

What's really going on . $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{\vartheta} C \longrightarrow 0$ induces a LES in homology the connecting homomorphism is not 0 (!) (in some degrees) $H_{n+1}(c) \xrightarrow{\rightarrow} H_{n}(A) \xrightarrow{\rightarrow} H_{n}(B) \xrightarrow{\rightarrow} H_{n}(C) \xrightarrow{\rightarrow} I$ Not O

Providely on Honological Algebra.

$$\Rightarrow P \operatorname{popetive} \Leftrightarrow \operatorname{Hom}_{R}(P_{S}-) \text{ is exact } \Leftrightarrow \prod_{\substack{k=1\\ k=1}}^{n} P_{k} \rightarrow B \rightarrow O$$

 $P \operatorname{popetive} \Leftrightarrow \operatorname{Hom}_{R}(P_{S}-) \text{ is exact } \Leftrightarrow \prod_{\substack{k=1\\ k=1}}^{n} P_{k} \rightarrow B \rightarrow O$
 $P \operatorname{popetive} \Leftrightarrow \operatorname{Hom}_{R}(-S \in) \text{ is exact } \Leftrightarrow \prod_{\substack{k=1\\ l \neq l}}^{n} P_{k} \rightarrow B \rightarrow O$
 $\Rightarrow E \operatorname{ingetive} \Leftrightarrow \operatorname{Hom}_{R}(-S \in) \text{ is exact } \Leftrightarrow \prod_{\substack{k=1\\ l \neq l}}^{n} P_{k} \rightarrow B \rightarrow O$
 $P \operatorname{Every} R \operatorname{module} H \operatorname{embeds} \operatorname{into} \operatorname{some} \operatorname{ingetive} \operatorname{podule}$
 $P \operatorname{Every} R \operatorname{module} H \operatorname{embeds} \operatorname{into} \operatorname{some} \operatorname{ingetive} \operatorname{podule}$
 $P \operatorname{popetive} \operatorname{Resolutions} \qquad Slogan \quad Approximate H hy popetives$
A popetive resolution $Q \in M$ is a complex
 $\dots \rightarrow \overline{Q} \rightarrow \overline{P}_{1} \rightarrow \overline{R} \rightarrow O \rightarrow \dots$
with $H_{i}(R_{i}) = O$ for $i > 0$ and $H(R_{i}) = H$.
 $\Leftrightarrow \text{ an exact complex} \qquad \neg \overline{P}_{2} \rightarrow \overline{P}_{3} \rightarrow \overline{P}_{0} \rightarrow M \rightarrow O$
A free resolution $Q \in M$ is a popetive resolution where all the \overline{P}_{i} are free.
Ne sometimes wrate $\overline{P}_{i} \rightarrow M$ or $\overline{P}_{i} \rightarrow \overline{P}_{0} \rightarrow O$
 $\stackrel{\circ}{=} \int_{0}^{1} \int_{0}^{1} \frac{q}{q} \operatorname{uch} \operatorname{iso} O$
 $\stackrel{\circ}{=} \int_{0}^{1} \int_{0}^{1} \frac{q}{q} \operatorname{uch} \operatorname{iso} O$

$$\begin{array}{l} \underbrace{\operatorname{Minimal}}_{\text{Settop}} \quad \exists ree resolution \\ \underbrace{\operatorname{Settop}}_{(R,M)} \text{ Nsethenian local rung} \\ or \\ N-graded k-algebra, $R=k$, $M= \bigoplus R_n$
 $\left(bo R = \frac{k[X_1, \dots, X_d]}{T} \int I homeogeneous, $M = (u_1, \dots, u_d) \right)$
 $\operatorname{M} fg (graded) R-module$

$$\begin{array}{l} \operatorname{Note} \quad \operatorname{Ne can} fnd \ a free resolution \ of M rhere all the $T_i \ are fg \\ \operatorname{Recold} \quad \mu(H) \coloneqq \operatorname{minimal} \notin g \ generation \ of M = \dim_{K}(H/mM) \\ \operatorname{Can} fnd \ a \ \operatorname{subjection} \quad R^{\mu(H)} \longrightarrow M = Rf_1 + \dots + Rf_n \\ \operatorname{In the} \ graded \ case \ we \ can \ take \ all \ the \ maps to \ be \ graded \\ \operatorname{N(-f_1)} \bigoplus \dots \bigoplus R(-f_n) \longrightarrow M = Rf_1 + \dots + Rf_n \\ \operatorname{is } a \ degree \ graded \ R-module \ \operatorname{map} \\ (R(-k))_{t} = R_{t-k} \quad \text{so} \quad R_0 \ lives \ in \ degree \ s \end{array}$$$$$$

$$(R(-s))_{t} = R_{t-s}$$
 so R_{o} lives in degree s

A minimal free resolution of M is one where each $T_1 \cong \mathbb{R}^n$ has n the smallest possible. In the graded case, we also ask for the maps in the resolution to be degree preserving so $\mu(\mathcal{F}_{0}) = \mu(\mathcal{H}), \quad \mu(\mathcal{F}_{1}) = \mu(\mathcal{K}_{0}), \quad \mu(\mathcal{F}_{1+1}) = \mu(\mathcal{K}_{1})$

Will show: Minimal free resolutions are unique. Bette numbers Bi(H) = nank of Fina minimal free resolution Graded bette numbers: Big (M) := # copies of R(-j) in homological degra i pattitate has Big (M) in position (i, i+j) $E_{xample} \quad R = k[x, y, z] \quad M = R/(ny, xz, yz)$ $0 \rightarrow R^{2} \longrightarrow R^{3} \xrightarrow{(ny, xz, yz)} R \longrightarrow M$ $\begin{pmatrix} z & 0 \\ -y & y \\ 0 & z \end{pmatrix}$ $\beta_{1}(M) = 3 \beta_{2}(M) = 2 \beta_{0}(M) = 1$ Graded $0 \rightarrow R(-3) \xrightarrow{2} R(-2) \xrightarrow{3} (ny n \neq y^2) \xrightarrow{3} R \rightarrow M$ resolution: $\begin{pmatrix} z & 0 \\ -y & y \\ 0 & x \end{pmatrix} \xrightarrow{3} \begin{pmatrix} ny & n \neq y^2 \end{pmatrix} \xrightarrow{3} R \rightarrow M$ $\beta(\mathbf{M}) = \frac{\begin{vmatrix} 0 & 1 & 2 \\ 0 & 1 \\ 1 & 3 & 2 \end{vmatrix} \beta_{a3}(\mathbf{M}) = 2$ $\beta_{a3}(\mathbf{M}) = 2$ $\beta_{1a}(M) = 3$ Example R=k[n,y] M= R/(23 mg, y3) $0 \longrightarrow \begin{array}{c} R(-3) & \begin{pmatrix} y & y^{2} \\ -x & y^{2} \\ 0 & z \end{pmatrix} & R(-2)^{2} & (x^{2} my y^{3}) \\ R(-4) & R(-3) \end{array} \xrightarrow{R(-3)} R \longrightarrow M$ Note: $\begin{pmatrix} 0 \\ y^2 \\ x \end{pmatrix}$ lands in $\deg 2$ $\log 2 + 2 = 4$ $\deg 3$ $\deg 4 + 3 = 4$