Prevrously, on Homological Algeria:
Every R-nodule has a prospective resolution.
when R is a Noethenan local rung / jg grouted k-algebra, every $f g$ (graded) module has a minimal progectre resolution

$$
\cdots \rightarrow R^{\beta_{2}(M)} \rightarrow R^{\beta_{1}(M)} \rightarrow R^{\beta_{B}(M)} \rightarrow M \rightarrow 0
$$

$\mathcal{P}_{2}(M):=$ beth numbers of M
Goaded case: $\cdots \rightarrow \underset{j}{\oplus R(-j)} \beta_{i j}(M) \rightarrow \cdots \rightarrow \underset{j}{\oplus(-j)} \xrightarrow{\beta_{0 j}(M)} \rightarrow M \rightarrow 0$
(all maps are degree preserving)
$\beta_{i j}(M):=$ graded beth numbers of M
Moot interesting unvaveants of M ave encoded in to (graced) betti numbers (and sometimes in the differentials in the mineral resolution)
\qquad
II
Infective Resolutions
exact sequence $0 \rightarrow M \rightarrow E^{0} \rightarrow E^{\prime} \rightarrow \cdots \quad$ all E_{i} infective
I $\quad \uparrow$ cocomplexes (differentials go up)
complex $0 \rightarrow E^{0} \rightarrow E^{1} \rightarrow \ldots$ with $H^{0}(E)=M, H^{i}(E)=0$ for if
Fact Every R-module has an ejective resolution

Graded/local case: every module has a miniucd infective resolution

Abehan Categones

A category ob is proodditure if

- every Hom chb (x, y) is an abchan group
- for eveny x, y, z oljects in cb,

$$
\begin{aligned}
\operatorname{Hom}_{\infty}(x, y) \times \operatorname{Hom}_{c b}(z, x) & \longmapsto \operatorname{Hom}_{c \rightarrow b}(z, y) \\
(f, g) & \longmapsto f \circ g
\end{aligned}
$$

is bolineas, meaneng

$$
\begin{aligned}
& g \circ\left(f_{1}+f_{2}\right)=g \circ f_{1}+g \circ f_{2} \\
& \left(g_{1}+g_{2}\right) \circ f=g_{1} \circ f+g_{2} \circ f
\end{aligned}
$$

Example R-mod
co, D preadtetze calegoves
An additive functor $F: C b \rightarrow \infty$ is a functor such that

$$
\begin{array}{cl}
\operatorname{Hom}_{\in b}(x, y) & \xrightarrow{F_{x y}} \operatorname{Hom}_{\mathcal{B}}(\mp(x), F(y)) \\
f & \longmapsto F(f)
\end{array}
$$

is a homomouphusm it abelian groups.
\mathcal{F} catogry

- An olgect i is inital in \mathcal{F} if $\operatorname{Hom}_{\mathcal{Z}}(i, x)$ is a sungletion for all strects x in \mathcal{E}
- An ohzect t is termunal in B if $\operatorname{Hom} z(x, t)$ is a sungletion for every x
- A zho orrect is an unitial and termunal ohrect.

Exencise Inital, termunal, and zelo obrects, if they exuts, are senique up to isomouphosm.

Examples

- R-mod: 0 is a zelo drect
- Reng: \mathbb{Z} is inetial, no terminal drgect

Def B catagory uth a 0 -drect, x, y drects the zelo anow $x \xrightarrow{0} y$ is the uneque anow

$$
x \rightarrow 0 \rightarrow y
$$

Remank In a preadditive category, the 0 -anow $x \xrightarrow{\circ} y$ is the tame as the 0 in $H_{C O}(x, y)$

An Addutive category of is a preadditive category such that:

- Of has a zero drect
- ol has all finte products
demma In any addetive catagory, frete coppoducts exuts and cornuce with puoducts.
Proof x, y two strects \Rightarrow then product exists

the uneversal posperty of the gisduct grees amows i_{1}, i_{2}

Claim z, i_{1}, i_{2} are a copprduct for x and y

need to show:
习! h

Exudence: take $h:=f \pi_{1}+g \pi_{2}$

$$
\begin{aligned}
& h i_{1}=\underbrace{f \pi_{1} i_{1}}_{1_{1}}+g \underbrace{\pi_{2} i_{1}}_{0}=f \\
& h i_{2}=\underbrace{\pi_{1} i_{2}}_{0}+\underbrace{g \pi_{2} i_{2}}_{1 y}=g
\end{aligned}
$$

Uniqueness if h^{\prime} also saterfes $h i_{1}=f, h_{i}=g$

$$
\Rightarrow \quad\left(h-a^{\prime}\right) i_{1}=f-f=0,\left(h-a^{\prime}\right) i_{2}=g-g=0
$$

Suffecent: 0 is the unique anow satisfying $\psi i_{1}=0, \psi i_{2}=0$
Useful: $i_{1} \pi_{1}+i_{2} \pi_{2}=1 z \quad$ seance

$$
\begin{aligned}
& \pi_{1}\left(i_{1} \pi_{1}+i_{2} \pi_{2}\right)=\underbrace{\pi_{1} i_{1} \pi_{1}}_{1_{x}}+\underbrace{\pi_{1} i_{2}}_{0} \pi_{2}=\pi_{1}=\pi_{1} 1 z \\
& \pi_{2}\left(i_{1} \pi_{1}+i_{2} \pi_{2}\right)=\underbrace{\pi_{2} i_{1}}_{0} \pi_{1}+\underbrace{\pi_{2} i_{2}}_{1_{y}} \pi_{2}=\pi_{2}=\pi_{2} 1 z
\end{aligned}
$$

$$
\begin{aligned}
\psi i_{1} & =0, \psi i_{2}=0 \\
\Rightarrow & \psi=\psi 1_{z}=\psi\left(i_{1} \pi_{1}+i_{2} \pi\right. \\
\Rightarrow & =\underbrace{\psi i_{1}}_{=0} \pi_{1}+\underbrace{\psi i_{2} \pi_{2}}_{=0}=0
\end{aligned}
$$

From now on: in any additive category we write $A \oplus B$ for the product \equiv coppoduct of A and B (If course $A \oplus B$ is only defined up to somouphesm)

Remank $A \oplus B$ is characterized by the existence of

$$
\begin{array}{ll}
A \xrightarrow{i_{A}} A \oplus B & A \oplus B \xrightarrow{\pi_{A}} A \\
B \xrightarrow{i_{B}} A \otimes B & A \otimes B \xrightarrow{\pi_{B}} B
\end{array}
$$

sech that

$$
\pi_{A} i_{A}=d_{A}, \quad \pi_{B} i_{B}=i d_{B}, \quad i_{A} \pi_{A}+i_{B} \pi_{B}=i d_{A \oplus B}
$$

theorem \mp additive functor between additive categories,
(1) $F(0)=0$ and $F(x \xrightarrow{0} y)=F(x) \xrightarrow{0} F(y)$
(2) $F(A \oplus B)=F(A) \oplus F(B)$

Exercise of additive category

- f mon $\Longleftrightarrow(f g=0 \Rightarrow g=0)$
- f api $\Leftrightarrow(g f=0 \Rightarrow g=0)$

A additive category, $x \xrightarrow{f} y$
the kernel of f is an snow $k \xrightarrow{i} x$ such that

- $(k \xrightarrow[i]{i} x \xrightarrow{f} y)=0$
- any $z \xrightarrow{g} x$ such that $z \xrightarrow{g} x \xrightarrow{f} y=0$ factors unduly through kerf f :

the cokernel of f is an anow $y \xrightarrow{p} c$ such that - $(x \xrightarrow{f} y \xrightarrow{p} c)=0$
- any $y \xrightarrow{g} z$ such that $x \xrightarrow{f} y \xrightarrow{g} z=0$ factors uniquely through cover f :

Remanks (0) If $k \xrightarrow{i} x$ is a kennel for $x \xrightarrow{f} y, k$ is the unique object (up to iso) that has the following universal property:
for every strict z and every $z \xrightarrow{g} x$, there execs a resuqu $z \xrightarrow{h} k$ such that $i \hbar=g$.
(1) Whenever they exact, kernels are mono and colonels are epi

$$
\begin{gathered}
z \xrightarrow[g_{2}]{g_{1}} \operatorname{ken} f \longrightarrow x \xrightarrow{f} y \\
(\operatorname{ken} f) \cdot g_{1}=(\operatorname{ken} f) \circ g_{2} \Rightarrow(\operatorname{ken} f) \cdot\left(g_{1}-g_{2}\right)=0
\end{gathered}
$$

Enoughto show: $(\operatorname{ker} f) \circ g=0 \Rightarrow g=0$

(2) kernels and cokernels do not necessanly exent!

In the category of $f g R$-modules owi a non-Nelforean ring, If I is an enfritely generated ideal $\operatorname{ben}(R \xrightarrow{\pi} R / I)=I$ not in our categou! In fact, $R \xrightarrow{\pi} R / I$ is an epi, but not a colsennel! so
(3) epis may not be cokernels and monos may not be terinds
(4) If colsenker f and ker coken f exuct, then there is a canonical anow coken ker $f \rightarrow$ ker colker f

$f \circ($ ker $f)=0 \Rightarrow f$ factors unugrely though coker $f \rightarrow$

$$
(\operatorname{colken} f) \cdot \rightarrow \underbrace{\operatorname{cosken} \operatorname{ken}}_{\text {epi }} f=0 \Rightarrow(\operatorname{cosken} f) \cdot f=0
$$

$\Rightarrow \cdots$ factors unequely through ker coker f

An abehan category is an additive Category ob e such that:

- Gb has all kernels and cokernels
- Every mono is the kennel of its ckeince
- Every ep is the cokennal of its kernel
- For every now f, the canonical cobber per $f \rightarrow$ kercoker f is an iso

Canonical example R-mod

Unwrapping the definition: Al is abolian if:

- every Homcde (x, y) is an abehan group
- composition o of anows is bilinear, meaning

$$
g \circ\left(f_{1}+f_{2}\right)=g^{\tau} \circ f_{1}+g \circ f_{2} \text { and }\left(g_{1}+g_{2}\right) \circ f=g_{1} \circ f+g_{2} \circ f
$$

- Ab has a zero object
- Al has all finite products
- Gl has all kernels and cokernels
- Every mono is the kennel of its ckeince
- Every ep is the cokennel of its kernel
- For every now f, the canonical cobber ken $f \rightarrow$ kercoker f is an iso

Ramark
In an abolean category, Evouy anow factors as $f=m o n \in \cdot \mathrm{ep}$

Image $q f$ is $u m f:=$ ker colper f

Remark the source of un f is the leneque obpect (up to iso) such that f factors as

$$
x \xrightarrow{\text { epi }} \operatorname{lm} f \xrightarrow{\text { mons }} y
$$

Exeruse ob abelean category

$$
f m o n \theta \Longleftrightarrow \text { ken } f=0 \quad \text { epi } \Leftrightarrow \text { cothen } f=0
$$

Exercise ob abehan category, f mono, g epi

$$
\begin{gathered}
\operatorname{ker}(f g)=\operatorname{ker} g \quad \operatorname{coser}(f g)=\operatorname{coloen} f \\
\operatorname{lm}(f g)=\operatorname{im} f=f
\end{gathered}
$$

Co abelvan category
A (Chain) complex in of (C, ∂) or C is a sequence

$$
\ldots \rightarrow c_{n} \xrightarrow{\partial_{n}} c_{n-1} \xrightarrow{\partial_{n-1}} \ldots
$$

of objects and anows such that $\partial_{n-1} \cdot \partial_{n}=0$ foralln A mop of complexes $C \underset{\partial_{n}}{f}$ D is a sequence of anows such that $\cdots \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \rightarrow \cdots$

$C h(A):=$ category ot (chain) complexes over ot and maps of complex
derma © abelean $\Rightarrow C h(C A)$ abelean
Sketch:

- $f+g$ computed degreewise: $(f+g)_{n}=f_{n}+g_{n}$
- $0_{c h(0)}=\cdots \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \cdots$
$C \times D=\cdots \rightarrow C_{n} \times \partial_{n} \xrightarrow{\partial_{n}^{C} \times \partial_{n}^{D}} C_{n-1} \times \partial_{n} \rightarrow \cdots$
- ken f induced by the ken $f_{n+1} \rightarrow C_{u+1} \xrightarrow{f_{n+1}} Q_{n}$ universal

$$
\text { property ogler kerf fur } \longrightarrow C_{n} \xrightarrow[f_{u}]{\longrightarrow} D_{n}
$$

- f mene \Leftrightarrow all f_{n} mene f ep \Leftrightarrow all f_{n} ep
- $f=0 \Leftrightarrow$ all $f_{n}=0$

