cost time

Notherian Rings
A rung R is noetherian if every ascending chain

$$
I_{0} \subseteq I_{1} \subseteq \cdots
$$

q ideals in R stablezes, meaning $I_{n}=I_{N}$ forall $n \geqslant N$

We started pooing the following:

Proportion 1.2 R rung TFAE:
(1) R is noetheran
(2) Every nonempty family of ideals has a moxemal element
(3) Every ascending chain of $f g$ ideals of R stabilizes
(4) Given any generating set s for any ideal I,
I is generated by some finite subset of S
(5) Every ideal in R is fnetely generated

Prool (Contunued)
Last time we showed (1) $\Leftrightarrow(2,1) \Rightarrow 3$, (3) \Rightarrow (4)
(4) \Rightarrow (5) is obvous, sance 4 requeries mos a plout than fg
(5) \Rightarrow (1) $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$ ascending chain of retals $I=U_{n} I_{n}$ is an ideal (exencise)
$\binom{$ Remank : only because $I_{1} \subseteq I_{2} \subseteq \ldots$ ete }{ In general, IU ∂ not an rodal }
I is $f g \Rightarrow$ say $I=\left(f_{1}, \cdots, f_{n}\right)$. There exests N st $f_{1}, \cdots, f_{n} \in I_{N} \Longrightarrow I=I_{N}=I_{n}$ forall $n \geqslant N$

Examples 1) $R=k$ a feld. the only idsals in R are (0) and R, so R is noelhenan
2) \mathbb{Z} is a noethervan ring, since all ideals are of the form (n). In fact, aney PID is noethenax
3) $\mathbb{C}\{z\}=\{f(z) \in \mathbb{C} \llbracket z]: f$ is analytic arsuind o $\}$ Enory ital is of the form $\left(z^{n}\right) \Rightarrow$ this is a PID
4) $R=k\left[x_{1}, x_{2}, x_{3}, \ldots\right]$ is not moetheran

$$
\left(x_{1}\right) \subsetneq\left(x_{1}, x_{2}\right) \subset\left(x_{1}, x_{2}, x_{3}\right) \subsetneq \ldots
$$

5) $R=k\left[x, x^{1 / 2}, x^{1 / 3}, x^{1 / 4}, \ldots\right] \leq k[x]$ is not noetheran

$$
(x) \subseteq\left(x^{1 / 2}\right) \subseteq\left(x^{1 / 3}\right) \subseteq \cdots \text { is infinite }
$$

6) $R=C(\mathbb{R}, \mathbb{R})$ Contenuous real valued functions not noeth

$$
I_{n}=\left\{f(x):\left.\quad f\right|_{\left[-\frac{1}{n}, \frac{1}{n}\right]} \equiv 0\right\}
$$

forms an increasung chain
Samo constuchon shows $C^{\infty}(\mathbb{R}, \mathbb{R})$ not noetherean

Remoole det R be a sing and $I \subset R$ be an rabal in R. $\{$ ndeals in $R / I\} \stackrel{1: 1}{\longleftrightarrow}$ \{idals in R containeng $I\}$ So R nothenan $\Rightarrow R / I$ noethenan

Defnution $A n R$-module M is noetterean if every ascendungcham

$$
M_{0} \subseteq M_{1} \subseteq M_{2} \subseteq \cdots
$$

of submodules of M stabluzes
Remank R noethenan ring $\Leftrightarrow R$ is a noethenan R-module Howerer,
$R \subseteq S$ noetherian rungs $\Rightarrow S$ noetherian R-module
Example $\mathbb{Z} \subseteq \mathbb{Q}$ are noethenan rings, but \mathbb{Q} is not a noeth \mathbb{Z} - \bmod

$$
0 \subseteq \mathbb{Z} \frac{1}{2} \subseteq \mathbb{Z} \frac{1}{2}+\mathbb{Z} \frac{1}{3} \subseteq \mathbb{Z} \frac{1}{2}+\mathbb{Z} \frac{1}{3}+\mathbb{Z} \frac{1}{5} \subseteq \cdots
$$

does not stablize.
Remark Nonneethevan rungs can have lits of nothervan R-modules
Prosp M R-mod TFAE:

1) M is a noethenar R-module
2) Every nonempty famely of submodulas of M has a max
3) Every ascording cham of fg submodules stablizes
4) Given any generateng set S for a submodule N, N is genented by some finte subset of S
5) Erory submodule of M is $f g$

In particular, a nethenan module must be fg
Irof: Exaruse

Exact sequence the sequence of R-modules and R-module naps

$$
\ldots \xrightarrow{f_{n-1}} M_{n} \xrightarrow{f_{n}} M_{n+1} \xrightarrow{f_{n+1}} \ldots
$$

is exact if in $f_{n-1}=\operatorname{ker} f_{n}$ for all n
An exact sequence of the form

$$
O \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

is a short exact sequence (sss)

Remarks

- $0 \rightarrow A \xrightarrow{f} B$ is exact $\Leftrightarrow f$ is myective
- $A \xrightarrow{f} B \rightarrow 0$ is exact $\Leftrightarrow f$ is selective

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

is exact $\Leftrightarrow\left\{\begin{array}{l}f \text { is infective } \\ \text { imf } f=\text { ken } g \\ g \text { is suyective }\end{array}\right.$
so :

$$
\begin{aligned}
& A \equiv f(A) \subseteq B \\
& C=i m g \cong B / \operatorname{ken} f=B / A
\end{aligned}
$$

Lemma $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ ses of R-modules
B is noetterian $\Leftrightarrow A$ and C are noetherean
Proof $(\Rightarrow) \quad A \subseteq B$ submodule
Submodules of A are submodules of $B \Longrightarrow A$ noethenan
(submodules of noetheran modules are notheran)
Submodules of $C=B / A$ are of the form D / A for some submodule D of B (Containing A), and $D f g \Rightarrow D / A f g$ $\Rightarrow A$ is noetheran
$(\Leftarrow) \quad 0 \subseteq M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \cdots$ cham of submodules $q B$

1) $M_{1} \cap A \subseteq M_{2} \cap A \subseteq \cdots$ chaen of submodulas of $A \Rightarrow$ stotalizes
2) $g\left(H_{1}\right) \subseteq g\left(M_{2}\right) \subseteq \ldots$ chain of submodules of $C \Rightarrow$ satalizes Suppose they both statailize ofter step n. Fix $x \in M_{n+1} \supseteq M_{n}$.

$$
g(x) \in g\left(M_{n+1}\right)=g\left(M_{n}\right)
$$

then $g(x)=g(y)$ for some $y \in M_{n}\left(\subseteq M_{n+1}\right)$

$$
g(x-y)=0 \Leftrightarrow x-y \in \operatorname{kon} g=A
$$

So $x-y \in A$, and $x-y \in M_{n+1}$

$$
\begin{aligned}
& \Rightarrow x-y \in A \cap M_{n+1}=A \cap M_{n} \\
& \Rightarrow x-y \in \underbrace{}_{\in M_{n}} \in x \in M_{n} \Rightarrow x
\end{aligned}
$$

Coulleny A, B noetherian $\Rightarrow A \oplus B$ noethewan
Ploof $0 \rightarrow A \rightarrow A \oplus B \rightarrow B \rightarrow 0$ seo
Corolayy M noettreman $\Leftrightarrow M^{n}$ noetheran
In panticular, R Neetheran reng $\Rightarrow R^{n}$ noetheran $R-\bmod$ Proof $n=1$ duh.

Induction: $0 \rightarrow M^{n} \rightarrow \underbrace{M^{n+1}}_{M^{n} \oplus M} \rightarrow M \rightarrow 0$
Prop R Noetheran rung, $M R$-module
M Notheran $\Leftrightarrow M \mathrm{fg}$
So $M f g R-\bmod , M \supseteq N \Rightarrow N f g R-\bmod$

Proof \Leftrightarrow follows from equivalent of finutions

$$
(\Leftarrow) M f g \Rightarrow M \cong R^{n} / \operatorname{ker}\left(R^{n} \xrightarrow{\pi} M\right)
$$

Hebert's Baas theorem
R notheran rung $\Rightarrow R\left[x_{1}, \ldots, x_{n}\right]$ is a notheran rung (Also $R \llbracket x_{1}, \ldots, x_{n} \rrbracket$ is notherian)

Remark this means that every system of polynomial equations in frutety many variables Can be written in terms 19 finitely many equations

