Problem Set 4

Problem 1. Let $R=k[x, y]$, where k is a field, let $Q=\operatorname{frac}(R)$ be the fraction field of R. We are going to show that the R-module $M=Q / R$ is divisible but not injective.
a) Show that if $a x+b y=0$ for some $a, b \in R$, we must have $b \in(x)$.
b) Show that $x \mapsto \frac{1}{y}$ and $y \mapsto 0$ induces a well-defined R-module homomorphism $(x, y) \xrightarrow{f} Q / R$.
c) Show that M is a divisible R-module, but not injective.

Problem 2. Let R be a domain. Show that if R has a nonzero module M that is both injective and projective, then R must be a field. ${ }^{1}$

Problem 3. Let R be a Noetherian ring, M a finitely generated R-module, N an R-module, and W a multiplicatively closed subset of R. Show that there is an isomorphism

$$
W^{-1} \operatorname{Hom}_{R}(M, N) \cong \operatorname{Hom}_{W^{-1} R}\left(W^{-1} M, W^{-1} N\right) .
$$

Clearly indicate where you are using the hypotheses that R is Noetherian and M is finitely generated, as they are necessary. ${ }^{2}$

Problem 4. Let \mathcal{A} be an abelian category.
a) Show that $\operatorname{ker}(x \xrightarrow{0} y)=1_{x}, \operatorname{coker}(x \xrightarrow{0} y)=1_{y}$, and $\operatorname{im}(x \xrightarrow{0} y)=0 \longrightarrow y$.
b) Show that f is a mono if and only if $f g=0$ implies $g=0$, and g is an epi if and only if $f g=0$ implies $f=0$.
c) Show that f is a mono if and only if $\operatorname{ker} f=0$, and g is an epi if and only if coker $g=0$.
d) Show that $0 \longrightarrow A \xrightarrow{f} B$ is exact if and only if f is a mono.
e) Show that $B \xrightarrow{g} C \longrightarrow 0$ is exact if and only if g is an epi.

Problem 5. Consider an abelian category. If g is an epi and f is a mono, then $\operatorname{ker}(f g)=\operatorname{ker} g$, $\operatorname{coker}(f g)=\operatorname{coker} f$, and $\operatorname{im}(f g)=\operatorname{im} f=f$.

[^0]An R-module F is faithfully flat if F is flat and $F \otimes_{R} M \neq 0$ for every nonzero R-module M.

Problem 6. Give an example of a module that is flat but not faithfully flat. Show ${ }^{3}$ that the following are equivalent:
a) F is faithfully flat.
b) F is flat and for every proper ideal $I, I F \neq F$.
c) F is flat and for every maximal ideal $\mathfrak{m}, \mathfrak{m} F \neq F$.
d) For every sequence of R-modules $A \xrightarrow{f} B \xrightarrow{g} C, A \xrightarrow{f} B \xrightarrow{g} C$ is exact if and only if $F \otimes_{R} A \xrightarrow{1 \otimes f} F \otimes_{R} B \xrightarrow{1 \otimes g} F \otimes_{R} C$ is exact.

Problem 7. Consider the ring $R=\mathbb{Q}[x, y, z, a, b, c] /(x b-a c, y c-b z, x c-a z)$, the ideal $I=(x, a)$ in $R, I=(x, a)$, and the 2 -generated R-module $M=R f+R g$, where the generators f, g satisfy the relations

$$
y f-x g=0 \quad b f-c g=0 \quad c f-z g=0 .
$$

Let $S=\mathbb{Q}[x, y, z]$ and P be the ideal in S defining the curve $\left\{\left(t^{13}, t^{42}, t^{73}\right) \mid t \in \mathbb{Q}\right\}$.
a) Find the first 6 steps in the minimal free resolutions for R / I and N over R.
b) Apply $\operatorname{Hom}_{R}(-, M)$ to the portion of a minimal free resolution you found for R / I. Is this an exact complex? If not, in what homological degrees do we have non-trivial homology?
c) Find a minimal free resolution for P over S. Make sure your resolution $*_{\text {is* }}$ minimal!

[^1]
[^0]: ${ }^{1}$ Hint: show that any nonzero R-module homomorphism $M \longrightarrow R$ must be surjective, and then show that such a homomorphism must exist.
 ${ }^{2}$ Hint: start by noting that the obvious map $W^{-1} \operatorname{Hom}_{R}(M, N) \longrightarrow \operatorname{Hom}_{W^{-1} R}\left(W^{-1} M, W^{-1} N\right)$ is natural on M and an isomorphism when $M=R^{n}$. Then apply appropriate functors to a presentation $R^{m} \longrightarrow R^{n} \longrightarrow M$ for M.

[^1]: ${ }^{3}$ Hints:

 - For $c) \Longrightarrow a)$, for each R-module $M \neq 0$ consider some nonzero $m \in M$ and $I=\operatorname{ann} m$.
 - For $a) \Longrightarrow d)$, show that $\operatorname{im}\left(1_{F} \otimes f\right)=F \otimes_{R} \operatorname{im} f$ and $\operatorname{ker}\left(1_{F} \otimes f\right)=F \otimes_{R} \operatorname{ker} g$, and then consider the short exact sequence $0 \longrightarrow \operatorname{im} f \longrightarrow \operatorname{ker} g \longrightarrow \operatorname{ker} g / \operatorname{im} f \longrightarrow 0$.
 - For $d) \Longrightarrow a$), show that for any R-module $M \neq 0$, the identity map on M induces a nonzero map $F \otimes_{R} M \longrightarrow R \otimes_{R} M$.

