So far :

R Noetherian sung
$$\Leftrightarrow$$
 Every (prime) ideal I is fg
eg, $R = \frac{k[\pi_1, ..., \pi_d]}{I}$, k field

Over a Noetherran ring R M Noetherran R-mod 👄 M fg R-mod

A
$$\subseteq$$
 R rung externion, $f_i \in R$
A \subseteq R algebra-finite \Leftrightarrow R = A $[f_1, ..., f_n] \Leftrightarrow R \cong \frac{A[x_1, ..., x_n]}{I}$
A \subseteq R module-finite \Leftrightarrow R = A $f_1 + ... + A f_n \Leftrightarrow R \cong A^n/N$

Graded sungs R is N-graded if

$$R = \bigoplus_{n \ge 0} R_n$$

Note $R_a R_b \subseteq R_{a+b}$ for all $a, b \ge 0$
Now generally, if T is a monoral (has an associative operation with identity)
R is T-graded if $R = \bigoplus_{t \in T} R_t$
and $R_a R_b \subseteq R_{a+b}$ for all $g, b \in T$
Not common examples use $T = N$ or Z.

Remark
$$f \in la [Ta, ..., X_n]$$

 $f(\lambda a_1, ..., \lambda a_n) = \lambda^n f(x_1, ..., x_n) \iff f$ homogenous with
 $dinduid grading$
 $f(\lambda^{u_1}x_1, ..., \lambda^{u_n}x_n) = \lambda^{u_1+...+u_n} f(x_1, ..., x_n) \iff f$ homogeneous with
 $f(x_1, ..., x_n) \iff f$ homogeneous f
 $f(x_1, ..., x_n) \iff f$ homogeneous f homogeneous and measured
 $f(x_1, ..., x_n) \iff f$ homogeneous ideal in the T -graded sung R ,
then R/I is naturally a T -graded sung
 $f(x_1, ..., x_n) \iff f$ homogeneous f homogeneous

$$\frac{Ex}{(x^{2}+y^{3}+z^{5})} = \frac{e[x,y,z]}{(x^{2}+y^{3}+z^{5})} \quad des \underline{not} admit an N-grading with deg $z = deg y = deg z = 1$
but it does with $deg x = 15$, $deg y = 10$, $deg z = 6$.$$

R T-groded sung
An R-module M is a T-groded R-module of
$$M = \bigoplus_{a \in T} M_a$$

and $R_a H_b \subseteq M_{a+b}$

R,S T-graded rungs
A rung homomorphism
$$R \xrightarrow{f} S$$
 is degree - presenting or graded if
 $f(R_a) \subseteq S_a$ for all $a \in T$

H, N groded R-modules
An R-module homomorphism
$$M \xrightarrow{f} N$$
 is groded of degree dif
 $\int(H_a) \subseteq N_{a+d}$ for all $a \in T$

Remark Ring homomorphism
$$\Rightarrow 1_R \mapsto 1_R \Rightarrow degree O$$

(if graded)

Examples

a) Rung homomorphism:

$$k[Tx, y, z] \xrightarrow{f} R[Tx] xt, t^{2}] \subseteq k[Tx, t]$$

fine grading
 $dg(x) = (20)$
f degree preserving $\iff dg(y) = (1,1)$
 $dg(x) = (0,2)$
b) Hockule homomorphism:
 $R field, R = k[Tx_{1}, ..., x_{n}]$ standard goding
 $C \in R_{0}$ $R \xrightarrow{f} R$ degree - performing
 $n \longmapsto cx$
 $g \in R_{1}$ $R \xrightarrow{f} R$ degree d map
 $Can hown this vito a degree 0 map:$
 $R(-d) := R$ with grading $R(-d)_{t} = R_{t-d}$
 $R(-d) \xrightarrow{f} R$ for degree 0
 $r \longmapsto gx$

Ecolur: R Noethinian ring

$$R \subseteq S alg - fn \implies S Noethinian$$

But
 $R Noethinian \implies R \subseteq S alg - fn$
 $R \subseteq S Noethinian \implies R \subseteq S alg - fn$
 $R \subseteq S Noethinian \implies R \subseteq S alg - fn$
 $\underline{Prop} \quad R \quad N - graded$
 $f_1, \dots, f_n \in R \quad Q \quad degree > 0$
 $(f_{1,s} \dots, f_n) = R_+ = \bigoplus_{n>0} R_n \iff R = R [f_1, \dots, f_n]$
therefore,
 $R \quad Noethinian \iff R \subseteq R \ alg - fn$