) .

You proved the following lemma in Problem Set 8:

Lemma 5.81. Let F be a field.

a) The prime field of F is isomorphic to exactly one of the fields Q or Z/p.

b) The characteristic char(F ) is either 0 or a prime number p.

In prime characteristic p, the most important tool we have at our disposal is the Frobenius
endomorphism x 7→ xp. This is a simple but very powerful tool. The fact that the pth power
map is a ring homomorphism is known as the Freshman’s Dream.

Lemma 5.82 (Freshman’s Dream). If R is a commutative ring of prime characteristic p,
then the function

F : R // R

c � // F (c) = cp

is a ring homomorphism.

Proof. Since

(a+ b)p =

p∑
k=0

(
p

k

)
akbn−k

and the binomial coefficients
(
p
k

)
are divisible by p for any 1 6 k 6 p− 1, it follows that

(a+ b)p = ap + bp.

Because we also have (ab)p = apbp by commutativity of R, and F (1) = 1p = 1, the function
F is a ring homomorphism, as desired.

Remark 5.83. Let R be a commutative ring of prime characteristic p. Since End(R) is
closed under composition, the eth iterate of the Frobenius endomorphism F e, given by

F e = F ◦ · · · ◦ F︸ ︷︷ ︸
e times

: R // R

x // F e(x) = xp
n

is also a ring homomorphism.
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We are now ready to talk about separability.

Definition 5.84. Let F be a field, f ∈ F [x] be a monic polynomial, and α be a root of f
in some field extension L of F . The multiplicity of α in f is the number of times x − α
appears in the factorization

f =
∏
i

(x− βi)

of f in some (equivalently, any) splitting field of f .

Definition 5.85. A polynomial f ∈ F [x] is separable if the multiplicity of every root of f
in F is 1.

Example 5.86. The polynomial x3 − 1 is separable in R[x] because it has 3 distinct roots
in C, namely 1, ζ3, and ζ2

3 , but not in Z/3[x], since x3 − [1]3 = (x− [1]3)3.

Definition 5.87. For any field F and f = anx
n+ · · ·+a1x+a0 ∈ F [x], define its derivative

to be
f ′ = nanx

n−1 + (n− 1)an−1x
n−2 + · · ·+ 2a2x+ a1.

Remark 5.88. The derivative is an F -linear map F [x]→ F [x]: indeed, for any f, g ∈ F [x],
we have

(f + g)′ = f ′ + g′ and (af)′ = af ′

for all a ∈ F .

Remark 5.89. If F is a field of characteristic 0, then every nonconstant polynomial f ∈ F [x]
has f ′ 6= 0; in fact, deg(f ′) = deg(f)− 1. In contrast, in prime characteristic p the condition
f ′ = 0 does not imply f is constant. For example, (xp)′ = pxp−1 = 0.

Lemma 5.90 (Criteria for separability). Let F be a field and f ∈ F [x].

a) Given a root α of f in some field extension L of F , the multiplicity of α in f is at least
2 if and only if f ′(α) = 0.

b) A polynomial f is separable if and only if gcd(f, f ′) = 1 in F [x].

c) If f is irreducible in F [x], then f is separable if and only if f ′ 6= 0.

Proof. Let L be the splitting field of f .

a) If f = (x− α)2g(x) in L[x], then f ′(x) = 2(x− α)g(x) + (x− α)2g(x), so f ′(α) = 0.

Conversely, if f = (x− α)h(x) and h(α) 6= 0, then f ′(x) = h(x) + (x− α)h′(x) does not
have α as a root.

b) By 1), f is separable if and only if f has no common roots with f ′. By a problem in
Problem Set 9, we have gcd(f, f ′) = 1 if and only if f and f ′ have no common roots in F .

c) Since the degree of f ′ is strictly less than the degree of f and f is irreducible, we have
that gcd(f, f ′) 6= 1 if and only if f ′ = 0.
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Definition 5.91. An algebraic field extension L/F is separable if for every α ∈ L the
minimal polynomial mα,F of α over F is separable. An extension that is not separable is
sometimes called inseparable.

Exercise 15. Let α1, . . . , αn be algebraic elements over F , and let L := F (α1, . . . , αn). Show
that the extension F ⊆ L is separable if and only if mαi,F is separable for every i.

Definition 5.92. A field F is perfect if every algebraic extension of F is separable.

Remark 5.93. Every irreducible polynomial in F [x] is separable if and only if every algebraic
field extension L/F is separable.

Corollary 5.94 (Every field of characteristic zero is perfect). Let F be a field of characteris-
tic zero. Every irreducible polynomial in F [x] is separable and every algebraic field extension
L/F is separable.

Proof. For every α ∈ L, its minimal polynomial mα,F is nonconstant. Since char(F ) = 0,
m′α,F 6= 0. Since mα,F is irreducible in F [x], Lemma 5.90 implies mα,F (x) is separable.

Example 5.95. The characteristic zero extension Q ⊆ Q(
√

2,
√

3) is algebraic, and thus
separable by Corollary 5.94.

Lemma 5.96. Let F be a field with prime characteristic char(F ) = p.

a) If b is an element of F that is not a pth power of an element of F and L is an algebraic
extension of L that contains a root of xp − b, then F ⊆ L is not separable.

b) If every element of F is the pth power of another element of F , then every algebraic
extension F ⊆ L is separable.

Proof.

a) In general, for such F and b, let α be a root of xp − b in some field extension of F and
let L := F (α). We claim that F ⊆ L is not separable; specifically, we claim m := mα,F is
not separable. Since α is a root of xp− b, we have m | xp− b. In L[x], by the Freshman’s
Dream we have

(x− α)p = xp − αp = xp − b.

If follows that m must divide (x− α)p in L[x] and hence m must have the form (x− α)i

for some 1 6 i 6 p. But i 6= 1 since α /∈ F . Thus α is a multiple root of m and m is
irreducible in F [x].

b) Given an irreducible polynomial q ∈ F [x], if q′ = 0, then we must have that q is a sum
of terms of the form bxmp, for some m > 0 and b ∈ F . By assumption, for each such
term, we have b = cp for some c ∈ F , and thus each term of q has the form (cxm)p. By
the Freshman’s Dream, q = gp for some polynomial g ∈ F [x]. But this is impossible
since q is irreducible. We conclude that q′ 6= 0, which by Lemma 5.90 implies that q is
separable. This shows that every irreducible polynomial over F is separable, and thus
every algebraic extension over F is separable.
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Remark 5.97. Let F be a field of prime characteristic p. The condition that every element
in F is a pth power of another element in F is equivalent to saying that the Frobenius map
is surjective. We can write this more succinctly as F p = F . Lemma 5.96 says that a field of
prime characteristic p is perfect if and only if F p = F .

Example 5.98. Let p be a prime and t be a variable, let F = Z/p(t), and consider the field
L = F [z]/(zp − t). The element t ∈ F is not a pth power of any element in F , and F ⊆ L
is an extension containing a root of the polynomial xp − t. By Lemma 5.96, F ⊆ L is an
inseparable extension. Moreover, the field F is not perfect.

Theorem 5.99 (Finite fields are perfect). Every algebraic field extension of a finite field is
separable.

Proof. Problem Set 10.

We have shown that fields of characteristic 0 and fields K of characteristic p such that
K = Kp are separable.



Chapter 6

Galois theory

An approximate definition of Galois Theory is the study of the symmetries enjoyed by the
roots of a polynomial. As a simple example, the polynomial x2 + 1 ∈ R[x] has two roots,
and there are essentially indistinguishable from an algebraic point of view — which root is√
−1 and which is the negative of it? It makes no difference, really.

For another example, consider p(x) = x3 − 2 ∈ Q[x], which has three roots. As we will
soon learn, these roots of x3 − 2 are as symmetric as possible over Q. On the other hand,
q(x) = x4 − 2 ∈ Q[x] has four roots, and we will soon see that these four root are not as
symmetric as possible over Q.

Before starting the chapter, you might want a reminder of group actions. Below we
include some of the definitions we will need for your convenience, though it is highly recom-
mended that you read through the relevant portion of the 817 notes.

Definition 6.1. For a group (G, ·) and a set S, an action of G on S is a function

G× S → S,

typically written as (g, s) 7→ g · s, such that

• g · (g′ · s) = (gg′) · s for all g, g′ ∈ G and s ∈ S, and

• eG · s = s for all s ∈ S.

Let Aut(S) denote the set of automorphisms of the set S, which is a group under com-
position of functions. A group action of G on S is a group homomorphism G→ Aut(S).

Definition 6.2. An action of a group G on a set S is called faithful if the associated group
homomorphism is injective. Equivalently, an action is faithful if and only if for a given g ∈ G,
whenever g · s = s for all s ∈ S, it must be that g = eG.

Definition 6.3. A group action of (G, ·) on S is transitive if for all p, q ∈ S there is a
g ∈ G such that q = g · p. Equivalently, an action is transitive if OrbG(p) = S for any p ∈ S.

Definition 6.4. Let G be a group acting on a set S. The equivalence relation on S induced
by the action of G, written ∼G, is defined by s ∼G s′ if and only if there is a g ∈ G such that
s′ = g · s. The equivalence classes of ∼G are called orbits, specifically the equivalence class

OrbG(s) = {g · s | g ∈ G}

is the orbit of S. The set of equivalence classes with respect to ∼G is written S/G.
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6.1 Group actions on field extensions

Definition 6.5. Let K be a field. The automorphism group of K, denoted Aut(K), is
the collection of field automorphisms of K, with the binary operation of composition.

Definition 6.6. LetK/F be a field extension. The automorphism group ofK/F , denoted
Aut(K/F ), is the collection of field automorphisms of K that restrict to the identity on F ,
with the binary operation of composition.

Exercise 16. Let K/F be a field extension. Then Aut(K) is a group under composition of
maps, and Aut(K/F ) is a subgroup of Aut(K).

Some books write Gal(L/F ) for Aut(L/F ), and call it the Galois group of L over F . We
will reserve that notation for a special type of finite extensions – those that are Galois – and
use only Aut(L/F ) for the general case.

Example 6.7. The automorphism group Aut(C/R) has two elements: the identity map and
the map given by complex conjugation. The fact that each of these is an element of Aut(C/R)
amounts to the fact that complex conjugation commutes with addition and multiplication
of complex numbers. To see these are all the automorphisms, suppose τ ∈ Aut(C/R). Since
τ |R = idR, then for any z = a+ ib ∈ C we have τ(z) = a+ bτ(i). Moreover,

−1 = τ(−1) = τ(i · i) = τ(i) · τ(i),

and so τ(i) = ±i.

Example 6.8. For any squarefree integer d, the group Aut(Q(
√
d)/Q) also has two elements:

the identity and the map defined by a + b
√
d 7→ a − b

√
d. The details are similar to the

previous example, so we leave them as an exercise.

Remark 6.9. Let L be a field and let σ ∈ Aut(L). Then the UMP of polynomial rings
gives that there is an induced ring homomorphism (−)σ : L[x] → L[x] such that for each
q = anx

n + · · ·+ a0 ∈ K[x], we have

qσ(x) = σ(an)xn + · · ·+ σ(a0).

If σ ∈ Aut(L/K) and q ∈ K[x], then qσ = q.

Lemma 6.10. Let K/F be a field extension, σ ∈ Aut(K/F ), and q ∈ F [x].

a) For all c ∈ K, we have σ(q(c)) = q(σ(c)).

b) If α ∈ K is a root of q, then σ(α) also is a root of q.

Proof.

a) By assumption, σ is a homomorphism and it restricts to the identity on F . Thus for any
polynomial q = anx

n + · · ·+ a0 ∈ F [x], we have

σ(q(c)) = σ(anc
n + · · ·+ a0) = σ(an)σ(c)n + · · ·+ σ(a0) = anσ(c)n + · · ·+ a0 = q(σ(c))
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b) If α is a root of f , then
0 = σ(0) = σ(q(α))

= q(σ(α)) by a)

showing that σ(α) is also a root of q.

We now come to the main idea connecting field extensions and groups. It concerns the
action of the group of automorphisms of a splitting field of a polynomial on the set of roots
of that polynomial.

Theorem 6.11. Let L be the splitting field of a polynomial f ∈ F [x]. Let S be the set of
distinct roots of f in K, and let n := |S|.

a) The group Aut(L/F ) acts faithfully on S, via

σ · b := σ(b)

for all σ ∈ Aut(L/F ) and b ∈ S, and hence Aut(L/F ) is isomorphic to a subgroup of Sn.

b) If f ∈ F [x] is an irreducible polynomial, then Aut(L/F ) acts transitively on S.

Proof.

a) Let G = Aut(L/F ). To see that the the action above is well-defined, notice that if b ∈ S
then σ(b) ∈ S by Lemma 6.10. Now we have

σ · (σ′ · b) = σ(σ′(b)) = (σ ◦ σ′)(b) for all σ, σ′ ∈ G, b ∈ S,

1G · b = idK(b) = b for all σ ∈ G and b ∈ S,
so the given formula does indeed define an action of G on S.

This action is faithful: if σ fixes all the roots α1, . . . , αn of f , then it fixes every element of
F (α1, . . . , αn) = L. Thus the corresponding group homomorphism Aut(L/F ) → Aut(S)
is injective. On the other hand, the group of automorphisms on a set of n elements is
isomorphic to Sn, so we have an inclusion of Aut(L/F ) into Sn, and thus Aut(L/F ) is
isomorphic to a subgroup of Sn.

b) Let α, β be any two roots of f . By Theorem 5.69, there is an isomorphism θ : F (α)→ F (β)
that fixes F .

Our polynomial factors both as f = (x − α)g and f = (x − β)h. Since f θ = f and
(x − α)θ = x − β, we must have gθ = h. Theorem 5.69 applies, showing there is an
automorphism σ : L→ L that extends θ. In particular, σ fixes F , since σ extends θ and
θ|F = idF , so σ ∈ Aut(L/F ). Moreover, since σ extends θ we have σ(α) = θ(α) = β.
This proves the action is transitive on the set of roots of any irreducible polynomial.

Soon we will show that if f ∈ F [x] is separable but not necessarily irreducible, and L is
the splitting field of f , then the orbits of the action of Aut(L/F ) on the set of roots of f are
precisely the sets of roots of the same irreducible factor of f . But to do so, we will need a
little bit of Galois theory.
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Corollary 6.12. Let L be the splitting field of a polynomial f ∈ F [x] with n distinct roots.
Then |Aut(L/F )| 6 n!.

Proof. We showed in Theorem 6.11 that Aut(L/F ) is isomorphic to a subgroup of Sn, and
thus it as at most |Sn| = n! elements.

We will give an improved version of this result soon.

Exercise 17. Let F be a field and L = F (a1, . . . , an), where a1, . . . , an are elements in
some extension of F that are algebraic over F . Each element σ ∈ Aut(L/F ) is uniquely
determined by σ(a1), . . . , σ(an).

A typical question that arises from Theorem 6.11 is to explicitly identify the automor-
phisms of a splitting field extension as a subgroup of the symmetric group.

Example 6.13. Let L be the splitting field of f = x3 − 2 ∈ Q[x] and G := Aut(L/Q).
Recall from Example 5.75 that L = Q( 3

√
2, ζ), where ζ = e2πi/3, and that [L : Q] = 6. Let

us write the roots of f as
α1 =

3
√

2, α2 = ζα1, α3 = ζ2α1.

From Theorem 6.11, G acts transitively on {α1, α2, α3}, and hence G is isomorphic to a
subgroup of S3.

The restriction of complex conjugation to L determines an element s of G or order 2,
since L is closed under complex conjugation. We have

s(α1) = α1, s(α2) = α3, s(α3) = α2

and so s corresponds to the permutation (2 3) ∈ S3.
Since the action of G on the roots of f is transitive, there is also an element τ ∈ G such

that τ(α1) = α2. Such a τ corresponds to either (1 2), (1 2 3) of S3. Either way, τ and s
generate all of S3.

We conclude that |G| = 6, the maximum possible, and G is isomorphic to S3. You
should think of this as saying that the roots of x3 − 2 are as interchangeable as possible,
since Aut(L/Q) is as large as possible.

Example 6.14. Let L be the splitting field of f = x4 − 2 over Q. The roots of f are

α1 =
4
√

2, α2 = iα1, α3 = −α1, α4 = −iα1,

and L = Q(α1, i). Let us start by computing [L : Q]. Consider the chain of extensions

Q ⊆ Q(α1) ⊆ L = Q(α1)(i).

The extension Q ⊆ Q(α1) has degree 4, since x4 − 2 is irreducible,1 and the extension
Q(α1) ⊆ L has degree at most 2, since i is a root of the degree 2 polynomial x2 + 1. Since
Q(α1) ⊆ R and L contains elements that are not real, the extension Q(α1) ⊆ L cannot be
trivial, and thus it must have degree exactly 2. We conclude that [L : Q] = 8.

1By using Eisenstein’s Criterion with the prime 2 to show f is irreducible over Z, and Gauss’ Lemma to
show that f must then also be irreducible over Q.
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Set G := Aut(L/Q). We know G is isomorphic to a subgroup of S4. Since L = Q(α1, i),
by Exercise 17 any τ ∈ G is uniquely determined by what it does to α1 and i. Such a τ must
send α1 to a root of f , and thus to one of α1, . . . , α4. Moreover, since i is a root of x2 + 1,
so is τ(i), by Lemma 6.10, and thus τ must send i to ±i. By combining the possibilities for
τ(α1) and τ(i), we have at most 8 possibilities, so |G| 6 8. In particular, G corresponds to
a proper subgroup of S4, and so the roots of x4 − 2 do not have as many symmetries as are
conceivable.

Claim: |G| = 8 and G is isomorphic to the subgroup of S4 generated by (2 4) and (1 2 3 4).
Let s be the map obtained by restricting complex conjugation to L, and note that indeed

s ∈ Aut(L/Q). This map s corresponds to (2 4) ∈ S4.
Now consider the field extension Q(i) ⊆ L. Since [L : Q] = 8 and [Q(i) : Q] = 2, by the

Degree Formula we must have [L : Q(i)] = 4. Since L = Q(i)(α1), the degree of mα1,Q(i) must
be 4. In particular, this shows that x4 − 2 remains irreducible as a polynomial in Q(i)[x].
So L is the splitting field of the irreducible polynomial x4 − 2 over Q(i), and we may thus
apply Theorem 6.11 to get that there is an element τ ∈ Aut(L/Q(i)) such that τ(α1) = α2.
We may regard τ as an element of Aut(L/Q) too. Such a τ satisfies τ(i) = i, so

τ(α2) = τ(iα1) = iτ(α1) = iα2 = α3.

A key point here is that if we had merely taken τ to be an element of Aut(L/Q) sending α1

to α2, we would have no idea what τ does to α2: it was key to define τ ∈ Aut(L/Q(i)) as we
did. We also get τ(α3) = α4 and τ(α4) = α1, so τ corresponds to the permutation (1 2 3 4).

The proves that G is isomorphic to a subgroup of S4 that contains (2 4) and (1 2 3 4).
Since the subgroup generated by these two elements has order 8 and |G| 6 8, then G must
be the subgroup 〈(2 4), (1 2 3 4)〉 of Sn, and |G| = 8.

Finally, we claim that this subgroup of S4 is isomorphic to D8. Indeed, consider a square
with

1 2

34

Let ρ ∈ D8 be the clockwise rotation by π
2

and τ ∈ D8 is the reflection across the line
determined by the vertices 1 and 3. On the vertices of the square, the element ρ sends 1 7→ 2,
2 7→ 3, 3 7→ 4, and 4 7→ 1. Similarly, τ switches the vertices 2 and 4. One can check that
the map

G // D8

(1 2 3 4) � // ρ

(2 4) � // τ

determines an isomorphism.
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6.2 Automorphism groups of finite field extensions

We will now focus on finite field extensions and their automorphism groups. We start by
giving a much better upper bound on the order of the automorphism group of a finite field
extension.

Theorem 6.15. Let L/F be a finite field extension. Then

|Aut(L/F )| 6 [L : F ].

If L is the splitting field of a separable polynomial in F [x], then

|Aut(L/F )| = [L : F ].

Proof. We proceed by induction on [L : F ]. In the base case, [L : F ] = 1, and thus L = F ,
so Aut(L/F ) is the trivial group, and both statements hold.

Now let n > 1 and suppose that |Aut(L/F )| 6 [L : F ] holds for all L and F such that
[L : F ] < n. Let [L : F ] = n. Pick α ∈ L \ F and let m = mα,F , and consider F (α)/F .

Note that H = Aut(L/F (α)) is a proper subgroup of G = Aut(L/F ). By induction, we
have |H| 6 [L : F (α)]. We claim that it suffices to prove [G : H] 6 [F (α) : F ]. Indeed, using
the Degree Formula and the fact that |G| = |H| · [G : H], if [G : H] 6 [F (α) : F ] then

|G| = |H| · [G : H] 6 [L : F (α)][F (α) : F ] = [L : F ].

To show that [G : H] 6 [F (α) : F ], consider the function

G/H = {cosets of H in G} Ψ // {roots of m in L}

gH � // g(α).

By Lemma 6.10, for any g ∈ G the element g(α) is also a root of m. For any h ∈ H, we have

gh(α) = g(h(α)) = g(α).

Thus Ψ is well-defined. Moreover, for any g1, g2 ∈ G we have

Ψ(g1H) = Ψ(g2H) ⇐⇒ g1(α) = g2(α) ⇐⇒ g−1
2 g1(α) = α

which is equivalent to saying that g−1
2 g1 fixes F (α), and equivalently

g−1
2 g1 ∈ H ⇐⇒ g1H = g2H.

This proves that the function Ψ is injective.
By Theorem 5.32, deg(m) = [F (α) : F ]. Thus Ψ is an inclusion of G/H into a set with

at most [F (α) : F ] many elements. Therefore,

[G : H] = |G/H| 6 [F (α) : F ].
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Now suppose that f is separable, so that

f = c

n∏
i=1

(x− αi) ∈ L[x]

with αi 6= αj for i 6= j and L = F (α1, . . . , αn).
Set α = α1 and let m be the irreducible factor of f that has α as a root. Notice m = mα,F .

As before, we consider F (α) and set H = Aut(L/F (α)) ≤ Aut(L/F ) = G. Note that L is
also the splitting field of

g =
n∏
i=2

(x− αi) ∈ F (α)[x]

over F (α), and g is also separable. By induction |H| = [L : F (α)], and it remains to show
that

[G : H] = [F (α) : F ] = deg(m).

Since f is separable, so is m, so deg(m) is exactly the number of distinct roots of m. Showing
that [G : H] = deg(m) amounts to the assertion that the injective map Ψ is also surjective.
This holds since G acts transitively on the roots of m, as shown in Theorem 6.11.

The finite field extensions whose automorphism group is as large as possible are very
important, and are the main subject of this final chapter.

Definition 6.16. A finite field extension F ⊆ L is Galois if |Aut(L/F )| = [L : F ]. In this
case we write Gal(L/F ) for Aut(L/F ), and say Gal(L/F ) is the Galois group of L over F .

Example 6.17 (a nonexample). We claim that field extension Q ⊆ Q( 3
√

2) is not Galois.
Indeed, suppose s ∈ Aut(L/Q). Then s is entirely determined by where it sends 3

√
2 and it

must send this element to another root of x3− 2. But the other two roots of this polynomial
are not real, and hence not in L. So s( 3

√
2) = 3

√
2 and s = id.

This shows Aut(L/Q) is the trivial group, so Aut(L/Q) = 1 < 3 = [L : Q]. In particular,
the extension is not Galois.

Theorem 6.15 tells us how to construct Galois extensions:

Corollary 6.18 (First construction of Galois extensions from splitting fields). If L is the
splitting field of a separable polynomial f ∈ F [x], then L/F is Galois.

Definition 6.19. Let f ∈ F [x] be a separable polynomial with splitting field L. The Galois
group of f is Gal(L/F ).

We will need the following notation.

Definition 6.20. If G is subgroup of Aut(L), the subfield of L fixed by G, denoted LG,
is by definition

LG := {α ∈ L | s(α) = α, for all s ∈ G}.
Note that the textbook writes this as LG.

Exercise 18. If G is subgroup of Aut(L), show that LG is a subfield of L.

Example 6.21. Let G = Aut(C/R). Then CG is the subgroup of complex numbers fixed
by all the elements in Aut(C/R), which we saw in Example 6.7 has only two elements, the
identity and the conjugation map s. Therefore, CG is the set of complex numbers fixed by
conjugation, and thus CAut(C/R) = R.
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6.3 The Fundamental Theorem of Galois Theory

The following is an important theorem with many corollaries. In fact, the Fundamental
Theorem of Galois Theory, which we will state shortly, will follow from this result.

Theorem 6.22 (Artin’s Theorem). Let L be any field. If G is a finite subgroup of Aut(L),
then LG is a subfield of L, the extension L/LG is finite and Galois, and Gal(L/LG) = G.

Note that we really do mean equality here: both G and Gal(L/LG) are subgroups of
Aut(L), and the theorem states that they coincide. The containment G ⊆ Gal(L/LG) is
clear: if σ ∈ G, then by construction σ fixes every element of LG and hence σ ∈ Gal(L/LG).
The point of the theorem is that the extension LG ⊆ L is always Galois and that if σ ∈ Aut(L)
fixes every element of LG then σ must belong to G.

We will not prove Artin’s Theorem right away. Instead, we will first deduce some of its
consequences, including the Fundamental Theorem of Galois Theory. We will then illustrate
the Fundamental Theorem with many examples and give some consequences of it too. Only
then will we circle back to prove Artin’s Theorem.

Example 6.23. The group G = {idC, σ}, where σ is complex conjugation, is a finite sub-
group of Aut(C). Artin’s Theorem tells us that CG ⊆ C is finite and Galois with Galois
group G. It follows that [C : CG] = |G| = 2. We already knew all this, since CG = R.

As we head towards the Fundamental Theorem of Galois Theory, we start by stating a
few helpful corollaries of Artin’s Theorem. These will also allow us to show that finite Galois
extensions are precisely the splitting fields of separable polynomials.

Corollary 6.24. Let L/F be any Galois extension. Then F = LGal(L/F ).

Proof. Note that F ⊆ LGal(L/F ) holds by definition, and so

[L : F ] = [L : LGal(L/F )][LGal(L/F ) : F ]

by the Degree Formula. But Artin’s Theorem gives

[L : LGal(L/F )] = |Gal(L/F )|,

and we also know that [L : F ] = |Gal(L/F )|. Therefore, [LGal(L/F ) : F ] = 1 and thus
F = LGal(L/F ).

Example 6.25. We know from Example 6.14 that L = Q( 4
√

2, i) is Galois over Q with Galois
group D8. More precisely, this identification is given by writting

α1 = 4
√

[2], α2 = i
4
√

2, α3 = − 4
√

2, α4 = −i 4
√

2

and labelling the four corners of a square with α1, . . . , α4, counter-clockwise. Consider

β := α1 + · · ·α4

and γ = α1 · · ·α4. Then each of β and γ are fixed by every Galois automorphism and hence
by Corollary 6.24 β and γ must be rational. In fact, one can easily see that β = 0 and γ = 2,
but notice that the exact same reasoning would apply in general to the sum of roots and the
product of roots in the splitting field of any separable polynomial.
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Corollary 6.26. Let F ⊆ L be a Galois extension. For every α ∈ L, mα,F is separable and
all of its roots belong to L. Moreover, Gal(L/F ) acts transitively on the set of roots of mα,F .

Proof. Let α ∈ L and consider the orbit α1 = α, . . . , αm of α under the action of Gal(L/F ).
Set

f := (x− α1) · · · (x− αm).

For any τ ∈ Gal(L/F ), since τ permutes the elements of any orbit then

f τ = (x− τ(α1)) · · · (x− τ(αm)) = f.

This proves that f has all its coefficients in the field FGal(L/F ), which by Corollary 6.24
coincides with the field F . Thus f ∈ F [x]. Moreover, by construction f is separable. Since
α is a root of f , the minimal polynomial mα,F must divide f , and thus mα,F is also separable
and has all its roots in L.

Finally, this also shows that all the roots of mα,F are on the orbit of α with respect to
the action of Gal(L/F ), and thus Gal(L/F ) acts transitively on the set of roots of mα,F .

Remark 6.27. Note that any irreducible polynomial over F with a root in L is the minimal
polynomial of some element in L. So Corollary 6.26 says in particular that if F/L is Galois
and f ∈ F is any irreducible polynomial, then Gal(F/L) acts transitively on the set of roots
of f .

Corollary 6.28. A finite field extension L/F is Galois if and only if L is the splitting field
of some separable polynomial with coefficients in F .

Proof. We already proved before in Theorem 6.15 that if L is the splitting field of some
separable polynomial f ∈ F [x], then F ⊆ L is Galois.

For the reverse direction, suppose that F ⊆ L is a Galois extension. In particular, it is a
finite extension, so L = F (β1, . . . , βn) for some β1, . . . , βn ∈ L; for example, the βi could be
chosen to be an F -basis of L.

By Corollary 6.26, each mβi,F is separable and all of its roots belong to L. Moreover,
if γi is a root of mβi,F and i 6= j, then we claim that γi is not a root of mβj ,F . Indeed, if
mβj ,F (βi) = 0, then mαi,F |mαj ,F , but they are both monic irreducible polynomials over F ,
so we must have mαi,F = mαj ,F .

Let m1, . . . ,ms be the distinct polynomials among the mβi,F , and set

g :=
s∏
i=1

mi.

Since distinct mi do not share any common roots and all the mi are separable, their product
g is also separable. Moreover, all of the roots of g belong to L, and hence the splitting field
of g is contained in L. Since βi is a root of g for all i, L = F (β1, . . . , βn) must be precisely
the splitting field of g.

Theorem 6.29. Let L be the splitting field of a separable polynomial f ∈ F [x]. The orbits
of the action of Aut(L/F ) on the set S of roots of f are the subsets of S that are the roots
of the same irreducible factor of f .
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Proof. For each b ∈ S, the orbit of b is

OrbAut(L/F )(b) = {σ(b) | σ ∈ Aut(L/F )}.

Since b is a root of f , there exists an irreducible factor p ∈ F [x] of f such that b is a root of
p. Since p ∈ F [x], by Lemma 6.10 we know that σ(b) is a root of p for any σ ∈ Aut(L/F ).
Thus the orbit of b is contained in the set of roots of p in L.

By Corollary 6.28, F ⊆ L is a Galois extension. By Corollary 6.26, Gal(L/F ) acts
transitively on the set of roots of p. Thus every root of p is in the orbit of b under the action
of Aut(L/F ). We conclude that the orbit of b is precisely the set of roots of p.

Definition 6.30. Given a field extension F ⊆ L, an intermediate field is a subfield E of
L that contains F , so that F ⊆ E ⊆ L.

Corollary 6.31. If F ⊆ L is Galois, then for any intermediate field E the extension E ⊆ L
is Galois.

Proof. This follows from Corollary 6.28: if L is the splitting field over F of a separable
polynomial f ∈ F [x], then L is also the splitting field over E of the same polynomial f , but
now viewed as a polynomial in E.

Remark 6.32 (Warning!). In the setting of Corollary 6.31, note that E need not be Galois
over the original field F . For example, L = Q( 3

√
2, e2πi/3) is Galois over F = Q but we saw

in Example 6.17 that E = Q( 3
√

2) is not Galois over Q. Nevertheless, Corollary 6.31 says
that L is Galois over E.

Definition 6.33. Let E1 and E2 be two subfields of K. The composite of E1 and E2,
denoted E1E2, is the smallest subfield of K containing both E1 and E2; more precisely, it is
the intersection of all the subfields of K that contain both E1 and E2.

Example 6.34. Let E = Q(
√

2) and F = Q( 3
√

2). We claim that the composite of E and F

is the field L = Q( 6
√

2). On the one hand,
√

2 = 6
√

2
3 ∈ L and 3

√
2 = 6
√

2
2 ∈ L, so E,F ⊆ L.

On the other hand, any subfield of L containing both E and F must contain

√
2

3
√

2
= 2

1
2
− 1

3 = 2
3−2
6 = 2

1
3 =

3
√

2.

Thus L = EF .

Remark 6.35. Let F ⊆ L be a field extension and consider two intermediary fields E1 and
E2. If E1 = F (α1, . . . , αn) and E2 = F (β1, . . . , βm), then E1E2 = F (α1, . . . , αn, β1, . . . , βm).
If α1, . . . , αn is a basis for E1/F and β1, . . . , βm is a basis for E2/F , then αiβj is a generating
set for E1E2 over F , so

[E1E2 : F ] 6 [E1 : F ][E2 : F ].

Notice, however, that the inequality might be strict.

We are finally ready for the Fundamental Theorem of Galois Theory:
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Theorem 6.36 (Fundamental Theorem of Galois Theory). Suppose L/F is a finite Galois
extension. There is a bijection

{intermediate fields E, with F ⊆ E ⊆ L} oo Ψ // {subgroups H of Gal(L/F )}

E � // Ψ(E) = Gal(L/E)

Ψ−1(H) = LH H.�oo

Moreover, this bijective correspondence enjoys the following properties:

(a) Ψ and Ψ−1 each reverse the order of inclusion.

(b) Ψ and Ψ−1 convert between degrees of extensions and indices of subgroups:

[Gal(L/F ) : H] = [LH : F ] ⇐⇒ [Gal(L/F ) : Gal(L/E)] = [E : F ].

(c) Normal subgroups correspond to intermediate fields that are Galois over F :

• If N �G then LN/F is Galois.

• If E/F is Galois, then Gal(L/E) is a normal subgroup of Gal(L/F ).

(d) If E = LN for a normal subgroup N � Gal(L/F ), then Gal(E/F ) ∼= Gal(L/F )/N .

(e) If H1, H2 are subgroups of G with fixed subfields E1 = LH1 and E2 = LH2, then

• E1 ∩ E2 = L<H1,H2> and Gal(L/E1 ∩ E2) = 〈H1, H2〉.
• E1E2 = LH1∩H2 and Gal(L/E1E2) = H1 ∩H2.

Proof. First, we need to check that both functions are well-defined. For each intermediary
field E, we know from Corollary 6.31 that L/E is also Galois, and hence it makes sense to
write Gal(L/E); moreover, any σ ∈ Gal(L/E) is an automorphism of L that fixes E, and
thus F ⊆ E, so σ ∈ Gal(L/F ). This shows that Ψ is well-defined. Conversely, given a
subgroup H of Gal(L/F ), LH is a subfield of L by Exercise 18.

Next, we need to check that Ψ and Ψ−1 are indeed inverse functions. Given a subgroup
H of Gal(L/F ), we have Gal(L/LH) = H by Artin’s Theorem. Thus

Ψ ◦Ψ−1(H) = Ψ(LH) = Gal(L/LH) = H.

Conversely, given an intermediate field E, L/E is Galois by Corollary 6.31, and hence
LGal(L/E) = E by Corollary 6.24. Thus

Ψ−1 ◦Ψ(E) = Ψ(Gal(L/E)) = LGal(L/E) = E.

This establishes the fact that Ψ is indeed a bijective correspondence.
Now we check that Ψ satisfies the given list of properties. For brevity, set G := Gal(L/F ).
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(a) The fact that the correspondence is order reversing follows from the definitions. Given
intermediate fields E1 ⊆ E2, any automorphism of L that preserves E2 must also preserve
E1, thus Gal(L/E2) ⊇ Gal(L/E1). Conversely, if H1 ≤ H2 ≤ Gal(L/E), then every
x ∈ L that is fixed by every σ ∈ H2 must also be fixed in particular by every element of
H1, so LH2 ⊇ LH1 .

(b) By definition of Galois extension, [L : F ] = |G|. By Artin’s Theorem, for any subgroup
H ≤ G the extension LH ⊆ L is also Galois, and thus by definition [L : LH ] = |H|.
Using the Degree Formula, we have

[LH : F ] =
[L : F ]

[L : LH ]
=
|G|
|H|

= [G : H].

So if H = Ψ(E) = Gal(E/F ), then LH = E and the formula above can be rewritten as

[Gal(L/F ) : Gal(L/E)] = [E : F ].

(c) Suppose E is an intermediate field that is Galois over F . Fix σ ∈ G and α ∈ E. Since
E/F is Galois, by Corollary 6.26 the polynomial mα,F is separable and all of its roots
are in E. By Lemma 6.10, σ(α) is also a root of mα,F , and thus σ(α) ∈ E.

Suppose τ ∈ Gal(L/E). For any α ∈ E we have σ(α) ∈ E, so τ(σ(α)) = σ(α). Thus

σ−1(τ(σ(α)) = σ−1(σ(α)) = α.

This proves that σ−1τσ ∈ Gal(L/E) and hence that Gal(L/E)�G. We have shown that
if E is Galois over F , then the corresponding subgroup Gal(L/E) of G is normal.

For the converse, consider a normal subgroup N�G and the corresponding intermediate
field E = LN , so that N = Gal(L/E). We will show that E is the splitting field over F
of a separable polynomial in F [x], and hence is Galois over F by Corollary 6.18.

Pick any α ∈ E and set m := mα,F . By Corollary 6.26, m is separable and all of its
roots belong to L. We claim that all the roots must in fact belong to E. Since m is
irreducible and L/F is Galois, by Corollary 6.26 G acts transitively on the set of roots
of m. Thus, given be any other root β ∈ L of m, there is a σ ∈ G with σ(α) = β. Since
N is normal, for any τ ∈ N we have στ ′ = τσ for some τ ′ ∈ N . But τ ′ ∈ N fixes E, so
τ ′(α) = α. Therefore,

β = σ(α) = στ ′(α) = τσ(α) = τ(β)

which shows that β is also fixed by N . But then β ∈ LN = E. Therefore, E contains all
the roots of mα,F , and thus E must contain the splitting field of mα,F .

We have E = F (α1, . . . , αl) for some α1, . . . , αl ∈ E. If m1, . . . ,mn are the distinct poly-
nomials among mα1,F , . . . ,mαl,F , then E is the splitting field of the separable polynomial
m1 · · ·mn. By Corollary 6.28, E is Galois over F .

If E = LN for a normal subgroup N � Gal(L/F ), then Gal(E/F ) ∼= Gal(L/F )/N .
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(d) Let E = LN for a normal subgroup N of G. We want to show that Gal(E/F ) is
isomorphic to G/N .

For each σ ∈ G, we claim that σ(E) ⊆ E. By Lemma 6.10, for all α ∈ E the element
σ(α) is also a root of mα,F . But since E/F is Galois, it must contain all of the roots
of mα,F , by Corollary 6.26, so σ(α) ∈ E. Thus σ(E) ⊆ E, so the restriction of σ to E
determines an injective field homomorphism σ|E : E → E. Since σ|F = idF , this map is
also a linear transformation of vector spaces over F . But E is a finite vector space over
F , and any injective linear transformation E → E must be bijective. We conclude that
σ|E is an automorphism of E. We thus have a well-defined function

φ : G // Gal(E/F )

σ � // φ(σ) = σ|E.

Moreover, this map is a group homomorphism by construction. The kernel is the sub-
group of G of automorphisms that restrict to the identity on E, which is precisely N .
Hence we have an induced injective group homomorphism

φ : G/N → Gal(E/F ).

But |N | = |Gal(E/F )| <∞, so this map φ must be an isomorphism.

(e) Let H1 and H2 be subgroups of G with fixed fields E1 = LH1 and E2 = LH2 .

First, we will show that E1 ∩ E2 = L〈H1,H2〉. Given any α ∈ E1 ∩ E2, σ(α) = α for all
σ ∈ H1 and all σ ∈ H2, since α ∈ E1 and α ∈ E2, so α ∈ L〈H1,H2〉, and E1∩E2 ⊆ L〈H1,H2〉.
Conversely, if α ∈ L〈H1,H2〉, then σ(α) = α for all σ ∈ 〈H1, H2〉, so in particular σ(α) = α
for all σ ∈ Hi and thus α ∈ LHi = Ei. We conclude that E1 ∩ E2 = L〈H1,H2〉.

Now let us show that E1E2 = LH1∩H2 . Since L/F is a finite extension, then by the Degree
Formula both of the extensions E1/F and E2/F are finite. Let E1 = F (α1, . . . , αn) and
E2 = F (β1, . . . , βm), so that E1E2 = F (α1, . . . , αn, β1, . . . , βm). For any σ ∈ H1 ∩H2 we
have σ(αi) = αi and σ(βj) = βj for each i. Since σ|E is completely determined by its
values on the αi and βj, by Exercise 17, but since σ restricted to E1E2 agrees with the
identity map on the generators, σ|E1E2 = idE1E2 . We conclude that E1E2 ⊆ LH1∩H2 .

Moreover, given any σ ∈ Gal(L/E1E2), its restriction to E1E2 is by definition the iden-
tity. Thus its restriction the subfields E1 and E2 of E1E2 must also be the identity, and
therefore we have σ ∈ Gal(L/E1) = H1 and σ ∈ Gal(L/E2) = H2. We conclude that
σ ∈ H1 ∩ H2. Thus Gal(L/E1E2) ≤ H1 ∩ H2. Since Ψ is order reversing, we conclude
that E1E2 ⊇ LH1∩H2 , giving us the desired equality.

This bijection Ψ in Theorem 6.36 is sometimes called the Galois correspondence.

Corollary 6.37. The Gallois correspondence induces a lattice isomorphism between the lat-
tice of intermediate fields of a Galois extension L/F and the dual of the lattice of subgroups
of Gal(L/F ).

This is just a fancy way to rephrase the fact that intermediate fields correspond to
subgroups in an order-reversing bijection.
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Example 6.38. Let L be the splitting field of x4 − 2 over Q. Let us use the Fundamental
Theorem of Galois Theory to list all intermediate fields for L/Q and to determine which are
Galois over Q. By Example 6.14, we know G := Gal(L/Q) corresponds to the 8 element
subgroup of S4 generated by σ = (2 4) and τ = (1 2 3 4), where we number the roots of x4−2
as

α1 =
4
√

2, α2 = iα1, α3 = −α1, α4 = −iα1.

We saw in Example 6.14 that this group is isomorphic to D8, and we can make this isomor-
phism explicit by labeling the four corners of a square 1, 2, 3, 4 counterclockwise, so that τ
is rotation by 90 degrees and σ is reflection about the line joining vertices 1 and 3.

The subgroup lattice and intermediate field lattice are represented below, with normal
subgroups and Galois extensions highlighted by boxes. The subgroups are

{e} G = 〈(2 4), (1 2 3 4)〉
H1 = 〈(2 4)〉 H5 = 〈(1 3)(2 4)〉
H2 = 〈(1 3)〉 H6 = 〈(1 2 3 4)〉
H3 = 〈(1 2)(3 4)〉 H7 = 〈(1 3), (2 4)〉
H4 = 〈(1 4)(2 3)〉 H8 = 〈(1 2)(3 4), (1 4)(2 3)〉

and the lattices are of subgroups of G and intermediate fields of Q ⊆ Q(α1, i) are

{e}

H1 H2 H3 H4 H5

H7 H8 H6

G

Q(α1, i)

E1 E2 E3 E4 E5

E7 E8 E6

Q

The intermediate fields are the fixed subfields of L associated to each of these subgroups.
The group G corresponds to Q and e corresponds to L = Q(α1, i). Set Ei = LHi .

The field E1 has degree 4 = [G : H1] over Q. Since α1 and α3 belong to E1 and
[Q(α1) : Q] = 4, we must have E1 = Q(α1). Likewise, E2 = Q(α2).

The field E3 also has degree 4 over Q. Let

β := α1 + α2 = (1 + i)
4
√

2 ∈ E3.

If [Q(β) : Q] = 2, then β would be fixed by a subgroup of index 2 that contains (1 2)(3 4),
and the only possibility is H8. But (1 4)(2 3) sends β to α4 +α3 = −β 6= β. So we must have
[Q(β) : Q] = 4 and hence E3 = Q(β). We claim that E4 = Q((1− i)α1), E5 = Q(

√
2, i), and

E7 = Q(
√

2), and leave it as an exercise.
The field E6 has degree [G : H6] = 2 over Q, and so we merely need to find a single

nonrational element of L fixed by τ . Since τ(i) = i, we get E6 = Q(i). Similarly, the field



97

E8 also has degree 2 over Q and so we just need to find a single nonrational element fixed
by the two generators of H8. Note that

α1α2 = α3α4 = i
√

2,

and so i
√

2 is fixed by both (1 2)(3 4) and (1 4)(2 3). Thus E8 = Q(i
√

2).
Finally, we note that G, {e}, H5, H6, H7, H8 are normal subgroups of D8, since H5 is the

center of D8 and each of H6, H7, and H8 has index two. Some messy checking reveals
these to be the only normal subgroups of G. It follows from the Fundamental Theorem that
Q, L, E5, E6, E7, E8 are the only intermediate fields that are Galois over Q.

As an example, to see directly that E3 is not Galois over Q, note that (1 + i) 4
√

2 is a root
of x4 + 4, which is irreducible; but (1 − i) 4

√
2 is also a root of this polynomial and it is not

in E3.

Remark 6.39. Let F ⊆ L be a Galois extension and consider an intermediate field E such
that E/F is Galois, with corresponding normal subgroup N := Gal(E/F )�Gal(L/F ). Part
(d) of the Fundamental Theorem says there is an isomorphism Gal(E/F ) ∼= Gal(L/F )/N .
In fact, the proof shows that the map

φ : G // Gal(E/F )

σ � // φ(σ) = σ|E.

is surjective. This says that every τ ∈ Gal(E/F ) can be lifted to some σ ∈ Gal(L/F ), so
that τ = σ|E.

Notice that while the proof shows that for every τ ∈ Gal(E/F ) there exists σ ∈ Gal(L/F )
such that τ = σ|E, the proof is very much nonconstructive. In specific examples, one can
sometimes determine σ explicitly by using some of the other tricks we have discussed.

6.4 Solvable polynomials and solvable groups

Galois’ theory has many fun applications. There are some famous questions in geometry
whose impossibility is shown via Galois theory methods:

• Trisecting an angle: is it possible to trisect any given angle using only a compass and
a straightedge?

• Doubling the cube: using only a compass and straightedge, and given a cube, is it
possible to construct a cube whose volume is exactly twice the volume of the original
cube?

• Squaring the circle: Using only a compass and straightedge, is it possible to construct
a square with the same area of a given circle?

All these challenges turn out to be impossible, which one can show using Galois theory.
Unfortunately, we will not be proving these here. Instead, we will focus on another famous
classical question which is behind the origins of Galois theory:
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Question 6.40. Does there exist a formula for the roots of a polynomial of of degree n with
rational coefficients using only addition, subtraction, multiplication, division, and taking
radicals?

The formulas for the roots of polynomials of degree 2, 3, and 4 have been known for
hundreds of years, and they involve only sums, products, quotients, and square roots, cube
roots, and fourth roots. It turns out that there are polynomials for which no such formula
exists; in fact, there is no general formula for polynomials of degree 5.

The first ingredient we need is to better understand the process of taking roots. With
that in mind, we will now discuss the Galois groups of the splitting fields of polynomials of
the form xn−a. These calculations will be used to prove what Galois himself sort of proved:
if the roots of a polynomial can be expressed using iterated radicals, then the Galois group
of its splitting field must be a solvable group.

Definition 6.41. A primitive nth root of unity over an arbitrary field F is an element ζ
in the splitting field K of xn− 1 over F (or in the algebraic closure F ) such that ζ generates
the (multiplicative) subgroup of K:

µn(K) := {α ∈ K | αn = 1} ≤ (K×, ·).

Exercise 19. Show that for every field K, every finite subgroup of K× is cyclic.

Remark 6.42. In particular, the subgroup µn(K) of K× of roots of xn−1 is a cyclic group.
As a consequence, a primitive nth root of unity always exists.

Remark 6.43. Let F be any field and let K be the splitting field of xn − 1 over F . Note
that if ζ is a generator of µn(K), then in particular F (ζ) ⊆ K contains all the roots of xn−1,
and thus F (ζ) must be the splitting field of xn − 1.

Note also that µn(K) is a cyclic group of finite order, say µn(K) ∼= Z/d. Moreover, ζ is
a generator of µn(K). By a result from Math 817, the complete list of primitive nth roots
of unity is

ζ i such that gcd(i, d) = 1.

Example 6.44. When F = Q, the element e2πi/n ∈ Q is a primitive nth root of unity.
Moreover, the primitive nth roots of unity over Q are precisely the elements of the form
e2πij/n with for any j with gcd(n, j) = 1.

Remark 6.45. Note that if char(F ) - n, the polynomial xn − 1 ∈ F [x] is separable by
Lemma 5.90, since its derivative is nxn−1 6= 0 and hence gcd(nxn−1, xn − 1) = 1. In this
case, |µn(K)| = n and so

µn(K) = {1, ζ, ζ2, . . . , ζn−1}.
However, if char(F ) | n then µn(K) can have fewer than n elements. For example, if F is
any field of characteristic 2, the polynomial x2 − 1 = (x− 1)2 has a unique root over F : the
unique second root of unity is 1.

Theorem 6.46. Let F be a field and n a positive integer with char(F ) - n, and let ζ ∈ F
be a primitive nth root of unity. The extension F ⊆ F (ζ) is Galois and Gal(F (ζ)/F ) is
isomorphic to a subgroup of (Z/n)×. In particular, Gal(F (ζ)/F ) is an abelian group.
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Proof. By Remark 6.45, F (ζ) is the splitting field of xn − 1 over F . As observed above, the
polynomial xn − 1 is separable, and thus F (ζ)/F is Galois by Corollary 6.28.

Given any σ ∈ Gal(F (ζ)/F ), by Lemma 6.10 σ(ζ) is also an nth root of unity. One can
check this explicitly by noting that

σ(ζ)n = σ(ζn) = σ(1) = 1.

Moreover, we claim that σ(ζ) must also be a primitive nth root of unity. Notice that
since 1, ζ, ζ2, . . . , ζn−1 are distinct, then the elements 1, σ(ζ), σ(ζ)2, . . . , σ(ζ)n−1 must also be
disctinct, since σ(ζ l) = σ(ζ)l for all l.

This proves that σ(ζ) = ζj for an integer j (unique modulo n) such that gcd(j, n) = 1.
Thus we have a well-defined function

Φ: Gal(F (ζ)/F ) // (Z/n)×

σ // Φ(σ) = j where σ(ζ) = ζj.

Given any other τ ∈ Gal(F (ζ)/F ), let τ(ζ) = ζ i. Then

(τ ◦ σ)(ζ) = τ(ζj) = τ(ζ)j = ζ ij.

This proves that Φ(τ ◦ σ) = Φ(τ) · Φ(σ), so Φ is a group homomorphism.
If Φ(σ) = 1, then σ fixes ζ and hence must be the trivial automorphism. This shows that

Φ is injective.

Corollary 6.47. For any n > 1, Gal(Q(e2πi/n)/Q) ∼= (Z/n)×.

Sketch of proof. Consider the injective group homomorphism

Φ: Gal(F (ζ)/F ) // (Z/n)×

σ // Φ(σ) = j where j satisfies σ(ζ) = ζj.

we constructed in the proof of Theorem 6.46. We claim that Φ is an isomorphism.
To show that homomorphism must be surjective, one shows that the degree of the

minimal polynomial of e2πi/n is precisely the number of elements of (Z/n)×, and thus
|Gal(Q(e2πi/n/Q)| = |(Z/n)×|. We skip this detail.

We now cover the Galois groups of polynomials of the form xn − a in the case where the
base field contains all the nth roots of unity.

Theorem 6.48. Let F be a field, a ∈ F , and consider a positive integer n such that F
contains a primitive nth root of unity and char(F ) - n. Let L be the splitting field of xn − a
over F . Then L/F is Galois and Gal(L/F ) is isomorphic to a subgroup of Z/n, and hence
it is cyclic.

Proof. If a = 0, then L = F and Gal(L/F ) is the trivial group, so the result is trivially true.
If a 6= 0, then

gcd(xn − a, nxn−1) = 1,
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and hence xn − a is separable by Lemma 5.90. By Corollary 6.28, we conclude that F ⊆ L
is Galois.

Let α be a root of xn − a in L, and let ζ ∈ F be a primitive nth root of unity. Then
the roots of xn − a are ζjα for j = 0, . . . , n − 1, and L = F (α). Also, the elements ζjα for
j = 0, . . . , n − 1 are all distinct, and thus for each σ ∈ Gal(L/F ) we have σ(α) = ζjα with
j well-defined modulo n. Define

Φ: Gal(L/F ) // Z/n

σ // Φ(σ) = j where σ(α) = ζjα.

Notice that such integer j is unique module n. Let τ(α) = ζ iα. Note that ζ ∈ F and hence
that it is fixed by τ . Then

(τ ◦ σ)(α) = τ(ζjα) = ζjζ iα = ζj+iα,

so Ψ is a group homomorphism. It is injective since Ψ(σ) = 0 implies that σ(α) = ζ0α = α,
so σ fixes α and hence all of L.

We are interested in understanding when we can write a formula for all the roots of a
given polynomial using only the usual elementary operations and radicals. We formalize this
idea as follows:

Definition 6.49. For a field F of characteristic 0, we say f ∈ F [x] is solvable by radicals
over F if there exists a finite chain of field extensions

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fm

such that f splits completely in Fm, and for each i the field extension Fi ⊆ Fi+1 is the
splitting field of an polynomial of the form xni − ai for some positive integer ni and some
element ai ∈ Fi.

Note that ai = 1 is allowed here, so that some of the steps may involve adjoining nth
roots of unity. Roughly speaking, f is solvable by radicals if each of its roots can be written
by an expression involving sums, products, and iterated nth roots of elements of F . Granted,
such an expression may perhaps be extremely complicated.

Example 6.50. The polynomial f = ax2 + bx+ c ∈ Q[x] is solvable by radicals over Q since
its roots are

−b±
√
b2 − 4ca

2a
.

Explicitly, take F1 to be the splitting field of x2 − (b2 − 4ac); indeed, f splits completely in
F1.

Example 6.51. The polynomial f = x4 + bx2 + c ∈ Q[x] is solvable by radicals over Q since
its roots are

±

√
−b±

√
b2 − 4c

2
.
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Explicitly, we could set F1 to be the splitting field of x2 − (b2 − 4c) over Q, F2 to be the

splitting field of x2−
(
−b+
√
b2−4c

2

)
over F1, and F3 to be the splitting field of x2−

(
−b−
√
b2−4c

2

)
over F2. It’s not clear if F3 = F2 or F3 ( F2, but either way the tower given shows that f is
solvable by radicals.

The notion of solvable polynomial has a group theoretic counterpart.

Definition 6.52. A group G is solvable if there is a sequence of subgroups

{e} = N0 �N1 � . . .�Nk = G

such that for all 0 6 i 6 k − 1 we have Ni �Ni+1 ≤ G and the quotient groups Ni+1/Ni are
abelian.

Example 6.53. One can show that every group G with |G| < 60 is solvable.

Remark 6.54. Suppose that G is a finite simple group. Recall that this means that G has
no nontrivial normal subgroups. Then the only sequence of normal subgroups of G is

{e}�G,

and thus G is solvable if and only if G is abelian. But the only simple abelian groups are
Z/(p) for p a prime, so G ∼= Z/(p) for some prime p.

Example 6.55. The groups A5 and S5 are not solvable. To see why, recall that A5 is a
finite simple group and it is not abelian, and thus by Remark 6.54 we conclude that A5 is
not solvable. As for S5, its only nontrivial normal subgroup is A5, but both A5 and S5 are
not abelian, so S5 is not solvable.

Example 6.56. We claim that the group S4 is solvable. To see that, consider the subgroup

V = {e, (12)(34), (14)(23), (13)(24)}

and the following sequence of subgroups:

{e}� V � A4 � S4.

Since V has order 4 and any group of order 4 is abelian, then V is abelian. In fact, one can
show that V ∼= Z/2×Z/2. Moreover, the quotients S4/A4 and A4/V have order 2, and thus
are abelian.

It turns out that there is a close relationship between solvable groups and solvable poly-
nomials. In what follows, char(F ) = 0 is not a necessary assumption, but we included it to
make both the statement and the proof simpler.

Theorem 6.57. Assume F is a field of characteristic 0. If f ∈ F [x] is solvable by radicals,
then the Galois group of the splitting field of f ∈ F [x] is a solvable group.
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Sketch of proof. For a suitable n, we may assume there is a tower

F = F0 ⊆ F1 ⊆ · · · ⊆ Fm

such that

• The splitting field L of f satisfies L ⊆ Fm.

• The splitting field of xn − 1 over F is F1.

• For each i > 1, Fi+1 is the splitting field of xdi − ai ∈ Fi[x], where ai ∈ Fi and di | n.

Note that di | n means that Fi contains all the dith roots of 1, and thus Theorem 6.48
applies to the extension Fi+1/Fi for each i > 1.

It turns out that there is an extension E such that

F = F0 ⊆ F1 ⊆ · · · ⊆ Fm ⊆ E

and E/F is Galois with a chain of normal subgroup inclusions

Gal(E/Fm) � Gal(E/Fm−1) � Gal(E/Fm−2) � · · ·� Gal(E/F1) � Gal(E/F ).

The key point is that by Theorem 6.46 and Theorem 6.48, the groups

Gal(Fi+1/Fi) ∼= Gal(E/Fi)/Gal(E/Fi+1) for i = 0, . . . ,m− 1

are all abelian. These properties imply that Gal(E/F ) is a solvable group, and in turn this
implies that Gal(L/F ) is solvable.

In characteristic 0, the converse of Theorem 6.57 is also true: if the Galois group of f is
solvable, then f is solvable by radicals.

Theorem 6.58. Every polynomial f ∈ Q[x] of degree at most 4 is solvable by radicals.

The main point is that if L is the splitting field of a polynomial of degree at most 4, then
Gal(L/Q) � S4, and that every subgroup of S4 is solvable. Indeed, formulas for the roots of
polynomials of degree 2, 3, and 4 have been known for hundreds of years, and they involve
only sums, products, quotients, and square roots, cube roots, and fourth roots.

We can now prove a theorem that has fascinated mathematicians and nonmathematicians
alike for many centuries: the fact that the general quintic cannot be solved. More precisely,
there is no formula involving only radicals, sums, and products for the zeroes of a general
polynomial of degree 5 with rational coefficients. The key point turns out to lie in group
theory: S5 is not a solvable group, and there are polynomials f ∈ Q[x] of degree 5 such that
the Galois group of the splitting field of f over Q is S5.

Theorem 6.59. If f ∈ Q[x] is any degree 5 irreducible polynomial with exactly 3 real roots,
then f is not solvable by radicals.
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Proof. Let L be the splitting field of f . By Theorem 6.57, it suffices to prove Gal(L/Q) is
not a solvable group. In fact, we show it is isomorphic to S5.

Let α1, α2, α3 be the three real roots of f and let α4, α5 the two complex ones. Note that
α4 = α5. Using this ordering of the roots, we identify Gal(L/Q) as a subgroup of S5, and
will identify an element of Gal(L/Q) sending αi to αj with a permutation sending i to j.

Let σ denote complex conjugation. Note that σ ∈ Gal(L/Q), since σ preserves Q and
α1, α2, and α3, and it switches α2 and α3. This element of Gal(L/Q) corresponds to the
transposition (4, 5) ∈ S5.

Since [Q(α1) : Q] = 5, by the Degree Formula 5 | [L : Q]. But the extension is Galois, so
5 | |Gal(L/Q)|. Since 5 is prime, there is an element τ ∈ Gal(L/K) of order 5 by Cauchy’s
Theorem. Such an element is necessarily a 5-cycle. The result follows since any 5-cycle and
any transposition necessarily generate all of S5 (exercise).

Finally, we claim that S5 is not solvable. First, S5 is not abelian, so the series

H0 = {e} ≤ S5

does not work since the unique quotient is not abelian. Moreover, as proven in Math 817,
the only nontrivial normal subgroup of S5 is A5 and A5 has no nontrivial normal subgroups.
Hence the only possible composition series for S5 would be

H0 = {e} ≤ A5 ≤ S5,

but in this series the quotient A5/{e} ∼= A5 is not abelian.

Example 6.60. The polynomial f(x) = x5 − 4x + 2 is not solvable by radicals over Q.
One can show it is irreducible in Q[x] by the usual combination of Eisenstein’s Criterion
and Gauss’ Lemma. Moreover, we claim that this polynomial has exactly 3 distinct real
roots. Unfortunately, we cannot show this directly by presenting such roots, exactly because
f is not solvable by radicals. One could check this informally by graphing f and checking
that indeed it crosses the x-axis three times, and noting that all irreducible polynomials
over a field of characteristic zero (thus perfect) are separable. If we wanted to check this
more carefully, we could use some elementary calculus: f ′(x) = 5x4 − 4 has precisely two
roots and changes signs at these roots. It follows that f must have exactly 3 real roots. By
Theorem 6.59, f is not solvable by radicals.

However, there are irreducible polynomials of degree 5 that are solvable by radicals.

Example 6.61. The polynomial x5 − 1 ∈ Q[x] is solvable by radicals; indeed, its roots are
all 5th roots of unity over Q.

We can check this using Galois Theory. By Corollary 6.47, the splitting field L of x5 − 1
over Q satisfies Gal(L/Q) ∼= (Z/5)×. In particular, Gal(L/Q) is abelian and thus solvable.

More details on the other applications of Galois Theory we mentioned in the beginning
of this section can often be found in any standard book on the subject.
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6.5 The primitive element theorem

Let F ⊆ L be a field extension. Recall that an element θ so that L = F (θ) is called a
primitive element for the a simple extension F ⊆ L.

Lemma 6.62. If L/F is a finite extension with F infinite, then L = F (θ) if and only if
there are only finitely many subfields of L containing F .

Proof. First we show if there are only finitely many subfields of L containing F then L is
simple. It’s sufficient to show F (α, β) is simple for any α, β ∈ L and then the statement
about L will follow by induction on the dimension of L. Consider the intermediate fields
Ec = F (α + cβ) for c ∈ F . Since there are only finitely many intermediate subfields, but
infinitely many c ∈ F we have

F (α + cβ) = F (α + c′β) =: E for some c 6= c′.

Then
α + cβ − (α + c′β) = (c− c′)β ∈ E,

so β ∈ E and similarly α ∈ E, thus E = F (α + cβ) = F (α, β).
For the converse, suppose L = F (θ) is simple and let f = mθ,F . Let E be an intermediate

field and g(x) = mθ,E. Then g | f in E[x], so g is an irreducible factor of f . Consider E ′

to be the field obtained by adjoining the coefficients of g to F . Since g = mθ,E = mθ,E′ , we
have

[F (θ) : E] = [F (θ) : E ′] = deg(g).

Since E ′ ⊆ E, the Degree Formula gives E = E ′. So all intermediate fields are generated by
the coefficients of the irreducible factors of f .

Definition 6.63. Let L/F be a finite separable extension. The Galois closure of L over F
is the smallest (with respect to containment) Galois extension of F containing L, meaning

LGal =
⋂

F⊆K Galois
F⊆L⊆K

K.

Remark 6.64. We should check that every finite field extension has a Galois closure. For
example, one can pick a basis {β1, . . . , βn} for L over F and take K to be the splitting field of
the product of the minimal polynomials of β1, . . . , βn. Then L ⊆ K will be the splitting field
of a separable polynomial, hence Galois. This shows that the set indexing the intersection
above is not empty, so the Galois closure exists as defined.

Theorem 6.65 (Primitive Element Theorem). If F ⊆ L is a finite and separable extension,
then L is simple over F , meaning L = F (θ) for some θ ∈ L.

Proof. If F is a finite field then so is L. Since L is finite, then (L×, ·) is a cyclic group by a
homework problem. Let θ be a generator for this multiplicative group. Then L = F (θ).

Now suppose F is infinite. Let K be the Galois closure of L over F . Then G = Gal(K/F )
is finite and has finitely many subgroups, thus by the Galois correspondence there are finitely
many subfields of K, hence also of L, containing F . By Lemma 6.62 it follows that F ⊆ L
is simple.
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Corollary 6.66. If F ⊆ L is a finite extension with F perfect, then L = F (θ) for some θ ∈ L.

Proof. By definition, if F is a perfect field then every finite extension of F is separable.
By the Primitive Element Theorem, F is simple over F . Also, recall that every field of
characteristic zero is perfect, by Corollary 5.94.

In particular, if L/F is a finite extension of fields of characteristic zero, then L is simple
over F . The most important special case of this, or at least the one we keep encountering,
is that every finite extension of Q is simple over Q. On the other hand, our proof of the
Primitive Element Theorem is not constructive, and it doesn’t tell us how to find a primitive
element for a given finite extension. We saw in Example 5.21 that Q(

√
2,
√

3) = Q(
√

2+
√

3);
nevertheless, it is not always true that Q(α, β) = Q(α + β), as we saw in Example 5.77.

Theorem 6.67. Every finite Galois extension is simple.

Proof. Let F ⊆ L be a Galois extension. By Corollary 6.26, for every α ∈ L the minimal
polynomial mα,F is separable, so F ⊆ L is separable. By the Primitive Element Theorem, L
is simple over F .

For extensions of perfect fields of characteristic zero, this is just a very special case
of Corollary 6.66. In this case, we can also prove that the extension is simple directly
from Lemma 6.62: if F ⊆ L is Galois, then Gal(L/F ) is finite, and thus it has finitely
many subgroups, which by the Galois correspondence says that F ⊆ L has finitely many
intermediate fields. By Lemma 6.62, this implies that F ⊆ L is simple.

To construct an example of a finite field extension that is not simple, we need an infinite
field of prime characteristic that is not perfect.

Example 6.68. Let L = Z/p(s, t) be the fraction field of the polynomial ring in two variables
Z/p[s, t], and consider the subfield K = Z/p(s, t). We claim that this is a finite extension
that is not simple. First, note that

{sitj | 0 6 i, j 6 p− 1}
is a basis for L over K, so [L : K] = p2. Now let α ∈ L, meaning a rational function

α =
f(s, t)

g(s, t)

for some polynomials f, g ∈ Z/p[s, t]. For any a ∈ Z/p we have ap = a by Fermat’s Little
Theorem, so by the Freshman’s Dream we have f(s, t)p = f(sp, tp) and g(s, t)p = g(sp, tp).
Therefore,

αp =
f(s, t)p

g(s, t)p
=
f(sp, tp)

g(sp, tp)
∈ K.

Thus xp − αp ∈ K[x], and since α is a root of this polynomial we conclude that

[K(α) : K] 6 deg(xp − αp) = p.

Thus K(α) 6= L for all α ∈ L.

However, not every finite separable extension is Galois.

Example 6.69. We showed in Example 6.17 that Q ⊆ Q( 3
√

2) is not Galois. However, the
minimal polynomial of 3

√
2 over Q is x3 − 2, which is separable, and thus by Exercise 15 the

extension Q ⊆ Q( 3
√

2) is separable.
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6.6 The proof of Artin’s Theorem

We now embark on a proof of Artin’s Theorem. A key ingredient is the “linear independence
of characters”, which is useful in other contexts as well, such as representation theory.

Definition 6.70. For a group G and field F , a character of G with values in F is a group
homomorphism of the form

χ : G→ F×.

Example 6.71.

1) If G = Cn, cyclic of order n, with generator x, then the UMP for cyclic groups says
there is a unique group homomorphism G→ C× sending x 7→ ζn, and hence xi 7→ ζ in.
This is an example of a character.

2) If K and F are two fields and φ : K → F is a field map, then φ restricts to a character
φ′ : K× → F×.

Note that the set Fun(G,F ) of all functions from G to F is an F -vector space and that
the characters f G are elements of this vector space. Therefore it makes sense to talk about
linear independence for sets of characters. A point to observe here is that arbitrary linear
combinations

∑
i liχi are not, in general, group homomorphisms.

Definition 6.72. For G and F and characters χ1, . . . , χn, we say these characters are linear
independent if whenever

∑n
i=1 liχi = 0 (the constant map 0), we must have li = 0 for all i.

Making this even more explicit: χ1, . . . , χn, are linear independent if given li ∈ F such that∑n
i=1 liχi(g) = 0 for all g ∈ G, we must have li = 0 for all i.

Theorem 6.73 (Linear Independence of Characters). Let G be a group, F be a field, and let
χj : G→ F× for j = 1, . . . ,m be a finite list of distinct characters, meaning that for all i 6= j
we have χi(g) 6= χj(g) for at least one g ∈ G. Then χ1, . . . , χm are linearly independent.

The Theorem is sort of a Sophomore’s dream, since it is saying that if a list of a certain
sort of vectors in a certain vector space has no repetitions, then the vectors are linearly
independent.

Proof. We proceed by induction on m.
Base case: When m = 1, since χ1(g) 6= 0 for all g then l1χ1 = 0 iff l1 = 0.
Induction Step: Suppose m > 1 and that

∑m
i=1 liχi(g) = 0 for all g ∈ G for some li ∈ F .

Suppose
m∑
i=1

liχi = 0. (6.6.1)

Evaluating (6.6.1) at hg for g, h ∈ G and using that χi are group homomorphisms gives

0 =
m∑
i=1

liχi(hg) =
m∑
i=1

liχi(h)χi(g) for all g, h ∈ G. (6.6.2)
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Multiplying (6.6.1) by χ1(h) gives

0 = χ1(h)

(
m∑
i=1

liχi(g)

)
for all g, h ∈ G. (6.6.3)

Subtracting (6.6.2) from (6.6.3) we get we get

0 = χ1(h)

(
m∑
i=1

liχi(g)

)
−

m∑
i=1

liχi(h)χi(g) =
m∑
i=2

(χ1(h)li − χi(h)li)χi(g) for all g, h ∈ G.

Fixing h, the equation above gives a linear dependence between χ2, . . . , χm. Using the
induction hypothesis we conclude that

χ1(h)li − χi(h)li = 0 for all h ∈ G

for all i, including i = m. Since χ1(h) 6= χm(h), we get lm = 0, and hence (6.6.1) reduces to

m−1∑
i=1

liχi(g) = 0, for all g ∈ G.

Using the induction hypothesis again it follows that li = 0 for all i.

Example 6.74. Let G = Cn, generated by x, and define

χj : G // C

x � // χj(x) = ζjn = e2πj/n

for j = 0, . . . , n − 1 by χi(x) = ζjn = e2πj/i. These are distinct, and hence by Theorem 6.73
they must be linearly independent.

We now restate Artin’s theorem:

Theorem (Artin’s Theorem). Let L be any field and G any finite subgroup of Aut(L). Then
LG is a subfield of L, L/LG is a finite Galois extension and Gal(L/LG) = G.

Proof of Artin’s Theorem. Let G be a finite subgroup of Aut(L) for a field L. In Exercise 18,
we left proving that LG is a subfield of L as an exercise. We will prove the remaining
statements. We need to prove L/LG is a finite extension and that [L : LG] = |Aut(L/LG)|.

We start by showing that it suffices to show that [L : LG] = |G|. If [L : LG] = |G|
does indeed hold, then in particular L/LG is a finite extension. By Theorem Theorem 6.15,
since LG ⊆ L is finite then |Aut(L/LG)| 6 [L : LG]. Since [L : LG] = |G|, then we obtain
|Aut(L/LG)| 6 |G|.

On the other hand, any element in G fixes LG by definition, so G ≤ Aut(L/LG). But
|Aut(L/LG)| 6 |G| and these are both finite groups, so G = Aut(L/LG). From the inequality
before we now conclude that |Aut(L/LG)| = [L : LG], and thus the extension is Galois.
Finally, this gives Gal(L/LG) = Aut(L/LG) = G.
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It remains to prove that [L : LG] = |G|. Let n = |G| and G = {σ1, . . . , σn} with σ1 = idL.
By Theorem 6.15, we know that [L : LG] > n. We want to show that equality holds. If
[L : LG] > n, then we can find n + 1 many LG-linearly independent elements ω1, . . . , ωn+1

in L. Consider the system of n equations with n+ 1 unknowns
σ1(ω1)x1 + · · ·+ σ1(ωn+1)xn+1 = 0
σ2(ω1)x1 + · · ·+ σ2(ωn+1)xn+1 = 0

...
σn(ω1)x1 + · · ·+ σn(ωn+1)xn+1 = 0.

Since there are fewer equations than unknowns, this system has a nontrivial solution. Among
these, choose the solution that has the least number r of nonzero components; by reordering
the ωi we may assume this solution has the form (a1, . . . , ar, 0, . . . , 0) with ai 6= 0 for all i.
By scaling, we may assume ar = 1. Since σ1 = idG, the first equation says that

a1ω1 + · · ·+ ar−1ωr−1 + ωr = 0.

If all the ai belong to LG then this equation of linear dependence would contradict the linear
independence of ω1, . . . , ωn+1. Thus ai /∈ LG for some i. Reordering again, we may assume
a1 /∈ LG. Since ar = 1, note in particular that this shows r > 1. We thus have

σ1(ω1)a1 + · · ·+ σ1(ωr−1)ar−1 + σ1(ωr) = 0
σ2(ω1)a1 + · · ·+ σ2(ωr−1)ar−1 + σ2(ωr) = 0

...
σn(ω1)a1 + · · ·+ σn(ωr−1)ar−1 + σn(ωr) = 0

Now, since a1 /∈ LG, there is a k with σk(a1) 6= a1. Apply σk to the jth row to obtain

σkσj(ω1)σk(a1) + · · ·+ σkσj(ωr−1)σk(ar−1) + σkσj(ωr) = 0

Since G is a group, as j ranges over all possibilities, σkσj ranges over all elements of G. Thus

σi(ω1)σk(a1) + · · ·+ σi(ωn)σk(ar−1) + σi(ωr) = 0 for all 1 6 i 6 n.

For each i, subtracting this equation from the ith equation in the previous system yields

σi(ω1)(a1 − σk(a1)) + · · ·+ σi(ωr−1)(ar−1 − σk(a1)) = 0 for all 1 6 i 6 n.

Since a1− σk(a1) 6= 0, this is a nontrivial solution to original system of equations with fewer
than r nonzero components, which is a contradiction.
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