Problem Set 4

Problem 1. Let M a Noetherian R-module.

- a) Show that every surjective R-module homomorphism $M \longrightarrow M$ is an isomorphism.
- b) Must an injective *R*-module homomorphism $M \longrightarrow M$ be an isomorphism?

Problem 2. Show that M is a Noetherian R-module if and only if M is finitely generated and R/ann M is a Noetherian ring.

Problem 3.

- a) Let (R, \mathfrak{m}) be a local domain that is not a field. Show that the fraction field of R is not a finitely generated R-module.
- b) Let I be a proper ideal in a local ring (R, \mathfrak{m}) , and M a finitely generated R-module. Show that if IM = M, then M = 0.

Problem 4. Is there an upper bound for the minimal number of generators of an ideal in k[x, y]? Here k is a field. Either prove there is an upper bound or find ideals I with arbitrarily large $\mu(I)$.

Problem 5. Show that the containment of ideals is a local property: given any ideals I and J in a ring R,

$$I \subseteq J \iff I_P \subseteq J_P$$
 for all $P \in \operatorname{Spec}(R)$.

Problem 6.

- a) Describe supp (I/I^2) , where I = (xz) in $R = \mathbb{C}[x, y, z]/(xy, yz)$.
- b) Find all the minimal primes of J = (ab, bc, cd, ad) in k[a, b, c, d] over any field k.
- c) Find the minimal primes of the ring S, where

$$S = \mathbb{Q} \begin{bmatrix} ux & uy & uz \\ vx & vy & vz \end{bmatrix} \subseteq \frac{\mathbb{Q}[u, v, x, y, z]}{(x^3 + y^3 + z^3)}.$$

d) Let I be the defining ideal of the curve parametrized by (t^{13}, t^{42}, t^{73}) over \mathbb{Q} . Find $\mu(I)$ and a minimal generating set for I.

Problem 7. Let $R = \mathbb{Q}[x, y, z]$, and $I = (x^3, x^2y, x^2z, xyz)$. Find a prime filtration of R/I and a primary decomposition of I.

Problem 8. Let R be a Noetherian ring, $x \in R$, and I be an ideal. Show that if x is not in any of the associated primes of R/I, then $(x)I = (x) \cap I$.