I ideal $\stackrel{Z}{\longmapsto} Z(I)$ variety $\stackrel{I}{\longmapsto} \mathcal{I}(Z(I))$
how does this relate to I?
Ex: $R=k[x], I_{n}=\left(x^{n}\right) \quad n \geqslant 1$
$Z\left(I_{n}\right)=\{0\}$ for all n
what do all these different ideals have in cominon?
Remark $f \in k\left[x_{1}, \cdots, x_{d}\right], a \in \mathbb{A}^{d}$
$f(\underline{a}) \neq 0 \Leftrightarrow f(\underline{a})$ invertible
$\Leftrightarrow b f(a)-1=0$ for some b
$\Leftrightarrow \quad y f(\underline{a})-1=0$ has a solution

$$
\begin{aligned}
& \text { d: }\left\{\begin{array} { l }
{ f _ { 1 } = 0 } \\
{ \vdots } \\
{ f _ { m } = 0 }
\end{array} \text { and } \left\{\begin{array}{l}
g \neq 0 \\
\vdots \\
g_{n} \neq 0
\end{array} \quad\right.\right. \text { has a solution } \\
& \Leftrightarrow\left\{\begin{array} { l }
{ f _ { 1 } = 0 } \\
{ \vdots } \\
{ f _ { m } = 0 }
\end{array} \text { and } \left\{\begin{array}{l}
y g_{1}-1=0 \\
\vdots g_{n}-1=0
\end{array}\right.\right. \text { has a solution } \\
& \Leftrightarrow\left\{\begin{array}{l}
f_{1}=0 \\
\vdots \\
f_{m}=0 \\
y g_{1} g_{n}-1=0
\end{array}\right.
\end{aligned}
$$

hm (strong Nellestetlensatz)

$$
\begin{aligned}
& k=\bar{k} \\
& R=k\left[x_{1}, \ldots, x_{d}\right]
\end{aligned}
$$

$$
f \in I(Z(I)) \Longleftrightarrow f^{n} \in I \text { for some } n
$$

Proof

$$
\begin{gathered}
\left(\Longleftarrow f^{n} \in I \Rightarrow f^{n}(a)=0 \quad \text { focal } a \in Z(I)\right. \\
\Downarrow k \text { fold } \\
f(a)=0 \quad \text { for all } a \in Z(I) \\
\downarrow \in I(Z(I)) \\
(\Rightarrow) \quad f \in I(Z(I))
\end{gathered}
$$

so polynomials in $I=0 \Rightarrow f=0$
thus $\quad\left\{\begin{array}{l}\text { polynomials } m I=0 \\ f \neq 0\end{array} \quad\right.$ has no solutions

$$
\Rightarrow \quad Z(I+(y f-1))=\varnothing \text { in } R[y]
$$

weak

$$
I+\left(y f^{-1}\right)=R[y]
$$

$$
\Leftrightarrow \quad 1 \in I+(y f-1)
$$

$$
\begin{aligned}
& \text { If } I=\left(g_{1}, \cdots, g_{m}\right), \\
& 1= \\
& x_{0} \cdot(1-y f)+x_{1} g_{1}+\cdots+x_{m} g_{m} \\
& \quad\left\lceil y \mapsto \frac{1}{f} \quad \text { in } \quad \text { fac }(R[y])\right. \\
& 1= \\
& r_{1}\left(\underline{x}, \frac{1}{f}\right) \cdot g_{1}(x)+\cdots+x_{m}\left(\underline{x}, \frac{1}{f}\right) g_{m}(x)
\end{aligned}
$$

take the longest negative pourer of f apperoung \Rightarrow clear denomination

$$
\begin{aligned}
& f^{n}=s_{1} g_{1}+\cdots+s_{m} g_{m} \\
& \text { only on } \underline{x}_{\text {equation in } R} \\
\Rightarrow & f^{m} \in I
\end{aligned}
$$

Definition the radical of an ideal I is

$$
\sqrt{I}=\left\{f \in R: f^{n} \in I \text { for some } n\right\}
$$

I is a radical idea if $I=\sqrt{I}$
Ex: the radical q an ideal is an ideal
Example prime ideals ave radical

$$
f^{n} \in P \Rightarrow f \in P \text { or } f^{n-1} \in P \Rightarrow \cdots \Rightarrow f \in P
$$

R is reduced if $\sqrt{(0)}=(0)$
$\Leftrightarrow R$ has no nulpetent elements $\left(f^{n}=0, f \neq 0\right)$
Exercise R / I reduced $\Leftrightarrow I=\sqrt{I}$
Sting Nulbtellensatz says:

$$
f \in I(Z(I)) \Leftrightarrow f \in \sqrt{I}
$$

so $\quad I(z(J))=\sqrt{g}$
and $\quad Z(I)=Z(J) \Leftrightarrow \sqrt{I}=\sqrt{7}$
x variety in \mathbb{A}_{k}^{d} the coordinate ring of x is

$$
k[x]:=\frac{k\left[x_{1}, \ldots, x_{d}\right]}{I(x)}
$$

the algebraic properties of $k[x]$ randate into germetuc propenes of x.
We can interpret $k[x]$ as the ring of polynomial functions on x
Note Every reduced finely generated k-alger a is the coordinate rung of some varaty.

Remark In general $I \cap \partial \neq I \partial$, lat $\sqrt{I \cap \partial}=\sqrt{I \gamma}$

$$
\text { since } \mathcal{F}(I \cap \bar{\sigma})=Z(I \partial)
$$

Remark Even if $k \neq \bar{k}, \quad Z_{k}(J)=Z_{p}(\sqrt{\partial})$

$$
\partial \subseteq \sqrt{\partial} \Rightarrow z_{k}(\sqrt{\gamma}) \subseteq Z_{k}(\gamma)
$$

If $a \in Z_{k}(\gamma)$ and $f \in \sqrt{\partial}, f^{n} \in J$ for some, >0

$$
\begin{aligned}
& \quad f^{n}(a)=0 \underset{\substack{l \\
k \text { feed }}}{\Rightarrow} f(a)=0 \\
& \therefore \quad a \in Z_{k}(\partial)
\end{aligned}
$$

what fails then? $I(Z(J))$ is not necessondy $\sqrt{7}$ eg, $\quad \mathcal{Z}_{\mathbb{R}}\left(x^{2}+1\right)=\varnothing$

$$
I\left(Z_{\mathbb{R}}\left(x^{2}+1\right)\right)=I(\varnothing)=\mathbb{R}[x] \neq \sqrt{\left(x^{2}+1\right)}=\left(x^{2}+1\right)
$$

what fouled here was the Weak Nullstellensatz!
Corollary
acer revarang

$$
\begin{gathered}
R=k\left[x_{1}, \ldots, x_{d}\right] \\
k=\bar{k}
\end{gathered}
$$

$\left\{\right.$ subvanetes $\left.q A_{k}^{d}\right\} \stackrel{\text { byection }}{\longleftrightarrow}\{$ radical ideals in $R\}$

\[

\]

Proof $I(z(J))=\sqrt{\gamma}$ for any y
I radical $\Rightarrow I(Z(I))=\sqrt{I}=I$
Given a vanity $x, \quad x=z(\partial)$ wolog $y=\sqrt{\partial}$

$$
\Rightarrow z(I(x))=z(I(z(\partial)))=z(\partial)=x
$$

derma $X \subseteq A_{k}^{d}$ vooduable $\Leftrightarrow I(x)$ pure
Proof $(\Leftarrow) x=V_{1} \cup V_{2}, V_{1}, V_{2} \subsetneq x$ ranees
so $I(x) \subsetneq I\left(v_{1}\right), I\left(V_{2}\right)$, and $I(x)=I\left(v_{1}\right) \cap I\left(V_{2}\right)$
so $\exists f \in I\left(v_{1}\right), f \notin I\left(v_{2}\right) \quad g \in I\left(v_{2}\right), g \notin I\left(v_{1}\right)$

$$
f g \in I\left(v_{1}\right) \cap I\left(v_{2}\right) \Rightarrow f g \in I(x)
$$

but $f g \notin I(x)$, so $I(x)$ is not prime
\Leftrightarrow If $I(x)$ is not prime, let $f, g \notin I(x), f g \in I(x)$.

$$
\begin{aligned}
x & \leq z(f g)=z(f) \cup z(g) \\
\Rightarrow x & =(z(f) \cap x) \cup(z(g) \cap x) \\
& =\underbrace{z(I(x)+(f))}_{v_{f}} \cup \underbrace{(I(x)+(g)}_{v_{g}})
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
f \notin \underbrace{I(x)}_{\text {radical }} & \Rightarrow V_{f} \nsubseteq x \\
g \notin I(x)
\end{array}\right\} \Rightarrow v_{g \nsubseteq x}\right\}
$$

Any vanaty X can be decomposed into a frite union

$$
X=v_{1} \cup \cdots \cup v_{n}
$$

where $V_{i} c_{X} X$ are all ineduable
we can find thes decompontion algetraically:
Def A purne P is a meneual pume of If

$$
I \subseteq Q \subseteq P \quad \Rightarrow Q=P
$$

Q pime

$$
\operatorname{Min}(I)=\{\mathbb{P} \text { menemal purme oq } I\}
$$

will show: $\sqrt{I}=\bigcap_{P \supseteq I} P=\bigcap_{P \in \operatorname{Min}(I)} P$ Ppume
will show R voeterean $\Rightarrow|\operatorname{Hn}(I)|<\infty$
so: x vanaty

$$
\begin{aligned}
& \Rightarrow I(x)=P_{1} \cap \ldots \cap P_{k} \quad P_{i} \text { pume } \\
& \Rightarrow x=z\left(P_{1}\right) \cup \ldots \cup Z\left(P_{k}\right)
\end{aligned}
$$

is a decompontion into ineducable varietes

Ex $\quad k[x, y, z]$

$$
I=(x y, x z, y z)
$$

11

$$
I=(x y) \cap(y, z) \cap(x, z) \longleftrightarrow \uparrow \cup \swarrow \cup \longrightarrow
$$

Dictionary Algetaa \longleftrightarrow Geometyy
radecal ideals
pume ideals
maximal rdeals
(0)

$$
k\left[x_{1}, x_{d}\right]
$$

langer idsals
Smaller ideals
msolucible varetes
pornts
A^{d}
\varnothing
smaller verretess
langer varietos

