Northerian Rings A rung R is nottherion of every ascending chain **ヹ゚ゔゔヹ** Zideals in R <u>stabilizes</u> maning In= IN for all n=N We stanted proving the following: Proposition 1.2 Roung TFAE: (1) R is notherax 2 Every nonempty family of ideals has a maximal demont (3) Every ascending chain of fg ideals of R stabilizes 4 Given any generating set 5 for any ideal I, I is generated by some pinte subset of 5 5 Every iteal in R is fritely generated

Proof (continued)
dat time we showed
$$(1 \Leftrightarrow Q), (1 \Rightarrow 3), (3 \Rightarrow 4)$$

 $(4) \Rightarrow (5)$ is obvious, rance 4 requires more
a pure than fg
 $(5) \Rightarrow (1)$ $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ ascending chain of noteals
 $I = \bigcup I_n$ is an ideal (exercise)
(Remark only because $I_1 \subseteq I_2 \subseteq \cdots$ etc
In general, $I \cup 3$ not an ideal
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_N = I_n$ for all $n \ge N$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$ for all $n \ge N$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$ for $n \ge I_n$ for $n \ge I_n$ for $n \ge I_n$
 $I = I_n$ for $n \ge I_n$

Exact sequence the sequence of R-modules and R-module maps

$$\frac{f_{n+1}}{f_{n+1}} H_n \xrightarrow{f_{n}} H_{n+1} \xrightarrow{f_{n+1}} \dots$$

is exact if im $f_{n-1} = \ker f_n$ for all n
An exact sequence of the form
 $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
is a short exact sequence (ses)

Remarks

$$\cdot 0 \rightarrow A \stackrel{f}{\rightarrow} B$$
 is exact \Leftrightarrow f is nyettre
 $\cdot A \stackrel{f}{\rightarrow} B \rightarrow 0$ is exact \Leftrightarrow f is surgective
 $0 \rightarrow A \stackrel{f}{\rightarrow} B \stackrel{g}{\rightarrow} C \rightarrow 0$
is exact \Leftrightarrow $\begin{cases} f \text{ is injective} \\ im f = ken g \\ g \text{ is surgective} \end{cases}$
So:

$$A = f(A) \subseteq B$$

$$C = img \cong \frac{B}{konf} = \frac{B}{A}$$

 $\frac{\text{lemma}}{B \text{ is moetherian}} \bigoplus A \xrightarrow{1} B \xrightarrow{9} C \xrightarrow{-} O \quad \text{ses of } R-\text{modules}$ B is moetherian $\iff A \text{ and } C$ are northerian $\frac{Proof}{C} (\Longrightarrow) \quad A \subseteq B \text{ submodule}$ Submodules of A are submodules of $B \Longrightarrow A$ northerian (submodules of northerian modules are northerian) Submodules of C = B/A are of the form $\frac{P}{A}$ for some submodule $P \in B$ (containing A) and $P \in B \Longrightarrow P/A \in B$ $\Rightarrow A$ is northerian

$$(\Leftarrow) \quad 0 \subseteq M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \cdots \quad \text{cham } q \text{ submodules } q B$$

$$(\Leftarrow) \quad H_{1} \land A \subseteq H_{2} \land A \subseteq \cdots \quad \text{cham } q \text{ submodules } q A \Longrightarrow \text{stabilizes}$$

$$2) \quad g(H_{1}) \subseteq g(H_{2}) \subseteq \cdots \quad \text{chain } q \text{ submodules } q C \Longrightarrow \text{stabilizes}$$

$$\text{Suppose they both statistice often step } n \cdot fix x \in M_{n+1} \supseteq M_{n}$$

$$g(x) \in g(H_{n+1}) = g(M_{n})$$

$$-\text{then } g(x) = g(Y) \text{ for some } y \in H_{n}(\subseteq H_{n+1})$$

$$g(x-y) = 0 \iff x-y \in kong = A$$

$$so \quad x-y \in A, \text{ and } x-y \in H_{n+1}$$

$$\Rightarrow \quad x-y \in A \cap H_{n+1} = A \cap H_n$$

$$\Rightarrow \quad x-y \in H_n \implies x \in H_n$$

$$\underset{\in H_n}{\leftarrow}$$

Corollony A, B northerran
$$\Rightarrow A \oplus B$$
 northerran
Proof $0 \rightarrow A \rightarrow A \oplus B \rightarrow B \rightarrow 0$ ses

Corellary M northerman
$$\Leftrightarrow \operatorname{M}^{n}$$
 northerman
In particular, R Northerman Reng $\Rightarrow \operatorname{R}^{n}$ northerman R-mod
Proof $n=1$ duh.
Induction: $0 \to \operatorname{M}^{n} \to \operatorname{M}^{n+1} \to \operatorname{M} \to 0$
 $\overset{Corr}{\underset{\operatorname{M}^{n} \oplus \operatorname{M}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}{\overset{\operatorname{Corr}}{\overset{\operatorname{Corr}}{\overset{\operatorname{Corr}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}{\overset{\operatorname{Corr}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}}}{\overset{\operatorname{Corr}$

$$\frac{Prop}{(\Leftarrow)} \iff pollows from equivalent definitions$$
$$(\Leftarrow) \ M fg \implies M \cong \mathbb{R}^n / ker(\mathbb{R}^n, \overline{\mathcal{T}}, M)$$

Hebert's Baris theorem