Problem Set 5

Problem 1. Let $R=\mathbb{Z}[\sqrt{-5}]$. While $6 \in R$ cannot be written as a unique product of irreducibles, we are going to show that the ideal $I=(6)$ does have a unique primary decomposition. Unfortunately, Macaulay 2 cannot take primary decompositions over \mathbb{Z}, but this one we can do the old fashioned way.
a) Prove that (2) is a primary ideal.
b) Prove that (3) is not a primary ideal.
c) Prove that $(3,1+\sqrt{-5})$ and $(3,1-\sqrt{-5})$ are both primary.
d) Show that $(6)=(2) \cap(3,1+\sqrt{-5}) \cap(3,1-\sqrt{-5})$.
e) Why is this primary decomposition unique?

Problem 2. Let R be a Noetherian ring. Let I be an ideal in R, and $x \in R$. The saturation of I with respect to x is the ideal

$$
\left(I: x^{\infty}\right):=\bigcup_{n=1}^{\infty}\left(I: x^{n}\right) .
$$

a) Let Q be a P-primary ideal. Show that

$$
\left(Q: x^{\infty}\right)=\left\{\begin{array}{ll}
Q & \text { if } x \notin P \\
R & \text { if } x \in P
\end{array} .\right.
$$

b) Show that $\left(I: x^{\infty}\right)=\left(I: x^{n}\right)$ for some n.
c) Show that $\left(I \cap J: x^{\infty}\right)=\left(I: x^{\infty}\right) \cap\left(J: x^{\infty}\right)$ for any ideals I and J.
d) Let $I=Q_{1} \cap \cdots \cap Q_{k}$ be a primary decomposition, and $x \in R$. Show that

$$
\left(I: x^{\infty}\right)=\bigcap_{x \notin \sqrt{Q_{i}}} Q_{i} .
$$

Problem 3. Let I be a radical ideal in a Noetherian ring R. A beautiful theorem of Brodmann says that the set

$$
\bigcup_{n \geqslant 1} \operatorname{Ass}\left(R / I^{n}\right)
$$

is finite. Show that there exists an element x such that:

- x is contained in every embedded prime of I^{n} for every n, and
- $x \notin P$ for all $P \in \operatorname{Min}(I)$.

Conclude that there exists $x \in R$ such that $I^{(n)}=\left(I^{n}: x^{\infty}\right)$ for all $n \geqslant 1$.
Problem 4. Consider s points $P_{1}=\left(a_{11}, \ldots, a_{1 d}\right), \ldots, P_{s}=\left(a_{s 1}, \ldots, a_{s d}\right)$ in \mathbb{A}^{d}, and let I be the corresponding radical ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$. Show that for all $n \geqslant 1$,

$$
I^{(n)}=\bigcap_{i=1}^{s}\left(x_{1}-a_{i 1}, \ldots, x_{d}-a_{i d}\right)^{n}
$$

Problem 5. Let R be a Noetherian ring.
a) Show that if \mathfrak{m} is any maximal ideal in R, then \mathfrak{m}^{n} is \mathfrak{m}-primary for any $n \geqslant 1$.
b) If R is a domain, then

$$
\bigcap_{n \geqslant 1} I^{n}=0 .
$$

for any proper ideal I in $R .{ }^{1}$
Problem 6. If (R, \mathfrak{m}) is a Noetherian local ring, show that M has finite length if and only if M is finitely generated and $\mathfrak{m}^{n} M=0$ for some n.

Problem 7. Let k be a field, and $R=k[a, b, c, d] /(a d-b c)$. Find prime ideals P and Q in R such that $\operatorname{ht}(P)+\operatorname{ht}(Q)<\operatorname{ht}(P+Q)$.

Problem 8.

a) Find the height of $J=(a b, b c, c d, a d)$ in $k[a, b, c, d]$ over any field k, and the dimension of $k[a, b, c, d] / J$.
b) Find the dimension of the ring S, where $S=\mathbb{Q}\left[x^{3} y^{3}, x^{3} y^{2} z, x^{2} z^{3}\right] \subseteq \mathbb{Q}[x, y, z]$.
c) Let I be the defining ideal of the curve parametrized by $\left(t^{13}, t^{42}, t^{73}\right)$ over \mathbb{Q}. Find the height of I, and notice that height $(I)<\mu(I)$.
d) Let $R=\mathbb{Q}[x, y, z]$, and $I=\left(x^{3}, x^{2} y, x^{2} z, x y z\right)$. Find the dimension of R / I and the height of I.
e) Find the dimension of the module I / I^{2}, where $I=(x z)$ in $R=\mathbb{C}[x, y, z] /(x y, y z)$.

[^0]
[^0]: ${ }^{1}$ Hint: first, do the case where I is a maximal ideal in R. Be wise, localize!

