Medium Categories
A category cho is productive if
• every Hom
$$A_0(x, y)$$
 is an abadian group
• for every x, y, z chyets in cho,
 $Hom_{A_0}(x, y) \times Hom_{A_0}(z, x) \xrightarrow{\circ} Hom_{A_0}(z, y)$
 $(f, g) \xrightarrow{\leftarrow} f \circ g$
is bolinean, meaning
 $g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2$
and
 $(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$
Example R -mod
 Cho, B produktive functor $F: Cho \rightarrow B$ is a functor such that
 $Hom_{A_0}(x, y) \xrightarrow{F_{X,Y}} Hom_{B_0}(z(x), F(z))$
 $f \xrightarrow{\leftarrow} F(f)$
is a homomorphism of choling group's.

E category • An object i is initial in G if Homz (i, x) is a rangetion for all syncts x in G • An object t is terminal in & if a singletion for every x $Hom_{\mathcal{D}}(x,t)$ is · A zero object is an initial and terminal object. Exercise Initial terminal and zero drycts if they exists, are rinque up to somerphism. Examples · R-mod: O is a zero dyect Z is initial no terminal object • Ring : Def & category with a c_{-} drect, x, y drects the zero anow $x \xrightarrow{0} y$ is the unique anow $x \xrightarrow{0} y$ is the unique anow

Remark In a preodditive category, the O-anow & ~ y is the same as the O in Hom (xy)

the universal posperty of the gisduct gives amous in iz

Claim

Z, i, iz are a coproduct for x and y

Existence: take $h := f\pi_1 + g\pi_2$ $hi_1 = f\pi_1 i_1 + g\pi_2 i_1 = f$ $hi_2 = f\pi_1 i_2 + g\pi_2 i_3 = g$ 0 1_N 1_N 1_N

Uniqueness if h' also satisfies $hi_1=f$, $hi_2=g$ $\Rightarrow (h-h')i_1 = f-f=0$, $(h-h')i_2 = g-g=0$ Sufficient: 0 so the lenique and satisfying $yi_1=0$, $yi_2=0$ Useful: $i_1\pi_1+i_2\pi_2 = 1 \ge 1 \ge 2$ $\pi_1(i_1\pi_1+i_2\pi_2) = \pi_1i_1\pi_1 + \pi_1i_2\pi_2 = \pi_1 = \pi_1 \le 1 \ge 1$ $\pi_2(i_1\pi_1+i_2\pi_2) = \pi_1i_1\pi_1 + \pi_1i_2\pi_2 = \pi_1 = \pi_2 \le 1 \ge 1$

$$\begin{aligned} \gamma i_1 &= 0 \quad \gamma i_2 &= 0 \\ \Rightarrow \quad \gamma &= \gamma 1_2 &= \gamma (i_1 \pi_1 + i_2 \pi_2) = \gamma i_1 \pi_1 + \gamma i_2 \pi_2 = 0 \\ &= 0 \quad = 0 \quad = 0 \\ &= 0 \quad = 0 \quad = 0 \end{aligned}$$

From now on: in any additive Category
we write
$$A \oplus B$$
 for the product \equiv coproduct $\bigtriangledown A$ and B
(of course $A \oplus B$ is only defined up to comorphism)

Remark $A \oplus B$ is characterized by the existence of $A \xrightarrow{i_A} A \oplus B$ $A \oplus B \xrightarrow{T_A} A$ $\overline{B} \xrightarrow{i_B} A \oplus B$ $A \oplus B \xrightarrow{T_B} B$

such that

 $\pi_A i_A = i d_A$, $\pi_B i_B = i d_B$, $i_A \pi_A + i_B \pi_B = i d_{A \oplus B}$

theorem \mp additive functor between additive categories, (1) $\mp(0) = 0$ and $\mp(n \xrightarrow{\circ} y) = \mp(x) \xrightarrow{\circ} F(y)$ (2) $\mp(A \otimes B) = \mp(A) \oplus F(B)$

Exercise the additive category
• f mono
$$\Leftrightarrow$$
 (fg=0 \Rightarrow g=0)
• f epi \Leftrightarrow (gf=0 \Rightarrow g=0)
As additive category, $x \xrightarrow{f} y$
the kernel of f is an arrow $k \xrightarrow{i} x$ such that
• $(k \xrightarrow{i} x \xrightarrow{f} y) = 0$
• any $z \xrightarrow{g} x$ such that $z \xrightarrow{g} x \xrightarrow{f} y = 0$
factors uniquely through kern f:
 $k \xrightarrow{i} x \xrightarrow{f} y$
 $\exists i \xrightarrow{g}_{0}$

the colournel of f is an amous
$$y \xrightarrow{P} c$$
 such that
 $\cdot (x \xrightarrow{f} y \xrightarrow{P} c) = 0$
 $\cdot any y \xrightarrow{g} z$ such that $x \xrightarrow{f} y \xrightarrow{g} z = 0$
factors uniquely through obtan f:
 $x \xrightarrow{g} y \xrightarrow{P} c$
 $z \xrightarrow{g} y \xrightarrow{f} z$

Remarks () If $k \xrightarrow{\lambda} x$ is a bernel for $x \xrightarrow{f} y$, k is the unique object (up to iso) that has the following universal property: for every object z and every $z \xrightarrow{g} x$, there exists a remaps $z \xrightarrow{f} k$ such that ih = g.

(a) infrancever they exit, bornels are worre and colour nells are equilibrium $z \xrightarrow{g_1} g_2$, but $f \longrightarrow x \xrightarrow{f} y$ (ken f) $g_1 = (ken f) \circ g_2 \implies (ken f) \circ (g_1 - g_2) = 0$ Enaugh to show: $(ker f) \circ g = 0 \implies g = 0$ ken $f \longrightarrow x \xrightarrow{f} y$ o factors uniquely through ken f $g \uparrow g \downarrow g \downarrow g = 0$ g = 0g = 0 (2) kennels and cokernels do not necessarily exit!
In the category of fg R-modules over a non-Neitherran rung,
if I is an infritely generated ideal
ken (R → R/I) = I not in our category!
In fact, R → R/I is an epi, but not a cohernel!
so

Romank

In an abelian category, Every anow factors as $f = mone \cdot epr$ ker $f \longrightarrow x \xrightarrow{f} y \longrightarrow cohen f$ $epi \downarrow \qquad f mone$ $cohen per f \longrightarrow hercohen f$ iso

Image p f is m f := ken collaer f

Remark the source of $\operatorname{Im} f$ is the lengue dyect (up to iso) such that f factors as $x \xrightarrow{\operatorname{epi}} \operatorname{Im} f \xrightarrow{\operatorname{mono}} y$

Exercise the abelian category
$$f \mod f = 0$$
 $f = 0$ $f = 0$

Exercise A abelian category,
$$f$$
 meno, g epi
ker (fg) = ker g color (fg) = color f
 $im(fg)$ = im $f = f$

ch abduan category
A (Chain) complex in ch (C, 3) or C is a sequence

$$\rightarrow C_n \xrightarrow{3n} C_{n-1} \xrightarrow{3n-1} \cdots$$

 $\exists elsects and anows such that $\exists_{n-1} \cdot \exists_n = 0$ for all n
A map \eth complexes $C \xrightarrow{4} \boxdot \varUpsilon i$ is a sequence \eth anows such that
 $\cdots \rightarrow C_n \xrightarrow{n} C_{n-1} \xrightarrow{-\cdots} \cdots$
fn $\downarrow \qquad \int fn_{-1} \qquad commutes$
 $\cdots \rightarrow n \xrightarrow{\delta_n} \eth_{n-1} \xrightarrow{-\cdots} \cdots$
 $ch(ch) := category $\image (chain)$ complexes over ch
and maps $\eth complexes$
 $elsectes$
 $\cdot f+g$ compated degree uise: $(f+g)_n = f_n + g_n$
 $\cdot O_{ch(ch)} = \cdots \rightarrow C_n \times \Im_n \xrightarrow{\frac{3n}{2} \cdot \Im_n} C_{n-1} \times \Im_n \xrightarrow{-\cdots}$
 $\cdot ken f$ induced by the ken $f_{n+1} \longrightarrow C_{n+1} \times \Im_n$
 $\cdot f$ wence \Leftrightarrow all f_n mono $f epi \Leftrightarrow$ all f_n epi
 $\cdot f=0 \Leftrightarrow$ all $f_n=0$$$