Problem Set 3

Problem 1. Let R be a ring, I and J ideals in R, and M be an R-module.

- a) Show that $R/I \otimes_R R/J \cong R/(I+J)$.
- b) Show that $R/I \otimes_R M \cong M/IM$.
- c) There is an *R*-module map $I \otimes_R M \longrightarrow IM$ induced by the *R*-bilinear map $(a, m) \mapsto am$. This map is always clearly surjective; must it be injective?

Problem 2. Show that over a field k, the Hom functors and the tensor functor are always exact.

Problem 3.

a) Consider *R*-module homomorphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$. If

$$\operatorname{Hom}_{R}(M, A) \xrightarrow{f_{*}} \operatorname{Hom}_{R}(M, B) \xrightarrow{g_{*}} \operatorname{Hom}_{R}(M, C)$$

is exact for all M, then $A \xrightarrow{f} B \xrightarrow{g} C$ is an exact sequence.¹

b) Suppose that (F, G) is an adjoint pair of covariant functors R-mod $\longrightarrow R$ -mod. Show that G is left exact.²

Let R be a domain and M be an R-module. The **torsion** of M is the submodule

 $T(M) := \{ m \in M \mid rm = 0 \text{ for some nonzero } r \in R \}.$

The elements of T(M) are called **torsion elements**, and we say that M is **torsion** if T(M) = M. Finally, M is **torsion free** if T(M) = 0.

Problem 4. Let R be a domain and M be an R-module.

- a) The *R*-module M/T(M) is torsion free.
- b) If $f: M \longrightarrow N$ is an *R*-module homomorphism, $f(T(M)) \subseteq T(N)$.
- c) Torsion is a left exact covariant functor R-mod $\longrightarrow R$ -mod.

Problem 5. Let R be a domain with fraction field Q.

- a) Show that for every Q-vector space V and every R-module $M, V \otimes_R M \cong V \otimes_R (M/T(M))$.
- b) The kernel of the map $M \longrightarrow Q \otimes_R M$ given by $m \mapsto 1 \otimes m$ is T(M).
- c) Show that for every Q-vector space V and R-module $M, V \otimes_R M = 0$ if and only if M is torsion.
- d) Show that $\mathbb{R} \otimes_{\mathbb{Z}} (\mathbb{R}/(2\pi\mathbb{Z})) \neq 0$.

¹In particular, we are not assuming $A \xrightarrow{f} B \xrightarrow{g} C$ is a complex!

²Later we will explain how it follows easily that F is right exact.

Problem 6. Consider the domain $R = \mathbb{Q}[x, y, z, a, b, c]/(xb-ac, yc-bz, xc-az)$, the ideal I = (x, a) in R, the R-module $N = \mathbb{Q}$, I = (x, a), and consider the 2-generated R-module M = Rf + Rg, where the generators f, g satisfy the relations

$$yf - xg = 0 \quad bf - cg = 0 \quad cf - zg = 0.$$

- a) Are there nontrivial *R*-module homomorphisms $M \longrightarrow N$? How about $N \longrightarrow M$?
- b) Does $-\otimes_R M$ preserve the injectivity of the inclusion $I \subseteq R$?
- c) Apply $\operatorname{Hom}_R(-, R)$ to the short exact sequence

$$0 \longrightarrow I \longrightarrow R \longrightarrow R/I \longrightarrow 0 .$$

Is R an injective R-module?

Let R be a ring and I be an ideal in R. The functor $\Gamma_I : R\text{-mod} \longrightarrow R\text{-mod}$ that sends each R-module M to the R-module

$$\Gamma_I(M) := \bigcup_{n \ge 1} (0:_M I^n) = \{ m \in M \mid I^n m = 0 \text{ for some } n \ge 1 \}$$

and that sends each *R*-module homomorphism $M \xrightarrow{f} N$ to the *R*-module homomorphism $\Gamma_I(M) \xrightarrow{\Gamma_I(f)} \Gamma_I(N)$ given by restricting the domain and codomain of f is called the *I*-torsion functor.

Problem 7.

- a) Check that any *R*-module homomorphism $M \xrightarrow{f} N$ must send $\Gamma_I(M)$ into $\Gamma_I(N)$, so that our definition of the functor Γ_I makes sense.
- b) Show that Γ_I is an additive covariant functor.
- c) Show that Γ_I is left exact.
- d) Show that Γ_I is not necessarily right exact.