dost time

R is a noetherran rung \iff every ideal in R is fg H is a noetherran module \iff every submodule of H is fg

Helbert's Basis throanner
R Northerman rung
$$\Rightarrow$$
 R[x] is a Northerman rung
(and so is R[[x]])
Qualley $K[x_3, ..., x_4]$ is a Northerman rung for any field k
Rule of thrombs: For nonnortherman examples, see $R=k[x_3, x_3, ...]$ and its quatients
Proof of Helbert Basis:
alet I \subseteq R[x] be an ideal. We will show I is fg
 $J := \{a \in R: ax^n + lower order terms \in I \text{ for some } n^n \in R$
 J is an ideal in R (exercise) $\Rightarrow J$ is fg, $J = (a_1, ..., a_t)$
Suppose $a_i = leading$ coefficient of $f_i \in I$
 Set $N := \max \{ deg f_i \}$

Grinen any
$$f \in I$$
 of degree > N,
 $lc(f) = lading term to f = Combaration of a;$
 $f - some combaration of the fi has < degree f$
 $lc(f) = x_1 a_1 + \dots + x_n a_n$
 $\Rightarrow deg (f - I x_i a_i f_i x^{degf-degf_i}) < deg f$
 $\Rightarrow f - some combaration of the fi has degree < N$
 $f = an element in I + an element in$
 $g degree < N + (f_1, \dots, f_t)$
 $\Rightarrow f \in I \cap (R + Rx + Rx^{d} + \dots + Rx^{N}) + (f_n, \dots, f_t)$
 $R + Rx + \dots + Rx^{N}$ is a fg submodule of $R[x]$
 $\Rightarrow I \cap (R + Rx + \dots + Rx^{N})$ is fg, say
 $= (f_{t+1}, \dots, f_{t})$
 $f = (f_{1}, \dots, f_{t})$
 $f = (f_{n}, \dots, f_{t})$
 $f = an element in I + an element in fi + Rx^{N} + Rx^{N} + (f_{n}, \dots, f_{t})$
 $righter f = I \cap (R + Rx + \dots + Rx^{N}) + (f_{n}, \dots, f_{t})$
 $R + Rx + \dots + Rx^{N}$ is a fg submodule of $R[x]$
 $righter f = (f_{1}, \dots, f_{t}, f_{t+1}, \dots, f_{t})$
 $f = I \cap (R + Rx + \dots + Rx^{N})$ is fg, say
 $righter f = (f_{1}, \dots, f_{t}, f_{t+1}, \dots, f_{t})$
 $f = I = (f_{2}, \dots, f_{t})$ is a Noetherian rung
Power senes case : take $\partial = boust$ degree coeffs of elements in I

RES subrung
$$\Rightarrow$$
 S is an algebra OVOR R, meaning.
S is a rung with on R-modulo structure satisfying
 $r(\lambda, \lambda_2) = (x, \lambda_1, \lambda_2)$ for all $x \in R, \lambda_1, \lambda_2 \in S$
Now generally, grow a rung hememorphism $\varphi: R \rightarrow S$,
S is an algebra over R via φ , by return $\chi: S := \varphi(x) S$.
 $\Lambda \subseteq S$ generates S as an R-algebra if
the only subrung of S contains $\psi(R)$ and Λ is S
 i every element in S is a pelynomial in Λ with coefficients in $\varphi(R)$
 $REX]$ pelynomial rung in $|\Lambda|$ indeterminates
the rung formomorphism $R[X] \xrightarrow{\chi} S$ is sugestive
 $z_i \longrightarrow \lambda_i$
 $\varphi: R \rightarrow S$ is algebra-finite $/S$ is a fg R -algebra.
 $/S$ of finite type coor R if
 S can be generated by finitely many elements as an R -alg
 S fg R alg \Leftrightarrow $S = REf_1, ..., f_t$

If S is an R-algebra, we can also consider its module structure over R. we say S is module-finite if it is a fig R-mod Remark 1) $\gamma: R \rightarrow S$ surjecture $\Rightarrow S \cong R/ken \varphi$ is gen by $I \Rightarrow S$ is mod-fin 2) Suffices to tudy the case when φ is injecture

Examples

Unselated note k[n, +] is not a field. Eg, 1-r does not have an inverse

Def R A-alg

$$x \in R$$
 is integral over A if
 $x^{n} + a_{n-1} x^{n-1} + \cdots + a_{1} x + a_{0} = 0$
for some $n \ge 1$ and $a_{i} \in A$