Problem Set 3

Problem 1. Show that

$$V(I) = \bigcup_{P \in \operatorname{Min}(I)} V(P)$$

and conclude that

$$\sqrt{I} = \bigcap_{P \in \operatorname{Min}(I)} P$$

Problem 2. Let I and J be ideals in a ring R.

- a) Show that $\sqrt{\sqrt{I}} = \sqrt{I}$.
- b) Show that if $I \subseteq J$, then $\sqrt{I} \subseteq \sqrt{J}$.
- c) Show that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- d) Show that $\sqrt{I^n} = \sqrt{I}$ for all $n \ge 1$.
- e) Show that if P is a prime ideal, then $\sqrt{P^n} = P$ for all $n \ge 1$.

Problem 3.

- a) Show that P is a prime ideal if and only if P satisfies the following property: given ideals I and J in R, if $IJ \subseteq P$, then $I \subseteq P$ or $J \subseteq P$.
- b) Show that if P is a prime ideal and $P = I \cap J$ for some ideals I and J, then P = I or P = J.

Problem 4. Let R be a ring of characteristic p > 0. The Frobenius map on R is the map

$$\begin{array}{c} R \xrightarrow{F} R \\ r \longmapsto r^p \end{array}$$

- a) Show that the Frobenius map is a ring homomorphism.
- b) Show that the Frobenius map is module-finite if and only if it is algebra-finite.
- c) Show that the map on spectra induced by the Frobenius map is the identity map.

Problem 5. Given any subset $X \subseteq \mathbb{A}^d_{\mathbb{C}}$, show that $\mathcal{Z}(\mathcal{I}(X))$ is the closure of X in the Zariski topology.

Problem 6. Consider the inclusion map $k[xy, xz, yz] \subseteq k[x, y, z]$. Is the induced map on Spec surjective? If not, give an explicit prime not in the image.

Problem 7. Let $R = \mathbb{Q}[x, y, z]/(xy, yz)$, and let I = (xz) in R. The R-module I/I^2 is cyclic; write it explicitly as a quotient of R.

Problem 8. Let $R = \mathbb{R}[x, y]/(xy)$ and consider the ideal P = (x - 1) in R. Show that P is a maximal ideal in R, and that $R_P \cong \mathbb{R}[t]_{(t-1)}$. What does this mean geometrically?