Fundamental theorem of Arithmetic

For every
$$n \in \mathbb{Z}$$
 there exist primes P_i and integers $n \ge 1$ st
 $n = \pm P_1^{n_i} \cdots P_n^{n_n}$
and this product is unique up to order and signs.

Example In
$$\mathbb{Z}[\sqrt{-5}]$$
,
 $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$
are two different ways to write 6 as a product of correducides
An ideal I is primacy if
 $2y \in I \implies x \in I$ or $y \in \sqrt{I}$.
Remark $\sqrt{primacy} = prime$
I is \mathbb{P} -primacy if $\sqrt{I} = \mathbb{P}$
Examples a) Prime ideals are primary
b) In Z, the primary ideals are (0) and (p"), $n \ge 1$, prime.

c) In any UFQ, (f) is pumary
$$\Leftrightarrow f = p^n$$
, p pume
d) $R = k[x, y, z], I = (x^n, y, y^n) = (x, y)^n$ is pumary
Note $\int = pume \Rightarrow pumony$
Example $q = (x^n, xy) \subseteq R = k[x, y, z]$
 $\sqrt{q} = (x)$ but $xy \in q, x \notin q, q \notin \sqrt{q}$
 $\frac{1}{1 \exp} R$ Nottheram. TFAE:
1) q is phimaay
2) Every zerodument in R/q is nilpetent
3) Ass (R/q) is a singleton
4) q has exactly one minimal prime, and no embadded pumes.
5) $(q = p$ is prime and for all $x \in R$, $w \notin p, xw \in q \Rightarrow x \in q$
() $\sqrt{q} = p$ is prime and for all $x \in R$, $w \notin p, xw \in q \Rightarrow x \in q$
() $\sqrt{q} = p$ is prime, and $q R_p \cap R = q$
Prime (1) \Leftrightarrow (2) $y \in Z(R/q) \Leftrightarrow \exists x \notin q, x \notin q) \Leftrightarrow (y^n \in q)$
(2) \Leftrightarrow (3)
U $p = Z(R/q) \stackrel{(a)}{=} W(R/q) = \bigcap p = \bigcap p$
 $Aos(R/q)$ Happons \Leftrightarrow there is only one pume

(3)
$$\Leftrightarrow$$
 (4) duh.
(1) \Leftrightarrow (5) Rewondung of the definition, since $\sqrt{pumany} = pume$
(5) \Leftrightarrow (6) $q_{R_{p}} \cap R = \frac{1}{2} \operatorname{reg} | \operatorname{rseq} for some s \notin p^{2}$
 $q^{2} \Leftrightarrow (\operatorname{rseq} \rightarrow \pi \in q)$
Remark RNoetherian

 $V I = maximal \implies I pumary$ $\emptyset \neq A88(R/I) \subseteq Supp(R/I) = V(I) = \{m\} \implies A83(R/I) = \{m\}$ $\therefore I pumary$

Example
$$R = k[x,y,z]/(ny-z^n)$$
, k feld, $n \ge 2$
 $R = (x,z)$ in R

Note $R \xrightarrow{f} S$ sung map, Q purnony in S QAR is purnony

$$\frac{dauma}{p_{1}} = \prod_{n} \prod_{n} \prod_{k} deds$$

$$\frac{dauma}{p_{1}} = \prod_{i} \frac{deds}{p_{i}} = \prod_{i} \frac{deds}{p_{i}} = \prod_{i} \frac{deds}{p_{i}}$$
In particular, the intersection of $2 - punnary ideals is $2 - punnary$

$$\frac{Proof}{p_{1}} = 0 \rightarrow \frac{R}{1 \cap 3} \rightarrow \frac{R}{1} \oplus \frac{R}{3}$$

$$\Rightarrow A88 (R/1 \cap 3) \leq A88 (R/1) \cup A88 (R/3)$$

$$\frac{Prumary}{Promovy} = \frac{Proof}{Prumary} = \frac{Proof}{p_{1}} = \frac{Proof}{p_{1}}$$

$$\frac{Prumary}{Proof} = \frac{Proof}{p_{1}} = \frac{Proof}{p_{1}} = \frac{Proof}{p_{1}}$$

$$\frac{Prumary}{Proof} = \frac{Proof}{Proof} = \frac{Proof}{p_{1}} = \frac{Proof}{p_{1}}$$

$$\frac{Proof}{Prumary} = \frac{Proof}{Proof} = \frac{Proof}{p_{1}} = \frac{Proof}{p_{1}}$$

$$\frac{Proof}{Proof} = \frac{Proof}{p_{1}} = \frac{Proof}{p_{1}} = \frac{Proof}{p_{1}}$$

$$\frac{Proof}{Proof} = \frac{Proof}{p_{1}} = \frac{Proof}{p_{1}} = \frac{Proof}{p_{1}} = \frac{Proof}{Proof}$$

$$\frac{Proof}{Proof} = \frac{Proof}{Proof} = \frac{Proof}{Proof} = \frac{Proof}{Proof} = \frac{Proof}{Proof} = \frac{Proof}{Proof} = \frac{Proof}{Proof}$$

$$\frac{Proof}{Proof} = \frac{Proof}{Proof} = \frac{P$$$

thm (stasker, 1905, Norther, 1921)
Every robed in a Northerman rung has a purnary decomposition.
Proof Norday, March 1St 2021, exactly 100 years after Norther's
paper was published
Example (Nurunal purnary decompositions are not unique)

$$R = k[x, y]$$
 k faod
 $I = (x^{2}, xy) = (x) \cap (x^{2}, xy, y^{2}) = (x) \cap (x^{2}, y)$
Both are munual pruncous decompositions. In fact, so are
 $I = (x) \cap (x^{2}, xy, y^{n})$
shows up in all aways has radical (x, y)