Problem Set 2

Problem 1. Given two ideals I and J, the product of I and J is the ideal

$$
I J:=(f g \mid f \in I \text { and } g \in J) .
$$

a) Show that $I J \subseteq I \cap J$.
b) If I and J satisfy $I+J=R$, then $I J=I \cap J$.
c) In general, $I J \neq I \cap J$. Find an example of a ring R and ideals I and J with $I J \neq I \cap J$.

Problem 2. A prime ideal P in a ring R is a minimal prime if for every prime ideal Q in R,

$$
Q \subseteq P \Longrightarrow Q=P
$$

Show that every prime ideal in a ring R contains some minimal prime.

Let R be a ring, and M an R-module. The Nagata idealization of (R, M) is the ring $R \rtimes M$ such that

- as a set, $R \rtimes M=R \times M$;
- the addition is $(r, m)+(s, n)=(r+s, m+n)$;
- the multplication is $(r, m)(s, n)=(r s, s m+r n)$.

Then $R \rtimes M$ with the operations specified about is a ring.

Problem 3. Consider an extension of rings $A \subseteq B \subseteq C$. In this problem, we will construct an example of such an extension such that $A \subseteq C$ is module-finite, but $A \subseteq B$ is not. ${ }^{1}$
a) Can you find such an extension with A Noetherian?
b) Let R be a ring that is not Noetherian, and I an ideal that is not finitely generated. Show that ${ }^{2}$ $R \subseteq R \rtimes I \subseteq R \rtimes R$, that $R \subseteq R \rtimes R$ is module-finite, but $R \subseteq R \rtimes I$ is not.

Problem 4.

a) In Macaulay2, set up $A=\mathbb{Q}\left[s^{2}, s t, t^{2}\right]$ as a \mathbb{N}^{2}-graded ring with the grading induced by setting $s^{2}, s t, t^{2}$ as homogeneous elements of degrees

$$
\operatorname{deg}\left(s^{2}\right)=(2,0) \quad \operatorname{deg}(s t)=(1,1) \quad \operatorname{deg}\left(t^{2}\right)=(0,2)
$$

b) The ring $R=k\left[t^{3}, t^{13}, t^{42}\right]$ is a graded subring of $k[t]$ with the standard grading, meaning that the graded structure on $k[t]$ induces a grading on R. Set up R (with this grading) in Macaulay2.

[^0]Problem 5. The curve C parametrized by

$$
\left\{\left(t^{3}, t^{4}, t^{5}\right): t \in \mathbb{Q}\right\}
$$

in $\mathbb{A}_{\mathbb{Q}}^{3}$ is a variety. Use Macaulay2 to find $\mathcal{I}(C) \subseteq \mathbb{Q}[x, y, z]$. Is C irreducible?
Problem 6. Let X be the solution set of the system of equations

$$
\left\{\begin{array}{l}
y^{4}-2 x y^{2} z+x^{2} z^{2}=0 \\
x^{4} y^{3}-x^{5} y z-y^{2} z^{3}+x z^{4}=0 \\
x^{5} y^{2}-x^{6} z-y^{3} z^{2}+x y z^{3}=0 \\
x^{9}+x^{3} y^{3} z-3 x^{4} y z^{2}+z^{5}=0
\end{array}\right.
$$

over $\mathbb{Z} / 73$. Find $\mathcal{I}(X)$.
Problem 7. Show that the functions \mathcal{Z} and \mathcal{I} have the following properties:
a) If $I=(T)$ is the ideal generated by the elements of T, then $\mathcal{Z}(T)=\mathcal{Z}(I)$.
b) For any field k, we have $\mathcal{Z}(0)=\mathbb{A}_{k}^{n}$ and $\mathcal{Z}(1)=\emptyset$.
c) $\mathcal{I}(\emptyset)=(1)=K\left[x_{1}, \ldots, x_{n}\right]$ (the improper ideal).
d) $\mathcal{I}\left(\mathbb{A}_{k}^{n}\right)=(0)$ if and only if k is infinite.
e) If $I \subseteq J \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ then $\mathcal{Z}(I) \supseteq \mathcal{Z}(J)$.
f) If $S \subseteq T$ are subsets of \mathbb{A}_{k}^{n} then $\mathcal{I}(S) \supseteq \mathcal{I}(T)$.

Problem 8. In this problem, we will show that the union and intersection of varieties is a variety.
a) Given two ideals I and J in $k\left[x_{1}, \ldots, x_{d}\right], \mathcal{Z}(I) \cap \mathcal{Z}(J)=\mathcal{Z}(I+J)$.
b) Given two ideals I and J in $k\left[x_{1}, \ldots, x_{d}\right], \mathcal{Z}(I) \cup \mathcal{Z}(J)=\mathcal{Z}(I J)=\mathcal{Z}(I \cap J)$.

[^0]: ${ }^{1}$ We remarked before that such examples exist, but we didn't construct one.
 ${ }^{2}$ Note that R is a subring of $R \rtimes M$ (via the inclusion $r \mapsto(r, 0)$), and as an R-module, $R \rtimes M \cong R \oplus M$.

