A complex of R-modules is a sequence of R-module homomorphisms

$$C = (C_{\bullet}, d_{\bullet}) = \cdots \rightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \rightarrow \cdots$$

where $d_n d_{n+1} = 0$ for all n
 $\Rightarrow im d_{n+1} \subseteq ken d_n$
 $d_{\bullet} = differentials (v_{\bullet} C)$
Wearing We will not distinguish between complexes and co-complexes
A complex is exact at $C_n / at n / at$ homological position n if
 $im d_{n+1} = ken d_n$

exact sequence
$$\equiv$$
 exact complex (everywhere)

Hemology of
$$(C, d)$$
 is the sequence of R-modules
 $H_n(C) = \frac{\ker du}{\operatorname{im} d_{n+2}} = \frac{Z_n(C)}{B_n(C)}$ note homology of C
 $Z_n(C) := \ker dn \in C_n$ note cycle
 $B_n(C) := \operatorname{im} d_{n+2} \subseteq C_n$ note boundary

Examples canonical perfection
(1) $C = Z \xrightarrow{\cdot 4} Z \xrightarrow{\pi} Z/_{2}$ (bounded complex) $z \xrightarrow{1} 0$
is a complex: $im(\cdot 4) = 4Z \subseteq 2Z = kor \pi$
Hemolegy
$H_n(c) = 0$ for $n \ge 3$
$H_{2}(c) = \frac{\ker(Z \xrightarrow{.4} Z)}{\operatorname{im}(0 \longrightarrow Z)} = \frac{0}{0} = 0$
$H_{1}(c) = \frac{kon(Z \xrightarrow{\pi} Z/2)}{im(Z \xrightarrow{4} Z)} = \frac{\partial Z}{4Z} \cong Z/2$
$H_{0}(c) = \frac{kor(Z/2 \xrightarrow{0} 0)}{im(Z \xrightarrow{\pi} Z/2)} = \frac{Z/2}{Z/2} = 0$
$H_n(c) = 0$ for $n \leq -1$
exactness at $0 \rightarrow Z \xrightarrow{\cdot 4} Z \equiv Z \xrightarrow{\cdot 4} Z$ impetive
exothers at $Z \xrightarrow{\pi} Z_2 \rightarrow 0 \equiv Z \xrightarrow{\pi} Z_2$ is surjective

Remark
$$0 \rightarrow A \xrightarrow{f} B$$
 exact \Leftrightarrow fingettive
 $B \xrightarrow{f} C \rightarrow 0$ exact \Leftrightarrow g surgettive
 $A \xrightarrow{f} B \xrightarrow{g} C$ exact \Leftrightarrow im $f = \ker g$.
A shoot exact requence (ses) is an exact complex
 $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$
so: A includes in B by f ($A \xrightarrow{f} B$)
 $\cdot g$ surgettive $\Rightarrow C \cong B/\ker g = B/im f = colore f$
so our ses looks like
 $0 \rightarrow \ker g \xrightarrow{f} B \xrightarrow{g} coker f \rightarrow 0$
Remark $0 \rightarrow H \rightarrow 0$ exact $\Leftrightarrow H = 0$
Remark $0 \rightarrow H \xrightarrow{f} N \rightarrow 0$ exact $\Leftrightarrow f$ isomorphism.
Ex: $R = \kappa \overline{i} R$, $k = R/(x) \rightarrow 0$ ses.