Final Exam practice

Here is a selection of some old qualifying exam problems to practice for the final exam.

Problem 1 (January 2014). Let E be a subfield of \mathbb{C} and assume that every element of E is a root of a polynomial of degree 10 in $\mathbb{Q}[x]$. Prove that $[E: \mathbb{Q}] \leqslant 10$.

Problem 2 (January 2016). Let L be a finite Galois field extension of \mathbb{Q}. Let E and F be subfields of L such that $E F=L, E / \mathbb{Q}$ is Galois, and $E \cap F=\mathbb{Q}$. Prove that $[L: \mathbb{Q}]=[E: \mathbb{Q}][F: \mathbb{Q}]$.
Problem 3 (May 2022). Let L be the splitting field of $x^{4}-2022$ over \mathbb{Q}. Prove there exists a unique intermediate field $Q \subseteq K \subseteq L$ such that $[K: Q]=4$ and $Q \subseteq K$ is a Galois extension.
Problem 4. Let

$$
A=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
-1 & -4 & 0 \\
2 & 4 & 0
\end{array}\right) \in \mathrm{M}_{3}(\mathbb{R}) \text { and } B=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
-1 & -4 & -1 \\
2 & 4 & 0
\end{array}\right) \in \mathrm{M}_{3}(\mathbb{R})
$$

For each of the matrices A and B, determine the following:
a) Find the rational canonical form for A and B.
b) Find the Jordan canonical form for A and B, if they exist.
c) Is A diagonalizable? Is B diagonalizable?

Problem 5 (May 2017). Make \mathbb{R}^{3} into an $\mathbb{R}[x]$-module as follows: given any $f(x) \in \mathbb{R}[x]$ and any $v \in \mathbb{R}^{3}$, let $f(x) v=A v$, where

$$
A=\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & -1 \\
1 & 0 & 2
\end{array}\right]
$$

This makes \mathbb{R}^{3} into an $\mathbb{R}[x]$-module isomorphic to $\mathbb{R}[x]^{3} / \operatorname{im}\left(t_{A}\right)$, where $t_{A}: \mathbb{R}[x]^{3} \rightarrow \mathbb{R}[x]^{3}$ is given by $\varphi(v)=(I x-A) v$. It turns out that this module is cyclic; find an explicit polynomial $p(x)$ such that $\mathbb{R}^{3} \cong \mathbb{R}[x] /(p(x))$ as $\mathbb{R}[x]$-modules.
Problem 6. List all possible rational canonical forms over \mathbb{Q} and Jordan canonical forms over \mathbb{C} for 8×8 matrices with determinant 81 and minimal polynomial $(x-3)^{2}\left(x^{2}+1\right)$. Carefully justify.

Problem 7.

a) Consider the $\mathbb{Q}[x]$-module

$$
M=\frac{\mathbb{Q}[x]}{\left(x^{4}-1\right)} \oplus \frac{\mathbb{Q}[x]}{\left(x^{2}(x-1)\right)} .
$$

Let V be the vector space obtained from M by restriction of scalars along the obvious inclusion $\mathbb{Q} \subseteq \mathbb{Q}[x]$, and let $t: V \rightarrow V$ be the linear transformation given by multiplication by x. Find, with justification, the rational canonical form of t.
b) Consider the $\mathbb{C}[x]$-module

$$
N=\frac{\mathbb{C}[x]}{\left(x^{4}-1\right)} \oplus \frac{\mathbb{C}[x]}{\left(x^{2}(x-1)\right)}
$$

Let W be the vector space obtained from N by restriction of scalars along the obvious inclusion $\mathbb{C} \subseteq \mathbb{C}[x]$, and let $t: W \rightarrow W$ be the linear transformation given by multiplication by x. Find, with justification, the Jordan canonical form of t.

