Problem Set 4

Problem 1. Let R = k[x, y], where k is a field, let $Q = \operatorname{frac}(R)$ be the fraction field of R. We are going to show that the R-module M = Q/R is divisible but not injective.

a) Show that if ax + by = 0 for some $a, b \in R$, we must have $b \in (x)$.

b) Show that $x \mapsto \frac{1}{y}$ and $y \mapsto 0$ induces a well-defined *R*-module homomorphism $(x, y) \xrightarrow{f} Q/R$.

c) Show that M is a divisible R-module, but not injective.

Problem 2. Let R be a domain. Show that if R has a nonzero module M that is both injective and projective, then R must be a field.¹

Problem 3. Let R be a Noetherian ring, M a finitely generated R-module, N an R-module, and W a multiplicatively closed subset of R. Show that there is an isomorphism

$$W^{-1} \operatorname{Hom}_{R}(M, N) \cong \operatorname{Hom}_{W^{-1}R}(W^{-1}M, W^{-1}N).$$

Clearly indicate where you are using the hypotheses that R is Noetherian and M is finitely generated, as they are necessary.²

Problem 4. Let \mathcal{A} be an abelian category.

- a) Show that $\ker(x \xrightarrow{0} y) = 1_x$, $\operatorname{coker}(x \xrightarrow{0} y) = 1_y$, and $\operatorname{im}(x \xrightarrow{0} y) = 0 \longrightarrow y$.
- b) Show that f is a mono if and only if fg = 0 implies g = 0, and g is an epi if and only if fg = 0 implies f = 0.
- c) Show that f is a mono if and only if ker f = 0, and g is an epi if and only if coker g = 0.
- d) Show that $0 \longrightarrow A \xrightarrow{f} B$ is exact if and only if f is a mono.
- e) Show that $B \xrightarrow{g} C \longrightarrow 0$ is exact if and only if g is an epi.

Problem 5. Consider an abelian category. If g is an epi and f is a mono, then $\ker(fg) = \ker g$, $\operatorname{coker}(fg) = \operatorname{coker} f$, and $\operatorname{im}(fg) = \operatorname{im} f = f$.

¹Hint: show that any nonzero *R*-module homomorphism $M \longrightarrow R$ must be surjective, and then show that such a homomorphism must exist.

²Hint: start by noting that the obvious map $W^{-1} \operatorname{Hom}_R(M, N) \longrightarrow \operatorname{Hom}_{W^{-1}R}(W^{-1}M, W^{-1}N)$ is natural on M and an isomorphism when $M = \mathbb{R}^n$. Then apply appropriate functors to a presentation $\mathbb{R}^m \longrightarrow \mathbb{R}^n \longrightarrow M$ for M.

An *R*-module *F* is faithfully flat if *F* is flat and $F \otimes_R M \neq 0$ for every nonzero *R*-module *M*.

Problem 6. Give an example of a module that is flat but not faithfully flat. Show³ that the following are equivalent:

- a) F is faithfully flat.
- b) F is flat and for every proper ideal $I, IF \neq F$.
- c) F is flat and for every maximal ideal $\mathfrak{m}, \mathfrak{m}F \neq F$.
- d) For every sequence of *R*-modules $A \xrightarrow{f} B \xrightarrow{g} C$, $A \xrightarrow{f} B \xrightarrow{g} C$ is exact if and only if $F \otimes_R A \xrightarrow{1 \otimes f} F \otimes_R B \xrightarrow{1 \otimes g} F \otimes_R C$ is exact.

Problem 7. Consider the ring $R = \mathbb{Q}[x, y, z, a, b, c]/(xb - ac, yc - bz, xc - az)$, the ideal I = (x, a) in R, I = (x, a), and the 2-generated R-module M = Rf + Rg, where the generators f, g satisfy the relations

$$yf - xg = 0 \quad bf - cg = 0 \quad cf - zg = 0.$$

Let $S = \mathbb{Q}[x, y, z]$ and P be the ideal in S defining the curve $\{(t^{13}, t^{42}, t^{73}) \mid t \in \mathbb{Q}\}.$

- a) Find the first 6 steps in the minimal free resolutions for R/I and N over R.
- b) Apply $\operatorname{Hom}_R(-, M)$ to the portion of a minimal free resolution you found for R/I. Is this an exact complex? If not, in what homological degrees do we have non-trivial homology?
- c) Find a minimal free resolution for P over S. Make sure your resolution *is* minimal!

³Hints:

- For c) \implies a), for each R-module $M \neq 0$ consider some nonzero $m \in M$ and $I = \operatorname{ann} m$.
- For a) \implies d), show that $\operatorname{im}(1_F \otimes f) = F \otimes_R \operatorname{im} f$ and $\operatorname{ker}(1_F \otimes f) = F \otimes_R \operatorname{ker} g$, and then consider the short exact sequence $0 \longrightarrow \operatorname{im} f \longrightarrow \operatorname{ker} g \longrightarrow \operatorname{ker} g / \operatorname{im} f \longrightarrow 0$.
- For d) \implies a), show that for any *R*-module $M \neq 0$, the identity map on *M* induces a nonzero map $F \otimes_R M \longrightarrow R \otimes_R M$.