Problem Set 2

Problem 1. Let f be a map of complexes of R-modules. Show that if $\operatorname{ker} f$ and coker f are exact complexes, then f is a quasi-isomorphism. Is the converse true?

Problem 2. A complex is contractible if its identity map is null-homotopic. Show that every contractible complex of R-modules is an exact sequence.

Problem 3. Consider a short exact sequence in $\mathrm{Ch}(R)$, say

$$
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0
$$

Show that if any two of A, B, and C are exact everywhere, so is the third one.
Problem 4. We used the Snake Lemma to deduce the long exact sequence in homology. In fact, the two statements are equivalent! Assuming the statement of the long exact sequence in homology holds, but without using the Snake Lemma, prove that any commutative diagram of R-modules with exact rows

induces an exact sequence

$$
0 \longrightarrow \operatorname{ker} f \longrightarrow \operatorname{ker} g \longrightarrow \operatorname{ker} h \longrightarrow \operatorname{coker} f \longrightarrow \operatorname{coker} g \longrightarrow \operatorname{coker} h \longrightarrow 0 .
$$

Let $f: C \longrightarrow D$ be a map of complexes. The mapping cone of f is the chain complex cone (f) that has $C_{n-1} \oplus D_{n}$ in homological degree n, with differential

$$
d_{n}:=\left(\begin{array}{cc}
-d_{C} & 0 \\
f & d_{D}
\end{array}\right): \stackrel{C_{n-1} \xrightarrow[D_{C}]{C_{n}} C_{d_{D}}}{\substack{-d_{C} \\
D_{n}}} D_{n-1}
$$

where d_{C} denotes the differential on C and d_{D} denotes the differential on D.
Problem 5. Let $f: C \longrightarrow D$ be a map of complexes of R-modules.
a) Show that there is a short exact sequence of complexes

$$
0 \longrightarrow D \xrightarrow{i} \operatorname{cone}(f) \xrightarrow{\pi} \Sigma^{-1} C \longrightarrow 0
$$

where $\Sigma^{-1} C$ is the complex obtained by shifting C to the left, meaning $\left(\Sigma^{-1} C\right)_{n}:=C_{n-1}$.
b) Consider the long exact sequence in homology induced by the previous short exact sequence. Show that the connecting homomorphism ∂ in that long exact sequence is given by the R-module homomorphisms f_{n}.
c) Show that f is a quasi-isomorphism if and only if cone (f) is an exact complex.

Problem 6. Let $R=\mathbb{Q}[x, y, z] /\left(x^{2}, x y\right)$. Check that f below is a map of complexes, and compute its kernel, cokernel, and homology.

Problem 7 (The Five Lemma). Consider the following commutative diagram of R-modules with exact rows:

Show that if a, b, d, and e are isomorphisms, then c is an isomorphism. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ You can only choose this problem if you have not yet received credit for it.

