A note on homology
$H_{n}: C h(R) \longrightarrow R$-mod is an additive functor But is not exact!

$$
A \rightarrow B \rightarrow C \Longrightarrow H_{n}(A) \rightarrow H_{n}(B) \rightarrow H_{n}(C)
$$ exact

is a complex
but not necessanly exact!

Examples:

What's really gong on:

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

induces a LES in homology the Connecting homomorphism is not 0 (!) (in some degrees)

Previously, on Homological Algebra:
\rightarrow P projective $\Leftrightarrow \operatorname{Hom}_{R}(1,-)$ is exact \Uparrow
P free

$$
\Leftrightarrow{ }_{A} \quad \begin{aligned}
& \because \\
& k^{\prime} \rightarrow B
\end{aligned}
$$

- Every R-module M is a quotient of a (free \Rightarrow) projective module

- Every R-module M embeds into some infective module

Projective Resolutions
Slogan: Approximate M by projectures
A projective resolution of M is a complex

$$
\cdots \rightarrow \frac{P_{2}}{P_{1}} \text { I }_{1} \rightarrow P_{0} \rightarrow 0 \rightarrow \cdots
$$

with $H_{i}\left(P_{0}\right)=0$ for $i>0$ and $H_{0}\left(P_{0}\right)=M$.
\Leftrightarrow an exact complex $\quad \cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow I_{0} \rightarrow M \rightarrow 0$
A free resolution of M is a poogective resolution where all the I_{i} are free. We sometimes write $P_{0} \rightarrow M$ or $P_{0} \longrightarrow M$

Remark projective resolution $\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0$

Every module has a free resolution:
Step 1 Find a sungetion from a free module $P_{0} \xrightarrow{\pi_{0}} M$
step 2 Look at the kernel of π_{0}
Find a free module suinecting onto $k_{0}=$ ken π_{0}

Note ken $\pi_{1}=\operatorname{ker}\left(i_{\downarrow} \circ \pi_{1}\right)$
is ungetre

Repeat. If $k_{i}=0$ at some pent, stop

$$
\operatorname{pdem}_{R}(M):=\min \left\{d \mid \exists P_{0} \rightarrow M \text { with } P_{i}=0 \text { for } i>d\right\}
$$

Minimal Free resolution
Setup:
(R, m) Noetheian local rung
02
$N-$ graded k-algebra, $R_{0}=k, M=\oplus R_{n}$
(so $R=\frac{k\left[x_{1}, \ldots, x_{d}\right]}{I}, I$ homegeneous, $m=\left(x_{1}, \ldots, x_{d}\right)$)
$M f g$ (graded) R-module
Note: We can find a free resolution of M where all the P_{i} are $f g$
Recall $\mu(M):=$ minimal \neq q generators $q M=\operatorname{dim}_{k}(M / \mathrm{mM})$
Can fid a surjection $\begin{gathered}R^{\mu(M)} \longrightarrow M=R f_{1}+\cdots+R f_{n} \\ \left(r_{1} \ldots, r_{n}\right)\end{gathered}$

$$
\left(r_{1}, \ldots, r_{n}\right) \longmapsto \rightarrow r_{1} f_{1}+\cdots+r_{n} f_{u}
$$

In the graded case we can take all the maps to be grade

$$
\mathcal{R}\left(-f_{1}\right) \oplus \cdots \oplus R\left(-f_{n}\right) \rightarrow M=R f_{1}+\cdots+R f_{n}
$$

is a degree graded R-module map

$$
\operatorname{deg}\left(f_{i}\right)=d_{i}
$$

$(R(-s))_{t}=R_{t-s}$ so R_{0} lives in degree s

A minimal free resolution of M is one where each $\mathcal{I}_{i} \cong R^{n_{i}}$ has n_{i} the smallest posable. In the graded case, we abs ask for the maps in the resolution to be degree preserving. So $\mu\left(P_{0}\right)=\mu(M), \mu\left(P_{1}\right)=\mu\left(k_{0}\right), \mu\left(P_{i+1}\right)=\mu\left(k_{i}\right)$

Will show: Minumal free resolutions are uneque!
Bette numbes $\beta_{i}(M)=$ rante of F_{i} in a munemal free resolution Graded bett numbers: $\beta_{i j}(M):=$ \#copes of $R(-j)$ in homologcal degee i pette tatkle \quad fas $\beta_{i j}(M)$ in posation $(i, i+j)$

Example $\quad R=k[x, y, z] \quad M=R /(x y, x z, y z)$

$$
0 \rightarrow R^{2} \xrightarrow[\left(\begin{array}{cc}
z & 0 \\
-y & y \\
0 & x
\end{array}\right)]{ } R^{3} \xrightarrow{(n y x z y z)} R \rightarrow M
$$

$$
\beta_{1}(M)=3 \quad \beta_{2}(M)=2 \quad \beta_{0}(M)=1
$$

Gnaded $0 \rightarrow R(-3)^{2} \xrightarrow{\left(\begin{array}{ll}z & 0 \\ -y & y\end{array}\right)} R(-2)^{3} \xrightarrow{(x y x z y z)} R \rightarrow M$
resolution:
 degree 2

$$
\begin{aligned}
& \beta_{12}(M)=3 \\
& \beta_{23}(M)=2
\end{aligned}
$$

Exampe $R=k[x, y] \quad M=R /\left(x^{2}, x y, y^{3}\right)$

$$
0 \rightarrow \underset{\substack{\oplus \\
R(-4)}}{R(-3)} \xrightarrow{\left(\begin{array}{cc}
y & 0 \\
-x & y^{2} \\
0 & x
\end{array}\right)} \underset{\substack{(9) \\
R(-3)}}{R(-2)^{2}} \xrightarrow{\left(x^{2} \text { xy } y^{3}\right)} R \rightarrow M
$$

Note: $\left(\begin{array}{c}0 \\ y^{2} \\ x\end{array}\right)$ lands in $\begin{aligned} & \operatorname{deg} 2 \\ & \operatorname{deg} 2 \\ & \operatorname{deg} 3\end{aligned}$ so $\begin{aligned} & \operatorname{deg} 2+2=4 \\ & \operatorname{deg} 1+3=4\end{aligned}$

