The Galois correspondence

Theorem 1 (Fundamental Theorem of Galois Theory). Let L/F be a Galois extension. There is a bijection

$$\{\text{intermediate fields }E, \text{ with } F\subseteq E\subseteq L\} \xleftarrow{\Psi} \{\text{subgroups }H \text{ of } \mathrm{Gal}(L/F)\}$$

$$E \longmapsto \Psi(E) = \mathrm{Gal}(L/E)$$

$$\Psi^{-1}(H) = L^H \xleftarrow{H}.$$

The inverse of Ψ sends any $H \leq \operatorname{Gal}(L/F)$ to $\Psi^{-1}(H) = L^H$. Moreover, this bijective correspondence enjoys the following properties:

- (a) Ψ and Ψ^{-1} each reverse the order of inclusion.
- (b) Ψ and Ψ^{-1} convert between degrees of extensions and indices of subgroups:

$$[\operatorname{Gal}(L/F):H] = [L^H:F] \quad \Longleftrightarrow \quad [\operatorname{Gal}(L/F):\operatorname{Gal}(L/E)] = [E:F].$$

- (c) Normal subgroups correspond to intermediate fields that are Galois over F:
 - If $N \subseteq G$ then L^N/F is Galois.
 - If E/F is Galois, then $\operatorname{Gal}(L/E)$ is a normal subgroup of $\operatorname{Gal}(L/F)$.
- (d) If $E = L^N$ for a normal subgroup $N \subseteq \operatorname{Gal}(L/F)$, then $\operatorname{Gal}(E/F) \cong \operatorname{Gal}(L/F)/N$.
- (e) If H_1, H_2 are subgroups of G with fixed subfields $E_1 = L^{H_1}$ and $E_2 = L^{H_2}$, then
 - $E_1 \cap E_2 = L^{\langle H_1, H_2 \rangle}$ and $Gal(L/E_1 \cap E_2) = \langle H_1, H_2 \rangle$.
 - $E_1E_2 = L^{H_1 \cap H_2}$ and $Gal(L/E_1E_2) = H_1 \cap H_2$.

Here is the Fundamental Theorem of Galois Theory in action:

$$L:= \text{splitting field of } x^4-2 \text{ over } \mathbb{Q}.$$
 Roots of $f\colon \alpha_1=\sqrt[4]{2}, \quad \alpha_2=i\alpha_1, \quad \alpha_3=-\alpha_1, \quad \alpha_4=-i\alpha_1. \implies \operatorname{Gal}(L/\mathbb{Q}) \leq S_4$
$$f \text{ is separable } \Longrightarrow \mathbb{Q} \subseteq L \text{ is Galois}$$

$$G=\operatorname{Gal}(L/\mathbb{Q})=\langle (2\,4), (1\,2\,3\,4) \rangle.$$

 $G \cong D_8$ via $(2\,4) \mapsto \sigma$ reflection, $(1\,2\,3\,4) \mapsto \tau$ clockwise rotation by 90°

Subgroups of G:

Lattices of subgroups of G and intermediate fields of $\mathbb{Q} \subseteq L$:

normal subrgroups