Setup
Ring (R, t, \cdot)
(1) $(R,+)$ abelian group

- $a+(b+c)=(a+b)+c$ for all $a, b, c \in R$
- $a+b=b+a$ for all $a b \in R$
- $\exists 0 \in R \quad a+0=a$ for all $a \in R$
- for all $a \in R$ there exacts $-a \in R$ \&t $a+(-a)=0$
(2) (r, \cdot) is a commutative monord
- a. $(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in R$
- $a \cdot b=b \cdot a$ for all $a, b \in R$
- $\exists 1 \in R$ such that $1 \cdot a=a \cdot 1=a$ for all $a \in R$
(3) $a \cdot(b+c)=a \cdot b+a \cdot c$ for $a l l a b, c \in R$
(4) $1 \neq 0$

Examples

1) \mathbb{Z}
2) \mathbb{Z} / n
3) polynomial rungs $R=k\left[x_{1}, \ldots, x_{n}\right] \quad$ (k field)
4) Quotients of polynomial rungs: $\frac{k\left[x_{1}, \ldots, x_{n}\right]}{I}$
5) Power series rungs: $R=k \llbracket x_{1}, \ldots, x_{n} \rrbracket$

Elements are (formal) power sens $\sum_{a_{i} \geqslant 0} c_{a_{1}, \cdots,}, a_{n} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$
6) Polynomial rungs in infinitely many variables $k\left[x_{1}, \ldots\right]$

Rung Homomorphum $f: R \rightarrow S$ map of rungs satisfying
(1) $f(a+b)=f(a)+f(b)$
(2) $f(a b)=f(a) f(b)$
(3) $f(1)=1$

Subring $R \subseteq S$ rungs. R is a subrung of S if the operations on
R are restuctions of the operations on S, and $1_{R}=1_{S}$
Ideal $I \subseteq R$ is an ideal of the rung R if

- I is closed for + : $a+b \in I \quad a, b \in I \Rightarrow$
- I is closed for products by elements in R: R.I CI
- $I \neq \varnothing \quad(\Rightarrow 0 \in I)$

Def the ideal generated by $f_{1}, \cdots, f_{n} \in R$ is the smallest ideal of R containing f_{1}, \ldots, f_{n} :

$$
\left(f_{1}, \cdots, f_{n}\right)=\left\{r_{1} f_{1}+\cdots+x_{n} f_{n}: \quad x_{i} \in R\right\}
$$

Note Any ring has at least 2 reals: $(1)=R$ and (0).
Convention When we say ideal, we usually mean $I \neq R$
Example the reals in \mathbb{Z} ave all puncupal, so of the form (n)

Module An R-module M is an abeban group (H, \cdot) with an R-multiplication $R \times M \rightarrow M$
$(r, m) \mapsto r \cdot m=r m$ satisfying

- $r(a+b)=r a+r b$ for $a l l, r \in R, a, b \in M$
- $(r+s) a=r a+s a \quad$ for all $r, s \in R, a \in M$
- (rs) $a=r$ (sa) for all $r, s \in R, a \in M$
- $1 a=a$ for all $a \in M$

Note Far us, all modules are 2-sided (no left/rught modules)
Submodule $M \subseteq N$ modules, R-module structure on M is reduction from N
Homemaphom of R-modules $f: M \rightarrow N$ map of R-modules

- $f(a+b)=f(a)+f(b)$ for all $a, b \in M$
- $f(r b)=r f(b)$ for all $r \in R, a \in M$
$1^{\text {st }}$ Isomorphism Theorem $f: M \rightarrow N \quad R$-module homomorphusun

$$
i m f \cong M / \operatorname{ker} f
$$

Example subimodules $q R=$ ideals o R
Example $R=k$ a field $\Rightarrow R$-modules $=k$-vector spaces
R-module homomorphesuns $=$ linear maps
Wowing! vector spaces are a lot simpler than R-modules

An R-module M is generated by $\Gamma \subseteq M$ if every element in M is an R-linear combination of elements in Γ (with freely many $\neq 0$ coefficients) We abs say Γ is a generating set for M
M is finely generated if there is a free generating set far M $f g R-\bmod \equiv$ finitely generated R-module
$\Gamma \subseteq M$ is a basis for $M \mathcal{F}$

- generates M
- Sis linearly independent $\left(\sum_{i} x_{\in R} x_{i}{\underset{\epsilon}{i}}_{\gamma_{i}}^{\gamma_{i}}=0 \Rightarrow\right.$ all $\left.r_{i}=0\right)$

Moot R-modules do not have abases
A free R-module is an R-module with a basis.
In general, given a generating set $\Lambda=\left\{\lambda_{i}\right\}_{i \in I}$ for an $R-\bmod M$,

$$
\begin{aligned}
& \stackrel{\oplus R}{ } \xrightarrow{\pi} M \\
& \left(x_{i}\right)_{i \in I} \longmapsto \sum_{i} x_{i} \lambda_{i}
\end{aligned}
$$

(this wades even if M is not $f g$ the elements in $\underset{I}{\oplus}$ are tuples with only fitly many to entries
$\left\{\begin{array}{l}\text {. } \Lambda=\left\{\lambda_{i}\right\}_{i \in I} \text { generates } M \Rightarrow \pi \text { is sungective } \\ \cdot \Lambda=\left\{\lambda_{i}\right\}_{i \in I} \text { is a lineally independent } \Rightarrow \pi \text { is infective }\end{array}\right.$ M is free $\Leftrightarrow M \cong \oplus R$ some direct sum of copies of R

Hot modules are not free. Usually, er π nontrivial (even when we take a "minimal generating set", when that's a thing)

Ex $R=k[x, y] \quad M=I=\left(x^{2}, x y, y^{\alpha}\right)$ is not free $\Lambda=\left\{x^{2}, x y, y^{2}\right\}$ is a generating set, but linearly dependent

$$
\begin{gathered}
\text { eg, } y \cdot x^{2}-x \cdot x y=0 \\
R^{3} \xrightarrow{\longrightarrow} M \\
(a, b, c) \longrightarrow a x^{2}+b x y+c y^{2} \\
(y,-x, 0) \in \operatorname{ker} \pi \\
\text { (actually ken } \pi=R \cdot(y,-x, 0)+R \cdot(0, y,-x))
\end{gathered}
$$

Notherian Rings
A rung R is notherian if every ascending chain

$$
I_{0} \subseteq I_{1} \subseteq
$$

q ideals in R stablezes, meaning $I_{n}=I_{N}$ for all $n \geqslant N$ Proportion 1.2 R rung TFAE:
(1) R is noethenar
(2) Every nonempty family in ideals has a moxumal element
(3) Every ascending chain of jg ideals of R stalalizes
(4) Given any generating set s for any ideal I, I is generated by some finite subset o S
(5) Every ital in R is freely generated

Proof
(1) \Rightarrow (2) Suppose 1 is a family of ideals with no max. this means we can inducturdly construct an mine drain: $I_{0} \subset I_{1} \subset \ldots$
(2) \Rightarrow (1) Given an ascendeng chain

$$
I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq .
$$

The famely $\left\{I_{i}\right\}_{i>0}$ has a maxumal element $I_{N} \Rightarrow I_{n}=I_{N}$ fan $\geqslant N$
(1) \Rightarrow (3) ebrous
(3) \Rightarrow (4) suppose there is an idtal I and a generating set S such that no frite salbset of S generates I.
Stait with a fnite subset $S^{\prime} \subset S$. Since $\left(S^{\prime}\right) \neq I$, there exects $s_{1} \in S$ st $s \notin\left(S^{\prime}\right)$. Then
(s') $c\left(s^{\prime} \cup\left\{s_{1}\right\}\right) \neq I$, so find $s_{2} \in S_{,} s_{2} \in\left(s^{\prime} u\left\{s_{1}\right\}\right)$
\Rightarrow consruct an unfinete ascendeng clain

