Problem Set 5

Problem 1. Let R be a domain and Q be its fraction field. Let $T(-)$ denote the torsion functor we introduced in Problem Set 3.
a) Show that $T(M)=\operatorname{Tor}_{1}^{R}(M, Q / R) .{ }^{1}$
b) Show that for every short exact sequence

$$
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0
$$

of R-modules gives rise to an exact sequence ${ }^{2}$

$$
0 \longrightarrow T(A) \longrightarrow T(B) \longrightarrow T(C) \longrightarrow(Q / R) \otimes_{R} A \longrightarrow(Q / R) \otimes_{R} B \longrightarrow(Q / R) \otimes_{R} C \longrightarrow 0 .
$$

c) Show that the right derived functors of T are $R^{1} T=(Q / R) \otimes_{R}-$ and $R^{i} T=0$ for all $i \geqslant 2$.

Problem 2. Let I be an ideal in R. Show that

$$
\operatorname{Ext}_{R}^{n}(I, M) \cong \operatorname{Ext}_{R}^{n+1}(R / I, M)
$$

for all $n \geqslant 1$ and all R-modules M.

Problem 3. Let (R, \mathfrak{m}) be a Noetherian local ring. Let $r \in \mathfrak{m}$ and M and N be finitely generated R-modules.
a) Show that the map $\operatorname{Ext}_{R}^{i}(M, N) \rightarrow \operatorname{Ext}_{R}^{i}(M, N)$ induced by $M \xrightarrow{r} M$ is the map given by multiplication by r.
b) Show that if r is regular on M and $\operatorname{Ext}_{R}^{i}(M / r M, N)=0$ for $i \gg 0$, then $\operatorname{Ext}_{R}^{i}(M, N)=0$ for $i \gg 0$.

Problem 4. Let (R, \mathfrak{m}) be a Noetherian local ring.
a) Show that for every short exact sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ of nonzero R-modules,

$$
\operatorname{depth}(A) \geqslant \min \{\operatorname{depth}(B), \operatorname{depth}(C)+1\} .
$$

b) Given any finitely generated R-module M over a Cohen-Macaulay ring R, show that there exists $n \geqslant 1$ such that either $\operatorname{pdim}(M)<n$ or $\operatorname{depth}\left(\Omega_{n} M\right)=\operatorname{dim}(R)$.

Problem 5. Here are two fun but unrelated problems about regular rings.
a) Show that every principal ideal domain is a regular ring.
b) Solve the Localization Problem that baffled mathematicians for decades: if R is a regular local ring, then R_{P} is a regular local ring for every prime P.

[^0]Problem 6. Let R be a ring, M an R-module.
a) Show that M is injective if and only if $\operatorname{Ext}_{R}^{1}(R / I, M)=0$ for every ideal I.
b) Let E be any injective resolution of $M, C_{0}:=\operatorname{coker}\left(M \longrightarrow E^{0}\right)$, and $C_{n}:=\operatorname{coker}\left(E^{n-1} \longrightarrow E^{n}\right)$. Show that for all $i \geqslant 2$ and every R-module N,

$$
\operatorname{Ext}_{R}^{i}(N, M) \cong \operatorname{Ext}_{R}^{1}\left(N, C_{i-2}\right)
$$

c) Show that $\operatorname{inj} \operatorname{dim}_{R}(M) \leqslant n$ if and only if $\operatorname{Ext}_{R}^{n+1}(R / I, M)=0$ for every ideal I.

Problem 7. Consider the ring $R=\mathbb{Q}[x, y, z, a, b, c] /(x b-a c, y c-b z, x c-a z)$ and the 2-generated R-module $M=R f+R g$, where the generators f, g satisfy the relations

$$
y f-x g=0 \quad b f-c g=0 \quad c f-z g=0 .
$$

Let P be the ideal in $S=\mathbb{Q}[x, y, z]$ defining the curve $\left\{\left(t^{13}, t^{42}, t^{73}\right) \mid t \in \mathbb{Q}\right\}$.
To solve this problem, you are not allowed to use any additional Macaulay2 packages besides the Complexes package and the ones that are automatically loaded with Macaulay2.
a) Find $\operatorname{pdim}_{S}(S / P)$ and $\operatorname{depth}(S / P)$.
b) Is P generated by a regular sequence?
c) Find $\operatorname{pdim}_{R}(M)$ and $\operatorname{depth}(M)$.
d) Is R a regular ring? Is it Cohen-Macaulay?

A complex C in $\operatorname{Ch}(R)$ is split if there are R-module homomorphisms $s_{n}: C_{n} \longrightarrow C_{n+1}$ such that the differential ∂ satisfies $\partial=\partial s \partial$. A complex is split exact if it is both exact and split.

Problem 8. Let R be a ring. Our goal is to find the projective objects in $\operatorname{Ch}(R)$.
a) Show that if C is a split complex, then the short exact sequence

$$
0 \longrightarrow Z_{n}(C) \longrightarrow C_{n} \xrightarrow{d_{n}} B_{n-1}(C) \longrightarrow 0
$$

must split.
b) If C is a split exact complex, show that C is the direct sum of complexes of the form

$$
\cdots \longrightarrow 0 \longrightarrow B_{n}(C) \xrightarrow{=} B_{n}(C) \longrightarrow 0 \longrightarrow \cdots
$$

c) Show that every complex of the form

$$
\cdots \longrightarrow 0 \longrightarrow P \xrightarrow{=} P \longrightarrow 0 \longrightarrow \cdots
$$

with P projective is a projective object in $\mathrm{Ch}(R)$.
d) Show that a complex P is a projective object in $\operatorname{Ch}(R)$ if and only if P is a split exact complex of projectives. ${ }^{3}$

[^1]
[^0]: ${ }^{1}$ Hint: you want to look at some long exact sequence for Tor.
 ${ }^{2}$ Hint: apply the Snake Lemma to some nice diagram.

[^1]: ${ }^{3}$ When P is projective, consider the short exact sequence that comes with the cone of 1_{P}.

