The vnowly, on Homological Algebra:
As is an abelian category
$$f$$
:
 e^{46} is an abelian category f :
 e^{46} is additive (Hom₁₆ are all abelian groups, e^{56} halmear,
 e^{46} has a 20 example and coloring groups, e^{56} halmear,
 e^{46} has all kennels and coloring
 e^{46} has all kennels and epi = Coloring
 e^{46} has all kennels and epi = Coloring
 e^{46} has all kennels and e^{5} an ison
 e^{46} has an iso
 e^{46} has all kennels as $f = mono \cdot epi$
Image un $f = ken coloring
 e^{46} has $f = mono \cdot epi$
Image un $f = ken coloring
 e^{46} has $f = mono \cdot epi$
 e^{46} has e^{46} ha$$

$$(C, \partial) in Ch(bb)$$

$$Z_{n}(C) = kon \partial_{n} \qquad \exists_{n}(C) := im \partial_{n}$$
boundaries
$$\frac{Revenke}{2} (D) abdhan category \qquad C \xrightarrow{f} \partial \xrightarrow{g} \in such that gf=0$$

$$Claim there is a canonical ance im f \longrightarrow ken g$$

$$C \xrightarrow{f} \partial \xrightarrow{g} \in E$$

$$Q \cdot y \xrightarrow{g} y = 0 \implies go im f = 0$$

$$\Rightarrow im f factors unspely through ken g$$

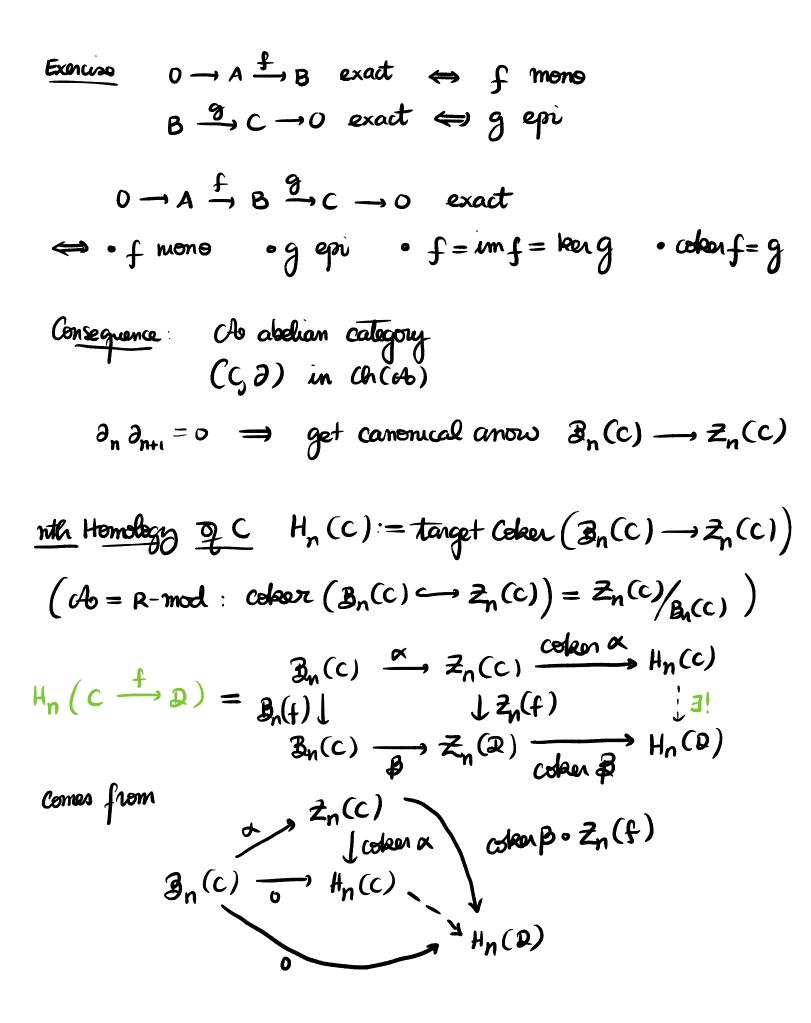
$$A sequence of ance (C + D) \xrightarrow{g} \in is exact nf$$

$$P = 0$$

$$A sequence of ance ken g \rightarrow im f is an iso
$$ken g \stackrel{f}{=} im f \qquad C \stackrel{f}{\to} \partial \xrightarrow{g} \in E$$

$$m f \stackrel{f}{\to} of = im f \qquad C \stackrel{f}{\to} \partial \xrightarrow{g} \in E$$

$$m f \stackrel{f}{\to} of = im f \qquad C \stackrel{f}{\to} \partial \xrightarrow{g} \in E$$$$



Evenine
$$H_n: Ch(Ch) \rightarrow Ch$$
 is an additive functor
Ch abelian category
f,g maps of complexes in CA(Ch)
A homotopy between f and g is a sequence of ancows
 $F_n \longrightarrow G_{n+2}$ such that $h_{n-1} S_n + S_{n+1} h_n = f_n - g_n$
Evenine Homotopic maps induce the same map in homotogy
theorem ch abelian category, x ebject in the
 $Gh \longrightarrow Ab$ and $Ch \longrightarrow Ab$
 $g \longmapsto Hom_{Ab}(x,g)$ $g \longmapsto Hom_{Ab}(g,x)$
Are left exact functors
Proof Enough to show: Hom_{Ab}(x-) left exact
because Hemp_b(-, x) = Hom_{Ab}(x, -)
 $0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow O$ exact in the
NOTE: $0 \longrightarrow Hom_{Cb}(x,A) \stackrel{f_{+}}{\longrightarrow} Hom_{Cb}(x,B) \stackrel{g_{+}}{\longrightarrow} Hom_{Cb}(x,C)$ exact
in Ab

 $gf = 0 \implies g_* f_* = (gf)_* = 0_* = 0$

Exercise to abelian => Ao^I abelian

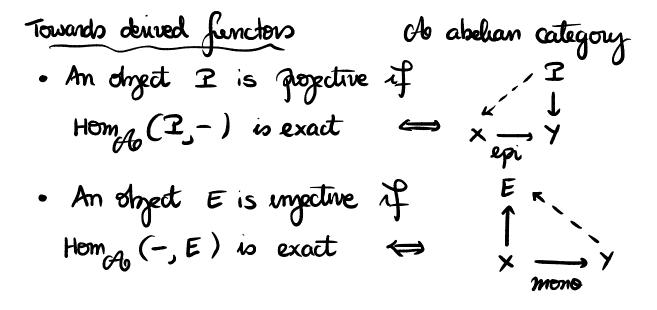
Veneda Embeddung for akelian Categories
Ab brally small Category

$$Ab \longrightarrow Ab^{ab^{op}} = Centhavariant functions Ab \rightarrow Ab$$

 $\varkappa \longmapsto Hom_{Ab}(-,\varkappa)$
is an embedding into a full subcategory, and it selfects exactness:
if $Hom_{Ab}(-,\varkappa) \longrightarrow Hom_{Ab}(-,\varkappa) \rightarrow Hom_{Ab}(-,\varkappa)$ is exact,
then $\varkappa \longrightarrow \Im \longrightarrow \varkappa$ is exact

Proof Injective on objects because Hone all disjoint
Nat (Homed (-, 2), Homed (-, y))
$$\longrightarrow$$
 Homed (2, y)
is a natural by extreme by the old Yonedo observe
this says over functor is full and faithful!
Reflects exactness:
Hom_{cb} (-, x) $\xrightarrow{f_*}$ Hom_{cb} (-, y) $\xrightarrow{g_*}$ Homed (-, z) exact
 \Rightarrow $gf = g_* f_* (1_x) = 0$
Also need: ken $g = un f$ in Ab
 $g_*(ken g) = g_0 ken g = 0 \implies ken g \in ken g_* = um f_*$
 \Rightarrow ken g factors through in f, say by φ
 $z \xrightarrow{f} y \xrightarrow{g} z$ using universed properties of
 $ken g = y$ and y are universes

the snake demina and LES in homology hold in any abolian categoing



• A Projective resolution for M is a complex $P = \cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_2 \rightarrow 0$ such that $H_0(P) = 0, H_n(P) = 0$ for all $n \neq 0$, and P_n to projective for all n

• An injective resolution for M is a (Co) Complex

$$E = 0 \rightarrow E^{\circ} \rightarrow E^{4} \rightarrow \dots$$
 with that
 $H^{n}(E) = 0$ for all $n \neq 0$, $H^{\circ}(E) = H$, and E_{n} is injective for all n .
• the has enough popetives if for every depect H there exists
an epi $Z \rightarrow H$ with Z projective
• the has enough injectives if for every depect M there exists
a monte $M \rightarrow E$ with E injective
Example R -used has enough generatives and enough injectives
 H_{1000M} If the has enough respectives, every direct has an injective resolution
If the has enough injectives, every direct has an injective resolution
If the has enough injectives, every direct has an injective resolution
 $R_{1} \rightarrow \frac{2}{2} \rightarrow \frac{2}{2} \rightarrow \frac{2}{2} \rightarrow \frac{2}{5} \rightarrow \frac{2}{5}$

$$\frac{\text{Herrieum}}{(2, 2)} \text{ in } Ch_{\ge 0} (A_0) \text{ with } P_i \text{ projective for all } i$$

$$(Q, S) \text{ projective resolution for N} \\
Q & \in M \text{ anow in the with } E_{D_1} = 0, M \xrightarrow{f} N \\
\text{How exists a map to complexes } I \xrightarrow{f} Q \text{ such that} \\
P_0 & f \text{ If commutes} \\
Q_0 & \xrightarrow{S} N \\
\text{Much is unique up to homotopy} \\
\text{Horseshoe downer to resolution } Q A \\
R projective resolution } Q A \\
R projective resolution } Q C \\
Q & \to A \xrightarrow{f} B \xrightarrow{f} C \longrightarrow O \quad \text{ses in Ch} \\
\text{Here exits a projective resolution } Q the B and liftings \\
F and G Q f and g (respectively) such that \\
O → P \xrightarrow{f} Q \xrightarrow{G} R \xrightarrow{f} Q \xrightarrow$$

The denume
$$\Rightarrow \partial_{0}^{Q}$$
 epi
Sincke denume $\Rightarrow \partial_{0}^{Q}$ epi
 $Induction$ Repeative $Induct = coproduct in the formula
 $f \oplus g := unaque anow in the product = coproduct in the formula
 $f \oplus g := unaque anow in the formula
 $f \oplus g := unaque anow in the formula
 $f \oplus g := unaque anow in the formula
 $f \oplus g := unaque anow in the formula
 $f \oplus g := unaque anow in the formula
 $f \oplus g := unaque anow in the formula
 $f \oplus g := unaque anow in the formula
 $f \oplus g := (f \partial_{0}) \oplus \mathcal{T}$
 $f \oplus g = (f \partial_{0}) \oplus \mathcal{T$$$$$$$$$$

 $A \rightarrow E_A$, $C \rightarrow E_C$ injecture resolutions \Rightarrow there exists an injecture resolution of B and a ses $0 \rightarrow E_A \rightarrow E_B \rightarrow E_C \rightarrow 0$