Problem Set 5

Problem 1. Let R be a domain and Q be its fraction field. Let T(-) denote the torsion functor we introduced in Problem Set 3.

- a) Show that $T(M) = \operatorname{Tor}_1^R(M, Q/R)$.¹
- b) Show that for every short exact sequence

 $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$

of R-modules gives rise to an exact sequence²

$$0 \longrightarrow T(A) \longrightarrow T(B) \longrightarrow T(C) \longrightarrow (Q/R) \otimes_R A \longrightarrow (Q/R) \otimes_R B \longrightarrow (Q/R) \otimes_R C \longrightarrow 0.$$

c) Show that the right derived functors of T are $R^1T = (Q/R) \otimes_R -$ and $R^iT = 0$ for all $i \ge 2$.

Problem 2. Let I be an ideal in R. Show that

$$\operatorname{Ext}_{R}^{n}(I, M) \cong \operatorname{Ext}_{R}^{n+1}(R/I, M)$$

for all $n \ge 1$ and all *R*-modules *M*.

Problem 3. Let (R, \mathfrak{m}) be a Noetherian local ring. Let $r \in \mathfrak{m}$ and M and N be finitely generated R-modules.

- a) Show that the map $\operatorname{Ext}_{R}^{i}(M, N) \to \operatorname{Ext}_{R}^{i}(M, N)$ induced by $M \xrightarrow{r} M$ is the map given by multiplication by r.
- b) Show that if r is regular on M and $\operatorname{Ext}_{R}^{i}(M/rM, N) = 0$ for $i \gg 0$, then $\operatorname{Ext}_{R}^{i}(M, N) = 0$ for $i \gg 0$.

Problem 4. Let (R, \mathfrak{m}) be a Noetherian local ring.

a) Show that for every short exact sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ of nonzero *R*-modules,

 $depth(A) \ge \min\{depth(B), depth(C) + 1\}.$

b) Given any finitely generated *R*-module *M* over a Cohen-Macaulay ring *R*, show that there exists $n \ge 1$ such that either pdim(M) < n or $depth(\Omega_n M) = dim(R)$.

Problem 5. Here are two fun but unrelated problems about regular rings.

- a) Show that every principal ideal domain is a regular ring.
- b) Solve the Localization Problem that baffled mathematicians for decades: if R is a regular local ring, then R_P is a regular local ring for every prime P.

¹Hint: you want to look at some long exact sequence for Tor.

²Hint: apply the Snake Lemma to some nice diagram.

Problem 6. Let R be a ring, M an R-module.

- a) Show that M is injective if and only if $\operatorname{Ext}^{1}_{R}(R/I, M) = 0$ for every ideal I.
- b) Let E be any injective resolution of $M, C_0 := \operatorname{coker}(M \longrightarrow E^0)$, and $C_n := \operatorname{coker}(E^{n-1} \longrightarrow E^n)$. Show that for all $i \ge 2$ and every R-module N,

$$\operatorname{Ext}_{R}^{i}(N, M) \cong \operatorname{Ext}_{R}^{1}(N, C_{i-2})$$

c) Show that $\operatorname{injdim}_R(M) \leq n$ if and only if $\operatorname{Ext}_R^{n+1}(R/I, M) = 0$ for every ideal I.

Problem 7. Consider the ring $R = \mathbb{Q}[x, y, z, a, b, c]/(xb - ac, yc - bz, xc - az)$ and the 2-generated R-module M = Rf + Rg, where the generators f, g satisfy the relations

$$yf - xg = 0 \quad bf - cg = 0 \quad cf - zg = 0.$$

Let P be the ideal in $S = \mathbb{Q}[x, y, z]$ defining the curve $\{(t^{13}, t^{42}, t^{73}) \mid t \in \mathbb{Q}\}.$

To solve this problem, you are not allowed to use any additional Macaulay2 packages besides the Complexes package and the ones that are automatically loaded with Macaulay2.

- a) Find $\operatorname{pdim}_S(S/P)$ and $\operatorname{depth}(S/P)$.
- b) Is P generated by a regular sequence?
- c) Find $\operatorname{pdim}_R(M)$ and $\operatorname{depth}(M)$.
- d) Is R a regular ring? Is it Cohen-Macaulay?

A complex C in Ch(R) is **split** if there are R-module homomorphisms $s_n: C_n \longrightarrow C_{n+1}$ such that the differential ∂ satisfies $\partial = \partial s \partial$. A complex is **split exact** if it is both exact and split.

Problem 8. Let R be a ring. Our goal is to find the projective objects in Ch(R).

a) Show that if C is a split complex, then the short exact sequence

$$0 \longrightarrow Z_n(C) \longrightarrow C_n \xrightarrow{d_n} B_{n-1}(C) \longrightarrow 0$$

must split.

b) If C is a split exact complex, show that C is the direct sum of complexes of the form

 $\cdots \longrightarrow 0 \longrightarrow B_n(C) \xrightarrow{=} B_n(C) \longrightarrow 0 \longrightarrow \cdots$

c) Show that every complex of the form

 $\cdots \longrightarrow 0 \longrightarrow P \xrightarrow{=} P \longrightarrow 0 \longrightarrow \cdots$

with P projective is a projective object in Ch(R).

d) Show that a complex P is a projective object in Ch(R) if and only if P is a split exact complex of projectives.³

³When P is projective, consider the short exact sequence that comes with the cone of 1_P .